android_kernel_google_msm/arch/sh/kernel/process.c
Paul Mundt f413d0d9fa sh: Use a jump call table for debug trap handlers.
This rips out most of the needlessly complicated sh_bios and kgdb
trap handling, and forces it all through a common fast dispatch path.
As more debug traps are inserted, it's important to keep them in sync
for all of the parts, not just SH-3/4.

As the SH-2 parts are unable to do traps in the >= 0x40 range, we
restrict the debug traps to the 0x30-0x3f range on all parts, and
also bump the kgdb breakpoint trap down in to this range (from 0xff
to 0x3c) so it's possible to use for nommu.

Optionally, this table can be padded out to catch spurious traps for
SH-3/4, but we don't do that yet..

Signed-off-by: Paul Mundt <lethal@linux-sh.org>
2007-02-13 10:54:43 +09:00

532 lines
12 KiB
C

/* $Id: process.c,v 1.28 2004/05/05 16:54:23 lethal Exp $
*
* linux/arch/sh/kernel/process.c
*
* Copyright (C) 1995 Linus Torvalds
*
* SuperH version: Copyright (C) 1999, 2000 Niibe Yutaka & Kaz Kojima
* Copyright (C) 2006 Lineo Solutions Inc. support SH4A UBC
*/
/*
* This file handles the architecture-dependent parts of process handling..
*/
#include <linux/module.h>
#include <linux/unistd.h>
#include <linux/mm.h>
#include <linux/elfcore.h>
#include <linux/a.out.h>
#include <linux/slab.h>
#include <linux/pm.h>
#include <linux/ptrace.h>
#include <linux/kallsyms.h>
#include <linux/kexec.h>
#include <asm/io.h>
#include <asm/uaccess.h>
#include <asm/mmu_context.h>
#include <asm/elf.h>
#include <asm/ubc.h>
static int hlt_counter=0;
int ubc_usercnt = 0;
#define HARD_IDLE_TIMEOUT (HZ / 3)
void (*pm_idle)(void);
void (*pm_power_off)(void);
EXPORT_SYMBOL(pm_power_off);
void disable_hlt(void)
{
hlt_counter++;
}
EXPORT_SYMBOL(disable_hlt);
void enable_hlt(void)
{
hlt_counter--;
}
EXPORT_SYMBOL(enable_hlt);
void default_idle(void)
{
if (!hlt_counter)
cpu_sleep();
else
cpu_relax();
}
void cpu_idle(void)
{
/* endless idle loop with no priority at all */
while (1) {
void (*idle)(void) = pm_idle;
if (!idle)
idle = default_idle;
while (!need_resched())
idle();
preempt_enable_no_resched();
schedule();
preempt_disable();
}
}
void machine_restart(char * __unused)
{
/* SR.BL=1 and invoke address error to let CPU reset (manual reset) */
asm volatile("ldc %0, sr\n\t"
"mov.l @%1, %0" : : "r" (0x10000000), "r" (0x80000001));
}
void machine_halt(void)
{
local_irq_disable();
while (1)
cpu_sleep();
}
void machine_power_off(void)
{
if (pm_power_off)
pm_power_off();
}
void show_regs(struct pt_regs * regs)
{
printk("\n");
printk("Pid : %d, Comm: %20s\n", current->pid, current->comm);
print_symbol("PC is at %s\n", instruction_pointer(regs));
printk("PC : %08lx SP : %08lx SR : %08lx ",
regs->pc, regs->regs[15], regs->sr);
#ifdef CONFIG_MMU
printk("TEA : %08x ", ctrl_inl(MMU_TEA));
#else
printk(" ");
#endif
printk("%s\n", print_tainted());
printk("R0 : %08lx R1 : %08lx R2 : %08lx R3 : %08lx\n",
regs->regs[0],regs->regs[1],
regs->regs[2],regs->regs[3]);
printk("R4 : %08lx R5 : %08lx R6 : %08lx R7 : %08lx\n",
regs->regs[4],regs->regs[5],
regs->regs[6],regs->regs[7]);
printk("R8 : %08lx R9 : %08lx R10 : %08lx R11 : %08lx\n",
regs->regs[8],regs->regs[9],
regs->regs[10],regs->regs[11]);
printk("R12 : %08lx R13 : %08lx R14 : %08lx\n",
regs->regs[12],regs->regs[13],
regs->regs[14]);
printk("MACH: %08lx MACL: %08lx GBR : %08lx PR : %08lx\n",
regs->mach, regs->macl, regs->gbr, regs->pr);
show_trace(NULL, (unsigned long *)regs->regs[15], regs);
}
/*
* Create a kernel thread
*/
/*
* This is the mechanism for creating a new kernel thread.
*
*/
extern void kernel_thread_helper(void);
__asm__(".align 5\n"
"kernel_thread_helper:\n\t"
"jsr @r5\n\t"
" nop\n\t"
"mov.l 1f, r1\n\t"
"jsr @r1\n\t"
" mov r0, r4\n\t"
".align 2\n\t"
"1:.long do_exit");
int kernel_thread(int (*fn)(void *), void * arg, unsigned long flags)
{ /* Don't use this in BL=1(cli). Or else, CPU resets! */
struct pt_regs regs;
memset(&regs, 0, sizeof(regs));
regs.regs[4] = (unsigned long) arg;
regs.regs[5] = (unsigned long) fn;
regs.pc = (unsigned long) kernel_thread_helper;
regs.sr = (1 << 30);
/* Ok, create the new process.. */
return do_fork(flags | CLONE_VM | CLONE_UNTRACED, 0, &regs, 0, NULL, NULL);
}
/*
* Free current thread data structures etc..
*/
void exit_thread(void)
{
if (current->thread.ubc_pc) {
current->thread.ubc_pc = 0;
ubc_usercnt -= 1;
}
}
void flush_thread(void)
{
#if defined(CONFIG_SH_FPU)
struct task_struct *tsk = current;
/* Forget lazy FPU state */
clear_fpu(tsk, task_pt_regs(tsk));
clear_used_math();
#endif
}
void release_thread(struct task_struct *dead_task)
{
/* do nothing */
}
/* Fill in the fpu structure for a core dump.. */
int dump_fpu(struct pt_regs *regs, elf_fpregset_t *fpu)
{
int fpvalid = 0;
#if defined(CONFIG_SH_FPU)
struct task_struct *tsk = current;
fpvalid = !!tsk_used_math(tsk);
if (fpvalid) {
unlazy_fpu(tsk, regs);
memcpy(fpu, &tsk->thread.fpu.hard, sizeof(*fpu));
}
#endif
return fpvalid;
}
/*
* Capture the user space registers if the task is not running (in user space)
*/
int dump_task_regs(struct task_struct *tsk, elf_gregset_t *regs)
{
struct pt_regs ptregs;
ptregs = *task_pt_regs(tsk);
elf_core_copy_regs(regs, &ptregs);
return 1;
}
int
dump_task_fpu (struct task_struct *tsk, elf_fpregset_t *fpu)
{
int fpvalid = 0;
#if defined(CONFIG_SH_FPU)
fpvalid = !!tsk_used_math(tsk);
if (fpvalid) {
unlazy_fpu(tsk, task_pt_regs(tsk));
memcpy(fpu, &tsk->thread.fpu.hard, sizeof(*fpu));
}
#endif
return fpvalid;
}
asmlinkage void ret_from_fork(void);
int copy_thread(int nr, unsigned long clone_flags, unsigned long usp,
unsigned long unused,
struct task_struct *p, struct pt_regs *regs)
{
struct thread_info *ti = task_thread_info(p);
struct pt_regs *childregs;
#if defined(CONFIG_SH_FPU)
struct task_struct *tsk = current;
unlazy_fpu(tsk, regs);
p->thread.fpu = tsk->thread.fpu;
copy_to_stopped_child_used_math(p);
#endif
childregs = task_pt_regs(p);
*childregs = *regs;
if (user_mode(regs)) {
childregs->regs[15] = usp;
ti->addr_limit = USER_DS;
} else {
childregs->regs[15] = (unsigned long)task_stack_page(p) + THREAD_SIZE;
ti->addr_limit = KERNEL_DS;
}
if (clone_flags & CLONE_SETTLS) {
childregs->gbr = childregs->regs[0];
}
childregs->regs[0] = 0; /* Set return value for child */
p->thread.sp = (unsigned long) childregs;
p->thread.pc = (unsigned long) ret_from_fork;
p->thread.ubc_pc = 0;
return 0;
}
/* Tracing by user break controller. */
static void
ubc_set_tracing(int asid, unsigned long pc)
{
#if defined(CONFIG_CPU_SH4A)
unsigned long val;
val = (UBC_CBR_ID_INST | UBC_CBR_RW_READ | UBC_CBR_CE);
val |= (UBC_CBR_AIE | UBC_CBR_AIV_SET(asid));
ctrl_outl(val, UBC_CBR0);
ctrl_outl(pc, UBC_CAR0);
ctrl_outl(0x0, UBC_CAMR0);
ctrl_outl(0x0, UBC_CBCR);
val = (UBC_CRR_RES | UBC_CRR_PCB | UBC_CRR_BIE);
ctrl_outl(val, UBC_CRR0);
/* Read UBC register that we writed last. For chekking UBC Register changed */
val = ctrl_inl(UBC_CRR0);
#else /* CONFIG_CPU_SH4A */
ctrl_outl(pc, UBC_BARA);
#ifdef CONFIG_MMU
/* We don't have any ASID settings for the SH-2! */
if (cpu_data->type != CPU_SH7604)
ctrl_outb(asid, UBC_BASRA);
#endif
ctrl_outl(0, UBC_BAMRA);
if (cpu_data->type == CPU_SH7729 || cpu_data->type == CPU_SH7710) {
ctrl_outw(BBR_INST | BBR_READ | BBR_CPU, UBC_BBRA);
ctrl_outl(BRCR_PCBA | BRCR_PCTE, UBC_BRCR);
} else {
ctrl_outw(BBR_INST | BBR_READ, UBC_BBRA);
ctrl_outw(BRCR_PCBA, UBC_BRCR);
}
#endif /* CONFIG_CPU_SH4A */
}
/*
* switch_to(x,y) should switch tasks from x to y.
*
*/
struct task_struct *__switch_to(struct task_struct *prev, struct task_struct *next)
{
#if defined(CONFIG_SH_FPU)
unlazy_fpu(prev, task_pt_regs(prev));
#endif
#ifdef CONFIG_PREEMPT
{
unsigned long flags;
struct pt_regs *regs;
local_irq_save(flags);
regs = task_pt_regs(prev);
if (user_mode(regs) && regs->regs[15] >= 0xc0000000) {
int offset = (int)regs->regs[15];
/* Reset stack pointer: clear critical region mark */
regs->regs[15] = regs->regs[1];
if (regs->pc < regs->regs[0])
/* Go to rewind point */
regs->pc = regs->regs[0] + offset;
}
local_irq_restore(flags);
}
#endif
#ifdef CONFIG_MMU
/*
* Restore the kernel mode register
* k7 (r7_bank1)
*/
asm volatile("ldc %0, r7_bank"
: /* no output */
: "r" (task_thread_info(next)));
#endif
/* If no tasks are using the UBC, we're done */
if (ubc_usercnt == 0)
/* If no tasks are using the UBC, we're done */;
else if (next->thread.ubc_pc && next->mm) {
int asid = 0;
#ifdef CONFIG_MMU
asid |= next->mm->context.id & MMU_CONTEXT_ASID_MASK;
#endif
ubc_set_tracing(asid, next->thread.ubc_pc);
} else {
#if defined(CONFIG_CPU_SH4A)
ctrl_outl(UBC_CBR_INIT, UBC_CBR0);
ctrl_outl(UBC_CRR_INIT, UBC_CRR0);
#else
ctrl_outw(0, UBC_BBRA);
ctrl_outw(0, UBC_BBRB);
#endif
}
return prev;
}
asmlinkage int sys_fork(unsigned long r4, unsigned long r5,
unsigned long r6, unsigned long r7,
struct pt_regs __regs)
{
struct pt_regs *regs = RELOC_HIDE(&__regs, 0);
#ifdef CONFIG_MMU
return do_fork(SIGCHLD, regs->regs[15], regs, 0, NULL, NULL);
#else
/* fork almost works, enough to trick you into looking elsewhere :-( */
return -EINVAL;
#endif
}
asmlinkage int sys_clone(unsigned long clone_flags, unsigned long newsp,
unsigned long parent_tidptr,
unsigned long child_tidptr,
struct pt_regs __regs)
{
struct pt_regs *regs = RELOC_HIDE(&__regs, 0);
if (!newsp)
newsp = regs->regs[15];
return do_fork(clone_flags, newsp, regs, 0,
(int __user *)parent_tidptr, (int __user *)child_tidptr);
}
/*
* This is trivial, and on the face of it looks like it
* could equally well be done in user mode.
*
* Not so, for quite unobvious reasons - register pressure.
* In user mode vfork() cannot have a stack frame, and if
* done by calling the "clone()" system call directly, you
* do not have enough call-clobbered registers to hold all
* the information you need.
*/
asmlinkage int sys_vfork(unsigned long r4, unsigned long r5,
unsigned long r6, unsigned long r7,
struct pt_regs __regs)
{
struct pt_regs *regs = RELOC_HIDE(&__regs, 0);
return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs->regs[15], regs,
0, NULL, NULL);
}
/*
* sys_execve() executes a new program.
*/
asmlinkage int sys_execve(char *ufilename, char **uargv,
char **uenvp, unsigned long r7,
struct pt_regs __regs)
{
struct pt_regs *regs = RELOC_HIDE(&__regs, 0);
int error;
char *filename;
filename = getname((char __user *)ufilename);
error = PTR_ERR(filename);
if (IS_ERR(filename))
goto out;
error = do_execve(filename,
(char __user * __user *)uargv,
(char __user * __user *)uenvp,
regs);
if (error == 0) {
task_lock(current);
current->ptrace &= ~PT_DTRACE;
task_unlock(current);
}
putname(filename);
out:
return error;
}
unsigned long get_wchan(struct task_struct *p)
{
unsigned long schedule_frame;
unsigned long pc;
if (!p || p == current || p->state == TASK_RUNNING)
return 0;
/*
* The same comment as on the Alpha applies here, too ...
*/
pc = thread_saved_pc(p);
if (in_sched_functions(pc)) {
schedule_frame = (unsigned long)p->thread.sp;
return ((unsigned long *)schedule_frame)[21];
}
return pc;
}
asmlinkage void break_point_trap(void)
{
/* Clear tracing. */
#if defined(CONFIG_CPU_SH4A)
ctrl_outl(UBC_CBR_INIT, UBC_CBR0);
ctrl_outl(UBC_CRR_INIT, UBC_CRR0);
#else
ctrl_outw(0, UBC_BBRA);
ctrl_outw(0, UBC_BBRB);
#endif
current->thread.ubc_pc = 0;
ubc_usercnt -= 1;
force_sig(SIGTRAP, current);
}
/*
* Generic trap handler.
*/
asmlinkage void debug_trap_handler(unsigned long r4, unsigned long r5,
unsigned long r6, unsigned long r7,
struct pt_regs __regs)
{
struct pt_regs *regs = RELOC_HIDE(&__regs, 0);
/* Rewind */
regs->pc -= 2;
force_sig(SIGTRAP, current);
}
/*
* Special handler for BUG() traps.
*/
asmlinkage void bug_trap_handler(unsigned long r4, unsigned long r5,
unsigned long r6, unsigned long r7,
struct pt_regs __regs)
{
struct pt_regs *regs = RELOC_HIDE(&__regs, 0);
/* Rewind */
regs->pc -= 2;
#ifdef CONFIG_BUG
if (__kernel_text_address(instruction_pointer(regs))) {
u16 insn = *(u16 *)instruction_pointer(regs);
if (insn == TRAPA_BUG_OPCODE)
handle_BUG(regs);
}
#endif
force_sig(SIGTRAP, current);
}