mirror of
https://github.com/followmsi/android_kernel_google_msm.git
synced 2024-11-06 23:17:41 +00:00
606686eeac
Al pointed out that we can just toss out the old name on a device and add a new one arbitrarily, so anybody who uses device->name in printk could possibly use free'd memory. Instead of adding locking around all of this he suggested doing it with RCU, so I've introduced a struct rcu_string that does just that and have gone through and protected all accesses to device->name that aren't under the uuid_mutex with rcu_read_lock(). This protects us and I will use it for dealing with removing the device that we used to mount the file system in a later patch. Thanks, Reviewed-by: David Sterba <dsterba@suse.cz> Signed-off-by: Josef Bacik <josef@redhat.com>
2479 lines
66 KiB
C
2479 lines
66 KiB
C
/*
|
|
* Copyright (C) 2011 STRATO. All rights reserved.
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public
|
|
* License v2 as published by the Free Software Foundation.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public
|
|
* License along with this program; if not, write to the
|
|
* Free Software Foundation, Inc., 59 Temple Place - Suite 330,
|
|
* Boston, MA 021110-1307, USA.
|
|
*/
|
|
|
|
#include <linux/blkdev.h>
|
|
#include <linux/ratelimit.h>
|
|
#include "ctree.h"
|
|
#include "volumes.h"
|
|
#include "disk-io.h"
|
|
#include "ordered-data.h"
|
|
#include "transaction.h"
|
|
#include "backref.h"
|
|
#include "extent_io.h"
|
|
#include "check-integrity.h"
|
|
#include "rcu-string.h"
|
|
|
|
/*
|
|
* This is only the first step towards a full-features scrub. It reads all
|
|
* extent and super block and verifies the checksums. In case a bad checksum
|
|
* is found or the extent cannot be read, good data will be written back if
|
|
* any can be found.
|
|
*
|
|
* Future enhancements:
|
|
* - In case an unrepairable extent is encountered, track which files are
|
|
* affected and report them
|
|
* - track and record media errors, throw out bad devices
|
|
* - add a mode to also read unallocated space
|
|
*/
|
|
|
|
struct scrub_block;
|
|
struct scrub_dev;
|
|
|
|
#define SCRUB_PAGES_PER_BIO 16 /* 64k per bio */
|
|
#define SCRUB_BIOS_PER_DEV 16 /* 1 MB per device in flight */
|
|
#define SCRUB_MAX_PAGES_PER_BLOCK 16 /* 64k per node/leaf/sector */
|
|
|
|
struct scrub_page {
|
|
struct scrub_block *sblock;
|
|
struct page *page;
|
|
struct btrfs_device *dev;
|
|
u64 flags; /* extent flags */
|
|
u64 generation;
|
|
u64 logical;
|
|
u64 physical;
|
|
struct {
|
|
unsigned int mirror_num:8;
|
|
unsigned int have_csum:1;
|
|
unsigned int io_error:1;
|
|
};
|
|
u8 csum[BTRFS_CSUM_SIZE];
|
|
};
|
|
|
|
struct scrub_bio {
|
|
int index;
|
|
struct scrub_dev *sdev;
|
|
struct bio *bio;
|
|
int err;
|
|
u64 logical;
|
|
u64 physical;
|
|
struct scrub_page *pagev[SCRUB_PAGES_PER_BIO];
|
|
int page_count;
|
|
int next_free;
|
|
struct btrfs_work work;
|
|
};
|
|
|
|
struct scrub_block {
|
|
struct scrub_page pagev[SCRUB_MAX_PAGES_PER_BLOCK];
|
|
int page_count;
|
|
atomic_t outstanding_pages;
|
|
atomic_t ref_count; /* free mem on transition to zero */
|
|
struct scrub_dev *sdev;
|
|
struct {
|
|
unsigned int header_error:1;
|
|
unsigned int checksum_error:1;
|
|
unsigned int no_io_error_seen:1;
|
|
unsigned int generation_error:1; /* also sets header_error */
|
|
};
|
|
};
|
|
|
|
struct scrub_dev {
|
|
struct scrub_bio *bios[SCRUB_BIOS_PER_DEV];
|
|
struct btrfs_device *dev;
|
|
int first_free;
|
|
int curr;
|
|
atomic_t in_flight;
|
|
atomic_t fixup_cnt;
|
|
spinlock_t list_lock;
|
|
wait_queue_head_t list_wait;
|
|
u16 csum_size;
|
|
struct list_head csum_list;
|
|
atomic_t cancel_req;
|
|
int readonly;
|
|
int pages_per_bio; /* <= SCRUB_PAGES_PER_BIO */
|
|
u32 sectorsize;
|
|
u32 nodesize;
|
|
u32 leafsize;
|
|
/*
|
|
* statistics
|
|
*/
|
|
struct btrfs_scrub_progress stat;
|
|
spinlock_t stat_lock;
|
|
};
|
|
|
|
struct scrub_fixup_nodatasum {
|
|
struct scrub_dev *sdev;
|
|
u64 logical;
|
|
struct btrfs_root *root;
|
|
struct btrfs_work work;
|
|
int mirror_num;
|
|
};
|
|
|
|
struct scrub_warning {
|
|
struct btrfs_path *path;
|
|
u64 extent_item_size;
|
|
char *scratch_buf;
|
|
char *msg_buf;
|
|
const char *errstr;
|
|
sector_t sector;
|
|
u64 logical;
|
|
struct btrfs_device *dev;
|
|
int msg_bufsize;
|
|
int scratch_bufsize;
|
|
};
|
|
|
|
|
|
static int scrub_handle_errored_block(struct scrub_block *sblock_to_check);
|
|
static int scrub_setup_recheck_block(struct scrub_dev *sdev,
|
|
struct btrfs_mapping_tree *map_tree,
|
|
u64 length, u64 logical,
|
|
struct scrub_block *sblock);
|
|
static int scrub_recheck_block(struct btrfs_fs_info *fs_info,
|
|
struct scrub_block *sblock, int is_metadata,
|
|
int have_csum, u8 *csum, u64 generation,
|
|
u16 csum_size);
|
|
static void scrub_recheck_block_checksum(struct btrfs_fs_info *fs_info,
|
|
struct scrub_block *sblock,
|
|
int is_metadata, int have_csum,
|
|
const u8 *csum, u64 generation,
|
|
u16 csum_size);
|
|
static void scrub_complete_bio_end_io(struct bio *bio, int err);
|
|
static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
|
|
struct scrub_block *sblock_good,
|
|
int force_write);
|
|
static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
|
|
struct scrub_block *sblock_good,
|
|
int page_num, int force_write);
|
|
static int scrub_checksum_data(struct scrub_block *sblock);
|
|
static int scrub_checksum_tree_block(struct scrub_block *sblock);
|
|
static int scrub_checksum_super(struct scrub_block *sblock);
|
|
static void scrub_block_get(struct scrub_block *sblock);
|
|
static void scrub_block_put(struct scrub_block *sblock);
|
|
static int scrub_add_page_to_bio(struct scrub_dev *sdev,
|
|
struct scrub_page *spage);
|
|
static int scrub_pages(struct scrub_dev *sdev, u64 logical, u64 len,
|
|
u64 physical, u64 flags, u64 gen, int mirror_num,
|
|
u8 *csum, int force);
|
|
static void scrub_bio_end_io(struct bio *bio, int err);
|
|
static void scrub_bio_end_io_worker(struct btrfs_work *work);
|
|
static void scrub_block_complete(struct scrub_block *sblock);
|
|
|
|
|
|
static void scrub_free_csums(struct scrub_dev *sdev)
|
|
{
|
|
while (!list_empty(&sdev->csum_list)) {
|
|
struct btrfs_ordered_sum *sum;
|
|
sum = list_first_entry(&sdev->csum_list,
|
|
struct btrfs_ordered_sum, list);
|
|
list_del(&sum->list);
|
|
kfree(sum);
|
|
}
|
|
}
|
|
|
|
static noinline_for_stack void scrub_free_dev(struct scrub_dev *sdev)
|
|
{
|
|
int i;
|
|
|
|
if (!sdev)
|
|
return;
|
|
|
|
/* this can happen when scrub is cancelled */
|
|
if (sdev->curr != -1) {
|
|
struct scrub_bio *sbio = sdev->bios[sdev->curr];
|
|
|
|
for (i = 0; i < sbio->page_count; i++) {
|
|
BUG_ON(!sbio->pagev[i]);
|
|
BUG_ON(!sbio->pagev[i]->page);
|
|
scrub_block_put(sbio->pagev[i]->sblock);
|
|
}
|
|
bio_put(sbio->bio);
|
|
}
|
|
|
|
for (i = 0; i < SCRUB_BIOS_PER_DEV; ++i) {
|
|
struct scrub_bio *sbio = sdev->bios[i];
|
|
|
|
if (!sbio)
|
|
break;
|
|
kfree(sbio);
|
|
}
|
|
|
|
scrub_free_csums(sdev);
|
|
kfree(sdev);
|
|
}
|
|
|
|
static noinline_for_stack
|
|
struct scrub_dev *scrub_setup_dev(struct btrfs_device *dev)
|
|
{
|
|
struct scrub_dev *sdev;
|
|
int i;
|
|
struct btrfs_fs_info *fs_info = dev->dev_root->fs_info;
|
|
int pages_per_bio;
|
|
|
|
pages_per_bio = min_t(int, SCRUB_PAGES_PER_BIO,
|
|
bio_get_nr_vecs(dev->bdev));
|
|
sdev = kzalloc(sizeof(*sdev), GFP_NOFS);
|
|
if (!sdev)
|
|
goto nomem;
|
|
sdev->dev = dev;
|
|
sdev->pages_per_bio = pages_per_bio;
|
|
sdev->curr = -1;
|
|
for (i = 0; i < SCRUB_BIOS_PER_DEV; ++i) {
|
|
struct scrub_bio *sbio;
|
|
|
|
sbio = kzalloc(sizeof(*sbio), GFP_NOFS);
|
|
if (!sbio)
|
|
goto nomem;
|
|
sdev->bios[i] = sbio;
|
|
|
|
sbio->index = i;
|
|
sbio->sdev = sdev;
|
|
sbio->page_count = 0;
|
|
sbio->work.func = scrub_bio_end_io_worker;
|
|
|
|
if (i != SCRUB_BIOS_PER_DEV-1)
|
|
sdev->bios[i]->next_free = i + 1;
|
|
else
|
|
sdev->bios[i]->next_free = -1;
|
|
}
|
|
sdev->first_free = 0;
|
|
sdev->nodesize = dev->dev_root->nodesize;
|
|
sdev->leafsize = dev->dev_root->leafsize;
|
|
sdev->sectorsize = dev->dev_root->sectorsize;
|
|
atomic_set(&sdev->in_flight, 0);
|
|
atomic_set(&sdev->fixup_cnt, 0);
|
|
atomic_set(&sdev->cancel_req, 0);
|
|
sdev->csum_size = btrfs_super_csum_size(fs_info->super_copy);
|
|
INIT_LIST_HEAD(&sdev->csum_list);
|
|
|
|
spin_lock_init(&sdev->list_lock);
|
|
spin_lock_init(&sdev->stat_lock);
|
|
init_waitqueue_head(&sdev->list_wait);
|
|
return sdev;
|
|
|
|
nomem:
|
|
scrub_free_dev(sdev);
|
|
return ERR_PTR(-ENOMEM);
|
|
}
|
|
|
|
static int scrub_print_warning_inode(u64 inum, u64 offset, u64 root, void *ctx)
|
|
{
|
|
u64 isize;
|
|
u32 nlink;
|
|
int ret;
|
|
int i;
|
|
struct extent_buffer *eb;
|
|
struct btrfs_inode_item *inode_item;
|
|
struct scrub_warning *swarn = ctx;
|
|
struct btrfs_fs_info *fs_info = swarn->dev->dev_root->fs_info;
|
|
struct inode_fs_paths *ipath = NULL;
|
|
struct btrfs_root *local_root;
|
|
struct btrfs_key root_key;
|
|
|
|
root_key.objectid = root;
|
|
root_key.type = BTRFS_ROOT_ITEM_KEY;
|
|
root_key.offset = (u64)-1;
|
|
local_root = btrfs_read_fs_root_no_name(fs_info, &root_key);
|
|
if (IS_ERR(local_root)) {
|
|
ret = PTR_ERR(local_root);
|
|
goto err;
|
|
}
|
|
|
|
ret = inode_item_info(inum, 0, local_root, swarn->path);
|
|
if (ret) {
|
|
btrfs_release_path(swarn->path);
|
|
goto err;
|
|
}
|
|
|
|
eb = swarn->path->nodes[0];
|
|
inode_item = btrfs_item_ptr(eb, swarn->path->slots[0],
|
|
struct btrfs_inode_item);
|
|
isize = btrfs_inode_size(eb, inode_item);
|
|
nlink = btrfs_inode_nlink(eb, inode_item);
|
|
btrfs_release_path(swarn->path);
|
|
|
|
ipath = init_ipath(4096, local_root, swarn->path);
|
|
if (IS_ERR(ipath)) {
|
|
ret = PTR_ERR(ipath);
|
|
ipath = NULL;
|
|
goto err;
|
|
}
|
|
ret = paths_from_inode(inum, ipath);
|
|
|
|
if (ret < 0)
|
|
goto err;
|
|
|
|
/*
|
|
* we deliberately ignore the bit ipath might have been too small to
|
|
* hold all of the paths here
|
|
*/
|
|
for (i = 0; i < ipath->fspath->elem_cnt; ++i)
|
|
printk_in_rcu(KERN_WARNING "btrfs: %s at logical %llu on dev "
|
|
"%s, sector %llu, root %llu, inode %llu, offset %llu, "
|
|
"length %llu, links %u (path: %s)\n", swarn->errstr,
|
|
swarn->logical, rcu_str_deref(swarn->dev->name),
|
|
(unsigned long long)swarn->sector, root, inum, offset,
|
|
min(isize - offset, (u64)PAGE_SIZE), nlink,
|
|
(char *)(unsigned long)ipath->fspath->val[i]);
|
|
|
|
free_ipath(ipath);
|
|
return 0;
|
|
|
|
err:
|
|
printk_in_rcu(KERN_WARNING "btrfs: %s at logical %llu on dev "
|
|
"%s, sector %llu, root %llu, inode %llu, offset %llu: path "
|
|
"resolving failed with ret=%d\n", swarn->errstr,
|
|
swarn->logical, rcu_str_deref(swarn->dev->name),
|
|
(unsigned long long)swarn->sector, root, inum, offset, ret);
|
|
|
|
free_ipath(ipath);
|
|
return 0;
|
|
}
|
|
|
|
static void scrub_print_warning(const char *errstr, struct scrub_block *sblock)
|
|
{
|
|
struct btrfs_device *dev = sblock->sdev->dev;
|
|
struct btrfs_fs_info *fs_info = dev->dev_root->fs_info;
|
|
struct btrfs_path *path;
|
|
struct btrfs_key found_key;
|
|
struct extent_buffer *eb;
|
|
struct btrfs_extent_item *ei;
|
|
struct scrub_warning swarn;
|
|
u32 item_size;
|
|
int ret;
|
|
u64 ref_root;
|
|
u8 ref_level;
|
|
unsigned long ptr = 0;
|
|
const int bufsize = 4096;
|
|
u64 extent_item_pos;
|
|
|
|
path = btrfs_alloc_path();
|
|
|
|
swarn.scratch_buf = kmalloc(bufsize, GFP_NOFS);
|
|
swarn.msg_buf = kmalloc(bufsize, GFP_NOFS);
|
|
BUG_ON(sblock->page_count < 1);
|
|
swarn.sector = (sblock->pagev[0].physical) >> 9;
|
|
swarn.logical = sblock->pagev[0].logical;
|
|
swarn.errstr = errstr;
|
|
swarn.dev = dev;
|
|
swarn.msg_bufsize = bufsize;
|
|
swarn.scratch_bufsize = bufsize;
|
|
|
|
if (!path || !swarn.scratch_buf || !swarn.msg_buf)
|
|
goto out;
|
|
|
|
ret = extent_from_logical(fs_info, swarn.logical, path, &found_key);
|
|
if (ret < 0)
|
|
goto out;
|
|
|
|
extent_item_pos = swarn.logical - found_key.objectid;
|
|
swarn.extent_item_size = found_key.offset;
|
|
|
|
eb = path->nodes[0];
|
|
ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
|
|
item_size = btrfs_item_size_nr(eb, path->slots[0]);
|
|
btrfs_release_path(path);
|
|
|
|
if (ret & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
|
|
do {
|
|
ret = tree_backref_for_extent(&ptr, eb, ei, item_size,
|
|
&ref_root, &ref_level);
|
|
printk_in_rcu(KERN_WARNING
|
|
"btrfs: %s at logical %llu on dev %s, "
|
|
"sector %llu: metadata %s (level %d) in tree "
|
|
"%llu\n", errstr, swarn.logical,
|
|
rcu_str_deref(dev->name),
|
|
(unsigned long long)swarn.sector,
|
|
ref_level ? "node" : "leaf",
|
|
ret < 0 ? -1 : ref_level,
|
|
ret < 0 ? -1 : ref_root);
|
|
} while (ret != 1);
|
|
} else {
|
|
swarn.path = path;
|
|
iterate_extent_inodes(fs_info, found_key.objectid,
|
|
extent_item_pos, 1,
|
|
scrub_print_warning_inode, &swarn);
|
|
}
|
|
|
|
out:
|
|
btrfs_free_path(path);
|
|
kfree(swarn.scratch_buf);
|
|
kfree(swarn.msg_buf);
|
|
}
|
|
|
|
static int scrub_fixup_readpage(u64 inum, u64 offset, u64 root, void *ctx)
|
|
{
|
|
struct page *page = NULL;
|
|
unsigned long index;
|
|
struct scrub_fixup_nodatasum *fixup = ctx;
|
|
int ret;
|
|
int corrected = 0;
|
|
struct btrfs_key key;
|
|
struct inode *inode = NULL;
|
|
u64 end = offset + PAGE_SIZE - 1;
|
|
struct btrfs_root *local_root;
|
|
|
|
key.objectid = root;
|
|
key.type = BTRFS_ROOT_ITEM_KEY;
|
|
key.offset = (u64)-1;
|
|
local_root = btrfs_read_fs_root_no_name(fixup->root->fs_info, &key);
|
|
if (IS_ERR(local_root))
|
|
return PTR_ERR(local_root);
|
|
|
|
key.type = BTRFS_INODE_ITEM_KEY;
|
|
key.objectid = inum;
|
|
key.offset = 0;
|
|
inode = btrfs_iget(fixup->root->fs_info->sb, &key, local_root, NULL);
|
|
if (IS_ERR(inode))
|
|
return PTR_ERR(inode);
|
|
|
|
index = offset >> PAGE_CACHE_SHIFT;
|
|
|
|
page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
|
|
if (!page) {
|
|
ret = -ENOMEM;
|
|
goto out;
|
|
}
|
|
|
|
if (PageUptodate(page)) {
|
|
struct btrfs_mapping_tree *map_tree;
|
|
if (PageDirty(page)) {
|
|
/*
|
|
* we need to write the data to the defect sector. the
|
|
* data that was in that sector is not in memory,
|
|
* because the page was modified. we must not write the
|
|
* modified page to that sector.
|
|
*
|
|
* TODO: what could be done here: wait for the delalloc
|
|
* runner to write out that page (might involve
|
|
* COW) and see whether the sector is still
|
|
* referenced afterwards.
|
|
*
|
|
* For the meantime, we'll treat this error
|
|
* incorrectable, although there is a chance that a
|
|
* later scrub will find the bad sector again and that
|
|
* there's no dirty page in memory, then.
|
|
*/
|
|
ret = -EIO;
|
|
goto out;
|
|
}
|
|
map_tree = &BTRFS_I(inode)->root->fs_info->mapping_tree;
|
|
ret = repair_io_failure(map_tree, offset, PAGE_SIZE,
|
|
fixup->logical, page,
|
|
fixup->mirror_num);
|
|
unlock_page(page);
|
|
corrected = !ret;
|
|
} else {
|
|
/*
|
|
* we need to get good data first. the general readpage path
|
|
* will call repair_io_failure for us, we just have to make
|
|
* sure we read the bad mirror.
|
|
*/
|
|
ret = set_extent_bits(&BTRFS_I(inode)->io_tree, offset, end,
|
|
EXTENT_DAMAGED, GFP_NOFS);
|
|
if (ret) {
|
|
/* set_extent_bits should give proper error */
|
|
WARN_ON(ret > 0);
|
|
if (ret > 0)
|
|
ret = -EFAULT;
|
|
goto out;
|
|
}
|
|
|
|
ret = extent_read_full_page(&BTRFS_I(inode)->io_tree, page,
|
|
btrfs_get_extent,
|
|
fixup->mirror_num);
|
|
wait_on_page_locked(page);
|
|
|
|
corrected = !test_range_bit(&BTRFS_I(inode)->io_tree, offset,
|
|
end, EXTENT_DAMAGED, 0, NULL);
|
|
if (!corrected)
|
|
clear_extent_bits(&BTRFS_I(inode)->io_tree, offset, end,
|
|
EXTENT_DAMAGED, GFP_NOFS);
|
|
}
|
|
|
|
out:
|
|
if (page)
|
|
put_page(page);
|
|
if (inode)
|
|
iput(inode);
|
|
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
if (ret == 0 && corrected) {
|
|
/*
|
|
* we only need to call readpage for one of the inodes belonging
|
|
* to this extent. so make iterate_extent_inodes stop
|
|
*/
|
|
return 1;
|
|
}
|
|
|
|
return -EIO;
|
|
}
|
|
|
|
static void scrub_fixup_nodatasum(struct btrfs_work *work)
|
|
{
|
|
int ret;
|
|
struct scrub_fixup_nodatasum *fixup;
|
|
struct scrub_dev *sdev;
|
|
struct btrfs_trans_handle *trans = NULL;
|
|
struct btrfs_fs_info *fs_info;
|
|
struct btrfs_path *path;
|
|
int uncorrectable = 0;
|
|
|
|
fixup = container_of(work, struct scrub_fixup_nodatasum, work);
|
|
sdev = fixup->sdev;
|
|
fs_info = fixup->root->fs_info;
|
|
|
|
path = btrfs_alloc_path();
|
|
if (!path) {
|
|
spin_lock(&sdev->stat_lock);
|
|
++sdev->stat.malloc_errors;
|
|
spin_unlock(&sdev->stat_lock);
|
|
uncorrectable = 1;
|
|
goto out;
|
|
}
|
|
|
|
trans = btrfs_join_transaction(fixup->root);
|
|
if (IS_ERR(trans)) {
|
|
uncorrectable = 1;
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* the idea is to trigger a regular read through the standard path. we
|
|
* read a page from the (failed) logical address by specifying the
|
|
* corresponding copynum of the failed sector. thus, that readpage is
|
|
* expected to fail.
|
|
* that is the point where on-the-fly error correction will kick in
|
|
* (once it's finished) and rewrite the failed sector if a good copy
|
|
* can be found.
|
|
*/
|
|
ret = iterate_inodes_from_logical(fixup->logical, fixup->root->fs_info,
|
|
path, scrub_fixup_readpage,
|
|
fixup);
|
|
if (ret < 0) {
|
|
uncorrectable = 1;
|
|
goto out;
|
|
}
|
|
WARN_ON(ret != 1);
|
|
|
|
spin_lock(&sdev->stat_lock);
|
|
++sdev->stat.corrected_errors;
|
|
spin_unlock(&sdev->stat_lock);
|
|
|
|
out:
|
|
if (trans && !IS_ERR(trans))
|
|
btrfs_end_transaction(trans, fixup->root);
|
|
if (uncorrectable) {
|
|
spin_lock(&sdev->stat_lock);
|
|
++sdev->stat.uncorrectable_errors;
|
|
spin_unlock(&sdev->stat_lock);
|
|
|
|
printk_ratelimited_in_rcu(KERN_ERR
|
|
"btrfs: unable to fixup (nodatasum) error at logical %llu on dev %s\n",
|
|
(unsigned long long)fixup->logical,
|
|
rcu_str_deref(sdev->dev->name));
|
|
}
|
|
|
|
btrfs_free_path(path);
|
|
kfree(fixup);
|
|
|
|
/* see caller why we're pretending to be paused in the scrub counters */
|
|
mutex_lock(&fs_info->scrub_lock);
|
|
atomic_dec(&fs_info->scrubs_running);
|
|
atomic_dec(&fs_info->scrubs_paused);
|
|
mutex_unlock(&fs_info->scrub_lock);
|
|
atomic_dec(&sdev->fixup_cnt);
|
|
wake_up(&fs_info->scrub_pause_wait);
|
|
wake_up(&sdev->list_wait);
|
|
}
|
|
|
|
/*
|
|
* scrub_handle_errored_block gets called when either verification of the
|
|
* pages failed or the bio failed to read, e.g. with EIO. In the latter
|
|
* case, this function handles all pages in the bio, even though only one
|
|
* may be bad.
|
|
* The goal of this function is to repair the errored block by using the
|
|
* contents of one of the mirrors.
|
|
*/
|
|
static int scrub_handle_errored_block(struct scrub_block *sblock_to_check)
|
|
{
|
|
struct scrub_dev *sdev = sblock_to_check->sdev;
|
|
struct btrfs_fs_info *fs_info;
|
|
u64 length;
|
|
u64 logical;
|
|
u64 generation;
|
|
unsigned int failed_mirror_index;
|
|
unsigned int is_metadata;
|
|
unsigned int have_csum;
|
|
u8 *csum;
|
|
struct scrub_block *sblocks_for_recheck; /* holds one for each mirror */
|
|
struct scrub_block *sblock_bad;
|
|
int ret;
|
|
int mirror_index;
|
|
int page_num;
|
|
int success;
|
|
static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL,
|
|
DEFAULT_RATELIMIT_BURST);
|
|
|
|
BUG_ON(sblock_to_check->page_count < 1);
|
|
fs_info = sdev->dev->dev_root->fs_info;
|
|
length = sblock_to_check->page_count * PAGE_SIZE;
|
|
logical = sblock_to_check->pagev[0].logical;
|
|
generation = sblock_to_check->pagev[0].generation;
|
|
BUG_ON(sblock_to_check->pagev[0].mirror_num < 1);
|
|
failed_mirror_index = sblock_to_check->pagev[0].mirror_num - 1;
|
|
is_metadata = !(sblock_to_check->pagev[0].flags &
|
|
BTRFS_EXTENT_FLAG_DATA);
|
|
have_csum = sblock_to_check->pagev[0].have_csum;
|
|
csum = sblock_to_check->pagev[0].csum;
|
|
|
|
/*
|
|
* read all mirrors one after the other. This includes to
|
|
* re-read the extent or metadata block that failed (that was
|
|
* the cause that this fixup code is called) another time,
|
|
* page by page this time in order to know which pages
|
|
* caused I/O errors and which ones are good (for all mirrors).
|
|
* It is the goal to handle the situation when more than one
|
|
* mirror contains I/O errors, but the errors do not
|
|
* overlap, i.e. the data can be repaired by selecting the
|
|
* pages from those mirrors without I/O error on the
|
|
* particular pages. One example (with blocks >= 2 * PAGE_SIZE)
|
|
* would be that mirror #1 has an I/O error on the first page,
|
|
* the second page is good, and mirror #2 has an I/O error on
|
|
* the second page, but the first page is good.
|
|
* Then the first page of the first mirror can be repaired by
|
|
* taking the first page of the second mirror, and the
|
|
* second page of the second mirror can be repaired by
|
|
* copying the contents of the 2nd page of the 1st mirror.
|
|
* One more note: if the pages of one mirror contain I/O
|
|
* errors, the checksum cannot be verified. In order to get
|
|
* the best data for repairing, the first attempt is to find
|
|
* a mirror without I/O errors and with a validated checksum.
|
|
* Only if this is not possible, the pages are picked from
|
|
* mirrors with I/O errors without considering the checksum.
|
|
* If the latter is the case, at the end, the checksum of the
|
|
* repaired area is verified in order to correctly maintain
|
|
* the statistics.
|
|
*/
|
|
|
|
sblocks_for_recheck = kzalloc(BTRFS_MAX_MIRRORS *
|
|
sizeof(*sblocks_for_recheck),
|
|
GFP_NOFS);
|
|
if (!sblocks_for_recheck) {
|
|
spin_lock(&sdev->stat_lock);
|
|
sdev->stat.malloc_errors++;
|
|
sdev->stat.read_errors++;
|
|
sdev->stat.uncorrectable_errors++;
|
|
spin_unlock(&sdev->stat_lock);
|
|
btrfs_dev_stat_inc_and_print(sdev->dev,
|
|
BTRFS_DEV_STAT_READ_ERRS);
|
|
goto out;
|
|
}
|
|
|
|
/* setup the context, map the logical blocks and alloc the pages */
|
|
ret = scrub_setup_recheck_block(sdev, &fs_info->mapping_tree, length,
|
|
logical, sblocks_for_recheck);
|
|
if (ret) {
|
|
spin_lock(&sdev->stat_lock);
|
|
sdev->stat.read_errors++;
|
|
sdev->stat.uncorrectable_errors++;
|
|
spin_unlock(&sdev->stat_lock);
|
|
btrfs_dev_stat_inc_and_print(sdev->dev,
|
|
BTRFS_DEV_STAT_READ_ERRS);
|
|
goto out;
|
|
}
|
|
BUG_ON(failed_mirror_index >= BTRFS_MAX_MIRRORS);
|
|
sblock_bad = sblocks_for_recheck + failed_mirror_index;
|
|
|
|
/* build and submit the bios for the failed mirror, check checksums */
|
|
ret = scrub_recheck_block(fs_info, sblock_bad, is_metadata, have_csum,
|
|
csum, generation, sdev->csum_size);
|
|
if (ret) {
|
|
spin_lock(&sdev->stat_lock);
|
|
sdev->stat.read_errors++;
|
|
sdev->stat.uncorrectable_errors++;
|
|
spin_unlock(&sdev->stat_lock);
|
|
btrfs_dev_stat_inc_and_print(sdev->dev,
|
|
BTRFS_DEV_STAT_READ_ERRS);
|
|
goto out;
|
|
}
|
|
|
|
if (!sblock_bad->header_error && !sblock_bad->checksum_error &&
|
|
sblock_bad->no_io_error_seen) {
|
|
/*
|
|
* the error disappeared after reading page by page, or
|
|
* the area was part of a huge bio and other parts of the
|
|
* bio caused I/O errors, or the block layer merged several
|
|
* read requests into one and the error is caused by a
|
|
* different bio (usually one of the two latter cases is
|
|
* the cause)
|
|
*/
|
|
spin_lock(&sdev->stat_lock);
|
|
sdev->stat.unverified_errors++;
|
|
spin_unlock(&sdev->stat_lock);
|
|
|
|
goto out;
|
|
}
|
|
|
|
if (!sblock_bad->no_io_error_seen) {
|
|
spin_lock(&sdev->stat_lock);
|
|
sdev->stat.read_errors++;
|
|
spin_unlock(&sdev->stat_lock);
|
|
if (__ratelimit(&_rs))
|
|
scrub_print_warning("i/o error", sblock_to_check);
|
|
btrfs_dev_stat_inc_and_print(sdev->dev,
|
|
BTRFS_DEV_STAT_READ_ERRS);
|
|
} else if (sblock_bad->checksum_error) {
|
|
spin_lock(&sdev->stat_lock);
|
|
sdev->stat.csum_errors++;
|
|
spin_unlock(&sdev->stat_lock);
|
|
if (__ratelimit(&_rs))
|
|
scrub_print_warning("checksum error", sblock_to_check);
|
|
btrfs_dev_stat_inc_and_print(sdev->dev,
|
|
BTRFS_DEV_STAT_CORRUPTION_ERRS);
|
|
} else if (sblock_bad->header_error) {
|
|
spin_lock(&sdev->stat_lock);
|
|
sdev->stat.verify_errors++;
|
|
spin_unlock(&sdev->stat_lock);
|
|
if (__ratelimit(&_rs))
|
|
scrub_print_warning("checksum/header error",
|
|
sblock_to_check);
|
|
if (sblock_bad->generation_error)
|
|
btrfs_dev_stat_inc_and_print(sdev->dev,
|
|
BTRFS_DEV_STAT_GENERATION_ERRS);
|
|
else
|
|
btrfs_dev_stat_inc_and_print(sdev->dev,
|
|
BTRFS_DEV_STAT_CORRUPTION_ERRS);
|
|
}
|
|
|
|
if (sdev->readonly)
|
|
goto did_not_correct_error;
|
|
|
|
if (!is_metadata && !have_csum) {
|
|
struct scrub_fixup_nodatasum *fixup_nodatasum;
|
|
|
|
/*
|
|
* !is_metadata and !have_csum, this means that the data
|
|
* might not be COW'ed, that it might be modified
|
|
* concurrently. The general strategy to work on the
|
|
* commit root does not help in the case when COW is not
|
|
* used.
|
|
*/
|
|
fixup_nodatasum = kzalloc(sizeof(*fixup_nodatasum), GFP_NOFS);
|
|
if (!fixup_nodatasum)
|
|
goto did_not_correct_error;
|
|
fixup_nodatasum->sdev = sdev;
|
|
fixup_nodatasum->logical = logical;
|
|
fixup_nodatasum->root = fs_info->extent_root;
|
|
fixup_nodatasum->mirror_num = failed_mirror_index + 1;
|
|
/*
|
|
* increment scrubs_running to prevent cancel requests from
|
|
* completing as long as a fixup worker is running. we must also
|
|
* increment scrubs_paused to prevent deadlocking on pause
|
|
* requests used for transactions commits (as the worker uses a
|
|
* transaction context). it is safe to regard the fixup worker
|
|
* as paused for all matters practical. effectively, we only
|
|
* avoid cancellation requests from completing.
|
|
*/
|
|
mutex_lock(&fs_info->scrub_lock);
|
|
atomic_inc(&fs_info->scrubs_running);
|
|
atomic_inc(&fs_info->scrubs_paused);
|
|
mutex_unlock(&fs_info->scrub_lock);
|
|
atomic_inc(&sdev->fixup_cnt);
|
|
fixup_nodatasum->work.func = scrub_fixup_nodatasum;
|
|
btrfs_queue_worker(&fs_info->scrub_workers,
|
|
&fixup_nodatasum->work);
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* now build and submit the bios for the other mirrors, check
|
|
* checksums
|
|
*/
|
|
for (mirror_index = 0;
|
|
mirror_index < BTRFS_MAX_MIRRORS &&
|
|
sblocks_for_recheck[mirror_index].page_count > 0;
|
|
mirror_index++) {
|
|
if (mirror_index == failed_mirror_index)
|
|
continue;
|
|
|
|
/* build and submit the bios, check checksums */
|
|
ret = scrub_recheck_block(fs_info,
|
|
sblocks_for_recheck + mirror_index,
|
|
is_metadata, have_csum, csum,
|
|
generation, sdev->csum_size);
|
|
if (ret)
|
|
goto did_not_correct_error;
|
|
}
|
|
|
|
/*
|
|
* first try to pick the mirror which is completely without I/O
|
|
* errors and also does not have a checksum error.
|
|
* If one is found, and if a checksum is present, the full block
|
|
* that is known to contain an error is rewritten. Afterwards
|
|
* the block is known to be corrected.
|
|
* If a mirror is found which is completely correct, and no
|
|
* checksum is present, only those pages are rewritten that had
|
|
* an I/O error in the block to be repaired, since it cannot be
|
|
* determined, which copy of the other pages is better (and it
|
|
* could happen otherwise that a correct page would be
|
|
* overwritten by a bad one).
|
|
*/
|
|
for (mirror_index = 0;
|
|
mirror_index < BTRFS_MAX_MIRRORS &&
|
|
sblocks_for_recheck[mirror_index].page_count > 0;
|
|
mirror_index++) {
|
|
struct scrub_block *sblock_other = sblocks_for_recheck +
|
|
mirror_index;
|
|
|
|
if (!sblock_other->header_error &&
|
|
!sblock_other->checksum_error &&
|
|
sblock_other->no_io_error_seen) {
|
|
int force_write = is_metadata || have_csum;
|
|
|
|
ret = scrub_repair_block_from_good_copy(sblock_bad,
|
|
sblock_other,
|
|
force_write);
|
|
if (0 == ret)
|
|
goto corrected_error;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* in case of I/O errors in the area that is supposed to be
|
|
* repaired, continue by picking good copies of those pages.
|
|
* Select the good pages from mirrors to rewrite bad pages from
|
|
* the area to fix. Afterwards verify the checksum of the block
|
|
* that is supposed to be repaired. This verification step is
|
|
* only done for the purpose of statistic counting and for the
|
|
* final scrub report, whether errors remain.
|
|
* A perfect algorithm could make use of the checksum and try
|
|
* all possible combinations of pages from the different mirrors
|
|
* until the checksum verification succeeds. For example, when
|
|
* the 2nd page of mirror #1 faces I/O errors, and the 2nd page
|
|
* of mirror #2 is readable but the final checksum test fails,
|
|
* then the 2nd page of mirror #3 could be tried, whether now
|
|
* the final checksum succeedes. But this would be a rare
|
|
* exception and is therefore not implemented. At least it is
|
|
* avoided that the good copy is overwritten.
|
|
* A more useful improvement would be to pick the sectors
|
|
* without I/O error based on sector sizes (512 bytes on legacy
|
|
* disks) instead of on PAGE_SIZE. Then maybe 512 byte of one
|
|
* mirror could be repaired by taking 512 byte of a different
|
|
* mirror, even if other 512 byte sectors in the same PAGE_SIZE
|
|
* area are unreadable.
|
|
*/
|
|
|
|
/* can only fix I/O errors from here on */
|
|
if (sblock_bad->no_io_error_seen)
|
|
goto did_not_correct_error;
|
|
|
|
success = 1;
|
|
for (page_num = 0; page_num < sblock_bad->page_count; page_num++) {
|
|
struct scrub_page *page_bad = sblock_bad->pagev + page_num;
|
|
|
|
if (!page_bad->io_error)
|
|
continue;
|
|
|
|
for (mirror_index = 0;
|
|
mirror_index < BTRFS_MAX_MIRRORS &&
|
|
sblocks_for_recheck[mirror_index].page_count > 0;
|
|
mirror_index++) {
|
|
struct scrub_block *sblock_other = sblocks_for_recheck +
|
|
mirror_index;
|
|
struct scrub_page *page_other = sblock_other->pagev +
|
|
page_num;
|
|
|
|
if (!page_other->io_error) {
|
|
ret = scrub_repair_page_from_good_copy(
|
|
sblock_bad, sblock_other, page_num, 0);
|
|
if (0 == ret) {
|
|
page_bad->io_error = 0;
|
|
break; /* succeeded for this page */
|
|
}
|
|
}
|
|
}
|
|
|
|
if (page_bad->io_error) {
|
|
/* did not find a mirror to copy the page from */
|
|
success = 0;
|
|
}
|
|
}
|
|
|
|
if (success) {
|
|
if (is_metadata || have_csum) {
|
|
/*
|
|
* need to verify the checksum now that all
|
|
* sectors on disk are repaired (the write
|
|
* request for data to be repaired is on its way).
|
|
* Just be lazy and use scrub_recheck_block()
|
|
* which re-reads the data before the checksum
|
|
* is verified, but most likely the data comes out
|
|
* of the page cache.
|
|
*/
|
|
ret = scrub_recheck_block(fs_info, sblock_bad,
|
|
is_metadata, have_csum, csum,
|
|
generation, sdev->csum_size);
|
|
if (!ret && !sblock_bad->header_error &&
|
|
!sblock_bad->checksum_error &&
|
|
sblock_bad->no_io_error_seen)
|
|
goto corrected_error;
|
|
else
|
|
goto did_not_correct_error;
|
|
} else {
|
|
corrected_error:
|
|
spin_lock(&sdev->stat_lock);
|
|
sdev->stat.corrected_errors++;
|
|
spin_unlock(&sdev->stat_lock);
|
|
printk_ratelimited_in_rcu(KERN_ERR
|
|
"btrfs: fixed up error at logical %llu on dev %s\n",
|
|
(unsigned long long)logical,
|
|
rcu_str_deref(sdev->dev->name));
|
|
}
|
|
} else {
|
|
did_not_correct_error:
|
|
spin_lock(&sdev->stat_lock);
|
|
sdev->stat.uncorrectable_errors++;
|
|
spin_unlock(&sdev->stat_lock);
|
|
printk_ratelimited_in_rcu(KERN_ERR
|
|
"btrfs: unable to fixup (regular) error at logical %llu on dev %s\n",
|
|
(unsigned long long)logical,
|
|
rcu_str_deref(sdev->dev->name));
|
|
}
|
|
|
|
out:
|
|
if (sblocks_for_recheck) {
|
|
for (mirror_index = 0; mirror_index < BTRFS_MAX_MIRRORS;
|
|
mirror_index++) {
|
|
struct scrub_block *sblock = sblocks_for_recheck +
|
|
mirror_index;
|
|
int page_index;
|
|
|
|
for (page_index = 0; page_index < SCRUB_PAGES_PER_BIO;
|
|
page_index++)
|
|
if (sblock->pagev[page_index].page)
|
|
__free_page(
|
|
sblock->pagev[page_index].page);
|
|
}
|
|
kfree(sblocks_for_recheck);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int scrub_setup_recheck_block(struct scrub_dev *sdev,
|
|
struct btrfs_mapping_tree *map_tree,
|
|
u64 length, u64 logical,
|
|
struct scrub_block *sblocks_for_recheck)
|
|
{
|
|
int page_index;
|
|
int mirror_index;
|
|
int ret;
|
|
|
|
/*
|
|
* note: the three members sdev, ref_count and outstanding_pages
|
|
* are not used (and not set) in the blocks that are used for
|
|
* the recheck procedure
|
|
*/
|
|
|
|
page_index = 0;
|
|
while (length > 0) {
|
|
u64 sublen = min_t(u64, length, PAGE_SIZE);
|
|
u64 mapped_length = sublen;
|
|
struct btrfs_bio *bbio = NULL;
|
|
|
|
/*
|
|
* with a length of PAGE_SIZE, each returned stripe
|
|
* represents one mirror
|
|
*/
|
|
ret = btrfs_map_block(map_tree, WRITE, logical, &mapped_length,
|
|
&bbio, 0);
|
|
if (ret || !bbio || mapped_length < sublen) {
|
|
kfree(bbio);
|
|
return -EIO;
|
|
}
|
|
|
|
BUG_ON(page_index >= SCRUB_PAGES_PER_BIO);
|
|
for (mirror_index = 0; mirror_index < (int)bbio->num_stripes;
|
|
mirror_index++) {
|
|
struct scrub_block *sblock;
|
|
struct scrub_page *page;
|
|
|
|
if (mirror_index >= BTRFS_MAX_MIRRORS)
|
|
continue;
|
|
|
|
sblock = sblocks_for_recheck + mirror_index;
|
|
page = sblock->pagev + page_index;
|
|
page->logical = logical;
|
|
page->physical = bbio->stripes[mirror_index].physical;
|
|
/* for missing devices, dev->bdev is NULL */
|
|
page->dev = bbio->stripes[mirror_index].dev;
|
|
page->mirror_num = mirror_index + 1;
|
|
page->page = alloc_page(GFP_NOFS);
|
|
if (!page->page) {
|
|
spin_lock(&sdev->stat_lock);
|
|
sdev->stat.malloc_errors++;
|
|
spin_unlock(&sdev->stat_lock);
|
|
return -ENOMEM;
|
|
}
|
|
sblock->page_count++;
|
|
}
|
|
kfree(bbio);
|
|
length -= sublen;
|
|
logical += sublen;
|
|
page_index++;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* this function will check the on disk data for checksum errors, header
|
|
* errors and read I/O errors. If any I/O errors happen, the exact pages
|
|
* which are errored are marked as being bad. The goal is to enable scrub
|
|
* to take those pages that are not errored from all the mirrors so that
|
|
* the pages that are errored in the just handled mirror can be repaired.
|
|
*/
|
|
static int scrub_recheck_block(struct btrfs_fs_info *fs_info,
|
|
struct scrub_block *sblock, int is_metadata,
|
|
int have_csum, u8 *csum, u64 generation,
|
|
u16 csum_size)
|
|
{
|
|
int page_num;
|
|
|
|
sblock->no_io_error_seen = 1;
|
|
sblock->header_error = 0;
|
|
sblock->checksum_error = 0;
|
|
|
|
for (page_num = 0; page_num < sblock->page_count; page_num++) {
|
|
struct bio *bio;
|
|
int ret;
|
|
struct scrub_page *page = sblock->pagev + page_num;
|
|
DECLARE_COMPLETION_ONSTACK(complete);
|
|
|
|
if (page->dev->bdev == NULL) {
|
|
page->io_error = 1;
|
|
sblock->no_io_error_seen = 0;
|
|
continue;
|
|
}
|
|
|
|
BUG_ON(!page->page);
|
|
bio = bio_alloc(GFP_NOFS, 1);
|
|
if (!bio)
|
|
return -EIO;
|
|
bio->bi_bdev = page->dev->bdev;
|
|
bio->bi_sector = page->physical >> 9;
|
|
bio->bi_end_io = scrub_complete_bio_end_io;
|
|
bio->bi_private = &complete;
|
|
|
|
ret = bio_add_page(bio, page->page, PAGE_SIZE, 0);
|
|
if (PAGE_SIZE != ret) {
|
|
bio_put(bio);
|
|
return -EIO;
|
|
}
|
|
btrfsic_submit_bio(READ, bio);
|
|
|
|
/* this will also unplug the queue */
|
|
wait_for_completion(&complete);
|
|
|
|
page->io_error = !test_bit(BIO_UPTODATE, &bio->bi_flags);
|
|
if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
|
|
sblock->no_io_error_seen = 0;
|
|
bio_put(bio);
|
|
}
|
|
|
|
if (sblock->no_io_error_seen)
|
|
scrub_recheck_block_checksum(fs_info, sblock, is_metadata,
|
|
have_csum, csum, generation,
|
|
csum_size);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void scrub_recheck_block_checksum(struct btrfs_fs_info *fs_info,
|
|
struct scrub_block *sblock,
|
|
int is_metadata, int have_csum,
|
|
const u8 *csum, u64 generation,
|
|
u16 csum_size)
|
|
{
|
|
int page_num;
|
|
u8 calculated_csum[BTRFS_CSUM_SIZE];
|
|
u32 crc = ~(u32)0;
|
|
struct btrfs_root *root = fs_info->extent_root;
|
|
void *mapped_buffer;
|
|
|
|
BUG_ON(!sblock->pagev[0].page);
|
|
if (is_metadata) {
|
|
struct btrfs_header *h;
|
|
|
|
mapped_buffer = kmap_atomic(sblock->pagev[0].page);
|
|
h = (struct btrfs_header *)mapped_buffer;
|
|
|
|
if (sblock->pagev[0].logical != le64_to_cpu(h->bytenr) ||
|
|
memcmp(h->fsid, fs_info->fsid, BTRFS_UUID_SIZE) ||
|
|
memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid,
|
|
BTRFS_UUID_SIZE)) {
|
|
sblock->header_error = 1;
|
|
} else if (generation != le64_to_cpu(h->generation)) {
|
|
sblock->header_error = 1;
|
|
sblock->generation_error = 1;
|
|
}
|
|
csum = h->csum;
|
|
} else {
|
|
if (!have_csum)
|
|
return;
|
|
|
|
mapped_buffer = kmap_atomic(sblock->pagev[0].page);
|
|
}
|
|
|
|
for (page_num = 0;;) {
|
|
if (page_num == 0 && is_metadata)
|
|
crc = btrfs_csum_data(root,
|
|
((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE,
|
|
crc, PAGE_SIZE - BTRFS_CSUM_SIZE);
|
|
else
|
|
crc = btrfs_csum_data(root, mapped_buffer, crc,
|
|
PAGE_SIZE);
|
|
|
|
kunmap_atomic(mapped_buffer);
|
|
page_num++;
|
|
if (page_num >= sblock->page_count)
|
|
break;
|
|
BUG_ON(!sblock->pagev[page_num].page);
|
|
|
|
mapped_buffer = kmap_atomic(sblock->pagev[page_num].page);
|
|
}
|
|
|
|
btrfs_csum_final(crc, calculated_csum);
|
|
if (memcmp(calculated_csum, csum, csum_size))
|
|
sblock->checksum_error = 1;
|
|
}
|
|
|
|
static void scrub_complete_bio_end_io(struct bio *bio, int err)
|
|
{
|
|
complete((struct completion *)bio->bi_private);
|
|
}
|
|
|
|
static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
|
|
struct scrub_block *sblock_good,
|
|
int force_write)
|
|
{
|
|
int page_num;
|
|
int ret = 0;
|
|
|
|
for (page_num = 0; page_num < sblock_bad->page_count; page_num++) {
|
|
int ret_sub;
|
|
|
|
ret_sub = scrub_repair_page_from_good_copy(sblock_bad,
|
|
sblock_good,
|
|
page_num,
|
|
force_write);
|
|
if (ret_sub)
|
|
ret = ret_sub;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
|
|
struct scrub_block *sblock_good,
|
|
int page_num, int force_write)
|
|
{
|
|
struct scrub_page *page_bad = sblock_bad->pagev + page_num;
|
|
struct scrub_page *page_good = sblock_good->pagev + page_num;
|
|
|
|
BUG_ON(sblock_bad->pagev[page_num].page == NULL);
|
|
BUG_ON(sblock_good->pagev[page_num].page == NULL);
|
|
if (force_write || sblock_bad->header_error ||
|
|
sblock_bad->checksum_error || page_bad->io_error) {
|
|
struct bio *bio;
|
|
int ret;
|
|
DECLARE_COMPLETION_ONSTACK(complete);
|
|
|
|
bio = bio_alloc(GFP_NOFS, 1);
|
|
if (!bio)
|
|
return -EIO;
|
|
bio->bi_bdev = page_bad->dev->bdev;
|
|
bio->bi_sector = page_bad->physical >> 9;
|
|
bio->bi_end_io = scrub_complete_bio_end_io;
|
|
bio->bi_private = &complete;
|
|
|
|
ret = bio_add_page(bio, page_good->page, PAGE_SIZE, 0);
|
|
if (PAGE_SIZE != ret) {
|
|
bio_put(bio);
|
|
return -EIO;
|
|
}
|
|
btrfsic_submit_bio(WRITE, bio);
|
|
|
|
/* this will also unplug the queue */
|
|
wait_for_completion(&complete);
|
|
if (!bio_flagged(bio, BIO_UPTODATE)) {
|
|
btrfs_dev_stat_inc_and_print(page_bad->dev,
|
|
BTRFS_DEV_STAT_WRITE_ERRS);
|
|
bio_put(bio);
|
|
return -EIO;
|
|
}
|
|
bio_put(bio);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void scrub_checksum(struct scrub_block *sblock)
|
|
{
|
|
u64 flags;
|
|
int ret;
|
|
|
|
BUG_ON(sblock->page_count < 1);
|
|
flags = sblock->pagev[0].flags;
|
|
ret = 0;
|
|
if (flags & BTRFS_EXTENT_FLAG_DATA)
|
|
ret = scrub_checksum_data(sblock);
|
|
else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
|
|
ret = scrub_checksum_tree_block(sblock);
|
|
else if (flags & BTRFS_EXTENT_FLAG_SUPER)
|
|
(void)scrub_checksum_super(sblock);
|
|
else
|
|
WARN_ON(1);
|
|
if (ret)
|
|
scrub_handle_errored_block(sblock);
|
|
}
|
|
|
|
static int scrub_checksum_data(struct scrub_block *sblock)
|
|
{
|
|
struct scrub_dev *sdev = sblock->sdev;
|
|
u8 csum[BTRFS_CSUM_SIZE];
|
|
u8 *on_disk_csum;
|
|
struct page *page;
|
|
void *buffer;
|
|
u32 crc = ~(u32)0;
|
|
int fail = 0;
|
|
struct btrfs_root *root = sdev->dev->dev_root;
|
|
u64 len;
|
|
int index;
|
|
|
|
BUG_ON(sblock->page_count < 1);
|
|
if (!sblock->pagev[0].have_csum)
|
|
return 0;
|
|
|
|
on_disk_csum = sblock->pagev[0].csum;
|
|
page = sblock->pagev[0].page;
|
|
buffer = kmap_atomic(page);
|
|
|
|
len = sdev->sectorsize;
|
|
index = 0;
|
|
for (;;) {
|
|
u64 l = min_t(u64, len, PAGE_SIZE);
|
|
|
|
crc = btrfs_csum_data(root, buffer, crc, l);
|
|
kunmap_atomic(buffer);
|
|
len -= l;
|
|
if (len == 0)
|
|
break;
|
|
index++;
|
|
BUG_ON(index >= sblock->page_count);
|
|
BUG_ON(!sblock->pagev[index].page);
|
|
page = sblock->pagev[index].page;
|
|
buffer = kmap_atomic(page);
|
|
}
|
|
|
|
btrfs_csum_final(crc, csum);
|
|
if (memcmp(csum, on_disk_csum, sdev->csum_size))
|
|
fail = 1;
|
|
|
|
return fail;
|
|
}
|
|
|
|
static int scrub_checksum_tree_block(struct scrub_block *sblock)
|
|
{
|
|
struct scrub_dev *sdev = sblock->sdev;
|
|
struct btrfs_header *h;
|
|
struct btrfs_root *root = sdev->dev->dev_root;
|
|
struct btrfs_fs_info *fs_info = root->fs_info;
|
|
u8 calculated_csum[BTRFS_CSUM_SIZE];
|
|
u8 on_disk_csum[BTRFS_CSUM_SIZE];
|
|
struct page *page;
|
|
void *mapped_buffer;
|
|
u64 mapped_size;
|
|
void *p;
|
|
u32 crc = ~(u32)0;
|
|
int fail = 0;
|
|
int crc_fail = 0;
|
|
u64 len;
|
|
int index;
|
|
|
|
BUG_ON(sblock->page_count < 1);
|
|
page = sblock->pagev[0].page;
|
|
mapped_buffer = kmap_atomic(page);
|
|
h = (struct btrfs_header *)mapped_buffer;
|
|
memcpy(on_disk_csum, h->csum, sdev->csum_size);
|
|
|
|
/*
|
|
* we don't use the getter functions here, as we
|
|
* a) don't have an extent buffer and
|
|
* b) the page is already kmapped
|
|
*/
|
|
|
|
if (sblock->pagev[0].logical != le64_to_cpu(h->bytenr))
|
|
++fail;
|
|
|
|
if (sblock->pagev[0].generation != le64_to_cpu(h->generation))
|
|
++fail;
|
|
|
|
if (memcmp(h->fsid, fs_info->fsid, BTRFS_UUID_SIZE))
|
|
++fail;
|
|
|
|
if (memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid,
|
|
BTRFS_UUID_SIZE))
|
|
++fail;
|
|
|
|
BUG_ON(sdev->nodesize != sdev->leafsize);
|
|
len = sdev->nodesize - BTRFS_CSUM_SIZE;
|
|
mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
|
|
p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
|
|
index = 0;
|
|
for (;;) {
|
|
u64 l = min_t(u64, len, mapped_size);
|
|
|
|
crc = btrfs_csum_data(root, p, crc, l);
|
|
kunmap_atomic(mapped_buffer);
|
|
len -= l;
|
|
if (len == 0)
|
|
break;
|
|
index++;
|
|
BUG_ON(index >= sblock->page_count);
|
|
BUG_ON(!sblock->pagev[index].page);
|
|
page = sblock->pagev[index].page;
|
|
mapped_buffer = kmap_atomic(page);
|
|
mapped_size = PAGE_SIZE;
|
|
p = mapped_buffer;
|
|
}
|
|
|
|
btrfs_csum_final(crc, calculated_csum);
|
|
if (memcmp(calculated_csum, on_disk_csum, sdev->csum_size))
|
|
++crc_fail;
|
|
|
|
return fail || crc_fail;
|
|
}
|
|
|
|
static int scrub_checksum_super(struct scrub_block *sblock)
|
|
{
|
|
struct btrfs_super_block *s;
|
|
struct scrub_dev *sdev = sblock->sdev;
|
|
struct btrfs_root *root = sdev->dev->dev_root;
|
|
struct btrfs_fs_info *fs_info = root->fs_info;
|
|
u8 calculated_csum[BTRFS_CSUM_SIZE];
|
|
u8 on_disk_csum[BTRFS_CSUM_SIZE];
|
|
struct page *page;
|
|
void *mapped_buffer;
|
|
u64 mapped_size;
|
|
void *p;
|
|
u32 crc = ~(u32)0;
|
|
int fail_gen = 0;
|
|
int fail_cor = 0;
|
|
u64 len;
|
|
int index;
|
|
|
|
BUG_ON(sblock->page_count < 1);
|
|
page = sblock->pagev[0].page;
|
|
mapped_buffer = kmap_atomic(page);
|
|
s = (struct btrfs_super_block *)mapped_buffer;
|
|
memcpy(on_disk_csum, s->csum, sdev->csum_size);
|
|
|
|
if (sblock->pagev[0].logical != le64_to_cpu(s->bytenr))
|
|
++fail_cor;
|
|
|
|
if (sblock->pagev[0].generation != le64_to_cpu(s->generation))
|
|
++fail_gen;
|
|
|
|
if (memcmp(s->fsid, fs_info->fsid, BTRFS_UUID_SIZE))
|
|
++fail_cor;
|
|
|
|
len = BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE;
|
|
mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
|
|
p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
|
|
index = 0;
|
|
for (;;) {
|
|
u64 l = min_t(u64, len, mapped_size);
|
|
|
|
crc = btrfs_csum_data(root, p, crc, l);
|
|
kunmap_atomic(mapped_buffer);
|
|
len -= l;
|
|
if (len == 0)
|
|
break;
|
|
index++;
|
|
BUG_ON(index >= sblock->page_count);
|
|
BUG_ON(!sblock->pagev[index].page);
|
|
page = sblock->pagev[index].page;
|
|
mapped_buffer = kmap_atomic(page);
|
|
mapped_size = PAGE_SIZE;
|
|
p = mapped_buffer;
|
|
}
|
|
|
|
btrfs_csum_final(crc, calculated_csum);
|
|
if (memcmp(calculated_csum, on_disk_csum, sdev->csum_size))
|
|
++fail_cor;
|
|
|
|
if (fail_cor + fail_gen) {
|
|
/*
|
|
* if we find an error in a super block, we just report it.
|
|
* They will get written with the next transaction commit
|
|
* anyway
|
|
*/
|
|
spin_lock(&sdev->stat_lock);
|
|
++sdev->stat.super_errors;
|
|
spin_unlock(&sdev->stat_lock);
|
|
if (fail_cor)
|
|
btrfs_dev_stat_inc_and_print(sdev->dev,
|
|
BTRFS_DEV_STAT_CORRUPTION_ERRS);
|
|
else
|
|
btrfs_dev_stat_inc_and_print(sdev->dev,
|
|
BTRFS_DEV_STAT_GENERATION_ERRS);
|
|
}
|
|
|
|
return fail_cor + fail_gen;
|
|
}
|
|
|
|
static void scrub_block_get(struct scrub_block *sblock)
|
|
{
|
|
atomic_inc(&sblock->ref_count);
|
|
}
|
|
|
|
static void scrub_block_put(struct scrub_block *sblock)
|
|
{
|
|
if (atomic_dec_and_test(&sblock->ref_count)) {
|
|
int i;
|
|
|
|
for (i = 0; i < sblock->page_count; i++)
|
|
if (sblock->pagev[i].page)
|
|
__free_page(sblock->pagev[i].page);
|
|
kfree(sblock);
|
|
}
|
|
}
|
|
|
|
static void scrub_submit(struct scrub_dev *sdev)
|
|
{
|
|
struct scrub_bio *sbio;
|
|
|
|
if (sdev->curr == -1)
|
|
return;
|
|
|
|
sbio = sdev->bios[sdev->curr];
|
|
sdev->curr = -1;
|
|
atomic_inc(&sdev->in_flight);
|
|
|
|
btrfsic_submit_bio(READ, sbio->bio);
|
|
}
|
|
|
|
static int scrub_add_page_to_bio(struct scrub_dev *sdev,
|
|
struct scrub_page *spage)
|
|
{
|
|
struct scrub_block *sblock = spage->sblock;
|
|
struct scrub_bio *sbio;
|
|
int ret;
|
|
|
|
again:
|
|
/*
|
|
* grab a fresh bio or wait for one to become available
|
|
*/
|
|
while (sdev->curr == -1) {
|
|
spin_lock(&sdev->list_lock);
|
|
sdev->curr = sdev->first_free;
|
|
if (sdev->curr != -1) {
|
|
sdev->first_free = sdev->bios[sdev->curr]->next_free;
|
|
sdev->bios[sdev->curr]->next_free = -1;
|
|
sdev->bios[sdev->curr]->page_count = 0;
|
|
spin_unlock(&sdev->list_lock);
|
|
} else {
|
|
spin_unlock(&sdev->list_lock);
|
|
wait_event(sdev->list_wait, sdev->first_free != -1);
|
|
}
|
|
}
|
|
sbio = sdev->bios[sdev->curr];
|
|
if (sbio->page_count == 0) {
|
|
struct bio *bio;
|
|
|
|
sbio->physical = spage->physical;
|
|
sbio->logical = spage->logical;
|
|
bio = sbio->bio;
|
|
if (!bio) {
|
|
bio = bio_alloc(GFP_NOFS, sdev->pages_per_bio);
|
|
if (!bio)
|
|
return -ENOMEM;
|
|
sbio->bio = bio;
|
|
}
|
|
|
|
bio->bi_private = sbio;
|
|
bio->bi_end_io = scrub_bio_end_io;
|
|
bio->bi_bdev = sdev->dev->bdev;
|
|
bio->bi_sector = spage->physical >> 9;
|
|
sbio->err = 0;
|
|
} else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
|
|
spage->physical ||
|
|
sbio->logical + sbio->page_count * PAGE_SIZE !=
|
|
spage->logical) {
|
|
scrub_submit(sdev);
|
|
goto again;
|
|
}
|
|
|
|
sbio->pagev[sbio->page_count] = spage;
|
|
ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
|
|
if (ret != PAGE_SIZE) {
|
|
if (sbio->page_count < 1) {
|
|
bio_put(sbio->bio);
|
|
sbio->bio = NULL;
|
|
return -EIO;
|
|
}
|
|
scrub_submit(sdev);
|
|
goto again;
|
|
}
|
|
|
|
scrub_block_get(sblock); /* one for the added page */
|
|
atomic_inc(&sblock->outstanding_pages);
|
|
sbio->page_count++;
|
|
if (sbio->page_count == sdev->pages_per_bio)
|
|
scrub_submit(sdev);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int scrub_pages(struct scrub_dev *sdev, u64 logical, u64 len,
|
|
u64 physical, u64 flags, u64 gen, int mirror_num,
|
|
u8 *csum, int force)
|
|
{
|
|
struct scrub_block *sblock;
|
|
int index;
|
|
|
|
sblock = kzalloc(sizeof(*sblock), GFP_NOFS);
|
|
if (!sblock) {
|
|
spin_lock(&sdev->stat_lock);
|
|
sdev->stat.malloc_errors++;
|
|
spin_unlock(&sdev->stat_lock);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
/* one ref inside this function, plus one for each page later on */
|
|
atomic_set(&sblock->ref_count, 1);
|
|
sblock->sdev = sdev;
|
|
sblock->no_io_error_seen = 1;
|
|
|
|
for (index = 0; len > 0; index++) {
|
|
struct scrub_page *spage = sblock->pagev + index;
|
|
u64 l = min_t(u64, len, PAGE_SIZE);
|
|
|
|
BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK);
|
|
spage->page = alloc_page(GFP_NOFS);
|
|
if (!spage->page) {
|
|
spin_lock(&sdev->stat_lock);
|
|
sdev->stat.malloc_errors++;
|
|
spin_unlock(&sdev->stat_lock);
|
|
while (index > 0) {
|
|
index--;
|
|
__free_page(sblock->pagev[index].page);
|
|
}
|
|
kfree(sblock);
|
|
return -ENOMEM;
|
|
}
|
|
spage->sblock = sblock;
|
|
spage->dev = sdev->dev;
|
|
spage->flags = flags;
|
|
spage->generation = gen;
|
|
spage->logical = logical;
|
|
spage->physical = physical;
|
|
spage->mirror_num = mirror_num;
|
|
if (csum) {
|
|
spage->have_csum = 1;
|
|
memcpy(spage->csum, csum, sdev->csum_size);
|
|
} else {
|
|
spage->have_csum = 0;
|
|
}
|
|
sblock->page_count++;
|
|
len -= l;
|
|
logical += l;
|
|
physical += l;
|
|
}
|
|
|
|
BUG_ON(sblock->page_count == 0);
|
|
for (index = 0; index < sblock->page_count; index++) {
|
|
struct scrub_page *spage = sblock->pagev + index;
|
|
int ret;
|
|
|
|
ret = scrub_add_page_to_bio(sdev, spage);
|
|
if (ret) {
|
|
scrub_block_put(sblock);
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
if (force)
|
|
scrub_submit(sdev);
|
|
|
|
/* last one frees, either here or in bio completion for last page */
|
|
scrub_block_put(sblock);
|
|
return 0;
|
|
}
|
|
|
|
static void scrub_bio_end_io(struct bio *bio, int err)
|
|
{
|
|
struct scrub_bio *sbio = bio->bi_private;
|
|
struct scrub_dev *sdev = sbio->sdev;
|
|
struct btrfs_fs_info *fs_info = sdev->dev->dev_root->fs_info;
|
|
|
|
sbio->err = err;
|
|
sbio->bio = bio;
|
|
|
|
btrfs_queue_worker(&fs_info->scrub_workers, &sbio->work);
|
|
}
|
|
|
|
static void scrub_bio_end_io_worker(struct btrfs_work *work)
|
|
{
|
|
struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
|
|
struct scrub_dev *sdev = sbio->sdev;
|
|
int i;
|
|
|
|
BUG_ON(sbio->page_count > SCRUB_PAGES_PER_BIO);
|
|
if (sbio->err) {
|
|
for (i = 0; i < sbio->page_count; i++) {
|
|
struct scrub_page *spage = sbio->pagev[i];
|
|
|
|
spage->io_error = 1;
|
|
spage->sblock->no_io_error_seen = 0;
|
|
}
|
|
}
|
|
|
|
/* now complete the scrub_block items that have all pages completed */
|
|
for (i = 0; i < sbio->page_count; i++) {
|
|
struct scrub_page *spage = sbio->pagev[i];
|
|
struct scrub_block *sblock = spage->sblock;
|
|
|
|
if (atomic_dec_and_test(&sblock->outstanding_pages))
|
|
scrub_block_complete(sblock);
|
|
scrub_block_put(sblock);
|
|
}
|
|
|
|
if (sbio->err) {
|
|
/* what is this good for??? */
|
|
sbio->bio->bi_flags &= ~(BIO_POOL_MASK - 1);
|
|
sbio->bio->bi_flags |= 1 << BIO_UPTODATE;
|
|
sbio->bio->bi_phys_segments = 0;
|
|
sbio->bio->bi_idx = 0;
|
|
|
|
for (i = 0; i < sbio->page_count; i++) {
|
|
struct bio_vec *bi;
|
|
bi = &sbio->bio->bi_io_vec[i];
|
|
bi->bv_offset = 0;
|
|
bi->bv_len = PAGE_SIZE;
|
|
}
|
|
}
|
|
|
|
bio_put(sbio->bio);
|
|
sbio->bio = NULL;
|
|
spin_lock(&sdev->list_lock);
|
|
sbio->next_free = sdev->first_free;
|
|
sdev->first_free = sbio->index;
|
|
spin_unlock(&sdev->list_lock);
|
|
atomic_dec(&sdev->in_flight);
|
|
wake_up(&sdev->list_wait);
|
|
}
|
|
|
|
static void scrub_block_complete(struct scrub_block *sblock)
|
|
{
|
|
if (!sblock->no_io_error_seen)
|
|
scrub_handle_errored_block(sblock);
|
|
else
|
|
scrub_checksum(sblock);
|
|
}
|
|
|
|
static int scrub_find_csum(struct scrub_dev *sdev, u64 logical, u64 len,
|
|
u8 *csum)
|
|
{
|
|
struct btrfs_ordered_sum *sum = NULL;
|
|
int ret = 0;
|
|
unsigned long i;
|
|
unsigned long num_sectors;
|
|
|
|
while (!list_empty(&sdev->csum_list)) {
|
|
sum = list_first_entry(&sdev->csum_list,
|
|
struct btrfs_ordered_sum, list);
|
|
if (sum->bytenr > logical)
|
|
return 0;
|
|
if (sum->bytenr + sum->len > logical)
|
|
break;
|
|
|
|
++sdev->stat.csum_discards;
|
|
list_del(&sum->list);
|
|
kfree(sum);
|
|
sum = NULL;
|
|
}
|
|
if (!sum)
|
|
return 0;
|
|
|
|
num_sectors = sum->len / sdev->sectorsize;
|
|
for (i = 0; i < num_sectors; ++i) {
|
|
if (sum->sums[i].bytenr == logical) {
|
|
memcpy(csum, &sum->sums[i].sum, sdev->csum_size);
|
|
ret = 1;
|
|
break;
|
|
}
|
|
}
|
|
if (ret && i == num_sectors - 1) {
|
|
list_del(&sum->list);
|
|
kfree(sum);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
/* scrub extent tries to collect up to 64 kB for each bio */
|
|
static int scrub_extent(struct scrub_dev *sdev, u64 logical, u64 len,
|
|
u64 physical, u64 flags, u64 gen, int mirror_num)
|
|
{
|
|
int ret;
|
|
u8 csum[BTRFS_CSUM_SIZE];
|
|
u32 blocksize;
|
|
|
|
if (flags & BTRFS_EXTENT_FLAG_DATA) {
|
|
blocksize = sdev->sectorsize;
|
|
spin_lock(&sdev->stat_lock);
|
|
sdev->stat.data_extents_scrubbed++;
|
|
sdev->stat.data_bytes_scrubbed += len;
|
|
spin_unlock(&sdev->stat_lock);
|
|
} else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
|
|
BUG_ON(sdev->nodesize != sdev->leafsize);
|
|
blocksize = sdev->nodesize;
|
|
spin_lock(&sdev->stat_lock);
|
|
sdev->stat.tree_extents_scrubbed++;
|
|
sdev->stat.tree_bytes_scrubbed += len;
|
|
spin_unlock(&sdev->stat_lock);
|
|
} else {
|
|
blocksize = sdev->sectorsize;
|
|
BUG_ON(1);
|
|
}
|
|
|
|
while (len) {
|
|
u64 l = min_t(u64, len, blocksize);
|
|
int have_csum = 0;
|
|
|
|
if (flags & BTRFS_EXTENT_FLAG_DATA) {
|
|
/* push csums to sbio */
|
|
have_csum = scrub_find_csum(sdev, logical, l, csum);
|
|
if (have_csum == 0)
|
|
++sdev->stat.no_csum;
|
|
}
|
|
ret = scrub_pages(sdev, logical, l, physical, flags, gen,
|
|
mirror_num, have_csum ? csum : NULL, 0);
|
|
if (ret)
|
|
return ret;
|
|
len -= l;
|
|
logical += l;
|
|
physical += l;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static noinline_for_stack int scrub_stripe(struct scrub_dev *sdev,
|
|
struct map_lookup *map, int num, u64 base, u64 length)
|
|
{
|
|
struct btrfs_path *path;
|
|
struct btrfs_fs_info *fs_info = sdev->dev->dev_root->fs_info;
|
|
struct btrfs_root *root = fs_info->extent_root;
|
|
struct btrfs_root *csum_root = fs_info->csum_root;
|
|
struct btrfs_extent_item *extent;
|
|
struct blk_plug plug;
|
|
u64 flags;
|
|
int ret;
|
|
int slot;
|
|
int i;
|
|
u64 nstripes;
|
|
struct extent_buffer *l;
|
|
struct btrfs_key key;
|
|
u64 physical;
|
|
u64 logical;
|
|
u64 generation;
|
|
int mirror_num;
|
|
struct reada_control *reada1;
|
|
struct reada_control *reada2;
|
|
struct btrfs_key key_start;
|
|
struct btrfs_key key_end;
|
|
|
|
u64 increment = map->stripe_len;
|
|
u64 offset;
|
|
|
|
nstripes = length;
|
|
offset = 0;
|
|
do_div(nstripes, map->stripe_len);
|
|
if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
|
|
offset = map->stripe_len * num;
|
|
increment = map->stripe_len * map->num_stripes;
|
|
mirror_num = 1;
|
|
} else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
|
|
int factor = map->num_stripes / map->sub_stripes;
|
|
offset = map->stripe_len * (num / map->sub_stripes);
|
|
increment = map->stripe_len * factor;
|
|
mirror_num = num % map->sub_stripes + 1;
|
|
} else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
|
|
increment = map->stripe_len;
|
|
mirror_num = num % map->num_stripes + 1;
|
|
} else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
|
|
increment = map->stripe_len;
|
|
mirror_num = num % map->num_stripes + 1;
|
|
} else {
|
|
increment = map->stripe_len;
|
|
mirror_num = 1;
|
|
}
|
|
|
|
path = btrfs_alloc_path();
|
|
if (!path)
|
|
return -ENOMEM;
|
|
|
|
/*
|
|
* work on commit root. The related disk blocks are static as
|
|
* long as COW is applied. This means, it is save to rewrite
|
|
* them to repair disk errors without any race conditions
|
|
*/
|
|
path->search_commit_root = 1;
|
|
path->skip_locking = 1;
|
|
|
|
/*
|
|
* trigger the readahead for extent tree csum tree and wait for
|
|
* completion. During readahead, the scrub is officially paused
|
|
* to not hold off transaction commits
|
|
*/
|
|
logical = base + offset;
|
|
|
|
wait_event(sdev->list_wait,
|
|
atomic_read(&sdev->in_flight) == 0);
|
|
atomic_inc(&fs_info->scrubs_paused);
|
|
wake_up(&fs_info->scrub_pause_wait);
|
|
|
|
/* FIXME it might be better to start readahead at commit root */
|
|
key_start.objectid = logical;
|
|
key_start.type = BTRFS_EXTENT_ITEM_KEY;
|
|
key_start.offset = (u64)0;
|
|
key_end.objectid = base + offset + nstripes * increment;
|
|
key_end.type = BTRFS_EXTENT_ITEM_KEY;
|
|
key_end.offset = (u64)0;
|
|
reada1 = btrfs_reada_add(root, &key_start, &key_end);
|
|
|
|
key_start.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
|
|
key_start.type = BTRFS_EXTENT_CSUM_KEY;
|
|
key_start.offset = logical;
|
|
key_end.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
|
|
key_end.type = BTRFS_EXTENT_CSUM_KEY;
|
|
key_end.offset = base + offset + nstripes * increment;
|
|
reada2 = btrfs_reada_add(csum_root, &key_start, &key_end);
|
|
|
|
if (!IS_ERR(reada1))
|
|
btrfs_reada_wait(reada1);
|
|
if (!IS_ERR(reada2))
|
|
btrfs_reada_wait(reada2);
|
|
|
|
mutex_lock(&fs_info->scrub_lock);
|
|
while (atomic_read(&fs_info->scrub_pause_req)) {
|
|
mutex_unlock(&fs_info->scrub_lock);
|
|
wait_event(fs_info->scrub_pause_wait,
|
|
atomic_read(&fs_info->scrub_pause_req) == 0);
|
|
mutex_lock(&fs_info->scrub_lock);
|
|
}
|
|
atomic_dec(&fs_info->scrubs_paused);
|
|
mutex_unlock(&fs_info->scrub_lock);
|
|
wake_up(&fs_info->scrub_pause_wait);
|
|
|
|
/*
|
|
* collect all data csums for the stripe to avoid seeking during
|
|
* the scrub. This might currently (crc32) end up to be about 1MB
|
|
*/
|
|
blk_start_plug(&plug);
|
|
|
|
/*
|
|
* now find all extents for each stripe and scrub them
|
|
*/
|
|
logical = base + offset;
|
|
physical = map->stripes[num].physical;
|
|
ret = 0;
|
|
for (i = 0; i < nstripes; ++i) {
|
|
/*
|
|
* canceled?
|
|
*/
|
|
if (atomic_read(&fs_info->scrub_cancel_req) ||
|
|
atomic_read(&sdev->cancel_req)) {
|
|
ret = -ECANCELED;
|
|
goto out;
|
|
}
|
|
/*
|
|
* check to see if we have to pause
|
|
*/
|
|
if (atomic_read(&fs_info->scrub_pause_req)) {
|
|
/* push queued extents */
|
|
scrub_submit(sdev);
|
|
wait_event(sdev->list_wait,
|
|
atomic_read(&sdev->in_flight) == 0);
|
|
atomic_inc(&fs_info->scrubs_paused);
|
|
wake_up(&fs_info->scrub_pause_wait);
|
|
mutex_lock(&fs_info->scrub_lock);
|
|
while (atomic_read(&fs_info->scrub_pause_req)) {
|
|
mutex_unlock(&fs_info->scrub_lock);
|
|
wait_event(fs_info->scrub_pause_wait,
|
|
atomic_read(&fs_info->scrub_pause_req) == 0);
|
|
mutex_lock(&fs_info->scrub_lock);
|
|
}
|
|
atomic_dec(&fs_info->scrubs_paused);
|
|
mutex_unlock(&fs_info->scrub_lock);
|
|
wake_up(&fs_info->scrub_pause_wait);
|
|
}
|
|
|
|
ret = btrfs_lookup_csums_range(csum_root, logical,
|
|
logical + map->stripe_len - 1,
|
|
&sdev->csum_list, 1);
|
|
if (ret)
|
|
goto out;
|
|
|
|
key.objectid = logical;
|
|
key.type = BTRFS_EXTENT_ITEM_KEY;
|
|
key.offset = (u64)0;
|
|
|
|
ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
|
|
if (ret < 0)
|
|
goto out;
|
|
if (ret > 0) {
|
|
ret = btrfs_previous_item(root, path, 0,
|
|
BTRFS_EXTENT_ITEM_KEY);
|
|
if (ret < 0)
|
|
goto out;
|
|
if (ret > 0) {
|
|
/* there's no smaller item, so stick with the
|
|
* larger one */
|
|
btrfs_release_path(path);
|
|
ret = btrfs_search_slot(NULL, root, &key,
|
|
path, 0, 0);
|
|
if (ret < 0)
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
while (1) {
|
|
l = path->nodes[0];
|
|
slot = path->slots[0];
|
|
if (slot >= btrfs_header_nritems(l)) {
|
|
ret = btrfs_next_leaf(root, path);
|
|
if (ret == 0)
|
|
continue;
|
|
if (ret < 0)
|
|
goto out;
|
|
|
|
break;
|
|
}
|
|
btrfs_item_key_to_cpu(l, &key, slot);
|
|
|
|
if (key.objectid + key.offset <= logical)
|
|
goto next;
|
|
|
|
if (key.objectid >= logical + map->stripe_len)
|
|
break;
|
|
|
|
if (btrfs_key_type(&key) != BTRFS_EXTENT_ITEM_KEY)
|
|
goto next;
|
|
|
|
extent = btrfs_item_ptr(l, slot,
|
|
struct btrfs_extent_item);
|
|
flags = btrfs_extent_flags(l, extent);
|
|
generation = btrfs_extent_generation(l, extent);
|
|
|
|
if (key.objectid < logical &&
|
|
(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)) {
|
|
printk(KERN_ERR
|
|
"btrfs scrub: tree block %llu spanning "
|
|
"stripes, ignored. logical=%llu\n",
|
|
(unsigned long long)key.objectid,
|
|
(unsigned long long)logical);
|
|
goto next;
|
|
}
|
|
|
|
/*
|
|
* trim extent to this stripe
|
|
*/
|
|
if (key.objectid < logical) {
|
|
key.offset -= logical - key.objectid;
|
|
key.objectid = logical;
|
|
}
|
|
if (key.objectid + key.offset >
|
|
logical + map->stripe_len) {
|
|
key.offset = logical + map->stripe_len -
|
|
key.objectid;
|
|
}
|
|
|
|
ret = scrub_extent(sdev, key.objectid, key.offset,
|
|
key.objectid - logical + physical,
|
|
flags, generation, mirror_num);
|
|
if (ret)
|
|
goto out;
|
|
|
|
next:
|
|
path->slots[0]++;
|
|
}
|
|
btrfs_release_path(path);
|
|
logical += increment;
|
|
physical += map->stripe_len;
|
|
spin_lock(&sdev->stat_lock);
|
|
sdev->stat.last_physical = physical;
|
|
spin_unlock(&sdev->stat_lock);
|
|
}
|
|
/* push queued extents */
|
|
scrub_submit(sdev);
|
|
|
|
out:
|
|
blk_finish_plug(&plug);
|
|
btrfs_free_path(path);
|
|
return ret < 0 ? ret : 0;
|
|
}
|
|
|
|
static noinline_for_stack int scrub_chunk(struct scrub_dev *sdev,
|
|
u64 chunk_tree, u64 chunk_objectid, u64 chunk_offset, u64 length,
|
|
u64 dev_offset)
|
|
{
|
|
struct btrfs_mapping_tree *map_tree =
|
|
&sdev->dev->dev_root->fs_info->mapping_tree;
|
|
struct map_lookup *map;
|
|
struct extent_map *em;
|
|
int i;
|
|
int ret = -EINVAL;
|
|
|
|
read_lock(&map_tree->map_tree.lock);
|
|
em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
|
|
read_unlock(&map_tree->map_tree.lock);
|
|
|
|
if (!em)
|
|
return -EINVAL;
|
|
|
|
map = (struct map_lookup *)em->bdev;
|
|
if (em->start != chunk_offset)
|
|
goto out;
|
|
|
|
if (em->len < length)
|
|
goto out;
|
|
|
|
for (i = 0; i < map->num_stripes; ++i) {
|
|
if (map->stripes[i].dev == sdev->dev &&
|
|
map->stripes[i].physical == dev_offset) {
|
|
ret = scrub_stripe(sdev, map, i, chunk_offset, length);
|
|
if (ret)
|
|
goto out;
|
|
}
|
|
}
|
|
out:
|
|
free_extent_map(em);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static noinline_for_stack
|
|
int scrub_enumerate_chunks(struct scrub_dev *sdev, u64 start, u64 end)
|
|
{
|
|
struct btrfs_dev_extent *dev_extent = NULL;
|
|
struct btrfs_path *path;
|
|
struct btrfs_root *root = sdev->dev->dev_root;
|
|
struct btrfs_fs_info *fs_info = root->fs_info;
|
|
u64 length;
|
|
u64 chunk_tree;
|
|
u64 chunk_objectid;
|
|
u64 chunk_offset;
|
|
int ret;
|
|
int slot;
|
|
struct extent_buffer *l;
|
|
struct btrfs_key key;
|
|
struct btrfs_key found_key;
|
|
struct btrfs_block_group_cache *cache;
|
|
|
|
path = btrfs_alloc_path();
|
|
if (!path)
|
|
return -ENOMEM;
|
|
|
|
path->reada = 2;
|
|
path->search_commit_root = 1;
|
|
path->skip_locking = 1;
|
|
|
|
key.objectid = sdev->dev->devid;
|
|
key.offset = 0ull;
|
|
key.type = BTRFS_DEV_EXTENT_KEY;
|
|
|
|
|
|
while (1) {
|
|
ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
|
|
if (ret < 0)
|
|
break;
|
|
if (ret > 0) {
|
|
if (path->slots[0] >=
|
|
btrfs_header_nritems(path->nodes[0])) {
|
|
ret = btrfs_next_leaf(root, path);
|
|
if (ret)
|
|
break;
|
|
}
|
|
}
|
|
|
|
l = path->nodes[0];
|
|
slot = path->slots[0];
|
|
|
|
btrfs_item_key_to_cpu(l, &found_key, slot);
|
|
|
|
if (found_key.objectid != sdev->dev->devid)
|
|
break;
|
|
|
|
if (btrfs_key_type(&found_key) != BTRFS_DEV_EXTENT_KEY)
|
|
break;
|
|
|
|
if (found_key.offset >= end)
|
|
break;
|
|
|
|
if (found_key.offset < key.offset)
|
|
break;
|
|
|
|
dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
|
|
length = btrfs_dev_extent_length(l, dev_extent);
|
|
|
|
if (found_key.offset + length <= start) {
|
|
key.offset = found_key.offset + length;
|
|
btrfs_release_path(path);
|
|
continue;
|
|
}
|
|
|
|
chunk_tree = btrfs_dev_extent_chunk_tree(l, dev_extent);
|
|
chunk_objectid = btrfs_dev_extent_chunk_objectid(l, dev_extent);
|
|
chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
|
|
|
|
/*
|
|
* get a reference on the corresponding block group to prevent
|
|
* the chunk from going away while we scrub it
|
|
*/
|
|
cache = btrfs_lookup_block_group(fs_info, chunk_offset);
|
|
if (!cache) {
|
|
ret = -ENOENT;
|
|
break;
|
|
}
|
|
ret = scrub_chunk(sdev, chunk_tree, chunk_objectid,
|
|
chunk_offset, length, found_key.offset);
|
|
btrfs_put_block_group(cache);
|
|
if (ret)
|
|
break;
|
|
|
|
key.offset = found_key.offset + length;
|
|
btrfs_release_path(path);
|
|
}
|
|
|
|
btrfs_free_path(path);
|
|
|
|
/*
|
|
* ret can still be 1 from search_slot or next_leaf,
|
|
* that's not an error
|
|
*/
|
|
return ret < 0 ? ret : 0;
|
|
}
|
|
|
|
static noinline_for_stack int scrub_supers(struct scrub_dev *sdev)
|
|
{
|
|
int i;
|
|
u64 bytenr;
|
|
u64 gen;
|
|
int ret;
|
|
struct btrfs_device *device = sdev->dev;
|
|
struct btrfs_root *root = device->dev_root;
|
|
|
|
if (root->fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR)
|
|
return -EIO;
|
|
|
|
gen = root->fs_info->last_trans_committed;
|
|
|
|
for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
|
|
bytenr = btrfs_sb_offset(i);
|
|
if (bytenr + BTRFS_SUPER_INFO_SIZE > device->total_bytes)
|
|
break;
|
|
|
|
ret = scrub_pages(sdev, bytenr, BTRFS_SUPER_INFO_SIZE, bytenr,
|
|
BTRFS_EXTENT_FLAG_SUPER, gen, i, NULL, 1);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
wait_event(sdev->list_wait, atomic_read(&sdev->in_flight) == 0);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* get a reference count on fs_info->scrub_workers. start worker if necessary
|
|
*/
|
|
static noinline_for_stack int scrub_workers_get(struct btrfs_root *root)
|
|
{
|
|
struct btrfs_fs_info *fs_info = root->fs_info;
|
|
int ret = 0;
|
|
|
|
mutex_lock(&fs_info->scrub_lock);
|
|
if (fs_info->scrub_workers_refcnt == 0) {
|
|
btrfs_init_workers(&fs_info->scrub_workers, "scrub",
|
|
fs_info->thread_pool_size, &fs_info->generic_worker);
|
|
fs_info->scrub_workers.idle_thresh = 4;
|
|
ret = btrfs_start_workers(&fs_info->scrub_workers);
|
|
if (ret)
|
|
goto out;
|
|
}
|
|
++fs_info->scrub_workers_refcnt;
|
|
out:
|
|
mutex_unlock(&fs_info->scrub_lock);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static noinline_for_stack void scrub_workers_put(struct btrfs_root *root)
|
|
{
|
|
struct btrfs_fs_info *fs_info = root->fs_info;
|
|
|
|
mutex_lock(&fs_info->scrub_lock);
|
|
if (--fs_info->scrub_workers_refcnt == 0)
|
|
btrfs_stop_workers(&fs_info->scrub_workers);
|
|
WARN_ON(fs_info->scrub_workers_refcnt < 0);
|
|
mutex_unlock(&fs_info->scrub_lock);
|
|
}
|
|
|
|
|
|
int btrfs_scrub_dev(struct btrfs_root *root, u64 devid, u64 start, u64 end,
|
|
struct btrfs_scrub_progress *progress, int readonly)
|
|
{
|
|
struct scrub_dev *sdev;
|
|
struct btrfs_fs_info *fs_info = root->fs_info;
|
|
int ret;
|
|
struct btrfs_device *dev;
|
|
|
|
if (btrfs_fs_closing(root->fs_info))
|
|
return -EINVAL;
|
|
|
|
/*
|
|
* check some assumptions
|
|
*/
|
|
if (root->nodesize != root->leafsize) {
|
|
printk(KERN_ERR
|
|
"btrfs_scrub: size assumption nodesize == leafsize (%d == %d) fails\n",
|
|
root->nodesize, root->leafsize);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (root->nodesize > BTRFS_STRIPE_LEN) {
|
|
/*
|
|
* in this case scrub is unable to calculate the checksum
|
|
* the way scrub is implemented. Do not handle this
|
|
* situation at all because it won't ever happen.
|
|
*/
|
|
printk(KERN_ERR
|
|
"btrfs_scrub: size assumption nodesize <= BTRFS_STRIPE_LEN (%d <= %d) fails\n",
|
|
root->nodesize, BTRFS_STRIPE_LEN);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (root->sectorsize != PAGE_SIZE) {
|
|
/* not supported for data w/o checksums */
|
|
printk(KERN_ERR
|
|
"btrfs_scrub: size assumption sectorsize != PAGE_SIZE (%d != %lld) fails\n",
|
|
root->sectorsize, (unsigned long long)PAGE_SIZE);
|
|
return -EINVAL;
|
|
}
|
|
|
|
ret = scrub_workers_get(root);
|
|
if (ret)
|
|
return ret;
|
|
|
|
mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
|
|
dev = btrfs_find_device(root, devid, NULL, NULL);
|
|
if (!dev || dev->missing) {
|
|
mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
|
|
scrub_workers_put(root);
|
|
return -ENODEV;
|
|
}
|
|
mutex_lock(&fs_info->scrub_lock);
|
|
|
|
if (!dev->in_fs_metadata) {
|
|
mutex_unlock(&fs_info->scrub_lock);
|
|
mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
|
|
scrub_workers_put(root);
|
|
return -ENODEV;
|
|
}
|
|
|
|
if (dev->scrub_device) {
|
|
mutex_unlock(&fs_info->scrub_lock);
|
|
mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
|
|
scrub_workers_put(root);
|
|
return -EINPROGRESS;
|
|
}
|
|
sdev = scrub_setup_dev(dev);
|
|
if (IS_ERR(sdev)) {
|
|
mutex_unlock(&fs_info->scrub_lock);
|
|
mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
|
|
scrub_workers_put(root);
|
|
return PTR_ERR(sdev);
|
|
}
|
|
sdev->readonly = readonly;
|
|
dev->scrub_device = sdev;
|
|
|
|
atomic_inc(&fs_info->scrubs_running);
|
|
mutex_unlock(&fs_info->scrub_lock);
|
|
mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
|
|
|
|
down_read(&fs_info->scrub_super_lock);
|
|
ret = scrub_supers(sdev);
|
|
up_read(&fs_info->scrub_super_lock);
|
|
|
|
if (!ret)
|
|
ret = scrub_enumerate_chunks(sdev, start, end);
|
|
|
|
wait_event(sdev->list_wait, atomic_read(&sdev->in_flight) == 0);
|
|
atomic_dec(&fs_info->scrubs_running);
|
|
wake_up(&fs_info->scrub_pause_wait);
|
|
|
|
wait_event(sdev->list_wait, atomic_read(&sdev->fixup_cnt) == 0);
|
|
|
|
if (progress)
|
|
memcpy(progress, &sdev->stat, sizeof(*progress));
|
|
|
|
mutex_lock(&fs_info->scrub_lock);
|
|
dev->scrub_device = NULL;
|
|
mutex_unlock(&fs_info->scrub_lock);
|
|
|
|
scrub_free_dev(sdev);
|
|
scrub_workers_put(root);
|
|
|
|
return ret;
|
|
}
|
|
|
|
void btrfs_scrub_pause(struct btrfs_root *root)
|
|
{
|
|
struct btrfs_fs_info *fs_info = root->fs_info;
|
|
|
|
mutex_lock(&fs_info->scrub_lock);
|
|
atomic_inc(&fs_info->scrub_pause_req);
|
|
while (atomic_read(&fs_info->scrubs_paused) !=
|
|
atomic_read(&fs_info->scrubs_running)) {
|
|
mutex_unlock(&fs_info->scrub_lock);
|
|
wait_event(fs_info->scrub_pause_wait,
|
|
atomic_read(&fs_info->scrubs_paused) ==
|
|
atomic_read(&fs_info->scrubs_running));
|
|
mutex_lock(&fs_info->scrub_lock);
|
|
}
|
|
mutex_unlock(&fs_info->scrub_lock);
|
|
}
|
|
|
|
void btrfs_scrub_continue(struct btrfs_root *root)
|
|
{
|
|
struct btrfs_fs_info *fs_info = root->fs_info;
|
|
|
|
atomic_dec(&fs_info->scrub_pause_req);
|
|
wake_up(&fs_info->scrub_pause_wait);
|
|
}
|
|
|
|
void btrfs_scrub_pause_super(struct btrfs_root *root)
|
|
{
|
|
down_write(&root->fs_info->scrub_super_lock);
|
|
}
|
|
|
|
void btrfs_scrub_continue_super(struct btrfs_root *root)
|
|
{
|
|
up_write(&root->fs_info->scrub_super_lock);
|
|
}
|
|
|
|
int __btrfs_scrub_cancel(struct btrfs_fs_info *fs_info)
|
|
{
|
|
|
|
mutex_lock(&fs_info->scrub_lock);
|
|
if (!atomic_read(&fs_info->scrubs_running)) {
|
|
mutex_unlock(&fs_info->scrub_lock);
|
|
return -ENOTCONN;
|
|
}
|
|
|
|
atomic_inc(&fs_info->scrub_cancel_req);
|
|
while (atomic_read(&fs_info->scrubs_running)) {
|
|
mutex_unlock(&fs_info->scrub_lock);
|
|
wait_event(fs_info->scrub_pause_wait,
|
|
atomic_read(&fs_info->scrubs_running) == 0);
|
|
mutex_lock(&fs_info->scrub_lock);
|
|
}
|
|
atomic_dec(&fs_info->scrub_cancel_req);
|
|
mutex_unlock(&fs_info->scrub_lock);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int btrfs_scrub_cancel(struct btrfs_root *root)
|
|
{
|
|
return __btrfs_scrub_cancel(root->fs_info);
|
|
}
|
|
|
|
int btrfs_scrub_cancel_dev(struct btrfs_root *root, struct btrfs_device *dev)
|
|
{
|
|
struct btrfs_fs_info *fs_info = root->fs_info;
|
|
struct scrub_dev *sdev;
|
|
|
|
mutex_lock(&fs_info->scrub_lock);
|
|
sdev = dev->scrub_device;
|
|
if (!sdev) {
|
|
mutex_unlock(&fs_info->scrub_lock);
|
|
return -ENOTCONN;
|
|
}
|
|
atomic_inc(&sdev->cancel_req);
|
|
while (dev->scrub_device) {
|
|
mutex_unlock(&fs_info->scrub_lock);
|
|
wait_event(fs_info->scrub_pause_wait,
|
|
dev->scrub_device == NULL);
|
|
mutex_lock(&fs_info->scrub_lock);
|
|
}
|
|
mutex_unlock(&fs_info->scrub_lock);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int btrfs_scrub_cancel_devid(struct btrfs_root *root, u64 devid)
|
|
{
|
|
struct btrfs_fs_info *fs_info = root->fs_info;
|
|
struct btrfs_device *dev;
|
|
int ret;
|
|
|
|
/*
|
|
* we have to hold the device_list_mutex here so the device
|
|
* does not go away in cancel_dev. FIXME: find a better solution
|
|
*/
|
|
mutex_lock(&fs_info->fs_devices->device_list_mutex);
|
|
dev = btrfs_find_device(root, devid, NULL, NULL);
|
|
if (!dev) {
|
|
mutex_unlock(&fs_info->fs_devices->device_list_mutex);
|
|
return -ENODEV;
|
|
}
|
|
ret = btrfs_scrub_cancel_dev(root, dev);
|
|
mutex_unlock(&fs_info->fs_devices->device_list_mutex);
|
|
|
|
return ret;
|
|
}
|
|
|
|
int btrfs_scrub_progress(struct btrfs_root *root, u64 devid,
|
|
struct btrfs_scrub_progress *progress)
|
|
{
|
|
struct btrfs_device *dev;
|
|
struct scrub_dev *sdev = NULL;
|
|
|
|
mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
|
|
dev = btrfs_find_device(root, devid, NULL, NULL);
|
|
if (dev)
|
|
sdev = dev->scrub_device;
|
|
if (sdev)
|
|
memcpy(progress, &sdev->stat, sizeof(*progress));
|
|
mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
|
|
|
|
return dev ? (sdev ? 0 : -ENOTCONN) : -ENODEV;
|
|
}
|