android_kernel_google_msm/drivers/regulator/pm8xxx-regulator.c
David Collins 0b8ec2a7c0 regulator: pm8xxx-regulator: add PM8XXX regulator driver
Create a PM8XXX regulator driver that can support PMIC PM8921
variants including: PM8018, PM8038, and PM8921.

Change-Id: I60d1302e4af9a4c5caa72301c904867acd2ebe0f
Signed-off-by: David Collins <collinsd@codeaurora.org>
2013-02-25 11:33:41 -08:00

3345 lines
88 KiB
C

/*
* Copyright (c) 2011-2012, Code Aurora Forum. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 and
* only version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#define pr_fmt(fmt) "%s: " fmt, __func__
#include <linux/module.h>
#include <linux/delay.h>
#include <linux/err.h>
#include <linux/string.h>
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/bitops.h>
#include <linux/mfd/pm8xxx/core.h>
#include <linux/mfd/pm8xxx/regulator.h>
/* Debug Flag Definitions */
enum {
PM8XXX_VREG_DEBUG_REQUEST = BIT(0),
PM8XXX_VREG_DEBUG_DUPLICATE = BIT(1),
PM8XXX_VREG_DEBUG_INIT = BIT(2),
PM8XXX_VREG_DEBUG_WRITES = BIT(3), /* SSBI writes */
};
static int pm8xxx_vreg_debug_mask;
module_param_named(
debug_mask, pm8xxx_vreg_debug_mask, int, S_IRUSR | S_IWUSR
);
/* Common Masks */
#define REGULATOR_ENABLE_MASK 0x80
#define REGULATOR_ENABLE 0x80
#define REGULATOR_DISABLE 0x00
#define REGULATOR_BANK_MASK 0xF0
#define REGULATOR_BANK_SEL(n) ((n) << 4)
#define REGULATOR_BANK_WRITE 0x80
#define LDO_TEST_BANKS 7
#define NLDO1200_TEST_BANKS 5
#define SMPS_TEST_BANKS 8
/*
* This voltage in uV is returned by get_voltage functions when there is no way
* to determine the current voltage level. It is needed because the regulator
* framework treats a 0 uV voltage as an error.
*/
#define VOLTAGE_UNKNOWN 1
/* LDO masks and values */
/* CTRL register */
#define LDO_ENABLE_MASK 0x80
#define LDO_DISABLE 0x00
#define LDO_ENABLE 0x80
#define LDO_PULL_DOWN_ENABLE_MASK 0x40
#define LDO_PULL_DOWN_ENABLE 0x40
#define LDO_CTRL_PM_MASK 0x20
#define LDO_CTRL_PM_HPM 0x00
#define LDO_CTRL_PM_LPM 0x20
#define LDO_CTRL_VPROG_MASK 0x1F
/* TEST register bank 0 */
#define LDO_TEST_LPM_MASK 0x04
#define LDO_TEST_LPM_SEL_CTRL 0x00
#define LDO_TEST_LPM_SEL_TCXO 0x04
/* TEST register bank 2 */
#define LDO_TEST_VPROG_UPDATE_MASK 0x08
#define LDO_TEST_RANGE_SEL_MASK 0x04
#define LDO_TEST_FINE_STEP_MASK 0x02
#define LDO_TEST_FINE_STEP_SHIFT 1
/* TEST register bank 4 */
#define LDO_TEST_RANGE_EXT_MASK 0x01
/* TEST register bank 5 */
#define LDO_TEST_PIN_CTRL_MASK 0x0F
#define LDO_TEST_PIN_CTRL_EN3 0x08
#define LDO_TEST_PIN_CTRL_EN2 0x04
#define LDO_TEST_PIN_CTRL_EN1 0x02
#define LDO_TEST_PIN_CTRL_EN0 0x01
/* TEST register bank 6 */
#define LDO_TEST_PIN_CTRL_LPM_MASK 0x0F
/*
* If a given voltage could be output by two ranges, then the preferred one must
* be determined by the range limits. Specified voltage ranges should must
* not overlap.
*
* Allowable voltage ranges:
*/
#define PLDO_LOW_UV_MIN 750000
#define PLDO_LOW_UV_MAX 1487500
#define PLDO_LOW_UV_FINE_STEP 12500
#define PLDO_NORM_UV_MIN 1500000
#define PLDO_NORM_UV_MAX 3075000
#define PLDO_NORM_UV_FINE_STEP 25000
#define PLDO_HIGH_UV_MIN 1750000
#define PLDO_HIGH_UV_SET_POINT_MIN 3100000
#define PLDO_HIGH_UV_MAX 4900000
#define PLDO_HIGH_UV_FINE_STEP 50000
#define PLDO_LOW_SET_POINTS ((PLDO_LOW_UV_MAX - PLDO_LOW_UV_MIN) \
/ PLDO_LOW_UV_FINE_STEP + 1)
#define PLDO_NORM_SET_POINTS ((PLDO_NORM_UV_MAX - PLDO_NORM_UV_MIN) \
/ PLDO_NORM_UV_FINE_STEP + 1)
#define PLDO_HIGH_SET_POINTS ((PLDO_HIGH_UV_MAX \
- PLDO_HIGH_UV_SET_POINT_MIN) \
/ PLDO_HIGH_UV_FINE_STEP + 1)
#define PLDO_SET_POINTS (PLDO_LOW_SET_POINTS \
+ PLDO_NORM_SET_POINTS \
+ PLDO_HIGH_SET_POINTS)
#define NLDO_UV_MIN 750000
#define NLDO_UV_MAX 1537500
#define NLDO_UV_FINE_STEP 12500
#define NLDO_SET_POINTS ((NLDO_UV_MAX - NLDO_UV_MIN) \
/ NLDO_UV_FINE_STEP + 1)
/* NLDO1200 masks and values */
/* CTRL register */
#define NLDO1200_ENABLE_MASK 0x80
#define NLDO1200_DISABLE 0x00
#define NLDO1200_ENABLE 0x80
/* Legacy mode */
#define NLDO1200_LEGACY_PM_MASK 0x20
#define NLDO1200_LEGACY_PM_HPM 0x00
#define NLDO1200_LEGACY_PM_LPM 0x20
/* Advanced mode */
#define NLDO1200_CTRL_RANGE_MASK 0x40
#define NLDO1200_CTRL_RANGE_HIGH 0x00
#define NLDO1200_CTRL_RANGE_LOW 0x40
#define NLDO1200_CTRL_VPROG_MASK 0x3F
#define NLDO1200_LOW_UV_MIN 375000
#define NLDO1200_LOW_UV_MAX 743750
#define NLDO1200_LOW_UV_STEP 6250
#define NLDO1200_HIGH_UV_MIN 750000
#define NLDO1200_HIGH_UV_MAX 1537500
#define NLDO1200_HIGH_UV_STEP 12500
#define NLDO1200_LOW_SET_POINTS ((NLDO1200_LOW_UV_MAX \
- NLDO1200_LOW_UV_MIN) \
/ NLDO1200_LOW_UV_STEP + 1)
#define NLDO1200_HIGH_SET_POINTS ((NLDO1200_HIGH_UV_MAX \
- NLDO1200_HIGH_UV_MIN) \
/ NLDO1200_HIGH_UV_STEP + 1)
#define NLDO1200_SET_POINTS (NLDO1200_LOW_SET_POINTS \
+ NLDO1200_HIGH_SET_POINTS)
/* TEST register bank 0 */
#define NLDO1200_TEST_LPM_MASK 0x04
#define NLDO1200_TEST_LPM_SEL_CTRL 0x00
#define NLDO1200_TEST_LPM_SEL_TCXO 0x04
/* TEST register bank 1 */
#define NLDO1200_PULL_DOWN_ENABLE_MASK 0x02
#define NLDO1200_PULL_DOWN_ENABLE 0x02
/* TEST register bank 2 */
#define NLDO1200_ADVANCED_MODE_MASK 0x08
#define NLDO1200_ADVANCED_MODE 0x00
#define NLDO1200_LEGACY_MODE 0x08
/* Advanced mode power mode control */
#define NLDO1200_ADVANCED_PM_MASK 0x02
#define NLDO1200_ADVANCED_PM_HPM 0x00
#define NLDO1200_ADVANCED_PM_LPM 0x02
#define NLDO1200_IN_ADVANCED_MODE(vreg) \
((vreg->test_reg[2] & NLDO1200_ADVANCED_MODE_MASK) \
== NLDO1200_ADVANCED_MODE)
/* SMPS masks and values */
/* CTRL register */
/* Legacy mode */
#define SMPS_LEGACY_ENABLE_MASK 0x80
#define SMPS_LEGACY_DISABLE 0x00
#define SMPS_LEGACY_ENABLE 0x80
#define SMPS_LEGACY_PULL_DOWN_ENABLE 0x40
#define SMPS_LEGACY_VREF_SEL_MASK 0x20
#define SMPS_LEGACY_VPROG_MASK 0x1F
/* Advanced mode */
#define SMPS_ADVANCED_BAND_MASK 0xC0
#define SMPS_ADVANCED_BAND_OFF 0x00
#define SMPS_ADVANCED_BAND_1 0x40
#define SMPS_ADVANCED_BAND_2 0x80
#define SMPS_ADVANCED_BAND_3 0xC0
#define SMPS_ADVANCED_VPROG_MASK 0x3F
/* Legacy mode voltage ranges */
#define SMPS_MODE3_UV_MIN 375000
#define SMPS_MODE3_UV_MAX 725000
#define SMPS_MODE3_UV_STEP 25000
#define SMPS_MODE2_UV_MIN 750000
#define SMPS_MODE2_UV_MAX 1475000
#define SMPS_MODE2_UV_STEP 25000
#define SMPS_MODE1_UV_MIN 1500000
#define SMPS_MODE1_UV_MAX 3050000
#define SMPS_MODE1_UV_STEP 50000
#define SMPS_MODE3_SET_POINTS ((SMPS_MODE3_UV_MAX \
- SMPS_MODE3_UV_MIN) \
/ SMPS_MODE3_UV_STEP + 1)
#define SMPS_MODE2_SET_POINTS ((SMPS_MODE2_UV_MAX \
- SMPS_MODE2_UV_MIN) \
/ SMPS_MODE2_UV_STEP + 1)
#define SMPS_MODE1_SET_POINTS ((SMPS_MODE1_UV_MAX \
- SMPS_MODE1_UV_MIN) \
/ SMPS_MODE1_UV_STEP + 1)
#define SMPS_LEGACY_SET_POINTS (SMPS_MODE3_SET_POINTS \
+ SMPS_MODE2_SET_POINTS \
+ SMPS_MODE1_SET_POINTS)
/* Advanced mode voltage ranges */
#define SMPS_BAND1_UV_MIN 375000
#define SMPS_BAND1_UV_MAX 737500
#define SMPS_BAND1_UV_STEP 12500
#define SMPS_BAND2_UV_MIN 750000
#define SMPS_BAND2_UV_MAX 1487500
#define SMPS_BAND2_UV_STEP 12500
#define SMPS_BAND3_UV_MIN 1500000
#define SMPS_BAND3_UV_MAX 3075000
#define SMPS_BAND3_UV_STEP 25000
#define SMPS_BAND1_SET_POINTS ((SMPS_BAND1_UV_MAX \
- SMPS_BAND1_UV_MIN) \
/ SMPS_BAND1_UV_STEP + 1)
#define SMPS_BAND2_SET_POINTS ((SMPS_BAND2_UV_MAX \
- SMPS_BAND2_UV_MIN) \
/ SMPS_BAND2_UV_STEP + 1)
#define SMPS_BAND3_SET_POINTS ((SMPS_BAND3_UV_MAX \
- SMPS_BAND3_UV_MIN) \
/ SMPS_BAND3_UV_STEP + 1)
#define SMPS_ADVANCED_SET_POINTS (SMPS_BAND1_SET_POINTS \
+ SMPS_BAND2_SET_POINTS \
+ SMPS_BAND3_SET_POINTS)
/* Test2 register bank 1 */
#define SMPS_LEGACY_VLOW_SEL_MASK 0x01
/* Test2 register bank 6 */
#define SMPS_ADVANCED_PULL_DOWN_ENABLE 0x08
/* Test2 register bank 7 */
#define SMPS_ADVANCED_MODE_MASK 0x02
#define SMPS_ADVANCED_MODE 0x02
#define SMPS_LEGACY_MODE 0x00
#define SMPS_IN_ADVANCED_MODE(vreg) \
((vreg->test_reg[7] & SMPS_ADVANCED_MODE_MASK) == SMPS_ADVANCED_MODE)
/* BUCK_SLEEP_CNTRL register */
#define SMPS_PIN_CTRL_MASK 0xF0
#define SMPS_PIN_CTRL_EN3 0x80
#define SMPS_PIN_CTRL_EN2 0x40
#define SMPS_PIN_CTRL_EN1 0x20
#define SMPS_PIN_CTRL_EN0 0x10
#define SMPS_PIN_CTRL_LPM_MASK 0x0F
#define SMPS_PIN_CTRL_LPM_EN3 0x08
#define SMPS_PIN_CTRL_LPM_EN2 0x04
#define SMPS_PIN_CTRL_LPM_EN1 0x02
#define SMPS_PIN_CTRL_LPM_EN0 0x01
/* BUCK_CLOCK_CNTRL register */
#define SMPS_CLK_DIVIDE2 0x40
#define SMPS_CLK_CTRL_MASK 0x30
#define SMPS_CLK_CTRL_FOLLOW_TCXO 0x00
#define SMPS_CLK_CTRL_PWM 0x10
#define SMPS_CLK_CTRL_PFM 0x20
/* FTSMPS masks and values */
/* CTRL register */
#define FTSMPS_VCTRL_BAND_MASK 0xC0
#define FTSMPS_VCTRL_BAND_OFF 0x00
#define FTSMPS_VCTRL_BAND_1 0x40
#define FTSMPS_VCTRL_BAND_2 0x80
#define FTSMPS_VCTRL_BAND_3 0xC0
#define FTSMPS_VCTRL_VPROG_MASK 0x3F
#define FTSMPS_BAND1_UV_MIN 350000
#define FTSMPS_BAND1_UV_MAX 650000
/* 3 LSB's of program voltage must be 0 in band 1. */
/* Logical step size */
#define FTSMPS_BAND1_UV_LOG_STEP 50000
/* Physical step size */
#define FTSMPS_BAND1_UV_PHYS_STEP 6250
#define FTSMPS_BAND2_UV_MIN 700000
#define FTSMPS_BAND2_UV_MAX 1400000
#define FTSMPS_BAND2_UV_STEP 12500
#define FTSMPS_BAND3_UV_MIN 1400000
#define FTSMPS_BAND3_UV_SET_POINT_MIN 1500000
#define FTSMPS_BAND3_UV_MAX 3300000
#define FTSMPS_BAND3_UV_STEP 50000
#define FTSMPS_BAND1_SET_POINTS ((FTSMPS_BAND1_UV_MAX \
- FTSMPS_BAND1_UV_MIN) \
/ FTSMPS_BAND1_UV_LOG_STEP + 1)
#define FTSMPS_BAND2_SET_POINTS ((FTSMPS_BAND2_UV_MAX \
- FTSMPS_BAND2_UV_MIN) \
/ FTSMPS_BAND2_UV_STEP + 1)
#define FTSMPS_BAND3_SET_POINTS ((FTSMPS_BAND3_UV_MAX \
- FTSMPS_BAND3_UV_SET_POINT_MIN) \
/ FTSMPS_BAND3_UV_STEP + 1)
#define FTSMPS_SET_POINTS (FTSMPS_BAND1_SET_POINTS \
+ FTSMPS_BAND2_SET_POINTS \
+ FTSMPS_BAND3_SET_POINTS)
/* FTS_CNFG1 register bank 0 */
#define FTSMPS_CNFG1_PM_MASK 0x0C
#define FTSMPS_CNFG1_PM_PWM 0x00
#define FTSMPS_CNFG1_PM_PFM 0x08
/* PWR_CNFG register */
#define FTSMPS_PULL_DOWN_ENABLE_MASK 0x40
#define FTSMPS_PULL_DOWN_ENABLE 0x40
/* VS masks and values */
/* CTRL register */
#define VS_ENABLE_MASK 0x80
#define VS_DISABLE 0x00
#define VS_ENABLE 0x80
#define VS_PULL_DOWN_ENABLE_MASK 0x40
#define VS_PULL_DOWN_DISABLE 0x40
#define VS_PULL_DOWN_ENABLE 0x00
#define VS_MODE_MASK 0x30
#define VS_MODE_NORMAL 0x10
#define VS_MODE_LPM 0x20
#define VS_PIN_CTRL_MASK 0x0F
#define VS_PIN_CTRL_EN0 0x08
#define VS_PIN_CTRL_EN1 0x04
#define VS_PIN_CTRL_EN2 0x02
#define VS_PIN_CTRL_EN3 0x01
/* TEST register */
#define VS_OCP_MASK 0x10
#define VS_OCP_ENABLE 0x00
#define VS_OCP_DISABLE 0x10
/* VS300 masks and values */
/* CTRL register */
#define VS300_CTRL_ENABLE_MASK 0xC0
#define VS300_CTRL_DISABLE 0x00
#define VS300_CTRL_ENABLE 0x40
#define VS300_PULL_DOWN_ENABLE_MASK 0x20
#define VS300_PULL_DOWN_ENABLE 0x20
#define VS300_MODE_MASK 0x18
#define VS300_MODE_NORMAL 0x00
#define VS300_MODE_LPM 0x08
/* NCP masks and values */
/* CTRL register */
#define NCP_ENABLE_MASK 0x80
#define NCP_DISABLE 0x00
#define NCP_ENABLE 0x80
#define NCP_VPROG_MASK 0x1F
#define NCP_UV_MIN 1500000
#define NCP_UV_MAX 3050000
#define NCP_UV_STEP 50000
#define NCP_SET_POINTS ((NCP_UV_MAX - NCP_UV_MIN) \
/ NCP_UV_STEP + 1)
/* Boost masks and values */
#define BOOST_ENABLE_MASK 0x80
#define BOOST_DISABLE 0x00
#define BOOST_ENABLE 0x80
#define BOOST_VPROG_MASK 0x1F
#define BOOST_UV_MIN 4000000
#define BOOST_UV_MAX 5550000
#define BOOST_UV_STEP 50000
#define BOOST_SET_POINTS ((BOOST_UV_MAX - BOOST_UV_MIN) \
/ BOOST_UV_STEP + 1)
#define vreg_err(vreg, fmt, ...) \
pr_err("%s: " fmt, vreg->rdesc.name, ##__VA_ARGS__)
/* Determines which label to add to the print. */
enum pm8xxx_regulator_action {
PM8XXX_REGULATOR_ACTION_INIT,
PM8XXX_REGULATOR_ACTION_ENABLE,
PM8XXX_REGULATOR_ACTION_DISABLE,
PM8XXX_REGULATOR_ACTION_VOLTAGE,
PM8XXX_REGULATOR_ACTION_MODE,
PM8XXX_REGULATOR_ACTION_PIN_CTRL,
};
/* Debug state printing */
static void pm8xxx_vreg_show_state(struct regulator_dev *rdev,
enum pm8xxx_regulator_action action);
/*
* Perform a masked write to a PMIC register only if the new value differs
* from the last value written to the register. This removes redundant
* register writing.
*
* No locking is required because registers are not shared between regulators.
*/
static int pm8xxx_vreg_masked_write(struct pm8xxx_vreg *vreg, u16 addr, u8 val,
u8 mask, u8 *reg_save)
{
int rc = 0;
u8 reg;
reg = (*reg_save & ~mask) | (val & mask);
if (reg != *reg_save) {
rc = pm8xxx_writeb(vreg->dev->parent, addr, reg);
if (rc) {
pr_err("%s: pm8xxx_writeb failed; addr=0x%03X, rc=%d\n",
vreg->rdesc.name, addr, rc);
} else {
*reg_save = reg;
vreg->write_count++;
if (pm8xxx_vreg_debug_mask & PM8XXX_VREG_DEBUG_WRITES)
pr_info("%s: write(0x%03X)=0x%02X\n",
vreg->rdesc.name, addr, reg);
}
}
return rc;
}
/*
* Perform a masked write to a PMIC register without checking the previously
* written value. This is needed for registers that must be rewritten even if
* the value hasn't changed in order for changes in other registers to take
* effect.
*/
static int pm8xxx_vreg_masked_write_forced(struct pm8xxx_vreg *vreg, u16 addr,
u8 val, u8 mask, u8 *reg_save)
{
int rc = 0;
u8 reg;
reg = (*reg_save & ~mask) | (val & mask);
rc = pm8xxx_writeb(vreg->dev->parent, addr, reg);
if (rc) {
pr_err("%s: pm8xxx_writeb failed; addr=0x%03X, rc=%d\n",
vreg->rdesc.name, addr, rc);
} else {
*reg_save = reg;
vreg->write_count++;
if (pm8xxx_vreg_debug_mask & PM8XXX_VREG_DEBUG_WRITES)
pr_info("%s: write(0x%03X)=0x%02X\n", vreg->rdesc.name,
addr, reg);
}
return rc;
}
static int pm8xxx_vreg_is_pin_controlled(struct pm8xxx_vreg *vreg)
{
int ret = 0;
switch (vreg->type) {
case PM8XXX_REGULATOR_TYPE_PLDO:
case PM8XXX_REGULATOR_TYPE_NLDO:
ret = ((vreg->test_reg[5] & LDO_TEST_PIN_CTRL_MASK) << 4)
| (vreg->test_reg[6] & LDO_TEST_PIN_CTRL_LPM_MASK);
break;
case PM8XXX_REGULATOR_TYPE_SMPS:
ret = vreg->sleep_ctrl_reg
& (SMPS_PIN_CTRL_MASK | SMPS_PIN_CTRL_LPM_MASK);
break;
case PM8XXX_REGULATOR_TYPE_VS:
ret = vreg->ctrl_reg & VS_PIN_CTRL_MASK;
break;
default:
break;
}
return ret;
}
/*
* Returns the logical pin control enable state because the pin control options
* present in the hardware out of restart could be different from those desired
* by the consumer.
*/
static int pm8xxx_vreg_pin_control_is_enabled(struct regulator_dev *rdev)
{
struct pm8xxx_vreg *vreg = rdev_get_drvdata(rdev);
int enabled;
mutex_lock(&vreg->pc_lock);
enabled = vreg->is_enabled_pc;
mutex_unlock(&vreg->pc_lock);
return enabled;
}
/* Returns the physical enable state of the regulator. */
static int _pm8xxx_vreg_is_enabled(struct pm8xxx_vreg *vreg)
{
int rc = 0;
/*
* All regulator types except advanced mode SMPS, FTSMPS, and VS300 have
* enable bit in bit 7 of the control register.
*/
switch (vreg->type) {
case PM8XXX_REGULATOR_TYPE_FTSMPS:
if ((vreg->ctrl_reg & FTSMPS_VCTRL_BAND_MASK)
!= FTSMPS_VCTRL_BAND_OFF)
rc = 1;
break;
case PM8XXX_REGULATOR_TYPE_VS300:
if ((vreg->ctrl_reg & VS300_CTRL_ENABLE_MASK)
!= VS300_CTRL_DISABLE)
rc = 1;
break;
case PM8XXX_REGULATOR_TYPE_SMPS:
if (SMPS_IN_ADVANCED_MODE(vreg)) {
if ((vreg->ctrl_reg & SMPS_ADVANCED_BAND_MASK)
!= SMPS_ADVANCED_BAND_OFF)
rc = 1;
break;
}
/* Fall through for legacy mode SMPS. */
default:
if ((vreg->ctrl_reg & REGULATOR_ENABLE_MASK)
== REGULATOR_ENABLE)
rc = 1;
}
return rc;
}
/*
* Returns the logical enable state of the regulator which may be different from
* the physical enable state thanks to HPM/LPM pin control.
*/
static int pm8xxx_vreg_is_enabled(struct regulator_dev *rdev)
{
struct pm8xxx_vreg *vreg = rdev_get_drvdata(rdev);
int enabled;
if (vreg->type == PM8XXX_REGULATOR_TYPE_PLDO
|| vreg->type == PM8XXX_REGULATOR_TYPE_NLDO
|| vreg->type == PM8XXX_REGULATOR_TYPE_SMPS
|| vreg->type == PM8XXX_REGULATOR_TYPE_VS) {
/* Pin controllable */
mutex_lock(&vreg->pc_lock);
enabled = vreg->is_enabled;
mutex_unlock(&vreg->pc_lock);
} else {
/* Not pin controlable */
enabled = _pm8xxx_vreg_is_enabled(vreg);
}
return enabled;
}
/*
* Adds delay when increasing in voltage to account for the slew rate of
* the regulator.
*/
static void pm8xxx_vreg_delay_for_slew(struct pm8xxx_vreg *vreg, int prev_uV,
int new_uV)
{
int delay;
if (vreg->pdata.slew_rate == 0 || new_uV <= prev_uV ||
!_pm8xxx_vreg_is_enabled(vreg))
return;
delay = DIV_ROUND_UP(new_uV - prev_uV, vreg->pdata.slew_rate);
if (delay >= 1000) {
mdelay(delay / 1000);
udelay(delay % 1000);
} else {
udelay(delay);
}
}
static int pm8xxx_pldo_get_voltage(struct regulator_dev *rdev)
{
struct pm8xxx_vreg *vreg = rdev_get_drvdata(rdev);
int vmin, fine_step;
u8 range_ext, range_sel, vprog, fine_step_reg;
mutex_lock(&vreg->pc_lock);
fine_step_reg = vreg->test_reg[2] & LDO_TEST_FINE_STEP_MASK;
range_sel = vreg->test_reg[2] & LDO_TEST_RANGE_SEL_MASK;
range_ext = vreg->test_reg[4] & LDO_TEST_RANGE_EXT_MASK;
vprog = vreg->ctrl_reg & LDO_CTRL_VPROG_MASK;
mutex_unlock(&vreg->pc_lock);
vprog = (vprog << 1) | (fine_step_reg >> LDO_TEST_FINE_STEP_SHIFT);
if (range_sel) {
/* low range mode */
fine_step = PLDO_LOW_UV_FINE_STEP;
vmin = PLDO_LOW_UV_MIN;
} else if (!range_ext) {
/* normal mode */
fine_step = PLDO_NORM_UV_FINE_STEP;
vmin = PLDO_NORM_UV_MIN;
} else {
/* high range mode */
fine_step = PLDO_HIGH_UV_FINE_STEP;
vmin = PLDO_HIGH_UV_MIN;
}
return fine_step * vprog + vmin;
}
static int pm8xxx_pldo_list_voltage(struct regulator_dev *rdev,
unsigned selector)
{
int uV;
if (selector >= PLDO_SET_POINTS)
return 0;
if (selector < PLDO_LOW_SET_POINTS)
uV = selector * PLDO_LOW_UV_FINE_STEP + PLDO_LOW_UV_MIN;
else if (selector < (PLDO_LOW_SET_POINTS + PLDO_NORM_SET_POINTS))
uV = (selector - PLDO_LOW_SET_POINTS) * PLDO_NORM_UV_FINE_STEP
+ PLDO_NORM_UV_MIN;
else
uV = (selector - PLDO_LOW_SET_POINTS - PLDO_NORM_SET_POINTS)
* PLDO_HIGH_UV_FINE_STEP
+ PLDO_HIGH_UV_SET_POINT_MIN;
return uV;
}
static int pm8xxx_pldo_set_voltage(struct regulator_dev *rdev, int min_uV,
int max_uV, unsigned *selector)
{
struct pm8xxx_vreg *vreg = rdev_get_drvdata(rdev);
int rc = 0, uV = min_uV;
int vmin, prev_uV;
unsigned vprog, fine_step;
u8 range_ext, range_sel, fine_step_reg, prev_reg;
bool reg_changed = false;
if (uV < PLDO_LOW_UV_MIN && max_uV >= PLDO_LOW_UV_MIN)
uV = PLDO_LOW_UV_MIN;
if (uV < PLDO_LOW_UV_MIN || uV > PLDO_HIGH_UV_MAX) {
vreg_err(vreg,
"request v=[%d, %d] is outside possible v=[%d, %d]\n",
min_uV, max_uV, PLDO_LOW_UV_MIN, PLDO_HIGH_UV_MAX);
return -EINVAL;
}
if (uV > PLDO_NORM_UV_MAX) {
vmin = PLDO_HIGH_UV_MIN;
fine_step = PLDO_HIGH_UV_FINE_STEP;
range_ext = LDO_TEST_RANGE_EXT_MASK;
range_sel = 0;
} else if (uV > PLDO_LOW_UV_MAX) {
vmin = PLDO_NORM_UV_MIN;
fine_step = PLDO_NORM_UV_FINE_STEP;
range_ext = 0;
range_sel = 0;
} else {
vmin = PLDO_LOW_UV_MIN;
fine_step = PLDO_LOW_UV_FINE_STEP;
range_ext = 0;
range_sel = LDO_TEST_RANGE_SEL_MASK;
}
vprog = (uV - vmin + fine_step - 1) / fine_step;
uV = vprog * fine_step + vmin;
fine_step_reg = (vprog & 1) << LDO_TEST_FINE_STEP_SHIFT;
vprog >>= 1;
if (uV > max_uV) {
vreg_err(vreg,
"request v=[%d, %d] cannot be met by any set point\n",
min_uV, max_uV);
return -EINVAL;
}
prev_uV = pm8xxx_pldo_get_voltage(rdev);
mutex_lock(&vreg->pc_lock);
/* Write fine step, range select and program voltage update. */
prev_reg = vreg->test_reg[2];
rc = pm8xxx_vreg_masked_write(vreg, vreg->test_addr,
fine_step_reg | range_sel | REGULATOR_BANK_SEL(2)
| REGULATOR_BANK_WRITE | LDO_TEST_VPROG_UPDATE_MASK,
LDO_TEST_FINE_STEP_MASK | LDO_TEST_RANGE_SEL_MASK
| REGULATOR_BANK_MASK | LDO_TEST_VPROG_UPDATE_MASK,
&vreg->test_reg[2]);
if (rc)
goto bail;
if (prev_reg != vreg->test_reg[2])
reg_changed = true;
/* Write range extension. */
prev_reg = vreg->test_reg[4];
rc = pm8xxx_vreg_masked_write(vreg, vreg->test_addr,
range_ext | REGULATOR_BANK_SEL(4)
| REGULATOR_BANK_WRITE,
LDO_TEST_RANGE_EXT_MASK | REGULATOR_BANK_MASK,
&vreg->test_reg[4]);
if (rc)
goto bail;
if (prev_reg != vreg->test_reg[4])
reg_changed = true;
/* Write new voltage. */
if (reg_changed) {
/*
* Force a CTRL register write even if the value hasn't changed.
* This is neccessary because range select, range extension, and
* fine step will not update until a value is written into the
* control register.
*/
rc = pm8xxx_vreg_masked_write_forced(vreg, vreg->ctrl_addr,
vprog, LDO_CTRL_VPROG_MASK, &vreg->ctrl_reg);
} else {
/* Only write to control register if new value is different. */
rc = pm8xxx_vreg_masked_write(vreg, vreg->ctrl_addr, vprog,
LDO_CTRL_VPROG_MASK, &vreg->ctrl_reg);
}
bail:
mutex_unlock(&vreg->pc_lock);
if (rc)
vreg_err(vreg, "pm8xxx_vreg_masked_write failed, rc=%d\n", rc);
else {
pm8xxx_vreg_delay_for_slew(vreg, prev_uV, uV);
pm8xxx_vreg_show_state(rdev, PM8XXX_REGULATOR_ACTION_VOLTAGE);
}
return rc;
}
static int pm8xxx_nldo_get_voltage(struct regulator_dev *rdev)
{
struct pm8xxx_vreg *vreg = rdev_get_drvdata(rdev);
u8 vprog, fine_step_reg;
mutex_lock(&vreg->pc_lock);
fine_step_reg = vreg->test_reg[2] & LDO_TEST_FINE_STEP_MASK;
vprog = vreg->ctrl_reg & LDO_CTRL_VPROG_MASK;
mutex_unlock(&vreg->pc_lock);
vprog = (vprog << 1) | (fine_step_reg >> LDO_TEST_FINE_STEP_SHIFT);
return NLDO_UV_FINE_STEP * vprog + NLDO_UV_MIN;
}
static int pm8xxx_nldo_list_voltage(struct regulator_dev *rdev,
unsigned selector)
{
if (selector >= NLDO_SET_POINTS)
return 0;
return selector * NLDO_UV_FINE_STEP + NLDO_UV_MIN;
}
static int pm8xxx_nldo_set_voltage(struct regulator_dev *rdev, int min_uV,
int max_uV, unsigned *selector)
{
struct pm8xxx_vreg *vreg = rdev_get_drvdata(rdev);
unsigned vprog, fine_step_reg, prev_reg;
int rc, prev_uV;
int uV = min_uV;
if (uV < NLDO_UV_MIN && max_uV >= NLDO_UV_MIN)
uV = NLDO_UV_MIN;
if (uV < NLDO_UV_MIN || uV > NLDO_UV_MAX) {
vreg_err(vreg,
"request v=[%d, %d] is outside possible v=[%d, %d]\n",
min_uV, max_uV, NLDO_UV_MIN, NLDO_UV_MAX);
return -EINVAL;
}
vprog = (uV - NLDO_UV_MIN + NLDO_UV_FINE_STEP - 1) / NLDO_UV_FINE_STEP;
uV = vprog * NLDO_UV_FINE_STEP + NLDO_UV_MIN;
fine_step_reg = (vprog & 1) << LDO_TEST_FINE_STEP_SHIFT;
vprog >>= 1;
if (uV > max_uV) {
vreg_err(vreg,
"request v=[%d, %d] cannot be met by any set point\n",
min_uV, max_uV);
return -EINVAL;
}
prev_uV = pm8xxx_nldo_get_voltage(rdev);
mutex_lock(&vreg->pc_lock);
/* Write fine step. */
prev_reg = vreg->test_reg[2];
rc = pm8xxx_vreg_masked_write(vreg, vreg->test_addr,
fine_step_reg | REGULATOR_BANK_SEL(2)
| REGULATOR_BANK_WRITE | LDO_TEST_VPROG_UPDATE_MASK,
LDO_TEST_FINE_STEP_MASK | REGULATOR_BANK_MASK
| LDO_TEST_VPROG_UPDATE_MASK,
&vreg->test_reg[2]);
if (rc)
goto bail;
/* Write new voltage. */
if (prev_reg != vreg->test_reg[2]) {
/*
* Force a CTRL register write even if the value hasn't changed.
* This is neccessary because fine step will not update until a
* value is written into the control register.
*/
rc = pm8xxx_vreg_masked_write_forced(vreg, vreg->ctrl_addr,
vprog, LDO_CTRL_VPROG_MASK, &vreg->ctrl_reg);
} else {
/* Only write to control register if new value is different. */
rc = pm8xxx_vreg_masked_write(vreg, vreg->ctrl_addr, vprog,
LDO_CTRL_VPROG_MASK, &vreg->ctrl_reg);
}
bail:
mutex_unlock(&vreg->pc_lock);
if (rc)
vreg_err(vreg, "pm8xxx_vreg_masked_write failed, rc=%d\n", rc);
else {
pm8xxx_vreg_delay_for_slew(vreg, prev_uV, uV);
pm8xxx_vreg_show_state(rdev, PM8XXX_REGULATOR_ACTION_VOLTAGE);
}
return rc;
}
static int _pm8xxx_nldo1200_get_voltage(struct pm8xxx_vreg *vreg)
{
int uV = 0;
int vprog;
if (!NLDO1200_IN_ADVANCED_MODE(vreg)) {
pr_warn("%s: currently in legacy mode; voltage unknown.\n",
vreg->rdesc.name);
return vreg->save_uV;
}
vprog = vreg->ctrl_reg & NLDO1200_CTRL_VPROG_MASK;
if ((vreg->ctrl_reg & NLDO1200_CTRL_RANGE_MASK)
== NLDO1200_CTRL_RANGE_LOW)
uV = vprog * NLDO1200_LOW_UV_STEP + NLDO1200_LOW_UV_MIN;
else
uV = vprog * NLDO1200_HIGH_UV_STEP + NLDO1200_HIGH_UV_MIN;
return uV;
}
static int pm8xxx_nldo1200_get_voltage(struct regulator_dev *rdev)
{
struct pm8xxx_vreg *vreg = rdev_get_drvdata(rdev);
return _pm8xxx_nldo1200_get_voltage(vreg);
}
static int pm8xxx_nldo1200_list_voltage(struct regulator_dev *rdev,
unsigned selector)
{
int uV;
if (selector >= NLDO1200_SET_POINTS)
return 0;
if (selector < NLDO1200_LOW_SET_POINTS)
uV = selector * NLDO1200_LOW_UV_STEP + NLDO1200_LOW_UV_MIN;
else
uV = (selector - NLDO1200_LOW_SET_POINTS)
* NLDO1200_HIGH_UV_STEP
+ NLDO1200_HIGH_UV_MIN;
return uV;
}
static int _pm8xxx_nldo1200_set_voltage(struct pm8xxx_vreg *vreg, int min_uV,
int max_uV)
{
u8 vprog, range;
int rc, prev_uV;
int uV = min_uV;
if (uV < NLDO1200_LOW_UV_MIN && max_uV >= NLDO1200_LOW_UV_MIN)
uV = NLDO1200_LOW_UV_MIN;
if (uV < NLDO1200_LOW_UV_MIN || uV > NLDO1200_HIGH_UV_MAX) {
vreg_err(vreg,
"request v=[%d, %d] is outside possible v=[%d, %d]\n",
min_uV, max_uV, NLDO_UV_MIN, NLDO_UV_MAX);
return -EINVAL;
}
if (uV > NLDO1200_LOW_UV_MAX) {
vprog = (uV - NLDO1200_HIGH_UV_MIN + NLDO1200_HIGH_UV_STEP - 1)
/ NLDO1200_HIGH_UV_STEP;
uV = vprog * NLDO1200_HIGH_UV_STEP + NLDO1200_HIGH_UV_MIN;
vprog &= NLDO1200_CTRL_VPROG_MASK;
range = NLDO1200_CTRL_RANGE_HIGH;
} else {
vprog = (uV - NLDO1200_LOW_UV_MIN + NLDO1200_LOW_UV_STEP - 1)
/ NLDO1200_LOW_UV_STEP;
uV = vprog * NLDO1200_LOW_UV_STEP + NLDO1200_LOW_UV_MIN;
vprog &= NLDO1200_CTRL_VPROG_MASK;
range = NLDO1200_CTRL_RANGE_LOW;
}
if (uV > max_uV) {
vreg_err(vreg,
"request v=[%d, %d] cannot be met by any set point\n",
min_uV, max_uV);
return -EINVAL;
}
prev_uV = _pm8xxx_nldo1200_get_voltage(vreg);
/* Set to advanced mode */
rc = pm8xxx_vreg_masked_write(vreg, vreg->test_addr,
NLDO1200_ADVANCED_MODE | REGULATOR_BANK_SEL(2)
| REGULATOR_BANK_WRITE, NLDO1200_ADVANCED_MODE_MASK
| REGULATOR_BANK_MASK, &vreg->test_reg[2]);
if (rc)
goto bail;
/* Set voltage and range selection. */
rc = pm8xxx_vreg_masked_write(vreg, vreg->ctrl_addr, vprog | range,
NLDO1200_CTRL_VPROG_MASK | NLDO1200_CTRL_RANGE_MASK,
&vreg->ctrl_reg);
if (rc)
goto bail;
vreg->save_uV = uV;
pm8xxx_vreg_delay_for_slew(vreg, prev_uV, uV);
bail:
if (rc)
vreg_err(vreg, "pm8xxx_vreg_masked_write failed, rc=%d\n", rc);
return rc;
}
static int pm8xxx_nldo1200_set_voltage(struct regulator_dev *rdev, int min_uV,
int max_uV, unsigned *selector)
{
struct pm8xxx_vreg *vreg = rdev_get_drvdata(rdev);
int rc;
rc = _pm8xxx_nldo1200_set_voltage(vreg, min_uV, max_uV);
if (!rc)
pm8xxx_vreg_show_state(rdev, PM8XXX_REGULATOR_ACTION_VOLTAGE);
return rc;
}
static int pm8xxx_smps_get_voltage_advanced(struct pm8xxx_vreg *vreg)
{
u8 vprog, band;
int uV = 0;
vprog = vreg->ctrl_reg & SMPS_ADVANCED_VPROG_MASK;
band = vreg->ctrl_reg & SMPS_ADVANCED_BAND_MASK;
if (band == SMPS_ADVANCED_BAND_1)
uV = vprog * SMPS_BAND1_UV_STEP + SMPS_BAND1_UV_MIN;
else if (band == SMPS_ADVANCED_BAND_2)
uV = vprog * SMPS_BAND2_UV_STEP + SMPS_BAND2_UV_MIN;
else if (band == SMPS_ADVANCED_BAND_3)
uV = vprog * SMPS_BAND3_UV_STEP + SMPS_BAND3_UV_MIN;
else if (vreg->save_uV > 0)
uV = vreg->save_uV;
else
uV = VOLTAGE_UNKNOWN;
return uV;
}
static int pm8xxx_smps_get_voltage_legacy(struct pm8xxx_vreg *vreg)
{
u8 vlow, vref, vprog;
int uV;
vlow = vreg->test_reg[1] & SMPS_LEGACY_VLOW_SEL_MASK;
vref = vreg->ctrl_reg & SMPS_LEGACY_VREF_SEL_MASK;
vprog = vreg->ctrl_reg & SMPS_LEGACY_VPROG_MASK;
if (vlow && vref) {
/* mode 3 */
uV = vprog * SMPS_MODE3_UV_STEP + SMPS_MODE3_UV_MIN;
} else if (vref) {
/* mode 2 */
uV = vprog * SMPS_MODE2_UV_STEP + SMPS_MODE2_UV_MIN;
} else {
/* mode 1 */
uV = vprog * SMPS_MODE1_UV_STEP + SMPS_MODE1_UV_MIN;
}
return uV;
}
static int _pm8xxx_smps_get_voltage(struct pm8xxx_vreg *vreg)
{
if (SMPS_IN_ADVANCED_MODE(vreg))
return pm8xxx_smps_get_voltage_advanced(vreg);
return pm8xxx_smps_get_voltage_legacy(vreg);
}
static int pm8xxx_smps_list_voltage(struct regulator_dev *rdev,
unsigned selector)
{
int uV;
if (selector >= SMPS_ADVANCED_SET_POINTS)
return 0;
if (selector < SMPS_BAND1_SET_POINTS)
uV = selector * SMPS_BAND1_UV_STEP + SMPS_BAND1_UV_MIN;
else if (selector < (SMPS_BAND1_SET_POINTS + SMPS_BAND2_SET_POINTS))
uV = (selector - SMPS_BAND1_SET_POINTS) * SMPS_BAND2_UV_STEP
+ SMPS_BAND2_UV_MIN;
else
uV = (selector - SMPS_BAND1_SET_POINTS - SMPS_BAND2_SET_POINTS)
* SMPS_BAND3_UV_STEP
+ SMPS_BAND3_UV_MIN;
return uV;
}
static int pm8xxx_smps_get_voltage(struct regulator_dev *rdev)
{
struct pm8xxx_vreg *vreg = rdev_get_drvdata(rdev);
int uV;
mutex_lock(&vreg->pc_lock);
uV = _pm8xxx_smps_get_voltage(vreg);
mutex_unlock(&vreg->pc_lock);
return uV;
}
static int pm8xxx_smps_set_voltage_advanced(struct pm8xxx_vreg *vreg,
int min_uV, int max_uV, int force_on)
{
u8 vprog, band;
int rc;
int uV = min_uV;
if (uV < SMPS_BAND1_UV_MIN && max_uV >= SMPS_BAND1_UV_MIN)
uV = SMPS_BAND1_UV_MIN;
if (uV < SMPS_BAND1_UV_MIN || uV > SMPS_BAND3_UV_MAX) {
vreg_err(vreg,
"request v=[%d, %d] is outside possible v=[%d, %d]\n",
min_uV, max_uV, SMPS_BAND1_UV_MIN, SMPS_BAND3_UV_MAX);
return -EINVAL;
}
if (uV > SMPS_BAND2_UV_MAX) {
vprog = (uV - SMPS_BAND3_UV_MIN + SMPS_BAND3_UV_STEP - 1)
/ SMPS_BAND3_UV_STEP;
band = SMPS_ADVANCED_BAND_3;
uV = SMPS_BAND3_UV_MIN + vprog * SMPS_BAND3_UV_STEP;
} else if (uV > SMPS_BAND1_UV_MAX) {
vprog = (uV - SMPS_BAND2_UV_MIN + SMPS_BAND2_UV_STEP - 1)
/ SMPS_BAND2_UV_STEP;
band = SMPS_ADVANCED_BAND_2;
uV = SMPS_BAND2_UV_MIN + vprog * SMPS_BAND2_UV_STEP;
} else {
vprog = (uV - SMPS_BAND1_UV_MIN + SMPS_BAND1_UV_STEP - 1)
/ SMPS_BAND1_UV_STEP;
band = SMPS_ADVANCED_BAND_1;
uV = SMPS_BAND1_UV_MIN + vprog * SMPS_BAND1_UV_STEP;
}
if (uV > max_uV) {
vreg_err(vreg,
"request v=[%d, %d] cannot be met by any set point\n",
min_uV, max_uV);
return -EINVAL;
}
/* Do not set band if regulator currently disabled. */
if (!_pm8xxx_vreg_is_enabled(vreg) && !force_on)
band = SMPS_ADVANCED_BAND_OFF;
/* Set advanced mode bit to 1. */
rc = pm8xxx_vreg_masked_write(vreg, vreg->test_addr, SMPS_ADVANCED_MODE
| REGULATOR_BANK_WRITE | REGULATOR_BANK_SEL(7),
SMPS_ADVANCED_MODE_MASK | REGULATOR_BANK_MASK,
&vreg->test_reg[7]);
if (rc)
goto bail;
/* Set voltage and voltage band. */
rc = pm8xxx_vreg_masked_write(vreg, vreg->ctrl_addr, band | vprog,
SMPS_ADVANCED_BAND_MASK | SMPS_ADVANCED_VPROG_MASK,
&vreg->ctrl_reg);
if (rc)
goto bail;
vreg->save_uV = uV;
bail:
if (rc)
vreg_err(vreg, "pm8xxx_vreg_masked_write failed, rc=%d\n", rc);
return rc;
}
static int pm8xxx_smps_set_voltage_legacy(struct pm8xxx_vreg *vreg, int min_uV,
int max_uV)
{
u8 vlow, vref, vprog, pd, en;
int rc;
int uV = min_uV;
if (uV < SMPS_MODE3_UV_MIN && max_uV >= SMPS_MODE3_UV_MIN)
uV = SMPS_MODE3_UV_MIN;
if (uV < SMPS_MODE3_UV_MIN || uV > SMPS_MODE1_UV_MAX) {
vreg_err(vreg,
"request v=[%d, %d] is outside possible v=[%d, %d]\n",
min_uV, max_uV, SMPS_MODE3_UV_MIN, SMPS_MODE1_UV_MAX);
return -EINVAL;
}
if (uV > SMPS_MODE2_UV_MAX) {
vprog = (uV - SMPS_MODE1_UV_MIN + SMPS_MODE1_UV_STEP - 1)
/ SMPS_MODE1_UV_STEP;
vref = 0;
vlow = 0;
uV = SMPS_MODE1_UV_MIN + vprog * SMPS_MODE1_UV_STEP;
} else if (uV > SMPS_MODE3_UV_MAX) {
vprog = (uV - SMPS_MODE2_UV_MIN + SMPS_MODE2_UV_STEP - 1)
/ SMPS_MODE2_UV_STEP;
vref = SMPS_LEGACY_VREF_SEL_MASK;
vlow = 0;
uV = SMPS_MODE2_UV_MIN + vprog * SMPS_MODE2_UV_STEP;
} else {
vprog = (uV - SMPS_MODE3_UV_MIN + SMPS_MODE3_UV_STEP - 1)
/ SMPS_MODE3_UV_STEP;
vref = SMPS_LEGACY_VREF_SEL_MASK;
vlow = SMPS_LEGACY_VLOW_SEL_MASK;
uV = SMPS_MODE3_UV_MIN + vprog * SMPS_MODE3_UV_STEP;
}
if (uV > max_uV) {
vreg_err(vreg,
"request v=[%d, %d] cannot be met by any set point\n",
min_uV, max_uV);
return -EINVAL;
}
/* set vlow bit for ultra low voltage mode */
rc = pm8xxx_vreg_masked_write(vreg, vreg->test_addr,
vlow | REGULATOR_BANK_WRITE | REGULATOR_BANK_SEL(1),
REGULATOR_BANK_MASK | SMPS_LEGACY_VLOW_SEL_MASK,
&vreg->test_reg[1]);
if (rc)
goto bail;
/* Set advanced mode bit to 0. */
rc = pm8xxx_vreg_masked_write(vreg, vreg->test_addr, SMPS_LEGACY_MODE
| REGULATOR_BANK_WRITE | REGULATOR_BANK_SEL(7),
SMPS_ADVANCED_MODE_MASK | REGULATOR_BANK_MASK,
&vreg->test_reg[7]);
if (rc)
goto bail;
en = (_pm8xxx_vreg_is_enabled(vreg) ? SMPS_LEGACY_ENABLE : 0);
pd = (vreg->pdata.pull_down_enable ? SMPS_LEGACY_PULL_DOWN_ENABLE : 0);
/* Set voltage (and the rest of the control register). */
rc = pm8xxx_vreg_masked_write(vreg, vreg->ctrl_addr,
en | pd | vref | vprog,
SMPS_LEGACY_ENABLE_MASK | SMPS_LEGACY_PULL_DOWN_ENABLE
| SMPS_LEGACY_VREF_SEL_MASK | SMPS_LEGACY_VPROG_MASK,
&vreg->ctrl_reg);
vreg->save_uV = uV;
bail:
if (rc)
vreg_err(vreg, "pm8xxx_vreg_masked_write failed, rc=%d\n", rc);
return rc;
}
static int pm8xxx_smps_set_voltage(struct regulator_dev *rdev, int min_uV,
int max_uV, unsigned *selector)
{
struct pm8xxx_vreg *vreg = rdev_get_drvdata(rdev);
int rc = 0;
int prev_uV, new_uV;
prev_uV = pm8xxx_smps_get_voltage(rdev);
mutex_lock(&vreg->pc_lock);
if (SMPS_IN_ADVANCED_MODE(vreg) || !pm8xxx_vreg_is_pin_controlled(vreg))
rc = pm8xxx_smps_set_voltage_advanced(vreg, min_uV, max_uV, 0);
else
rc = pm8xxx_smps_set_voltage_legacy(vreg, min_uV, max_uV);
mutex_unlock(&vreg->pc_lock);
new_uV = pm8xxx_smps_get_voltage(rdev);
if (!rc) {
pm8xxx_vreg_delay_for_slew(vreg, prev_uV, new_uV);
pm8xxx_vreg_show_state(rdev, PM8XXX_REGULATOR_ACTION_VOLTAGE);
}
return rc;
}
static int _pm8xxx_ftsmps_get_voltage(struct pm8xxx_vreg *vreg)
{
u8 vprog, band;
int uV = 0;
if ((vreg->test_reg[0] & FTSMPS_CNFG1_PM_MASK) == FTSMPS_CNFG1_PM_PFM) {
vprog = vreg->pfm_ctrl_reg & FTSMPS_VCTRL_VPROG_MASK;
band = vreg->pfm_ctrl_reg & FTSMPS_VCTRL_BAND_MASK;
if (band == FTSMPS_VCTRL_BAND_OFF && vprog == 0) {
/* PWM_VCTRL overrides PFM_VCTRL */
vprog = vreg->ctrl_reg & FTSMPS_VCTRL_VPROG_MASK;
band = vreg->ctrl_reg & FTSMPS_VCTRL_BAND_MASK;
}
} else {
vprog = vreg->ctrl_reg & FTSMPS_VCTRL_VPROG_MASK;
band = vreg->ctrl_reg & FTSMPS_VCTRL_BAND_MASK;
}
if (band == FTSMPS_VCTRL_BAND_1)
uV = vprog * FTSMPS_BAND1_UV_PHYS_STEP + FTSMPS_BAND1_UV_MIN;
else if (band == FTSMPS_VCTRL_BAND_2)
uV = vprog * FTSMPS_BAND2_UV_STEP + FTSMPS_BAND2_UV_MIN;
else if (band == FTSMPS_VCTRL_BAND_3)
uV = vprog * FTSMPS_BAND3_UV_STEP + FTSMPS_BAND3_UV_MIN;
else if (vreg->save_uV > 0)
uV = vreg->save_uV;
else
uV = VOLTAGE_UNKNOWN;
return uV;
}
static int pm8xxx_ftsmps_get_voltage(struct regulator_dev *rdev)
{
struct pm8xxx_vreg *vreg = rdev_get_drvdata(rdev);
return _pm8xxx_ftsmps_get_voltage(vreg);
}
static int pm8xxx_ftsmps_list_voltage(struct regulator_dev *rdev,
unsigned selector)
{
int uV;
if (selector >= FTSMPS_SET_POINTS)
return 0;
if (selector < FTSMPS_BAND1_SET_POINTS)
uV = selector * FTSMPS_BAND1_UV_LOG_STEP + FTSMPS_BAND1_UV_MIN;
else if (selector < (FTSMPS_BAND1_SET_POINTS + FTSMPS_BAND2_SET_POINTS))
uV = (selector - FTSMPS_BAND1_SET_POINTS) * FTSMPS_BAND2_UV_STEP
+ FTSMPS_BAND2_UV_MIN;
else
uV = (selector - FTSMPS_BAND1_SET_POINTS
- FTSMPS_BAND2_SET_POINTS)
* FTSMPS_BAND3_UV_STEP
+ FTSMPS_BAND3_UV_SET_POINT_MIN;
return uV;
}
static int _pm8xxx_ftsmps_set_voltage(struct pm8xxx_vreg *vreg, int min_uV,
int max_uV, int force_on)
{
int rc = 0;
u8 vprog, band;
int uV = min_uV;
int prev_uV;
if (uV < FTSMPS_BAND1_UV_MIN && max_uV >= FTSMPS_BAND1_UV_MIN)
uV = FTSMPS_BAND1_UV_MIN;
if (uV < FTSMPS_BAND1_UV_MIN || uV > FTSMPS_BAND3_UV_MAX) {
vreg_err(vreg,
"request v=[%d, %d] is outside possible v=[%d, %d]\n",
min_uV, max_uV, FTSMPS_BAND1_UV_MIN,
FTSMPS_BAND3_UV_MAX);
return -EINVAL;
}
/* Round up for set points in the gaps between bands. */
if (uV > FTSMPS_BAND1_UV_MAX && uV < FTSMPS_BAND2_UV_MIN)
uV = FTSMPS_BAND2_UV_MIN;
else if (uV > FTSMPS_BAND2_UV_MAX
&& uV < FTSMPS_BAND3_UV_SET_POINT_MIN)
uV = FTSMPS_BAND3_UV_SET_POINT_MIN;
if (uV > FTSMPS_BAND2_UV_MAX) {
vprog = (uV - FTSMPS_BAND3_UV_MIN + FTSMPS_BAND3_UV_STEP - 1)
/ FTSMPS_BAND3_UV_STEP;
band = FTSMPS_VCTRL_BAND_3;
uV = FTSMPS_BAND3_UV_MIN + vprog * FTSMPS_BAND3_UV_STEP;
} else if (uV > FTSMPS_BAND1_UV_MAX) {
vprog = (uV - FTSMPS_BAND2_UV_MIN + FTSMPS_BAND2_UV_STEP - 1)
/ FTSMPS_BAND2_UV_STEP;
band = FTSMPS_VCTRL_BAND_2;
uV = FTSMPS_BAND2_UV_MIN + vprog * FTSMPS_BAND2_UV_STEP;
} else {
vprog = (uV - FTSMPS_BAND1_UV_MIN
+ FTSMPS_BAND1_UV_LOG_STEP - 1)
/ FTSMPS_BAND1_UV_LOG_STEP;
uV = FTSMPS_BAND1_UV_MIN + vprog * FTSMPS_BAND1_UV_LOG_STEP;
vprog *= FTSMPS_BAND1_UV_LOG_STEP / FTSMPS_BAND1_UV_PHYS_STEP;
band = FTSMPS_VCTRL_BAND_1;
}
if (uV > max_uV) {
vreg_err(vreg,
"request v=[%d, %d] cannot be met by any set point\n",
min_uV, max_uV);
return -EINVAL;
}
prev_uV = _pm8xxx_ftsmps_get_voltage(vreg);
/*
* Do not set voltage if regulator is currently disabled because doing
* so will enable it.
*/
if (_pm8xxx_vreg_is_enabled(vreg) || force_on) {
rc = pm8xxx_vreg_masked_write(vreg, vreg->ctrl_addr,
band | vprog,
FTSMPS_VCTRL_BAND_MASK | FTSMPS_VCTRL_VPROG_MASK,
&vreg->ctrl_reg);
if (rc)
goto bail;
/* Program PFM_VCTRL as 0x00 so that PWM_VCTRL overrides it. */
rc = pm8xxx_vreg_masked_write(vreg, vreg->pfm_ctrl_addr, 0x00,
FTSMPS_VCTRL_BAND_MASK | FTSMPS_VCTRL_VPROG_MASK,
&vreg->pfm_ctrl_reg);
if (rc)
goto bail;
}
vreg->save_uV = uV;
pm8xxx_vreg_delay_for_slew(vreg, prev_uV, uV);
bail:
if (rc)
vreg_err(vreg, "pm8xxx_vreg_masked_write failed, rc=%d\n", rc);
return rc;
}
static int pm8xxx_ftsmps_set_voltage(struct regulator_dev *rdev, int min_uV,
int max_uV, unsigned *selector)
{
struct pm8xxx_vreg *vreg = rdev_get_drvdata(rdev);
int rc;
rc = _pm8xxx_ftsmps_set_voltage(vreg, min_uV, max_uV, 0);
if (!rc)
pm8xxx_vreg_show_state(rdev, PM8XXX_REGULATOR_ACTION_VOLTAGE);
return rc;
}
static int pm8xxx_ncp_get_voltage(struct regulator_dev *rdev)
{
struct pm8xxx_vreg *vreg = rdev_get_drvdata(rdev);
u8 vprog;
vprog = vreg->ctrl_reg & NCP_VPROG_MASK;
return NCP_UV_MIN + vprog * NCP_UV_STEP;
}
static int pm8xxx_ncp_list_voltage(struct regulator_dev *rdev,
unsigned selector)
{
if (selector >= NCP_SET_POINTS)
return 0;
return selector * NCP_UV_STEP + NCP_UV_MIN;
}
static int pm8xxx_ncp_set_voltage(struct regulator_dev *rdev, int min_uV,
int max_uV, unsigned *selector)
{
struct pm8xxx_vreg *vreg = rdev_get_drvdata(rdev);
int rc, prev_uV;
int uV = min_uV;
u8 val;
if (uV < NCP_UV_MIN && max_uV >= NCP_UV_MIN)
uV = NCP_UV_MIN;
if (uV < NCP_UV_MIN || uV > NCP_UV_MAX) {
vreg_err(vreg,
"request v=[%d, %d] is outside possible v=[%d, %d]\n",
min_uV, max_uV, NCP_UV_MIN, NCP_UV_MAX);
return -EINVAL;
}
val = (uV - NCP_UV_MIN + NCP_UV_STEP - 1) / NCP_UV_STEP;
uV = val * NCP_UV_STEP + NCP_UV_MIN;
if (uV > max_uV) {
vreg_err(vreg,
"request v=[%d, %d] cannot be met by any set point\n",
min_uV, max_uV);
return -EINVAL;
}
prev_uV = pm8xxx_ncp_get_voltage(rdev);
/* voltage setting */
rc = pm8xxx_vreg_masked_write(vreg, vreg->ctrl_addr, val,
NCP_VPROG_MASK, &vreg->ctrl_reg);
if (rc)
vreg_err(vreg, "pm8xxx_vreg_masked_write failed, rc=%d\n", rc);
else {
pm8xxx_vreg_delay_for_slew(vreg, prev_uV, uV);
pm8xxx_vreg_show_state(rdev, PM8XXX_REGULATOR_ACTION_VOLTAGE);
}
return rc;
}
static int pm8xxx_boost_get_voltage(struct regulator_dev *rdev)
{
struct pm8xxx_vreg *vreg = rdev_get_drvdata(rdev);
u8 vprog;
vprog = vreg->ctrl_reg & BOOST_VPROG_MASK;
return BOOST_UV_STEP * vprog + BOOST_UV_MIN;
}
static int pm8xxx_boost_list_voltage(struct regulator_dev *rdev,
unsigned selector)
{
if (selector >= BOOST_SET_POINTS)
return 0;
return selector * BOOST_UV_STEP + BOOST_UV_MIN;
}
static int pm8xxx_boost_set_voltage(struct regulator_dev *rdev, int min_uV,
int max_uV, unsigned *selector)
{
struct pm8xxx_vreg *vreg = rdev_get_drvdata(rdev);
int rc, prev_uV;
int uV = min_uV;
u8 val;
if (uV < BOOST_UV_MIN && max_uV >= BOOST_UV_MIN)
uV = BOOST_UV_MIN;
if (uV < BOOST_UV_MIN || uV > BOOST_UV_MAX) {
vreg_err(vreg,
"request v=[%d, %d] is outside possible v=[%d, %d]\n",
min_uV, max_uV, BOOST_UV_MIN, BOOST_UV_MAX);
return -EINVAL;
}
val = (uV - BOOST_UV_MIN + BOOST_UV_STEP - 1) / BOOST_UV_STEP;
uV = val * BOOST_UV_STEP + BOOST_UV_MIN;
if (uV > max_uV) {
vreg_err(vreg,
"request v=[%d, %d] cannot be met by any set point\n",
min_uV, max_uV);
return -EINVAL;
}
prev_uV = pm8xxx_boost_get_voltage(rdev);
/* voltage setting */
rc = pm8xxx_vreg_masked_write(vreg, vreg->ctrl_addr, val,
BOOST_VPROG_MASK, &vreg->ctrl_reg);
if (rc)
vreg_err(vreg, "pm8xxx_vreg_masked_write failed, rc=%d\n", rc);
else {
pm8xxx_vreg_delay_for_slew(vreg, prev_uV, uV);
pm8xxx_vreg_show_state(rdev, PM8XXX_REGULATOR_ACTION_VOLTAGE);
}
return rc;
}
static unsigned int pm8xxx_ldo_get_mode(struct regulator_dev *rdev)
{
struct pm8xxx_vreg *vreg = rdev_get_drvdata(rdev);
unsigned int mode = 0;
mutex_lock(&vreg->pc_lock);
mode = vreg->mode;
mutex_unlock(&vreg->pc_lock);
return mode;
}
static int pm8xxx_ldo_set_mode(struct regulator_dev *rdev, unsigned int mode)
{
struct pm8xxx_vreg *vreg = rdev_get_drvdata(rdev);
int rc = 0;
if (mode != REGULATOR_MODE_NORMAL && mode != REGULATOR_MODE_IDLE) {
vreg_err(vreg, "invalid mode: %u\n", mode);
return -EINVAL;
}
mutex_lock(&vreg->pc_lock);
if (mode == REGULATOR_MODE_NORMAL
|| (vreg->is_enabled_pc
&& vreg->pdata.pin_fn == PM8XXX_VREG_PIN_FN_ENABLE)) {
/* HPM */
rc = pm8xxx_vreg_masked_write(vreg, vreg->ctrl_addr,
LDO_CTRL_PM_HPM, LDO_CTRL_PM_MASK, &vreg->ctrl_reg);
} else {
/* LPM */
rc = pm8xxx_vreg_masked_write(vreg, vreg->ctrl_addr,
LDO_CTRL_PM_LPM, LDO_CTRL_PM_MASK, &vreg->ctrl_reg);
if (rc)
goto bail;
rc = pm8xxx_vreg_masked_write(vreg, vreg->test_addr,
LDO_TEST_LPM_SEL_CTRL | REGULATOR_BANK_WRITE
| REGULATOR_BANK_SEL(0),
LDO_TEST_LPM_MASK | REGULATOR_BANK_MASK,
&vreg->test_reg[0]);
}
bail:
if (!rc)
vreg->mode = mode;
mutex_unlock(&vreg->pc_lock);
if (rc)
vreg_err(vreg, "pm8xxx_vreg_masked_write failed, rc=%d\n", rc);
else
pm8xxx_vreg_show_state(rdev, PM8XXX_REGULATOR_ACTION_MODE);
return rc;
}
static unsigned int pm8xxx_nldo1200_get_mode(struct regulator_dev *rdev)
{
struct pm8xxx_vreg *vreg = rdev_get_drvdata(rdev);
unsigned int mode = 0;
if (NLDO1200_IN_ADVANCED_MODE(vreg)) {
/* Advanced mode */
if ((vreg->test_reg[2] & NLDO1200_ADVANCED_PM_MASK)
== NLDO1200_ADVANCED_PM_LPM)
mode = REGULATOR_MODE_IDLE;
else
mode = REGULATOR_MODE_NORMAL;
} else {
/* Legacy mode */
if ((vreg->ctrl_reg & NLDO1200_LEGACY_PM_MASK)
== NLDO1200_LEGACY_PM_LPM)
mode = REGULATOR_MODE_IDLE;
else
mode = REGULATOR_MODE_NORMAL;
}
return mode;
}
static int pm8xxx_nldo1200_set_mode(struct regulator_dev *rdev,
unsigned int mode)
{
struct pm8xxx_vreg *vreg = rdev_get_drvdata(rdev);
int rc = 0;
if (mode != REGULATOR_MODE_NORMAL && mode != REGULATOR_MODE_IDLE) {
vreg_err(vreg, "invalid mode: %u\n", mode);
return -EINVAL;
}
/*
* Make sure that advanced mode is in use. If it isn't, then set it
* and update the voltage accordingly.
*/
if (!NLDO1200_IN_ADVANCED_MODE(vreg)) {
rc = _pm8xxx_nldo1200_set_voltage(vreg, vreg->save_uV,
vreg->save_uV);
if (rc)
goto bail;
}
if (mode == REGULATOR_MODE_NORMAL) {
/* HPM */
rc = pm8xxx_vreg_masked_write(vreg, vreg->test_addr,
NLDO1200_ADVANCED_PM_HPM | REGULATOR_BANK_WRITE
| REGULATOR_BANK_SEL(2), NLDO1200_ADVANCED_PM_MASK
| REGULATOR_BANK_MASK, &vreg->test_reg[2]);
} else {
/* LPM */
rc = pm8xxx_vreg_masked_write(vreg, vreg->test_addr,
NLDO1200_ADVANCED_PM_LPM | REGULATOR_BANK_WRITE
| REGULATOR_BANK_SEL(2), NLDO1200_ADVANCED_PM_MASK
| REGULATOR_BANK_MASK, &vreg->test_reg[2]);
}
bail:
if (rc)
vreg_err(vreg, "pm8xxx_vreg_masked_write failed, rc=%d\n", rc);
else
pm8xxx_vreg_show_state(rdev, PM8XXX_REGULATOR_ACTION_MODE);
return rc;
}
static unsigned int pm8xxx_smps_get_mode(struct regulator_dev *rdev)
{
struct pm8xxx_vreg *vreg = rdev_get_drvdata(rdev);
unsigned int mode = 0;
mutex_lock(&vreg->pc_lock);
mode = vreg->mode;
mutex_unlock(&vreg->pc_lock);
return mode;
}
static int pm8xxx_smps_set_mode(struct regulator_dev *rdev, unsigned int mode)
{
struct pm8xxx_vreg *vreg = rdev_get_drvdata(rdev);
int rc = 0;
if (mode != REGULATOR_MODE_NORMAL && mode != REGULATOR_MODE_IDLE) {
vreg_err(vreg, "invalid mode: %u\n", mode);
return -EINVAL;
}
mutex_lock(&vreg->pc_lock);
if (mode == REGULATOR_MODE_NORMAL
|| (vreg->is_enabled_pc
&& vreg->pdata.pin_fn == PM8XXX_VREG_PIN_FN_ENABLE)) {
/* HPM */
rc = pm8xxx_vreg_masked_write(vreg, vreg->clk_ctrl_addr,
SMPS_CLK_CTRL_PWM, SMPS_CLK_CTRL_MASK,
&vreg->clk_ctrl_reg);
} else {
/* LPM */
rc = pm8xxx_vreg_masked_write(vreg, vreg->clk_ctrl_addr,
SMPS_CLK_CTRL_PFM, SMPS_CLK_CTRL_MASK,
&vreg->clk_ctrl_reg);
}
if (!rc)
vreg->mode = mode;
mutex_unlock(&vreg->pc_lock);
if (rc)
vreg_err(vreg, "pm8xxx_vreg_masked_write failed, rc=%d\n", rc);
else
pm8xxx_vreg_show_state(rdev, PM8XXX_REGULATOR_ACTION_MODE);
return rc;
}
static unsigned int pm8xxx_ftsmps_get_mode(struct regulator_dev *rdev)
{
struct pm8xxx_vreg *vreg = rdev_get_drvdata(rdev);
unsigned int mode = 0;
if ((vreg->test_reg[0] & FTSMPS_CNFG1_PM_MASK) == FTSMPS_CNFG1_PM_PFM)
mode = REGULATOR_MODE_IDLE;
else
mode = REGULATOR_MODE_NORMAL;
return mode;
}
static int pm8xxx_ftsmps_set_mode(struct regulator_dev *rdev, unsigned int mode)
{
struct pm8xxx_vreg *vreg = rdev_get_drvdata(rdev);
int rc = 0;
if (mode == REGULATOR_MODE_NORMAL) {
/* HPM */
rc = pm8xxx_vreg_masked_write(vreg, vreg->test_addr,
FTSMPS_CNFG1_PM_PWM | REGULATOR_BANK_WRITE
| REGULATOR_BANK_SEL(0), FTSMPS_CNFG1_PM_MASK
| REGULATOR_BANK_MASK, &vreg->test_reg[0]);
} else if (mode == REGULATOR_MODE_IDLE) {
/* LPM */
rc = pm8xxx_vreg_masked_write(vreg, vreg->test_addr,
FTSMPS_CNFG1_PM_PFM | REGULATOR_BANK_WRITE
| REGULATOR_BANK_SEL(0), FTSMPS_CNFG1_PM_MASK
| REGULATOR_BANK_MASK, &vreg->test_reg[0]);
} else {
vreg_err(vreg, "invalid mode: %u\n", mode);
return -EINVAL;
}
if (rc)
vreg_err(vreg, "pm8xxx_vreg_masked_write failed, rc=%d\n", rc);
else
pm8xxx_vreg_show_state(rdev, PM8XXX_REGULATOR_ACTION_MODE);
return rc;
}
static unsigned int pm8xxx_vreg_get_optimum_mode(struct regulator_dev *rdev,
int input_uV, int output_uV, int load_uA)
{
struct pm8xxx_vreg *vreg = rdev_get_drvdata(rdev);
unsigned int mode;
if (load_uA + vreg->pdata.system_uA >= vreg->hpm_min_load)
mode = REGULATOR_MODE_NORMAL;
else
mode = REGULATOR_MODE_IDLE;
return mode;
}
static int pm8xxx_ldo_enable(struct regulator_dev *rdev)
{
struct pm8xxx_vreg *vreg = rdev_get_drvdata(rdev);
int rc, val;
mutex_lock(&vreg->pc_lock);
/*
* Choose HPM if previously set to HPM or if pin control is enabled in
* on/off mode.
*/
val = LDO_CTRL_PM_LPM;
if (vreg->mode == REGULATOR_MODE_NORMAL
|| (vreg->is_enabled_pc
&& vreg->pdata.pin_fn == PM8XXX_VREG_PIN_FN_ENABLE))
val = LDO_CTRL_PM_HPM;
rc = pm8xxx_vreg_masked_write(vreg, vreg->ctrl_addr, val | LDO_ENABLE,
LDO_ENABLE_MASK | LDO_CTRL_PM_MASK, &vreg->ctrl_reg);
if (!rc)
vreg->is_enabled = true;
mutex_unlock(&vreg->pc_lock);
if (rc)
vreg_err(vreg, "pm8xxx_vreg_masked_write failed, rc=%d\n", rc);
else
pm8xxx_vreg_show_state(rdev, PM8XXX_REGULATOR_ACTION_ENABLE);
return rc;
}
static int pm8xxx_ldo_disable(struct regulator_dev *rdev)
{
struct pm8xxx_vreg *vreg = rdev_get_drvdata(rdev);
int rc;
mutex_lock(&vreg->pc_lock);
/*
* Only disable the regulator if it isn't still required for HPM/LPM
* pin control.
*/
if (!vreg->is_enabled_pc
|| vreg->pdata.pin_fn != PM8XXX_VREG_PIN_FN_MODE) {
rc = pm8xxx_vreg_masked_write(vreg, vreg->ctrl_addr,
LDO_DISABLE, LDO_ENABLE_MASK, &vreg->ctrl_reg);
if (rc)
goto bail;
}
/* Change to LPM if HPM/LPM pin control is enabled. */
if (vreg->is_enabled_pc
&& vreg->pdata.pin_fn == PM8XXX_VREG_PIN_FN_MODE) {
rc = pm8xxx_vreg_masked_write(vreg, vreg->ctrl_addr,
LDO_CTRL_PM_LPM, LDO_CTRL_PM_MASK, &vreg->ctrl_reg);
if (rc)
goto bail;
rc = pm8xxx_vreg_masked_write(vreg, vreg->test_addr,
LDO_TEST_LPM_SEL_CTRL | REGULATOR_BANK_WRITE
| REGULATOR_BANK_SEL(0),
LDO_TEST_LPM_MASK | REGULATOR_BANK_MASK,
&vreg->test_reg[0]);
}
if (!rc)
vreg->is_enabled = false;
bail:
mutex_unlock(&vreg->pc_lock);
if (rc)
vreg_err(vreg, "pm8xxx_vreg_masked_write failed, rc=%d\n", rc);
else
pm8xxx_vreg_show_state(rdev, PM8XXX_REGULATOR_ACTION_DISABLE);
return rc;
}
static int pm8xxx_nldo1200_enable(struct regulator_dev *rdev)
{
struct pm8xxx_vreg *vreg = rdev_get_drvdata(rdev);
int rc;
rc = pm8xxx_vreg_masked_write(vreg, vreg->ctrl_addr, NLDO1200_ENABLE,
NLDO1200_ENABLE_MASK, &vreg->ctrl_reg);
if (rc)
vreg_err(vreg, "pm8xxx_vreg_masked_write failed, rc=%d\n", rc);
else
pm8xxx_vreg_show_state(rdev, PM8XXX_REGULATOR_ACTION_ENABLE);
return rc;
}
static int pm8xxx_nldo1200_disable(struct regulator_dev *rdev)
{
struct pm8xxx_vreg *vreg = rdev_get_drvdata(rdev);
int rc;
rc = pm8xxx_vreg_masked_write(vreg, vreg->ctrl_addr, NLDO1200_DISABLE,
NLDO1200_ENABLE_MASK, &vreg->ctrl_reg);
if (rc)
vreg_err(vreg, "pm8xxx_vreg_masked_write failed, rc=%d\n", rc);
else
pm8xxx_vreg_show_state(rdev, PM8XXX_REGULATOR_ACTION_DISABLE);
return rc;
}
static int pm8xxx_smps_enable(struct regulator_dev *rdev)
{
struct pm8xxx_vreg *vreg = rdev_get_drvdata(rdev);
int rc = 0;
int val;
mutex_lock(&vreg->pc_lock);
if (SMPS_IN_ADVANCED_MODE(vreg)
|| !pm8xxx_vreg_is_pin_controlled(vreg)) {
/* Enable in advanced mode if not using pin control. */
rc = pm8xxx_smps_set_voltage_advanced(vreg, vreg->save_uV,
vreg->save_uV, 1);
} else {
rc = pm8xxx_smps_set_voltage_legacy(vreg, vreg->save_uV,
vreg->save_uV);
if (rc)
goto bail;
rc = pm8xxx_vreg_masked_write(vreg, vreg->ctrl_addr,
SMPS_LEGACY_ENABLE, SMPS_LEGACY_ENABLE_MASK,
&vreg->ctrl_reg);
}
/*
* Choose HPM if previously set to HPM or if pin control is enabled in
* on/off mode.
*/
val = SMPS_CLK_CTRL_PFM;
if (vreg->mode == REGULATOR_MODE_NORMAL
|| (vreg->is_enabled_pc
&& vreg->pdata.pin_fn == PM8XXX_VREG_PIN_FN_ENABLE))
val = SMPS_CLK_CTRL_PWM;
rc = pm8xxx_vreg_masked_write(vreg, vreg->clk_ctrl_addr, val,
SMPS_CLK_CTRL_MASK, &vreg->clk_ctrl_reg);
if (!rc)
vreg->is_enabled = true;
bail:
mutex_unlock(&vreg->pc_lock);
if (rc)
vreg_err(vreg, "pm8xxx_vreg_masked_write failed, rc=%d\n", rc);
else
pm8xxx_vreg_show_state(rdev, PM8XXX_REGULATOR_ACTION_ENABLE);
return rc;
}
static int pm8xxx_smps_disable(struct regulator_dev *rdev)
{
struct pm8xxx_vreg *vreg = rdev_get_drvdata(rdev);
int rc;
mutex_lock(&vreg->pc_lock);
if (SMPS_IN_ADVANCED_MODE(vreg)) {
/* Change SMPS to legacy mode before disabling. */
rc = pm8xxx_smps_set_voltage_legacy(vreg, vreg->save_uV,
vreg->save_uV);
if (rc)
goto bail;
}
/*
* Only disable the regulator if it isn't still required for HPM/LPM
* pin control.
*/
if (!vreg->is_enabled_pc
|| vreg->pdata.pin_fn != PM8XXX_VREG_PIN_FN_MODE) {
rc = pm8xxx_vreg_masked_write(vreg, vreg->ctrl_addr,
SMPS_LEGACY_DISABLE, SMPS_LEGACY_ENABLE_MASK,
&vreg->ctrl_reg);
if (rc)
goto bail;
}
/* Change to LPM if HPM/LPM pin control is enabled. */
if (vreg->is_enabled_pc
&& vreg->pdata.pin_fn == PM8XXX_VREG_PIN_FN_MODE)
rc = pm8xxx_vreg_masked_write(vreg, vreg->clk_ctrl_addr,
SMPS_CLK_CTRL_PFM, SMPS_CLK_CTRL_MASK,
&vreg->clk_ctrl_reg);
if (!rc)
vreg->is_enabled = false;
bail:
mutex_unlock(&vreg->pc_lock);
if (rc)
vreg_err(vreg, "pm8xxx_vreg_masked_write failed, rc=%d\n", rc);
else
pm8xxx_vreg_show_state(rdev, PM8XXX_REGULATOR_ACTION_DISABLE);
return rc;
}
static int pm8xxx_ftsmps_enable(struct regulator_dev *rdev)
{
struct pm8xxx_vreg *vreg = rdev_get_drvdata(rdev);
int rc;
rc = _pm8xxx_ftsmps_set_voltage(vreg, vreg->save_uV, vreg->save_uV, 1);
if (rc)
vreg_err(vreg, "set voltage failed, rc=%d\n", rc);
else
pm8xxx_vreg_show_state(rdev, PM8XXX_REGULATOR_ACTION_ENABLE);
return rc;
}
static int pm8xxx_ftsmps_disable(struct regulator_dev *rdev)
{
struct pm8xxx_vreg *vreg = rdev_get_drvdata(rdev);
int rc;
rc = pm8xxx_vreg_masked_write(vreg, vreg->ctrl_addr,
FTSMPS_VCTRL_BAND_OFF, FTSMPS_VCTRL_BAND_MASK, &vreg->ctrl_reg);
if (rc)
goto bail;
rc = pm8xxx_vreg_masked_write(vreg, vreg->pfm_ctrl_addr,
FTSMPS_VCTRL_BAND_OFF, FTSMPS_VCTRL_BAND_MASK,
&vreg->pfm_ctrl_reg);
bail:
if (rc)
vreg_err(vreg, "pm8xxx_vreg_masked_write failed, rc=%d\n", rc);
else
pm8xxx_vreg_show_state(rdev, PM8XXX_REGULATOR_ACTION_DISABLE);
return rc;
}
static int pm8xxx_vs_enable(struct regulator_dev *rdev)
{
struct pm8xxx_vreg *vreg = rdev_get_drvdata(rdev);
int rc;
mutex_lock(&vreg->pc_lock);
if (vreg->pdata.ocp_enable) {
/* Disable OCP. */
rc = pm8xxx_vreg_masked_write(vreg, vreg->test_addr,
VS_OCP_DISABLE, VS_OCP_MASK, &vreg->test_reg[0]);
if (rc)
goto done;
/* Enable the switch while OCP is disabled. */
rc = pm8xxx_vreg_masked_write(vreg, vreg->ctrl_addr,
VS_ENABLE | VS_MODE_NORMAL,
VS_ENABLE_MASK | VS_MODE_MASK,
&vreg->ctrl_reg);
if (rc)
goto done;
/* Wait for inrush current to subside, then enable OCP. */
udelay(vreg->pdata.ocp_enable_time);
rc = pm8xxx_vreg_masked_write(vreg, vreg->test_addr,
VS_OCP_ENABLE, VS_OCP_MASK, &vreg->test_reg[0]);
} else {
/* Enable the switch without touching OCP. */
rc = pm8xxx_vreg_masked_write(vreg, vreg->ctrl_addr, VS_ENABLE,
VS_ENABLE_MASK, &vreg->ctrl_reg);
}
done:
if (!rc)
vreg->is_enabled = true;
mutex_unlock(&vreg->pc_lock);
if (rc)
vreg_err(vreg, "pm8xxx_vreg_masked_write failed, rc=%d\n", rc);
else
pm8xxx_vreg_show_state(rdev, PM8XXX_REGULATOR_ACTION_ENABLE);
return rc;
}
static int pm8xxx_vs_disable(struct regulator_dev *rdev)
{
struct pm8xxx_vreg *vreg = rdev_get_drvdata(rdev);
int rc;
mutex_lock(&vreg->pc_lock);
rc = pm8xxx_vreg_masked_write(vreg, vreg->ctrl_addr, VS_DISABLE,
VS_ENABLE_MASK, &vreg->ctrl_reg);
if (!rc)
vreg->is_enabled = false;
mutex_unlock(&vreg->pc_lock);
if (rc)
vreg_err(vreg, "pm8xxx_vreg_masked_write failed, rc=%d\n", rc);
else
pm8xxx_vreg_show_state(rdev, PM8XXX_REGULATOR_ACTION_DISABLE);
return rc;
}
static int pm8xxx_vs300_enable(struct regulator_dev *rdev)
{
struct pm8xxx_vreg *vreg = rdev_get_drvdata(rdev);
int rc;
if (vreg->pdata.ocp_enable) {
/* Disable OCP. */
rc = pm8xxx_vreg_masked_write(vreg, vreg->test_addr,
VS_OCP_DISABLE, VS_OCP_MASK, &vreg->test_reg[0]);
if (rc)
goto done;
/* Enable the switch while OCP is disabled. */
rc = pm8xxx_vreg_masked_write(vreg, vreg->ctrl_addr,
VS300_CTRL_ENABLE | VS300_MODE_NORMAL,
VS300_CTRL_ENABLE_MASK | VS300_MODE_MASK,
&vreg->ctrl_reg);
if (rc)
goto done;
/* Wait for inrush current to subside, then enable OCP. */
udelay(vreg->pdata.ocp_enable_time);
rc = pm8xxx_vreg_masked_write(vreg, vreg->test_addr,
VS_OCP_ENABLE, VS_OCP_MASK, &vreg->test_reg[0]);
} else {
/* Enable the regulator without touching OCP. */
rc = pm8xxx_vreg_masked_write(vreg, vreg->ctrl_addr,
VS300_CTRL_ENABLE, VS300_CTRL_ENABLE_MASK,
&vreg->ctrl_reg);
}
done:
if (rc) {
vreg_err(vreg, "pm8xxx_vreg_masked_write failed, rc=%d\n", rc);
} else {
vreg->is_enabled = true;
pm8xxx_vreg_show_state(rdev, PM8XXX_REGULATOR_ACTION_ENABLE);
}
return rc;
}
static int pm8xxx_vs300_disable(struct regulator_dev *rdev)
{
struct pm8xxx_vreg *vreg = rdev_get_drvdata(rdev);
int rc;
rc = pm8xxx_vreg_masked_write(vreg, vreg->ctrl_addr, VS300_CTRL_DISABLE,
VS300_CTRL_ENABLE_MASK, &vreg->ctrl_reg);
if (rc)
vreg_err(vreg, "pm8xxx_vreg_masked_write failed, rc=%d\n", rc);
else
pm8xxx_vreg_show_state(rdev, PM8XXX_REGULATOR_ACTION_DISABLE);
return rc;
}
static int pm8xxx_ncp_enable(struct regulator_dev *rdev)
{
struct pm8xxx_vreg *vreg = rdev_get_drvdata(rdev);
int rc;
rc = pm8xxx_vreg_masked_write(vreg, vreg->ctrl_addr, NCP_ENABLE,
NCP_ENABLE_MASK, &vreg->ctrl_reg);
if (rc)
vreg_err(vreg, "pm8xxx_vreg_masked_write failed, rc=%d\n", rc);
else
pm8xxx_vreg_show_state(rdev, PM8XXX_REGULATOR_ACTION_ENABLE);
return rc;
}
static int pm8xxx_ncp_disable(struct regulator_dev *rdev)
{
struct pm8xxx_vreg *vreg = rdev_get_drvdata(rdev);
int rc;
rc = pm8xxx_vreg_masked_write(vreg, vreg->ctrl_addr, NCP_DISABLE,
NCP_ENABLE_MASK, &vreg->ctrl_reg);
if (rc)
vreg_err(vreg, "pm8xxx_vreg_masked_write failed, rc=%d\n", rc);
else
pm8xxx_vreg_show_state(rdev, PM8XXX_REGULATOR_ACTION_DISABLE);
return rc;
}
static int pm8xxx_boost_enable(struct regulator_dev *rdev)
{
struct pm8xxx_vreg *vreg = rdev_get_drvdata(rdev);
int rc;
rc = pm8xxx_vreg_masked_write(vreg, vreg->ctrl_addr, BOOST_ENABLE,
BOOST_ENABLE_MASK, &vreg->ctrl_reg);
if (rc)
vreg_err(vreg, "pm8xxx_vreg_masked_write failed, rc=%d\n", rc);
else
pm8xxx_vreg_show_state(rdev, PM8XXX_REGULATOR_ACTION_ENABLE);
return rc;
}
static int pm8xxx_boost_disable(struct regulator_dev *rdev)
{
struct pm8xxx_vreg *vreg = rdev_get_drvdata(rdev);
int rc;
rc = pm8xxx_vreg_masked_write(vreg, vreg->ctrl_addr, BOOST_DISABLE,
BOOST_ENABLE_MASK, &vreg->ctrl_reg);
if (rc)
vreg_err(vreg, "pm8xxx_vreg_masked_write failed, rc=%d\n", rc);
else
pm8xxx_vreg_show_state(rdev, PM8XXX_REGULATOR_ACTION_DISABLE);
return rc;
}
static int pm8xxx_ldo_pin_control_enable(struct regulator_dev *rdev)
{
struct pm8xxx_vreg *vreg = rdev_get_drvdata(rdev);
int rc = 0;
int bank;
u8 val = 0;
u8 mask;
mutex_lock(&vreg->pc_lock);
if (vreg->pdata.pin_ctrl & PM8XXX_VREG_PIN_CTRL_EN0)
val |= LDO_TEST_PIN_CTRL_EN0;
if (vreg->pdata.pin_ctrl & PM8XXX_VREG_PIN_CTRL_EN1)
val |= LDO_TEST_PIN_CTRL_EN1;
if (vreg->pdata.pin_ctrl & PM8XXX_VREG_PIN_CTRL_EN2)
val |= LDO_TEST_PIN_CTRL_EN2;
if (vreg->pdata.pin_ctrl & PM8XXX_VREG_PIN_CTRL_EN3)
val |= LDO_TEST_PIN_CTRL_EN3;
bank = (vreg->pdata.pin_fn == PM8XXX_VREG_PIN_FN_ENABLE ? 5 : 6);
rc = pm8xxx_vreg_masked_write(vreg, vreg->test_addr,
val | REGULATOR_BANK_SEL(bank) | REGULATOR_BANK_WRITE,
LDO_TEST_PIN_CTRL_MASK | REGULATOR_BANK_MASK,
&vreg->test_reg[bank]);
if (rc)
goto bail;
/* Unset pin control bits in unused bank. */
bank = (bank == 5 ? 6 : 5);
rc = pm8xxx_vreg_masked_write(vreg, vreg->test_addr,
REGULATOR_BANK_SEL(bank) | REGULATOR_BANK_WRITE,
LDO_TEST_PIN_CTRL_MASK | REGULATOR_BANK_MASK,
&vreg->test_reg[bank]);
if (rc)
goto bail;
val = LDO_TEST_LPM_SEL_CTRL | REGULATOR_BANK_WRITE
| REGULATOR_BANK_SEL(0);
mask = LDO_TEST_LPM_MASK | REGULATOR_BANK_MASK;
rc = pm8xxx_vreg_masked_write(vreg, vreg->test_addr, val, mask,
&vreg->test_reg[0]);
if (rc)
goto bail;
if (vreg->pdata.pin_fn == PM8XXX_VREG_PIN_FN_ENABLE) {
/* Pin control ON/OFF */
val = LDO_CTRL_PM_HPM;
/* Leave physically enabled if already enabled. */
val |= (vreg->is_enabled ? LDO_ENABLE : LDO_DISABLE);
rc = pm8xxx_vreg_masked_write(vreg, vreg->ctrl_addr, val,
LDO_ENABLE_MASK | LDO_CTRL_PM_MASK, &vreg->ctrl_reg);
if (rc)
goto bail;
} else {
/* Pin control LPM/HPM */
val = LDO_ENABLE;
/* Leave in HPM if already enabled in HPM. */
val |= (vreg->is_enabled && vreg->mode == REGULATOR_MODE_NORMAL
? LDO_CTRL_PM_HPM : LDO_CTRL_PM_LPM);
rc = pm8xxx_vreg_masked_write(vreg, vreg->ctrl_addr, val,
LDO_ENABLE_MASK | LDO_CTRL_PM_MASK, &vreg->ctrl_reg);
if (rc)
goto bail;
}
bail:
if (!rc)
vreg->is_enabled_pc = true;
mutex_unlock(&vreg->pc_lock);
if (rc)
vreg_err(vreg, "pm8xxx_vreg_masked_write failed, rc=%d\n", rc);
else
pm8xxx_vreg_show_state(rdev, PM8XXX_REGULATOR_ACTION_PIN_CTRL);
return rc;
}
static int pm8xxx_ldo_pin_control_disable(struct regulator_dev *rdev)
{
struct pm8xxx_vreg *vreg = rdev_get_drvdata(rdev);
int rc;
mutex_lock(&vreg->pc_lock);
rc = pm8xxx_vreg_masked_write(vreg, vreg->test_addr,
REGULATOR_BANK_SEL(5) | REGULATOR_BANK_WRITE,
LDO_TEST_PIN_CTRL_MASK | REGULATOR_BANK_MASK,
&vreg->test_reg[5]);
if (rc)
goto bail;
rc = pm8xxx_vreg_masked_write(vreg, vreg->test_addr,
REGULATOR_BANK_SEL(6) | REGULATOR_BANK_WRITE,
LDO_TEST_PIN_CTRL_MASK | REGULATOR_BANK_MASK,
&vreg->test_reg[6]);
/*
* Physically disable the regulator if it was enabled in HPM/LPM pin
* control mode previously and it logically should not be enabled.
*/
if ((vreg->ctrl_reg & LDO_ENABLE_MASK) == LDO_ENABLE
&& !vreg->is_enabled) {
rc = pm8xxx_vreg_masked_write(vreg, vreg->ctrl_addr,
LDO_DISABLE, LDO_ENABLE_MASK, &vreg->ctrl_reg);
if (rc)
goto bail;
}
/* Change to LPM if LPM was enabled. */
if (vreg->is_enabled && vreg->mode == REGULATOR_MODE_IDLE) {
rc = pm8xxx_vreg_masked_write(vreg, vreg->ctrl_addr,
LDO_CTRL_PM_LPM, LDO_CTRL_PM_MASK, &vreg->ctrl_reg);
if (rc)
goto bail;
rc = pm8xxx_vreg_masked_write(vreg, vreg->test_addr,
LDO_TEST_LPM_SEL_CTRL | REGULATOR_BANK_WRITE
| REGULATOR_BANK_SEL(0),
LDO_TEST_LPM_MASK | REGULATOR_BANK_MASK,
&vreg->test_reg[0]);
if (rc)
goto bail;
}
bail:
if (!rc)
vreg->is_enabled_pc = false;
mutex_unlock(&vreg->pc_lock);
if (rc)
vreg_err(vreg, "pm8xxx_vreg_masked_write failed, rc=%d\n", rc);
else
pm8xxx_vreg_show_state(rdev, PM8XXX_REGULATOR_ACTION_PIN_CTRL);
return rc;
}
static int pm8xxx_smps_pin_control_enable(struct regulator_dev *rdev)
{
struct pm8xxx_vreg *vreg = rdev_get_drvdata(rdev);
int rc = 0;
u8 val = 0;
mutex_lock(&vreg->pc_lock);
if (vreg->pdata.pin_fn == PM8XXX_VREG_PIN_FN_ENABLE) {
/* Pin control ON/OFF */
if (vreg->pdata.pin_ctrl & PM8XXX_VREG_PIN_CTRL_EN0)
val |= SMPS_PIN_CTRL_EN0;
if (vreg->pdata.pin_ctrl & PM8XXX_VREG_PIN_CTRL_EN1)
val |= SMPS_PIN_CTRL_EN1;
if (vreg->pdata.pin_ctrl & PM8XXX_VREG_PIN_CTRL_EN2)
val |= SMPS_PIN_CTRL_EN2;
if (vreg->pdata.pin_ctrl & PM8XXX_VREG_PIN_CTRL_EN3)
val |= SMPS_PIN_CTRL_EN3;
} else {
/* Pin control LPM/HPM */
if (vreg->pdata.pin_ctrl & PM8XXX_VREG_PIN_CTRL_EN0)
val |= SMPS_PIN_CTRL_LPM_EN0;
if (vreg->pdata.pin_ctrl & PM8XXX_VREG_PIN_CTRL_EN1)
val |= SMPS_PIN_CTRL_LPM_EN1;
if (vreg->pdata.pin_ctrl & PM8XXX_VREG_PIN_CTRL_EN2)
val |= SMPS_PIN_CTRL_LPM_EN2;
if (vreg->pdata.pin_ctrl & PM8XXX_VREG_PIN_CTRL_EN3)
val |= SMPS_PIN_CTRL_LPM_EN3;
}
rc = pm8xxx_smps_set_voltage_legacy(vreg, vreg->save_uV, vreg->save_uV);
if (rc)
goto bail;
rc = pm8xxx_vreg_masked_write(vreg, vreg->sleep_ctrl_addr, val,
SMPS_PIN_CTRL_MASK | SMPS_PIN_CTRL_LPM_MASK,
&vreg->sleep_ctrl_reg);
if (rc)
goto bail;
/*
* Physically enable the regulator if using HPM/LPM pin control mode or
* if the regulator should be logically left on.
*/
rc = pm8xxx_vreg_masked_write(vreg, vreg->ctrl_addr,
((vreg->pdata.pin_fn == PM8XXX_VREG_PIN_FN_MODE
|| vreg->is_enabled) ?
SMPS_LEGACY_ENABLE : SMPS_LEGACY_DISABLE),
SMPS_LEGACY_ENABLE_MASK, &vreg->ctrl_reg);
if (rc)
goto bail;
/*
* Set regulator to HPM if using on/off pin control or if the regulator
* is already enabled in HPM. Otherwise, set it to LPM.
*/
rc = pm8xxx_vreg_masked_write(vreg, vreg->clk_ctrl_addr,
(vreg->pdata.pin_fn == PM8XXX_VREG_PIN_FN_ENABLE
|| (vreg->is_enabled
&& vreg->mode == REGULATOR_MODE_NORMAL)
? SMPS_CLK_CTRL_PWM : SMPS_CLK_CTRL_PFM),
SMPS_CLK_CTRL_MASK, &vreg->clk_ctrl_reg);
bail:
if (!rc)
vreg->is_enabled_pc = true;
mutex_unlock(&vreg->pc_lock);
if (rc)
vreg_err(vreg, "pm8xxx_vreg_masked_write failed, rc=%d\n", rc);
else
pm8xxx_vreg_show_state(rdev, PM8XXX_REGULATOR_ACTION_PIN_CTRL);
return rc;
}
static int pm8xxx_smps_pin_control_disable(struct regulator_dev *rdev)
{
struct pm8xxx_vreg *vreg = rdev_get_drvdata(rdev);
int rc;
mutex_lock(&vreg->pc_lock);
rc = pm8xxx_vreg_masked_write(vreg, vreg->sleep_ctrl_addr, 0,
SMPS_PIN_CTRL_MASK | SMPS_PIN_CTRL_LPM_MASK,
&vreg->sleep_ctrl_reg);
if (rc)
goto bail;
/*
* Physically disable the regulator if it was enabled in HPM/LPM pin
* control mode previously and it logically should not be enabled.
*/
if ((vreg->ctrl_reg & SMPS_LEGACY_ENABLE_MASK) == SMPS_LEGACY_ENABLE
&& vreg->is_enabled == false) {
rc = pm8xxx_vreg_masked_write(vreg, vreg->ctrl_addr,
SMPS_LEGACY_DISABLE, SMPS_LEGACY_ENABLE_MASK,
&vreg->ctrl_reg);
if (rc)
goto bail;
}
/* Change to LPM if LPM was enabled. */
if (vreg->is_enabled && vreg->mode == REGULATOR_MODE_IDLE) {
rc = pm8xxx_vreg_masked_write(vreg, vreg->clk_ctrl_addr,
SMPS_CLK_CTRL_PFM, SMPS_CLK_CTRL_MASK,
&vreg->clk_ctrl_reg);
if (rc)
goto bail;
}
rc = pm8xxx_smps_set_voltage_advanced(vreg, vreg->save_uV,
vreg->save_uV, 0);
bail:
if (!rc)
vreg->is_enabled_pc = false;
mutex_unlock(&vreg->pc_lock);
if (rc)
vreg_err(vreg, "pm8xxx_vreg_masked_write failed, rc=%d\n", rc);
else
pm8xxx_vreg_show_state(rdev, PM8XXX_REGULATOR_ACTION_PIN_CTRL);
return rc;
}
static int pm8xxx_vs_pin_control_enable(struct regulator_dev *rdev)
{
struct pm8xxx_vreg *vreg = rdev_get_drvdata(rdev);
int rc;
u8 val = 0;
mutex_lock(&vreg->pc_lock);
if (vreg->pdata.pin_ctrl & PM8XXX_VREG_PIN_CTRL_EN0)
val |= VS_PIN_CTRL_EN0;
if (vreg->pdata.pin_ctrl & PM8XXX_VREG_PIN_CTRL_EN1)
val |= VS_PIN_CTRL_EN1;
if (vreg->pdata.pin_ctrl & PM8XXX_VREG_PIN_CTRL_EN2)
val |= VS_PIN_CTRL_EN2;
if (vreg->pdata.pin_ctrl & PM8XXX_VREG_PIN_CTRL_EN3)
val |= VS_PIN_CTRL_EN3;
rc = pm8xxx_vreg_masked_write(vreg, vreg->ctrl_addr, val,
VS_PIN_CTRL_MASK | VS_ENABLE_MASK, &vreg->ctrl_reg);
if (!rc)
vreg->is_enabled_pc = true;
mutex_unlock(&vreg->pc_lock);
if (rc)
vreg_err(vreg, "pm8xxx_vreg_masked_write failed, rc=%d\n", rc);
else
pm8xxx_vreg_show_state(rdev, PM8XXX_REGULATOR_ACTION_PIN_CTRL);
return rc;
}
static int pm8xxx_vs_pin_control_disable(struct regulator_dev *rdev)
{
struct pm8xxx_vreg *vreg = rdev_get_drvdata(rdev);
int rc;
mutex_lock(&vreg->pc_lock);
rc = pm8xxx_vreg_masked_write(vreg, vreg->ctrl_addr, 0,
VS_PIN_CTRL_MASK, &vreg->ctrl_reg);
if (!rc)
vreg->is_enabled_pc = false;
mutex_unlock(&vreg->pc_lock);
if (rc)
vreg_err(vreg, "pm8xxx_vreg_masked_write failed, rc=%d\n", rc);
else
pm8xxx_vreg_show_state(rdev, PM8XXX_REGULATOR_ACTION_PIN_CTRL);
return rc;
}
static int pm8xxx_enable_time(struct regulator_dev *rdev)
{
struct pm8xxx_vreg *vreg = rdev_get_drvdata(rdev);
return vreg->pdata.enable_time;
}
static const char const *pm8xxx_print_actions[] = {
[PM8XXX_REGULATOR_ACTION_INIT] = "initial ",
[PM8XXX_REGULATOR_ACTION_ENABLE] = "enable ",
[PM8XXX_REGULATOR_ACTION_DISABLE] = "disable ",
[PM8XXX_REGULATOR_ACTION_VOLTAGE] = "set voltage",
[PM8XXX_REGULATOR_ACTION_MODE] = "set mode ",
[PM8XXX_REGULATOR_ACTION_PIN_CTRL] = "pin control",
};
static void pm8xxx_vreg_show_state(struct regulator_dev *rdev,
enum pm8xxx_regulator_action action)
{
struct pm8xxx_vreg *vreg = rdev_get_drvdata(rdev);
int uV, pc;
unsigned int mode;
const char *pc_en0 = "", *pc_en1 = "", *pc_en2 = "", *pc_en3 = "";
const char *pc_total = "";
const char *action_label = pm8xxx_print_actions[action];
const char *enable_label;
mutex_lock(&vreg->pc_lock);
/*
* Do not print unless REQUEST is specified and SSBI writes have taken
* place, or DUPLICATE is specified.
*/
if (!((pm8xxx_vreg_debug_mask & PM8XXX_VREG_DEBUG_DUPLICATE)
|| ((pm8xxx_vreg_debug_mask & PM8XXX_VREG_DEBUG_REQUEST)
&& (vreg->write_count != vreg->prev_write_count)))) {
mutex_unlock(&vreg->pc_lock);
return;
}
vreg->prev_write_count = vreg->write_count;
pc = vreg->pdata.pin_ctrl;
if (vreg->is_enabled_pc) {
if (pc & PM8XXX_VREG_PIN_CTRL_EN0)
pc_en0 = " EN0";
if (pc & PM8XXX_VREG_PIN_CTRL_EN1)
pc_en1 = " EN1";
if (pc & PM8XXX_VREG_PIN_CTRL_EN2)
pc_en2 = " EN2";
if (pc & PM8XXX_VREG_PIN_CTRL_EN3)
pc_en3 = " EN3";
if (pc == PM8XXX_VREG_PIN_CTRL_NONE)
pc_total = " none";
} else {
pc_total = " none";
}
mutex_unlock(&vreg->pc_lock);
enable_label = pm8xxx_vreg_is_enabled(rdev) ? "on " : "off";
switch (vreg->type) {
case PM8XXX_REGULATOR_TYPE_PLDO:
uV = pm8xxx_pldo_get_voltage(rdev);
mode = pm8xxx_ldo_get_mode(rdev);
pr_info("%s %-9s: %s, v=%7d uV, mode=%s, pc=%s%s%s%s%s\n",
action_label, vreg->rdesc.name, enable_label, uV,
(mode == REGULATOR_MODE_NORMAL ? "HPM" : "LPM"),
pc_en0, pc_en1, pc_en2, pc_en3, pc_total);
break;
case PM8XXX_REGULATOR_TYPE_NLDO:
uV = pm8xxx_nldo_get_voltage(rdev);
mode = pm8xxx_ldo_get_mode(rdev);
pr_info("%s %-9s: %s, v=%7d uV, mode=%s, pc=%s%s%s%s%s\n",
action_label, vreg->rdesc.name, enable_label, uV,
(mode == REGULATOR_MODE_NORMAL ? "HPM" : "LPM"),
pc_en0, pc_en1, pc_en2, pc_en3, pc_total);
break;
case PM8XXX_REGULATOR_TYPE_NLDO1200:
uV = pm8xxx_nldo1200_get_voltage(rdev);
mode = pm8xxx_nldo1200_get_mode(rdev);
pr_info("%s %-9s: %s, v=%7d uV, mode=%s\n",
action_label, vreg->rdesc.name, enable_label, uV,
(mode == REGULATOR_MODE_NORMAL ? "HPM" : "LPM"));
break;
case PM8XXX_REGULATOR_TYPE_SMPS:
uV = pm8xxx_smps_get_voltage(rdev);
mode = pm8xxx_smps_get_mode(rdev);
pr_info("%s %-9s: %s, v=%7d uV, mode=%s, pc=%s%s%s%s%s\n",
action_label, vreg->rdesc.name, enable_label, uV,
(mode == REGULATOR_MODE_NORMAL ? "HPM" : "LPM"),
pc_en0, pc_en1, pc_en2, pc_en3, pc_total);
break;
case PM8XXX_REGULATOR_TYPE_FTSMPS:
uV = pm8xxx_ftsmps_get_voltage(rdev);
mode = pm8xxx_ftsmps_get_mode(rdev);
pr_info("%s %-9s: %s, v=%7d uV, mode=%s\n",
action_label, vreg->rdesc.name, enable_label, uV,
(mode == REGULATOR_MODE_NORMAL ? "HPM" : "LPM"));
break;
case PM8XXX_REGULATOR_TYPE_VS:
pr_info("%s %-9s: %s, pc=%s%s%s%s%s\n",
action_label, vreg->rdesc.name, enable_label,
pc_en0, pc_en1, pc_en2, pc_en3, pc_total);
break;
case PM8XXX_REGULATOR_TYPE_VS300:
pr_info("%s %-9s: %s\n",
action_label, vreg->rdesc.name, enable_label);
break;
case PM8XXX_REGULATOR_TYPE_NCP:
uV = pm8xxx_ncp_get_voltage(rdev);
pr_info("%s %-9s: %s, v=%7d uV\n",
action_label, vreg->rdesc.name, enable_label, uV);
break;
case PM8XXX_REGULATOR_TYPE_BOOST:
uV = pm8xxx_boost_get_voltage(rdev);
pr_info("%s %-9s: %s, v=%7d uV\n",
action_label, vreg->rdesc.name, enable_label, uV);
break;
default:
break;
}
}
/* Real regulator operations. */
static struct regulator_ops pm8xxx_pldo_ops = {
.enable = pm8xxx_ldo_enable,
.disable = pm8xxx_ldo_disable,
.is_enabled = pm8xxx_vreg_is_enabled,
.set_voltage = pm8xxx_pldo_set_voltage,
.get_voltage = pm8xxx_pldo_get_voltage,
.list_voltage = pm8xxx_pldo_list_voltage,
.set_mode = pm8xxx_ldo_set_mode,
.get_mode = pm8xxx_ldo_get_mode,
.get_optimum_mode = pm8xxx_vreg_get_optimum_mode,
.enable_time = pm8xxx_enable_time,
};
static struct regulator_ops pm8xxx_nldo_ops = {
.enable = pm8xxx_ldo_enable,
.disable = pm8xxx_ldo_disable,
.is_enabled = pm8xxx_vreg_is_enabled,
.set_voltage = pm8xxx_nldo_set_voltage,
.get_voltage = pm8xxx_nldo_get_voltage,
.list_voltage = pm8xxx_nldo_list_voltage,
.set_mode = pm8xxx_ldo_set_mode,
.get_mode = pm8xxx_ldo_get_mode,
.get_optimum_mode = pm8xxx_vreg_get_optimum_mode,
.enable_time = pm8xxx_enable_time,
};
static struct regulator_ops pm8xxx_nldo1200_ops = {
.enable = pm8xxx_nldo1200_enable,
.disable = pm8xxx_nldo1200_disable,
.is_enabled = pm8xxx_vreg_is_enabled,
.set_voltage = pm8xxx_nldo1200_set_voltage,
.get_voltage = pm8xxx_nldo1200_get_voltage,
.list_voltage = pm8xxx_nldo1200_list_voltage,
.set_mode = pm8xxx_nldo1200_set_mode,
.get_mode = pm8xxx_nldo1200_get_mode,
.get_optimum_mode = pm8xxx_vreg_get_optimum_mode,
.enable_time = pm8xxx_enable_time,
};
static struct regulator_ops pm8xxx_smps_ops = {
.enable = pm8xxx_smps_enable,
.disable = pm8xxx_smps_disable,
.is_enabled = pm8xxx_vreg_is_enabled,
.set_voltage = pm8xxx_smps_set_voltage,
.get_voltage = pm8xxx_smps_get_voltage,
.list_voltage = pm8xxx_smps_list_voltage,
.set_mode = pm8xxx_smps_set_mode,
.get_mode = pm8xxx_smps_get_mode,
.get_optimum_mode = pm8xxx_vreg_get_optimum_mode,
.enable_time = pm8xxx_enable_time,
};
static struct regulator_ops pm8xxx_ftsmps_ops = {
.enable = pm8xxx_ftsmps_enable,
.disable = pm8xxx_ftsmps_disable,
.is_enabled = pm8xxx_vreg_is_enabled,
.set_voltage = pm8xxx_ftsmps_set_voltage,
.get_voltage = pm8xxx_ftsmps_get_voltage,
.list_voltage = pm8xxx_ftsmps_list_voltage,
.set_mode = pm8xxx_ftsmps_set_mode,
.get_mode = pm8xxx_ftsmps_get_mode,
.get_optimum_mode = pm8xxx_vreg_get_optimum_mode,
.enable_time = pm8xxx_enable_time,
};
static struct regulator_ops pm8xxx_vs_ops = {
.enable = pm8xxx_vs_enable,
.disable = pm8xxx_vs_disable,
.is_enabled = pm8xxx_vreg_is_enabled,
.enable_time = pm8xxx_enable_time,
};
static struct regulator_ops pm8xxx_vs300_ops = {
.enable = pm8xxx_vs300_enable,
.disable = pm8xxx_vs300_disable,
.is_enabled = pm8xxx_vreg_is_enabled,
.enable_time = pm8xxx_enable_time,
};
static struct regulator_ops pm8xxx_ncp_ops = {
.enable = pm8xxx_ncp_enable,
.disable = pm8xxx_ncp_disable,
.is_enabled = pm8xxx_vreg_is_enabled,
.set_voltage = pm8xxx_ncp_set_voltage,
.get_voltage = pm8xxx_ncp_get_voltage,
.list_voltage = pm8xxx_ncp_list_voltage,
.enable_time = pm8xxx_enable_time,
};
static struct regulator_ops pm8xxx_boost_ops = {
.enable = pm8xxx_boost_enable,
.disable = pm8xxx_boost_disable,
.is_enabled = pm8xxx_vreg_is_enabled,
.set_voltage = pm8xxx_boost_set_voltage,
.get_voltage = pm8xxx_boost_get_voltage,
.list_voltage = pm8xxx_boost_list_voltage,
.enable_time = pm8xxx_enable_time,
};
/* Pin control regulator operations. */
static struct regulator_ops pm8xxx_ldo_pc_ops = {
.enable = pm8xxx_ldo_pin_control_enable,
.disable = pm8xxx_ldo_pin_control_disable,
.is_enabled = pm8xxx_vreg_pin_control_is_enabled,
};
static struct regulator_ops pm8xxx_smps_pc_ops = {
.enable = pm8xxx_smps_pin_control_enable,
.disable = pm8xxx_smps_pin_control_disable,
.is_enabled = pm8xxx_vreg_pin_control_is_enabled,
};
static struct regulator_ops pm8xxx_vs_pc_ops = {
.enable = pm8xxx_vs_pin_control_enable,
.disable = pm8xxx_vs_pin_control_disable,
.is_enabled = pm8xxx_vreg_pin_control_is_enabled,
};
static struct regulator_ops *pm8xxx_reg_ops[PM8XXX_REGULATOR_TYPE_MAX] = {
[PM8XXX_REGULATOR_TYPE_PLDO] = &pm8xxx_pldo_ops,
[PM8XXX_REGULATOR_TYPE_NLDO] = &pm8xxx_nldo_ops,
[PM8XXX_REGULATOR_TYPE_NLDO1200] = &pm8xxx_nldo1200_ops,
[PM8XXX_REGULATOR_TYPE_SMPS] = &pm8xxx_smps_ops,
[PM8XXX_REGULATOR_TYPE_FTSMPS] = &pm8xxx_ftsmps_ops,
[PM8XXX_REGULATOR_TYPE_VS] = &pm8xxx_vs_ops,
[PM8XXX_REGULATOR_TYPE_VS300] = &pm8xxx_vs300_ops,
[PM8XXX_REGULATOR_TYPE_NCP] = &pm8xxx_ncp_ops,
[PM8XXX_REGULATOR_TYPE_BOOST] = &pm8xxx_boost_ops,
};
static struct regulator_ops *pm8xxx_reg_pc_ops[PM8XXX_REGULATOR_TYPE_MAX] = {
[PM8XXX_REGULATOR_TYPE_PLDO] = &pm8xxx_ldo_pc_ops,
[PM8XXX_REGULATOR_TYPE_NLDO] = &pm8xxx_ldo_pc_ops,
[PM8XXX_REGULATOR_TYPE_SMPS] = &pm8xxx_smps_pc_ops,
[PM8XXX_REGULATOR_TYPE_VS] = &pm8xxx_vs_pc_ops,
};
static unsigned pm8xxx_n_voltages[PM8XXX_REGULATOR_TYPE_MAX] = {
[PM8XXX_REGULATOR_TYPE_PLDO] = PLDO_SET_POINTS,
[PM8XXX_REGULATOR_TYPE_NLDO] = NLDO_SET_POINTS,
[PM8XXX_REGULATOR_TYPE_NLDO1200] = NLDO1200_SET_POINTS,
[PM8XXX_REGULATOR_TYPE_SMPS] = SMPS_ADVANCED_SET_POINTS,
[PM8XXX_REGULATOR_TYPE_FTSMPS] = FTSMPS_SET_POINTS,
[PM8XXX_REGULATOR_TYPE_VS] = 0,
[PM8XXX_REGULATOR_TYPE_VS300] = 0,
[PM8XXX_REGULATOR_TYPE_NCP] = NCP_SET_POINTS,
[PM8XXX_REGULATOR_TYPE_BOOST] = BOOST_SET_POINTS,
};
static int pm8xxx_init_ldo(struct pm8xxx_vreg *vreg, bool is_real)
{
int rc = 0;
int i;
u8 bank;
/* Save the current control register state. */
rc = pm8xxx_readb(vreg->dev->parent, vreg->ctrl_addr, &vreg->ctrl_reg);
if (rc)
goto bail;
/* Save the current test register state. */
for (i = 0; i < LDO_TEST_BANKS; i++) {
bank = REGULATOR_BANK_SEL(i);
rc = pm8xxx_writeb(vreg->dev->parent, vreg->test_addr, bank);
if (rc)
goto bail;
rc = pm8xxx_readb(vreg->dev->parent, vreg->test_addr,
&vreg->test_reg[i]);
if (rc)
goto bail;
vreg->test_reg[i] |= REGULATOR_BANK_WRITE;
}
if (is_real) {
/* Set pull down enable based on platform data. */
rc = pm8xxx_vreg_masked_write(vreg, vreg->ctrl_addr,
(vreg->pdata.pull_down_enable ? LDO_PULL_DOWN_ENABLE : 0),
LDO_PULL_DOWN_ENABLE_MASK, &vreg->ctrl_reg);
vreg->is_enabled = !!_pm8xxx_vreg_is_enabled(vreg);
vreg->mode = ((vreg->ctrl_reg & LDO_CTRL_PM_MASK)
== LDO_CTRL_PM_LPM ?
REGULATOR_MODE_IDLE : REGULATOR_MODE_NORMAL);
}
bail:
if (rc)
vreg_err(vreg, "pm8xxx_readb/writeb failed, rc=%d\n", rc);
return rc;
}
static int pm8xxx_init_nldo1200(struct pm8xxx_vreg *vreg)
{
int rc = 0;
int i;
u8 bank;
/* Save the current control register state. */
rc = pm8xxx_readb(vreg->dev->parent, vreg->ctrl_addr, &vreg->ctrl_reg);
if (rc)
goto bail;
/* Save the current test register state. */
for (i = 0; i < LDO_TEST_BANKS; i++) {
bank = REGULATOR_BANK_SEL(i);
rc = pm8xxx_writeb(vreg->dev->parent, vreg->test_addr, bank);
if (rc)
goto bail;
rc = pm8xxx_readb(vreg->dev->parent, vreg->test_addr,
&vreg->test_reg[i]);
if (rc)
goto bail;
vreg->test_reg[i] |= REGULATOR_BANK_WRITE;
}
vreg->save_uV = _pm8xxx_nldo1200_get_voltage(vreg);
/* Set pull down enable based on platform data. */
rc = pm8xxx_vreg_masked_write(vreg, vreg->test_addr,
(vreg->pdata.pull_down_enable ? NLDO1200_PULL_DOWN_ENABLE : 0)
| REGULATOR_BANK_SEL(1) | REGULATOR_BANK_WRITE,
NLDO1200_PULL_DOWN_ENABLE_MASK | REGULATOR_BANK_MASK,
&vreg->test_reg[1]);
bail:
if (rc)
vreg_err(vreg, "pm8xxx_readb/writeb failed, rc=%d\n", rc);
return rc;
}
static int pm8xxx_init_smps(struct pm8xxx_vreg *vreg, bool is_real)
{
int rc = 0;
int i;
u8 bank;
/* Save the current control register state. */
rc = pm8xxx_readb(vreg->dev->parent, vreg->ctrl_addr, &vreg->ctrl_reg);
if (rc)
goto bail;
/* Save the current test2 register state. */
for (i = 0; i < SMPS_TEST_BANKS; i++) {
bank = REGULATOR_BANK_SEL(i);
rc = pm8xxx_writeb(vreg->dev->parent, vreg->test_addr, bank);
if (rc)
goto bail;
rc = pm8xxx_readb(vreg->dev->parent, vreg->test_addr,
&vreg->test_reg[i]);
if (rc)
goto bail;
vreg->test_reg[i] |= REGULATOR_BANK_WRITE;
}
/* Save the current clock control register state. */
rc = pm8xxx_readb(vreg->dev->parent, vreg->clk_ctrl_addr,
&vreg->clk_ctrl_reg);
if (rc)
goto bail;
/* Save the current sleep control register state. */
rc = pm8xxx_readb(vreg->dev->parent, vreg->sleep_ctrl_addr,
&vreg->sleep_ctrl_reg);
if (rc)
goto bail;
vreg->save_uV = _pm8xxx_smps_get_voltage(vreg);
if (is_real) {
/* Set advanced mode pull down enable based on platform data. */
rc = pm8xxx_vreg_masked_write(vreg, vreg->test_addr,
(vreg->pdata.pull_down_enable
? SMPS_ADVANCED_PULL_DOWN_ENABLE : 0)
| REGULATOR_BANK_SEL(6) | REGULATOR_BANK_WRITE,
REGULATOR_BANK_MASK | SMPS_ADVANCED_PULL_DOWN_ENABLE,
&vreg->test_reg[6]);
if (rc)
goto bail;
vreg->is_enabled = !!_pm8xxx_vreg_is_enabled(vreg);
vreg->mode = ((vreg->clk_ctrl_reg & SMPS_CLK_CTRL_MASK)
== SMPS_CLK_CTRL_PFM ?
REGULATOR_MODE_IDLE : REGULATOR_MODE_NORMAL);
}
if (!SMPS_IN_ADVANCED_MODE(vreg) && is_real) {
/* Set legacy mode pull down enable based on platform data. */
rc = pm8xxx_vreg_masked_write(vreg, vreg->ctrl_addr,
(vreg->pdata.pull_down_enable
? SMPS_LEGACY_PULL_DOWN_ENABLE : 0),
SMPS_LEGACY_PULL_DOWN_ENABLE, &vreg->ctrl_reg);
if (rc)
goto bail;
}
bail:
if (rc)
vreg_err(vreg, "pm8xxx_readb/writeb failed, rc=%d\n", rc);
return rc;
}
static int pm8xxx_init_ftsmps(struct pm8xxx_vreg *vreg)
{
int rc, i;
u8 bank;
/* Save the current control register state. */
rc = pm8xxx_readb(vreg->dev->parent, vreg->ctrl_addr, &vreg->ctrl_reg);
if (rc)
goto bail;
/* Store current regulator register values. */
rc = pm8xxx_readb(vreg->dev->parent, vreg->pfm_ctrl_addr,
&vreg->pfm_ctrl_reg);
if (rc)
goto bail;
rc = pm8xxx_readb(vreg->dev->parent, vreg->pwr_cnfg_addr,
&vreg->pwr_cnfg_reg);
if (rc)
goto bail;
/* Save the current fts_cnfg1 register state (uses 'test' member). */
for (i = 0; i < SMPS_TEST_BANKS; i++) {
bank = REGULATOR_BANK_SEL(i);
rc = pm8xxx_writeb(vreg->dev->parent, vreg->test_addr, bank);
if (rc)
goto bail;
rc = pm8xxx_readb(vreg->dev->parent, vreg->test_addr,
&vreg->test_reg[i]);
if (rc)
goto bail;
vreg->test_reg[i] |= REGULATOR_BANK_WRITE;
}
vreg->save_uV = _pm8xxx_ftsmps_get_voltage(vreg);
/* Set pull down enable based on platform data. */
rc = pm8xxx_vreg_masked_write(vreg, vreg->pwr_cnfg_addr,
(vreg->pdata.pull_down_enable ? FTSMPS_PULL_DOWN_ENABLE : 0),
FTSMPS_PULL_DOWN_ENABLE_MASK, &vreg->pwr_cnfg_reg);
bail:
if (rc)
vreg_err(vreg, "pm8xxx_readb/writeb failed, rc=%d\n", rc);
return rc;
}
static int pm8xxx_init_vs(struct pm8xxx_vreg *vreg, bool is_real)
{
int rc = 0;
/* Save the current control register state. */
rc = pm8xxx_readb(vreg->dev->parent, vreg->ctrl_addr, &vreg->ctrl_reg);
if (rc) {
vreg_err(vreg, "pm8xxx_readb failed, rc=%d\n", rc);
return rc;
}
/* Save the current test register state. */
rc = pm8xxx_readb(vreg->dev->parent, vreg->test_addr,
&vreg->test_reg[0]);
if (rc) {
vreg_err(vreg, "pm8xxx_readb failed, rc=%d\n", rc);
return rc;
}
if (is_real) {
/* Set pull down enable based on platform data. */
rc = pm8xxx_vreg_masked_write(vreg, vreg->ctrl_addr,
(vreg->pdata.pull_down_enable ? VS_PULL_DOWN_ENABLE
: VS_PULL_DOWN_DISABLE),
VS_PULL_DOWN_ENABLE_MASK, &vreg->ctrl_reg);
if (rc)
vreg_err(vreg,
"pm8xxx_vreg_masked_write failed, rc=%d\n", rc);
vreg->is_enabled = !!_pm8xxx_vreg_is_enabled(vreg);
}
return rc;
}
static int pm8xxx_init_vs300(struct pm8xxx_vreg *vreg)
{
int rc;
/* Save the current control register state. */
rc = pm8xxx_readb(vreg->dev->parent, vreg->ctrl_addr, &vreg->ctrl_reg);
if (rc) {
vreg_err(vreg, "pm8xxx_readb failed, rc=%d\n", rc);
return rc;
}
/* Save the current test register state. */
rc = pm8xxx_readb(vreg->dev->parent, vreg->test_addr,
&vreg->test_reg[0]);
if (rc) {
vreg_err(vreg, "pm8xxx_readb failed, rc=%d\n", rc);
return rc;
}
/* Set pull down enable based on platform data. */
rc = pm8xxx_vreg_masked_write(vreg, vreg->ctrl_addr,
(vreg->pdata.pull_down_enable ? VS300_PULL_DOWN_ENABLE : 0),
VS300_PULL_DOWN_ENABLE_MASK, &vreg->ctrl_reg);
if (rc)
vreg_err(vreg, "pm8xxx_vreg_masked_write failed, rc=%d\n", rc);
return rc;
}
static int pm8xxx_init_ncp(struct pm8xxx_vreg *vreg)
{
int rc;
/* Save the current control register state. */
rc = pm8xxx_readb(vreg->dev->parent, vreg->ctrl_addr, &vreg->ctrl_reg);
if (rc) {
vreg_err(vreg, "pm8xxx_readb failed, rc=%d\n", rc);
return rc;
}
return rc;
}
static int pm8xxx_init_boost(struct pm8xxx_vreg *vreg)
{
int rc;
/* Save the current control register state. */
rc = pm8xxx_readb(vreg->dev->parent, vreg->ctrl_addr, &vreg->ctrl_reg);
if (rc) {
vreg_err(vreg, "pm8xxx_readb failed, rc=%d\n", rc);
return rc;
}
return rc;
}
static int __devinit pm8xxx_vreg_probe(struct platform_device *pdev)
{
struct pm8xxx_regulator_core_platform_data *core_data;
const struct pm8xxx_regulator_platform_data *pdata;
enum pm8xxx_vreg_pin_function pin_fn;
struct regulator_desc *rdesc;
struct pm8xxx_vreg *vreg;
unsigned pin_ctrl;
int rc = 0;
if (pdev == NULL) {
pr_err("no platform device specified\n");
return -EINVAL;
}
core_data = pdev->dev.platform_data;
if (core_data == NULL) {
pr_err("no core data specified\n");
return -EINVAL;
}
pdata = core_data->pdata;
vreg = core_data->vreg;
if (pdata == NULL) {
pr_err("no pdata specified\n");
return -EINVAL;
} else if (vreg == NULL) {
pr_err("no vreg specified\n");
return -EINVAL;
}
if (vreg->rdesc.name == NULL) {
pr_err("regulator name missing\n");
return -EINVAL;
} else if (vreg->type < 0 || vreg->type >= PM8XXX_REGULATOR_TYPE_MAX) {
pr_err("%s: regulator type=%d is invalid\n", vreg->rdesc.name,
vreg->type);
return -EINVAL;
} else if (core_data->is_pin_controlled
&& pm8xxx_reg_pc_ops[vreg->type] == NULL) {
pr_err("%s: regulator type=%d does not support pin control\n",
vreg->rdesc.name, vreg->type);
return -EINVAL;
} else if (core_data->is_pin_controlled
&& vreg->rdesc_pc.name == NULL) {
pr_err("%s: regulator pin control name missing\n",
vreg->rdesc.name);
return -EINVAL;
}
if (core_data->is_pin_controlled)
rdesc = &vreg->rdesc_pc;
else
rdesc = &vreg->rdesc;
if (!pdata) {
pr_err("%s requires platform data\n", vreg->rdesc.name);
return -EINVAL;
}
rdesc->id = pdev->id;
rdesc->owner = THIS_MODULE;
rdesc->type = REGULATOR_VOLTAGE;
if (core_data->is_pin_controlled) {
rdesc->ops = pm8xxx_reg_pc_ops[vreg->type];
rdesc->n_voltages = 0;
} else {
rdesc->ops = pm8xxx_reg_ops[vreg->type];
rdesc->n_voltages = pm8xxx_n_voltages[vreg->type];
}
mutex_lock(&vreg->pc_lock);
if (!core_data->is_pin_controlled) {
/* Do not modify pin control and pin function values. */
pin_ctrl = vreg->pdata.pin_ctrl;
pin_fn = vreg->pdata.pin_fn;
memcpy(&(vreg->pdata), pdata,
sizeof(struct pm8xxx_regulator_platform_data));
vreg->pdata.pin_ctrl = pin_ctrl;
vreg->pdata.pin_fn = pin_fn;
/*
* If slew_rate isn't specified but enable_time is, then set
* slew_rate = max_uV / enable_time.
*/
if (vreg->pdata.enable_time > 0
&& vreg->pdata.init_data.constraints.max_uV > 0
&& vreg->pdata.slew_rate <= 0)
vreg->pdata.slew_rate =
DIV_ROUND_UP(vreg->pdata.init_data.constraints.max_uV,
vreg->pdata.enable_time);
vreg->dev = &pdev->dev;
} else {
/* Pin control regulator */
if ((pdata->pin_ctrl & PM8XXX_VREG_PIN_CTRL_ALL)
== PM8XXX_VREG_PIN_CTRL_NONE) {
pr_err("%s: no pin control input specified\n",
vreg->rdesc.name);
mutex_unlock(&vreg->pc_lock);
return -EINVAL;
}
vreg->pdata.pin_ctrl = pdata->pin_ctrl;
vreg->pdata.pin_fn = pdata->pin_fn;
vreg->dev_pc = &pdev->dev;
if (!vreg->dev)
vreg->dev = &pdev->dev;
}
/* Initialize register values. */
switch (vreg->type) {
case PM8XXX_REGULATOR_TYPE_PLDO:
case PM8XXX_REGULATOR_TYPE_NLDO:
rc = pm8xxx_init_ldo(vreg, !core_data->is_pin_controlled);
break;
case PM8XXX_REGULATOR_TYPE_NLDO1200:
rc = pm8xxx_init_nldo1200(vreg);
break;
case PM8XXX_REGULATOR_TYPE_SMPS:
rc = pm8xxx_init_smps(vreg, !core_data->is_pin_controlled);
break;
case PM8XXX_REGULATOR_TYPE_FTSMPS:
rc = pm8xxx_init_ftsmps(vreg);
break;
case PM8XXX_REGULATOR_TYPE_VS:
rc = pm8xxx_init_vs(vreg, !core_data->is_pin_controlled);
break;
case PM8XXX_REGULATOR_TYPE_VS300:
rc = pm8xxx_init_vs300(vreg);
break;
case PM8XXX_REGULATOR_TYPE_NCP:
rc = pm8xxx_init_ncp(vreg);
break;
case PM8XXX_REGULATOR_TYPE_BOOST:
rc = pm8xxx_init_boost(vreg);
break;
default:
break;
}
mutex_unlock(&vreg->pc_lock);
if (rc)
goto bail;
if (!core_data->is_pin_controlled) {
vreg->rdev = regulator_register(rdesc, &pdev->dev,
&(pdata->init_data), vreg, NULL);
if (IS_ERR(vreg->rdev)) {
rc = PTR_ERR(vreg->rdev);
vreg->rdev = NULL;
pr_err("regulator_register failed: %s, rc=%d\n",
vreg->rdesc.name, rc);
}
} else {
vreg->rdev_pc = regulator_register(rdesc, &pdev->dev,
&(pdata->init_data), vreg, NULL);
if (IS_ERR(vreg->rdev_pc)) {
rc = PTR_ERR(vreg->rdev_pc);
vreg->rdev_pc = NULL;
pr_err("regulator_register failed: %s, rc=%d\n",
vreg->rdesc.name, rc);
}
}
if ((pm8xxx_vreg_debug_mask & PM8XXX_VREG_DEBUG_INIT) && !rc
&& vreg->rdev)
pm8xxx_vreg_show_state(vreg->rdev,
PM8XXX_REGULATOR_ACTION_INIT);
platform_set_drvdata(pdev, core_data);
bail:
if (rc)
pr_err("error for %s, rc=%d\n", vreg->rdesc.name, rc);
return rc;
}
static int __devexit pm8xxx_vreg_remove(struct platform_device *pdev)
{
struct pm8xxx_regulator_core_platform_data *core_data;
core_data = platform_get_drvdata(pdev);
platform_set_drvdata(pdev, NULL);
if (core_data) {
if (core_data->is_pin_controlled)
regulator_unregister(core_data->vreg->rdev_pc);
else
regulator_unregister(core_data->vreg->rdev);
}
return 0;
}
static struct platform_driver pm8xxx_vreg_driver = {
.probe = pm8xxx_vreg_probe,
.remove = __devexit_p(pm8xxx_vreg_remove),
.driver = {
.name = PM8XXX_REGULATOR_DEV_NAME,
.owner = THIS_MODULE,
},
};
static int __init pm8xxx_vreg_init(void)
{
return platform_driver_register(&pm8xxx_vreg_driver);
}
postcore_initcall(pm8xxx_vreg_init);
static void __exit pm8xxx_vreg_exit(void)
{
platform_driver_unregister(&pm8xxx_vreg_driver);
}
module_exit(pm8xxx_vreg_exit);
MODULE_LICENSE("GPL v2");
MODULE_DESCRIPTION("PMIC PM8XXX regulator driver");
MODULE_VERSION("1.0");
MODULE_ALIAS("platform:" PM8XXX_REGULATOR_DEV_NAME);