android_kernel_google_msm/sound/soc/codecs/tlv320dac33.c
Mark Brown e6968a1719 ASoC: codecs: Remove rtd->codec usage from CODEC drivers
In order to support CODEC<->CODEC links remove the assumption that there
is only a single CODEC on a DAI link by removing the use of the CODEC
pointer in the rtd from the CODEC drivers. They are already being passed
their DAI whenever they are passed an rtd and can get the CODEC from
there.

Signed-off-by: Mark Brown <broonie@opensource.wolfsonmicro.com>
2012-04-04 15:59:12 +01:00

1645 lines
43 KiB
C

/*
* ALSA SoC Texas Instruments TLV320DAC33 codec driver
*
* Author: Peter Ujfalusi <peter.ujfalusi@ti.com>
*
* Copyright: (C) 2009 Nokia Corporation
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA
* 02110-1301 USA
*
*/
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/init.h>
#include <linux/delay.h>
#include <linux/pm.h>
#include <linux/i2c.h>
#include <linux/interrupt.h>
#include <linux/gpio.h>
#include <linux/regulator/consumer.h>
#include <linux/slab.h>
#include <sound/core.h>
#include <sound/pcm.h>
#include <sound/pcm_params.h>
#include <sound/soc.h>
#include <sound/initval.h>
#include <sound/tlv.h>
#include <sound/tlv320dac33-plat.h>
#include "tlv320dac33.h"
/*
* The internal FIFO is 24576 bytes long
* It can be configured to hold 16bit or 24bit samples
* In 16bit configuration the FIFO can hold 6144 stereo samples
* In 24bit configuration the FIFO can hold 4096 stereo samples
*/
#define DAC33_FIFO_SIZE_16BIT 6144
#define DAC33_FIFO_SIZE_24BIT 4096
#define DAC33_MODE7_MARGIN 10 /* Safety margin for FIFO in Mode7 */
#define BURST_BASEFREQ_HZ 49152000
#define SAMPLES_TO_US(rate, samples) \
(1000000000 / (((rate) * 1000) / (samples)))
#define US_TO_SAMPLES(rate, us) \
((rate) / (1000000 / ((us) < 1000000 ? (us) : 1000000)))
#define UTHR_FROM_PERIOD_SIZE(samples, playrate, burstrate) \
(((samples)*5000) / (((burstrate)*5000) / ((burstrate) - (playrate))))
static void dac33_calculate_times(struct snd_pcm_substream *substream,
struct snd_soc_codec *codec);
static int dac33_prepare_chip(struct snd_pcm_substream *substream,
struct snd_soc_codec *codec);
enum dac33_state {
DAC33_IDLE = 0,
DAC33_PREFILL,
DAC33_PLAYBACK,
DAC33_FLUSH,
};
enum dac33_fifo_modes {
DAC33_FIFO_BYPASS = 0,
DAC33_FIFO_MODE1,
DAC33_FIFO_MODE7,
DAC33_FIFO_LAST_MODE,
};
#define DAC33_NUM_SUPPLIES 3
static const char *dac33_supply_names[DAC33_NUM_SUPPLIES] = {
"AVDD",
"DVDD",
"IOVDD",
};
struct tlv320dac33_priv {
struct mutex mutex;
struct workqueue_struct *dac33_wq;
struct work_struct work;
struct snd_soc_codec *codec;
struct regulator_bulk_data supplies[DAC33_NUM_SUPPLIES];
struct snd_pcm_substream *substream;
int power_gpio;
int chip_power;
int irq;
unsigned int refclk;
unsigned int alarm_threshold; /* set to be half of LATENCY_TIME_MS */
enum dac33_fifo_modes fifo_mode;/* FIFO mode selection */
unsigned int fifo_size; /* Size of the FIFO in samples */
unsigned int nsample; /* burst read amount from host */
int mode1_latency; /* latency caused by the i2c writes in
* us */
u8 burst_bclkdiv; /* BCLK divider value in burst mode */
unsigned int burst_rate; /* Interface speed in Burst modes */
int keep_bclk; /* Keep the BCLK continuously running
* in FIFO modes */
spinlock_t lock;
unsigned long long t_stamp1; /* Time stamp for FIFO modes to */
unsigned long long t_stamp2; /* calculate the FIFO caused delay */
unsigned int mode1_us_burst; /* Time to burst read n number of
* samples */
unsigned int mode7_us_to_lthr; /* Time to reach lthr from uthr */
unsigned int uthr;
enum dac33_state state;
enum snd_soc_control_type control_type;
void *control_data;
};
static const u8 dac33_reg[DAC33_CACHEREGNUM] = {
0x00, 0x00, 0x00, 0x00, /* 0x00 - 0x03 */
0x00, 0x00, 0x00, 0x00, /* 0x04 - 0x07 */
0x00, 0x00, 0x00, 0x00, /* 0x08 - 0x0b */
0x00, 0x00, 0x00, 0x00, /* 0x0c - 0x0f */
0x00, 0x00, 0x00, 0x00, /* 0x10 - 0x13 */
0x00, 0x00, 0x00, 0x00, /* 0x14 - 0x17 */
0x00, 0x00, 0x00, 0x00, /* 0x18 - 0x1b */
0x00, 0x00, 0x00, 0x00, /* 0x1c - 0x1f */
0x00, 0x00, 0x00, 0x00, /* 0x20 - 0x23 */
0x00, 0x00, 0x00, 0x00, /* 0x24 - 0x27 */
0x00, 0x00, 0x00, 0x00, /* 0x28 - 0x2b */
0x00, 0x00, 0x00, 0x80, /* 0x2c - 0x2f */
0x80, 0x00, 0x00, 0x00, /* 0x30 - 0x33 */
0x00, 0x00, 0x00, 0x00, /* 0x34 - 0x37 */
0x00, 0x00, /* 0x38 - 0x39 */
/* Registers 0x3a - 0x3f are reserved */
0x00, 0x00, /* 0x3a - 0x3b */
0x00, 0x00, 0x00, 0x00, /* 0x3c - 0x3f */
0x00, 0x00, 0x00, 0x00, /* 0x40 - 0x43 */
0x00, 0x80, /* 0x44 - 0x45 */
/* Registers 0x46 - 0x47 are reserved */
0x80, 0x80, /* 0x46 - 0x47 */
0x80, 0x00, 0x00, /* 0x48 - 0x4a */
/* Registers 0x4b - 0x7c are reserved */
0x00, /* 0x4b */
0x00, 0x00, 0x00, 0x00, /* 0x4c - 0x4f */
0x00, 0x00, 0x00, 0x00, /* 0x50 - 0x53 */
0x00, 0x00, 0x00, 0x00, /* 0x54 - 0x57 */
0x00, 0x00, 0x00, 0x00, /* 0x58 - 0x5b */
0x00, 0x00, 0x00, 0x00, /* 0x5c - 0x5f */
0x00, 0x00, 0x00, 0x00, /* 0x60 - 0x63 */
0x00, 0x00, 0x00, 0x00, /* 0x64 - 0x67 */
0x00, 0x00, 0x00, 0x00, /* 0x68 - 0x6b */
0x00, 0x00, 0x00, 0x00, /* 0x6c - 0x6f */
0x00, 0x00, 0x00, 0x00, /* 0x70 - 0x73 */
0x00, 0x00, 0x00, 0x00, /* 0x74 - 0x77 */
0x00, 0x00, 0x00, 0x00, /* 0x78 - 0x7b */
0x00, /* 0x7c */
0xda, 0x33, 0x03, /* 0x7d - 0x7f */
};
/* Register read and write */
static inline unsigned int dac33_read_reg_cache(struct snd_soc_codec *codec,
unsigned reg)
{
u8 *cache = codec->reg_cache;
if (reg >= DAC33_CACHEREGNUM)
return 0;
return cache[reg];
}
static inline void dac33_write_reg_cache(struct snd_soc_codec *codec,
u8 reg, u8 value)
{
u8 *cache = codec->reg_cache;
if (reg >= DAC33_CACHEREGNUM)
return;
cache[reg] = value;
}
static int dac33_read(struct snd_soc_codec *codec, unsigned int reg,
u8 *value)
{
struct tlv320dac33_priv *dac33 = snd_soc_codec_get_drvdata(codec);
int val, ret = 0;
*value = reg & 0xff;
/* If powered off, return the cached value */
if (dac33->chip_power) {
val = i2c_smbus_read_byte_data(codec->control_data, value[0]);
if (val < 0) {
dev_err(codec->dev, "Read failed (%d)\n", val);
value[0] = dac33_read_reg_cache(codec, reg);
ret = val;
} else {
value[0] = val;
dac33_write_reg_cache(codec, reg, val);
}
} else {
value[0] = dac33_read_reg_cache(codec, reg);
}
return ret;
}
static int dac33_write(struct snd_soc_codec *codec, unsigned int reg,
unsigned int value)
{
struct tlv320dac33_priv *dac33 = snd_soc_codec_get_drvdata(codec);
u8 data[2];
int ret = 0;
/*
* data is
* D15..D8 dac33 register offset
* D7...D0 register data
*/
data[0] = reg & 0xff;
data[1] = value & 0xff;
dac33_write_reg_cache(codec, data[0], data[1]);
if (dac33->chip_power) {
ret = codec->hw_write(codec->control_data, data, 2);
if (ret != 2)
dev_err(codec->dev, "Write failed (%d)\n", ret);
else
ret = 0;
}
return ret;
}
static int dac33_write_locked(struct snd_soc_codec *codec, unsigned int reg,
unsigned int value)
{
struct tlv320dac33_priv *dac33 = snd_soc_codec_get_drvdata(codec);
int ret;
mutex_lock(&dac33->mutex);
ret = dac33_write(codec, reg, value);
mutex_unlock(&dac33->mutex);
return ret;
}
#define DAC33_I2C_ADDR_AUTOINC 0x80
static int dac33_write16(struct snd_soc_codec *codec, unsigned int reg,
unsigned int value)
{
struct tlv320dac33_priv *dac33 = snd_soc_codec_get_drvdata(codec);
u8 data[3];
int ret = 0;
/*
* data is
* D23..D16 dac33 register offset
* D15..D8 register data MSB
* D7...D0 register data LSB
*/
data[0] = reg & 0xff;
data[1] = (value >> 8) & 0xff;
data[2] = value & 0xff;
dac33_write_reg_cache(codec, data[0], data[1]);
dac33_write_reg_cache(codec, data[0] + 1, data[2]);
if (dac33->chip_power) {
/* We need to set autoincrement mode for 16 bit writes */
data[0] |= DAC33_I2C_ADDR_AUTOINC;
ret = codec->hw_write(codec->control_data, data, 3);
if (ret != 3)
dev_err(codec->dev, "Write failed (%d)\n", ret);
else
ret = 0;
}
return ret;
}
static void dac33_init_chip(struct snd_soc_codec *codec)
{
struct tlv320dac33_priv *dac33 = snd_soc_codec_get_drvdata(codec);
if (unlikely(!dac33->chip_power))
return;
/* A : DAC sample rate Fsref/1.5 */
dac33_write(codec, DAC33_DAC_CTRL_A, DAC33_DACRATE(0));
/* B : DAC src=normal, not muted */
dac33_write(codec, DAC33_DAC_CTRL_B, DAC33_DACSRCR_RIGHT |
DAC33_DACSRCL_LEFT);
/* C : (defaults) */
dac33_write(codec, DAC33_DAC_CTRL_C, 0x00);
/* 73 : volume soft stepping control,
clock source = internal osc (?) */
dac33_write(codec, DAC33_ANA_VOL_SOFT_STEP_CTRL, DAC33_VOLCLKEN);
/* Restore only selected registers (gains mostly) */
dac33_write(codec, DAC33_LDAC_DIG_VOL_CTRL,
dac33_read_reg_cache(codec, DAC33_LDAC_DIG_VOL_CTRL));
dac33_write(codec, DAC33_RDAC_DIG_VOL_CTRL,
dac33_read_reg_cache(codec, DAC33_RDAC_DIG_VOL_CTRL));
dac33_write(codec, DAC33_LINEL_TO_LLO_VOL,
dac33_read_reg_cache(codec, DAC33_LINEL_TO_LLO_VOL));
dac33_write(codec, DAC33_LINER_TO_RLO_VOL,
dac33_read_reg_cache(codec, DAC33_LINER_TO_RLO_VOL));
dac33_write(codec, DAC33_OUT_AMP_CTRL,
dac33_read_reg_cache(codec, DAC33_OUT_AMP_CTRL));
dac33_write(codec, DAC33_LDAC_PWR_CTRL,
dac33_read_reg_cache(codec, DAC33_LDAC_PWR_CTRL));
dac33_write(codec, DAC33_RDAC_PWR_CTRL,
dac33_read_reg_cache(codec, DAC33_RDAC_PWR_CTRL));
}
static inline int dac33_read_id(struct snd_soc_codec *codec)
{
int i, ret = 0;
u8 reg;
for (i = 0; i < 3; i++) {
ret = dac33_read(codec, DAC33_DEVICE_ID_MSB + i, &reg);
if (ret < 0)
break;
}
return ret;
}
static inline void dac33_soft_power(struct snd_soc_codec *codec, int power)
{
u8 reg;
reg = dac33_read_reg_cache(codec, DAC33_PWR_CTRL);
if (power)
reg |= DAC33_PDNALLB;
else
reg &= ~(DAC33_PDNALLB | DAC33_OSCPDNB |
DAC33_DACRPDNB | DAC33_DACLPDNB);
dac33_write(codec, DAC33_PWR_CTRL, reg);
}
static inline void dac33_disable_digital(struct snd_soc_codec *codec)
{
u8 reg;
/* Stop the DAI clock */
reg = dac33_read_reg_cache(codec, DAC33_SER_AUDIOIF_CTRL_B);
reg &= ~DAC33_BCLKON;
dac33_write(codec, DAC33_SER_AUDIOIF_CTRL_B, reg);
/* Power down the Oscillator, and DACs */
reg = dac33_read_reg_cache(codec, DAC33_PWR_CTRL);
reg &= ~(DAC33_OSCPDNB | DAC33_DACRPDNB | DAC33_DACLPDNB);
dac33_write(codec, DAC33_PWR_CTRL, reg);
}
static int dac33_hard_power(struct snd_soc_codec *codec, int power)
{
struct tlv320dac33_priv *dac33 = snd_soc_codec_get_drvdata(codec);
int ret = 0;
mutex_lock(&dac33->mutex);
/* Safety check */
if (unlikely(power == dac33->chip_power)) {
dev_dbg(codec->dev, "Trying to set the same power state: %s\n",
power ? "ON" : "OFF");
goto exit;
}
if (power) {
ret = regulator_bulk_enable(ARRAY_SIZE(dac33->supplies),
dac33->supplies);
if (ret != 0) {
dev_err(codec->dev,
"Failed to enable supplies: %d\n", ret);
goto exit;
}
if (dac33->power_gpio >= 0)
gpio_set_value(dac33->power_gpio, 1);
dac33->chip_power = 1;
} else {
dac33_soft_power(codec, 0);
if (dac33->power_gpio >= 0)
gpio_set_value(dac33->power_gpio, 0);
ret = regulator_bulk_disable(ARRAY_SIZE(dac33->supplies),
dac33->supplies);
if (ret != 0) {
dev_err(codec->dev,
"Failed to disable supplies: %d\n", ret);
goto exit;
}
dac33->chip_power = 0;
}
exit:
mutex_unlock(&dac33->mutex);
return ret;
}
static int dac33_playback_event(struct snd_soc_dapm_widget *w,
struct snd_kcontrol *kcontrol, int event)
{
struct tlv320dac33_priv *dac33 = snd_soc_codec_get_drvdata(w->codec);
switch (event) {
case SND_SOC_DAPM_PRE_PMU:
if (likely(dac33->substream)) {
dac33_calculate_times(dac33->substream, w->codec);
dac33_prepare_chip(dac33->substream, w->codec);
}
break;
case SND_SOC_DAPM_POST_PMD:
dac33_disable_digital(w->codec);
break;
}
return 0;
}
static int dac33_get_fifo_mode(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
struct tlv320dac33_priv *dac33 = snd_soc_codec_get_drvdata(codec);
ucontrol->value.integer.value[0] = dac33->fifo_mode;
return 0;
}
static int dac33_set_fifo_mode(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
struct tlv320dac33_priv *dac33 = snd_soc_codec_get_drvdata(codec);
int ret = 0;
if (dac33->fifo_mode == ucontrol->value.integer.value[0])
return 0;
/* Do not allow changes while stream is running*/
if (codec->active)
return -EPERM;
if (ucontrol->value.integer.value[0] < 0 ||
ucontrol->value.integer.value[0] >= DAC33_FIFO_LAST_MODE)
ret = -EINVAL;
else
dac33->fifo_mode = ucontrol->value.integer.value[0];
return ret;
}
/* Codec operation modes */
static const char *dac33_fifo_mode_texts[] = {
"Bypass", "Mode 1", "Mode 7"
};
static const struct soc_enum dac33_fifo_mode_enum =
SOC_ENUM_SINGLE_EXT(ARRAY_SIZE(dac33_fifo_mode_texts),
dac33_fifo_mode_texts);
/* L/R Line Output Gain */
static const char *lr_lineout_gain_texts[] = {
"Line -12dB DAC 0dB", "Line -6dB DAC 6dB",
"Line 0dB DAC 12dB", "Line 6dB DAC 18dB",
};
static const struct soc_enum l_lineout_gain_enum =
SOC_ENUM_SINGLE(DAC33_LDAC_PWR_CTRL, 0,
ARRAY_SIZE(lr_lineout_gain_texts),
lr_lineout_gain_texts);
static const struct soc_enum r_lineout_gain_enum =
SOC_ENUM_SINGLE(DAC33_RDAC_PWR_CTRL, 0,
ARRAY_SIZE(lr_lineout_gain_texts),
lr_lineout_gain_texts);
/*
* DACL/R digital volume control:
* from 0 dB to -63.5 in 0.5 dB steps
* Need to be inverted later on:
* 0x00 == 0 dB
* 0x7f == -63.5 dB
*/
static DECLARE_TLV_DB_SCALE(dac_digivol_tlv, -6350, 50, 0);
static const struct snd_kcontrol_new dac33_snd_controls[] = {
SOC_DOUBLE_R_TLV("DAC Digital Playback Volume",
DAC33_LDAC_DIG_VOL_CTRL, DAC33_RDAC_DIG_VOL_CTRL,
0, 0x7f, 1, dac_digivol_tlv),
SOC_DOUBLE_R("DAC Digital Playback Switch",
DAC33_LDAC_DIG_VOL_CTRL, DAC33_RDAC_DIG_VOL_CTRL, 7, 1, 1),
SOC_DOUBLE_R("Line to Line Out Volume",
DAC33_LINEL_TO_LLO_VOL, DAC33_LINER_TO_RLO_VOL, 0, 127, 1),
SOC_ENUM("Left Line Output Gain", l_lineout_gain_enum),
SOC_ENUM("Right Line Output Gain", r_lineout_gain_enum),
};
static const struct snd_kcontrol_new dac33_mode_snd_controls[] = {
SOC_ENUM_EXT("FIFO Mode", dac33_fifo_mode_enum,
dac33_get_fifo_mode, dac33_set_fifo_mode),
};
/* Analog bypass */
static const struct snd_kcontrol_new dac33_dapm_abypassl_control =
SOC_DAPM_SINGLE("Switch", DAC33_LINEL_TO_LLO_VOL, 7, 1, 1);
static const struct snd_kcontrol_new dac33_dapm_abypassr_control =
SOC_DAPM_SINGLE("Switch", DAC33_LINER_TO_RLO_VOL, 7, 1, 1);
/* LOP L/R invert selection */
static const char *dac33_lr_lom_texts[] = {"DAC", "LOP"};
static const struct soc_enum dac33_left_lom_enum =
SOC_ENUM_SINGLE(DAC33_OUT_AMP_CTRL, 3,
ARRAY_SIZE(dac33_lr_lom_texts),
dac33_lr_lom_texts);
static const struct snd_kcontrol_new dac33_dapm_left_lom_control =
SOC_DAPM_ENUM("Route", dac33_left_lom_enum);
static const struct soc_enum dac33_right_lom_enum =
SOC_ENUM_SINGLE(DAC33_OUT_AMP_CTRL, 2,
ARRAY_SIZE(dac33_lr_lom_texts),
dac33_lr_lom_texts);
static const struct snd_kcontrol_new dac33_dapm_right_lom_control =
SOC_DAPM_ENUM("Route", dac33_right_lom_enum);
static const struct snd_soc_dapm_widget dac33_dapm_widgets[] = {
SND_SOC_DAPM_OUTPUT("LEFT_LO"),
SND_SOC_DAPM_OUTPUT("RIGHT_LO"),
SND_SOC_DAPM_INPUT("LINEL"),
SND_SOC_DAPM_INPUT("LINER"),
SND_SOC_DAPM_DAC("DACL", "Left Playback", SND_SOC_NOPM, 0, 0),
SND_SOC_DAPM_DAC("DACR", "Right Playback", SND_SOC_NOPM, 0, 0),
/* Analog bypass */
SND_SOC_DAPM_SWITCH("Analog Left Bypass", SND_SOC_NOPM, 0, 0,
&dac33_dapm_abypassl_control),
SND_SOC_DAPM_SWITCH("Analog Right Bypass", SND_SOC_NOPM, 0, 0,
&dac33_dapm_abypassr_control),
SND_SOC_DAPM_MUX("Left LOM Inverted From", SND_SOC_NOPM, 0, 0,
&dac33_dapm_left_lom_control),
SND_SOC_DAPM_MUX("Right LOM Inverted From", SND_SOC_NOPM, 0, 0,
&dac33_dapm_right_lom_control),
/*
* For DAPM path, when only the anlog bypass path is enabled, and the
* LOP inverted from the corresponding DAC side.
* This is needed, so we can attach the DAC power supply in this case.
*/
SND_SOC_DAPM_PGA("Left Bypass PGA", SND_SOC_NOPM, 0, 0, NULL, 0),
SND_SOC_DAPM_PGA("Right Bypass PGA", SND_SOC_NOPM, 0, 0, NULL, 0),
SND_SOC_DAPM_REG(snd_soc_dapm_mixer, "Output Left Amplifier",
DAC33_OUT_AMP_PWR_CTRL, 6, 3, 3, 0),
SND_SOC_DAPM_REG(snd_soc_dapm_mixer, "Output Right Amplifier",
DAC33_OUT_AMP_PWR_CTRL, 4, 3, 3, 0),
SND_SOC_DAPM_SUPPLY("Left DAC Power",
DAC33_LDAC_PWR_CTRL, 2, 0, NULL, 0),
SND_SOC_DAPM_SUPPLY("Right DAC Power",
DAC33_RDAC_PWR_CTRL, 2, 0, NULL, 0),
SND_SOC_DAPM_SUPPLY("Codec Power",
DAC33_PWR_CTRL, 4, 0, NULL, 0),
SND_SOC_DAPM_PRE("Pre Playback", dac33_playback_event),
SND_SOC_DAPM_POST("Post Playback", dac33_playback_event),
};
static const struct snd_soc_dapm_route audio_map[] = {
/* Analog bypass */
{"Analog Left Bypass", "Switch", "LINEL"},
{"Analog Right Bypass", "Switch", "LINER"},
{"Output Left Amplifier", NULL, "DACL"},
{"Output Right Amplifier", NULL, "DACR"},
{"Left Bypass PGA", NULL, "Analog Left Bypass"},
{"Right Bypass PGA", NULL, "Analog Right Bypass"},
{"Left LOM Inverted From", "DAC", "Left Bypass PGA"},
{"Right LOM Inverted From", "DAC", "Right Bypass PGA"},
{"Left LOM Inverted From", "LOP", "Analog Left Bypass"},
{"Right LOM Inverted From", "LOP", "Analog Right Bypass"},
{"Output Left Amplifier", NULL, "Left LOM Inverted From"},
{"Output Right Amplifier", NULL, "Right LOM Inverted From"},
{"DACL", NULL, "Left DAC Power"},
{"DACR", NULL, "Right DAC Power"},
{"Left Bypass PGA", NULL, "Left DAC Power"},
{"Right Bypass PGA", NULL, "Right DAC Power"},
/* output */
{"LEFT_LO", NULL, "Output Left Amplifier"},
{"RIGHT_LO", NULL, "Output Right Amplifier"},
{"LEFT_LO", NULL, "Codec Power"},
{"RIGHT_LO", NULL, "Codec Power"},
};
static int dac33_set_bias_level(struct snd_soc_codec *codec,
enum snd_soc_bias_level level)
{
int ret;
switch (level) {
case SND_SOC_BIAS_ON:
break;
case SND_SOC_BIAS_PREPARE:
break;
case SND_SOC_BIAS_STANDBY:
if (codec->dapm.bias_level == SND_SOC_BIAS_OFF) {
/* Coming from OFF, switch on the codec */
ret = dac33_hard_power(codec, 1);
if (ret != 0)
return ret;
dac33_init_chip(codec);
}
break;
case SND_SOC_BIAS_OFF:
/* Do not power off, when the codec is already off */
if (codec->dapm.bias_level == SND_SOC_BIAS_OFF)
return 0;
ret = dac33_hard_power(codec, 0);
if (ret != 0)
return ret;
break;
}
codec->dapm.bias_level = level;
return 0;
}
static inline void dac33_prefill_handler(struct tlv320dac33_priv *dac33)
{
struct snd_soc_codec *codec = dac33->codec;
unsigned int delay;
unsigned long flags;
switch (dac33->fifo_mode) {
case DAC33_FIFO_MODE1:
dac33_write16(codec, DAC33_NSAMPLE_MSB,
DAC33_THRREG(dac33->nsample));
/* Take the timestamps */
spin_lock_irqsave(&dac33->lock, flags);
dac33->t_stamp2 = ktime_to_us(ktime_get());
dac33->t_stamp1 = dac33->t_stamp2;
spin_unlock_irqrestore(&dac33->lock, flags);
dac33_write16(codec, DAC33_PREFILL_MSB,
DAC33_THRREG(dac33->alarm_threshold));
/* Enable Alarm Threshold IRQ with a delay */
delay = SAMPLES_TO_US(dac33->burst_rate,
dac33->alarm_threshold) + 1000;
usleep_range(delay, delay + 500);
dac33_write(codec, DAC33_FIFO_IRQ_MASK, DAC33_MAT);
break;
case DAC33_FIFO_MODE7:
/* Take the timestamp */
spin_lock_irqsave(&dac33->lock, flags);
dac33->t_stamp1 = ktime_to_us(ktime_get());
/* Move back the timestamp with drain time */
dac33->t_stamp1 -= dac33->mode7_us_to_lthr;
spin_unlock_irqrestore(&dac33->lock, flags);
dac33_write16(codec, DAC33_PREFILL_MSB,
DAC33_THRREG(DAC33_MODE7_MARGIN));
/* Enable Upper Threshold IRQ */
dac33_write(codec, DAC33_FIFO_IRQ_MASK, DAC33_MUT);
break;
default:
dev_warn(codec->dev, "Unhandled FIFO mode: %d\n",
dac33->fifo_mode);
break;
}
}
static inline void dac33_playback_handler(struct tlv320dac33_priv *dac33)
{
struct snd_soc_codec *codec = dac33->codec;
unsigned long flags;
switch (dac33->fifo_mode) {
case DAC33_FIFO_MODE1:
/* Take the timestamp */
spin_lock_irqsave(&dac33->lock, flags);
dac33->t_stamp2 = ktime_to_us(ktime_get());
spin_unlock_irqrestore(&dac33->lock, flags);
dac33_write16(codec, DAC33_NSAMPLE_MSB,
DAC33_THRREG(dac33->nsample));
break;
case DAC33_FIFO_MODE7:
/* At the moment we are not using interrupts in mode7 */
break;
default:
dev_warn(codec->dev, "Unhandled FIFO mode: %d\n",
dac33->fifo_mode);
break;
}
}
static void dac33_work(struct work_struct *work)
{
struct snd_soc_codec *codec;
struct tlv320dac33_priv *dac33;
u8 reg;
dac33 = container_of(work, struct tlv320dac33_priv, work);
codec = dac33->codec;
mutex_lock(&dac33->mutex);
switch (dac33->state) {
case DAC33_PREFILL:
dac33->state = DAC33_PLAYBACK;
dac33_prefill_handler(dac33);
break;
case DAC33_PLAYBACK:
dac33_playback_handler(dac33);
break;
case DAC33_IDLE:
break;
case DAC33_FLUSH:
dac33->state = DAC33_IDLE;
/* Mask all interrupts from dac33 */
dac33_write(codec, DAC33_FIFO_IRQ_MASK, 0);
/* flush fifo */
reg = dac33_read_reg_cache(codec, DAC33_FIFO_CTRL_A);
reg |= DAC33_FIFOFLUSH;
dac33_write(codec, DAC33_FIFO_CTRL_A, reg);
break;
}
mutex_unlock(&dac33->mutex);
}
static irqreturn_t dac33_interrupt_handler(int irq, void *dev)
{
struct snd_soc_codec *codec = dev;
struct tlv320dac33_priv *dac33 = snd_soc_codec_get_drvdata(codec);
unsigned long flags;
spin_lock_irqsave(&dac33->lock, flags);
dac33->t_stamp1 = ktime_to_us(ktime_get());
spin_unlock_irqrestore(&dac33->lock, flags);
/* Do not schedule the workqueue in Mode7 */
if (dac33->fifo_mode != DAC33_FIFO_MODE7)
queue_work(dac33->dac33_wq, &dac33->work);
return IRQ_HANDLED;
}
static void dac33_oscwait(struct snd_soc_codec *codec)
{
int timeout = 60;
u8 reg;
do {
usleep_range(1000, 2000);
dac33_read(codec, DAC33_INT_OSC_STATUS, &reg);
} while (((reg & 0x03) != DAC33_OSCSTATUS_NORMAL) && timeout--);
if ((reg & 0x03) != DAC33_OSCSTATUS_NORMAL)
dev_err(codec->dev,
"internal oscillator calibration failed\n");
}
static int dac33_startup(struct snd_pcm_substream *substream,
struct snd_soc_dai *dai)
{
struct snd_soc_codec *codec = dai->codec;
struct tlv320dac33_priv *dac33 = snd_soc_codec_get_drvdata(codec);
/* Stream started, save the substream pointer */
dac33->substream = substream;
return 0;
}
static void dac33_shutdown(struct snd_pcm_substream *substream,
struct snd_soc_dai *dai)
{
struct snd_soc_codec *codec = dai->codec;
struct tlv320dac33_priv *dac33 = snd_soc_codec_get_drvdata(codec);
dac33->substream = NULL;
}
#define CALC_BURST_RATE(bclkdiv, bclk_per_sample) \
(BURST_BASEFREQ_HZ / bclkdiv / bclk_per_sample)
static int dac33_hw_params(struct snd_pcm_substream *substream,
struct snd_pcm_hw_params *params,
struct snd_soc_dai *dai)
{
struct snd_soc_codec *codec = dai->codec;
struct tlv320dac33_priv *dac33 = snd_soc_codec_get_drvdata(codec);
/* Check parameters for validity */
switch (params_rate(params)) {
case 44100:
case 48000:
break;
default:
dev_err(codec->dev, "unsupported rate %d\n",
params_rate(params));
return -EINVAL;
}
switch (params_format(params)) {
case SNDRV_PCM_FORMAT_S16_LE:
dac33->fifo_size = DAC33_FIFO_SIZE_16BIT;
dac33->burst_rate = CALC_BURST_RATE(dac33->burst_bclkdiv, 32);
break;
case SNDRV_PCM_FORMAT_S32_LE:
dac33->fifo_size = DAC33_FIFO_SIZE_24BIT;
dac33->burst_rate = CALC_BURST_RATE(dac33->burst_bclkdiv, 64);
break;
default:
dev_err(codec->dev, "unsupported format %d\n",
params_format(params));
return -EINVAL;
}
return 0;
}
#define CALC_OSCSET(rate, refclk) ( \
((((rate * 10000) / refclk) * 4096) + 7000) / 10000)
#define CALC_RATIOSET(rate, refclk) ( \
((((refclk * 100000) / rate) * 16384) + 50000) / 100000)
/*
* tlv320dac33 is strict on the sequence of the register writes, if the register
* writes happens in different order, than dac33 might end up in unknown state.
* Use the known, working sequence of register writes to initialize the dac33.
*/
static int dac33_prepare_chip(struct snd_pcm_substream *substream,
struct snd_soc_codec *codec)
{
struct tlv320dac33_priv *dac33 = snd_soc_codec_get_drvdata(codec);
unsigned int oscset, ratioset, pwr_ctrl, reg_tmp;
u8 aictrl_a, aictrl_b, fifoctrl_a;
switch (substream->runtime->rate) {
case 44100:
case 48000:
oscset = CALC_OSCSET(substream->runtime->rate, dac33->refclk);
ratioset = CALC_RATIOSET(substream->runtime->rate,
dac33->refclk);
break;
default:
dev_err(codec->dev, "unsupported rate %d\n",
substream->runtime->rate);
return -EINVAL;
}
aictrl_a = dac33_read_reg_cache(codec, DAC33_SER_AUDIOIF_CTRL_A);
aictrl_a &= ~(DAC33_NCYCL_MASK | DAC33_WLEN_MASK);
/* Read FIFO control A, and clear FIFO flush bit */
fifoctrl_a = dac33_read_reg_cache(codec, DAC33_FIFO_CTRL_A);
fifoctrl_a &= ~DAC33_FIFOFLUSH;
fifoctrl_a &= ~DAC33_WIDTH;
switch (substream->runtime->format) {
case SNDRV_PCM_FORMAT_S16_LE:
aictrl_a |= (DAC33_NCYCL_16 | DAC33_WLEN_16);
fifoctrl_a |= DAC33_WIDTH;
break;
case SNDRV_PCM_FORMAT_S32_LE:
aictrl_a |= (DAC33_NCYCL_32 | DAC33_WLEN_24);
break;
default:
dev_err(codec->dev, "unsupported format %d\n",
substream->runtime->format);
return -EINVAL;
}
mutex_lock(&dac33->mutex);
if (!dac33->chip_power) {
/*
* Chip is not powered yet.
* Do the init in the dac33_set_bias_level later.
*/
mutex_unlock(&dac33->mutex);
return 0;
}
dac33_soft_power(codec, 0);
dac33_soft_power(codec, 1);
reg_tmp = dac33_read_reg_cache(codec, DAC33_INT_OSC_CTRL);
dac33_write(codec, DAC33_INT_OSC_CTRL, reg_tmp);
/* Write registers 0x08 and 0x09 (MSB, LSB) */
dac33_write16(codec, DAC33_INT_OSC_FREQ_RAT_A, oscset);
/* OSC calibration time */
dac33_write(codec, DAC33_CALIB_TIME, 96);
/* adjustment treshold & step */
dac33_write(codec, DAC33_INT_OSC_CTRL_B, DAC33_ADJTHRSHLD(2) |
DAC33_ADJSTEP(1));
/* div=4 / gain=1 / div */
dac33_write(codec, DAC33_INT_OSC_CTRL_C, DAC33_REFDIV(4));
pwr_ctrl = dac33_read_reg_cache(codec, DAC33_PWR_CTRL);
pwr_ctrl |= DAC33_OSCPDNB | DAC33_DACRPDNB | DAC33_DACLPDNB;
dac33_write(codec, DAC33_PWR_CTRL, pwr_ctrl);
dac33_oscwait(codec);
if (dac33->fifo_mode) {
/* Generic for all FIFO modes */
/* 50-51 : ASRC Control registers */
dac33_write(codec, DAC33_ASRC_CTRL_A, DAC33_SRCLKDIV(1));
dac33_write(codec, DAC33_ASRC_CTRL_B, 1); /* ??? */
/* Write registers 0x34 and 0x35 (MSB, LSB) */
dac33_write16(codec, DAC33_SRC_REF_CLK_RATIO_A, ratioset);
/* Set interrupts to high active */
dac33_write(codec, DAC33_INTP_CTRL_A, DAC33_INTPM_AHIGH);
} else {
/* FIFO bypass mode */
/* 50-51 : ASRC Control registers */
dac33_write(codec, DAC33_ASRC_CTRL_A, DAC33_SRCBYP);
dac33_write(codec, DAC33_ASRC_CTRL_B, 0); /* ??? */
}
/* Interrupt behaviour configuration */
switch (dac33->fifo_mode) {
case DAC33_FIFO_MODE1:
dac33_write(codec, DAC33_FIFO_IRQ_MODE_B,
DAC33_ATM(DAC33_FIFO_IRQ_MODE_LEVEL));
break;
case DAC33_FIFO_MODE7:
dac33_write(codec, DAC33_FIFO_IRQ_MODE_A,
DAC33_UTM(DAC33_FIFO_IRQ_MODE_LEVEL));
break;
default:
/* in FIFO bypass mode, the interrupts are not used */
break;
}
aictrl_b = dac33_read_reg_cache(codec, DAC33_SER_AUDIOIF_CTRL_B);
switch (dac33->fifo_mode) {
case DAC33_FIFO_MODE1:
/*
* For mode1:
* Disable the FIFO bypass (Enable the use of FIFO)
* Select nSample mode
* BCLK is only running when data is needed by DAC33
*/
fifoctrl_a &= ~DAC33_FBYPAS;
fifoctrl_a &= ~DAC33_FAUTO;
if (dac33->keep_bclk)
aictrl_b |= DAC33_BCLKON;
else
aictrl_b &= ~DAC33_BCLKON;
break;
case DAC33_FIFO_MODE7:
/*
* For mode1:
* Disable the FIFO bypass (Enable the use of FIFO)
* Select Threshold mode
* BCLK is only running when data is needed by DAC33
*/
fifoctrl_a &= ~DAC33_FBYPAS;
fifoctrl_a |= DAC33_FAUTO;
if (dac33->keep_bclk)
aictrl_b |= DAC33_BCLKON;
else
aictrl_b &= ~DAC33_BCLKON;
break;
default:
/*
* For FIFO bypass mode:
* Enable the FIFO bypass (Disable the FIFO use)
* Set the BCLK as continuous
*/
fifoctrl_a |= DAC33_FBYPAS;
aictrl_b |= DAC33_BCLKON;
break;
}
dac33_write(codec, DAC33_FIFO_CTRL_A, fifoctrl_a);
dac33_write(codec, DAC33_SER_AUDIOIF_CTRL_A, aictrl_a);
dac33_write(codec, DAC33_SER_AUDIOIF_CTRL_B, aictrl_b);
/*
* BCLK divide ratio
* 0: 1.5
* 1: 1
* 2: 2
* ...
* 254: 254
* 255: 255
*/
if (dac33->fifo_mode)
dac33_write(codec, DAC33_SER_AUDIOIF_CTRL_C,
dac33->burst_bclkdiv);
else
if (substream->runtime->format == SNDRV_PCM_FORMAT_S16_LE)
dac33_write(codec, DAC33_SER_AUDIOIF_CTRL_C, 32);
else
dac33_write(codec, DAC33_SER_AUDIOIF_CTRL_C, 16);
switch (dac33->fifo_mode) {
case DAC33_FIFO_MODE1:
dac33_write16(codec, DAC33_ATHR_MSB,
DAC33_THRREG(dac33->alarm_threshold));
break;
case DAC33_FIFO_MODE7:
/*
* Configure the threshold levels, and leave 10 sample space
* at the bottom, and also at the top of the FIFO
*/
dac33_write16(codec, DAC33_UTHR_MSB, DAC33_THRREG(dac33->uthr));
dac33_write16(codec, DAC33_LTHR_MSB,
DAC33_THRREG(DAC33_MODE7_MARGIN));
break;
default:
break;
}
mutex_unlock(&dac33->mutex);
return 0;
}
static void dac33_calculate_times(struct snd_pcm_substream *substream,
struct snd_soc_codec *codec)
{
struct tlv320dac33_priv *dac33 = snd_soc_codec_get_drvdata(codec);
unsigned int period_size = substream->runtime->period_size;
unsigned int rate = substream->runtime->rate;
unsigned int nsample_limit;
/* In bypass mode we don't need to calculate */
if (!dac33->fifo_mode)
return;
switch (dac33->fifo_mode) {
case DAC33_FIFO_MODE1:
/* Number of samples under i2c latency */
dac33->alarm_threshold = US_TO_SAMPLES(rate,
dac33->mode1_latency);
nsample_limit = dac33->fifo_size - dac33->alarm_threshold;
if (period_size <= dac33->alarm_threshold)
/*
* Configure nSamaple to number of periods,
* which covers the latency requironment.
*/
dac33->nsample = period_size *
((dac33->alarm_threshold / period_size) +
(dac33->alarm_threshold % period_size ?
1 : 0));
else if (period_size > nsample_limit)
dac33->nsample = nsample_limit;
else
dac33->nsample = period_size;
dac33->mode1_us_burst = SAMPLES_TO_US(dac33->burst_rate,
dac33->nsample);
dac33->t_stamp1 = 0;
dac33->t_stamp2 = 0;
break;
case DAC33_FIFO_MODE7:
dac33->uthr = UTHR_FROM_PERIOD_SIZE(period_size, rate,
dac33->burst_rate) + 9;
if (dac33->uthr > (dac33->fifo_size - DAC33_MODE7_MARGIN))
dac33->uthr = dac33->fifo_size - DAC33_MODE7_MARGIN;
if (dac33->uthr < (DAC33_MODE7_MARGIN + 10))
dac33->uthr = (DAC33_MODE7_MARGIN + 10);
dac33->mode7_us_to_lthr =
SAMPLES_TO_US(substream->runtime->rate,
dac33->uthr - DAC33_MODE7_MARGIN + 1);
dac33->t_stamp1 = 0;
break;
default:
break;
}
}
static int dac33_pcm_trigger(struct snd_pcm_substream *substream, int cmd,
struct snd_soc_dai *dai)
{
struct snd_soc_codec *codec = dai->codec;
struct tlv320dac33_priv *dac33 = snd_soc_codec_get_drvdata(codec);
int ret = 0;
switch (cmd) {
case SNDRV_PCM_TRIGGER_START:
case SNDRV_PCM_TRIGGER_RESUME:
case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
if (dac33->fifo_mode) {
dac33->state = DAC33_PREFILL;
queue_work(dac33->dac33_wq, &dac33->work);
}
break;
case SNDRV_PCM_TRIGGER_STOP:
case SNDRV_PCM_TRIGGER_SUSPEND:
case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
if (dac33->fifo_mode) {
dac33->state = DAC33_FLUSH;
queue_work(dac33->dac33_wq, &dac33->work);
}
break;
default:
ret = -EINVAL;
}
return ret;
}
static snd_pcm_sframes_t dac33_dai_delay(
struct snd_pcm_substream *substream,
struct snd_soc_dai *dai)
{
struct snd_soc_codec *codec = dai->codec;
struct tlv320dac33_priv *dac33 = snd_soc_codec_get_drvdata(codec);
unsigned long long t0, t1, t_now;
unsigned int time_delta, uthr;
int samples_out, samples_in, samples;
snd_pcm_sframes_t delay = 0;
unsigned long flags;
switch (dac33->fifo_mode) {
case DAC33_FIFO_BYPASS:
break;
case DAC33_FIFO_MODE1:
spin_lock_irqsave(&dac33->lock, flags);
t0 = dac33->t_stamp1;
t1 = dac33->t_stamp2;
spin_unlock_irqrestore(&dac33->lock, flags);
t_now = ktime_to_us(ktime_get());
/* We have not started to fill the FIFO yet, delay is 0 */
if (!t1)
goto out;
if (t0 > t1) {
/*
* Phase 1:
* After Alarm threshold, and before nSample write
*/
time_delta = t_now - t0;
samples_out = time_delta ? US_TO_SAMPLES(
substream->runtime->rate,
time_delta) : 0;
if (likely(dac33->alarm_threshold > samples_out))
delay = dac33->alarm_threshold - samples_out;
else
delay = 0;
} else if ((t_now - t1) <= dac33->mode1_us_burst) {
/*
* Phase 2:
* After nSample write (during burst operation)
*/
time_delta = t_now - t0;
samples_out = time_delta ? US_TO_SAMPLES(
substream->runtime->rate,
time_delta) : 0;
time_delta = t_now - t1;
samples_in = time_delta ? US_TO_SAMPLES(
dac33->burst_rate,
time_delta) : 0;
samples = dac33->alarm_threshold;
samples += (samples_in - samples_out);
if (likely(samples > 0))
delay = samples;
else
delay = 0;
} else {
/*
* Phase 3:
* After burst operation, before next alarm threshold
*/
time_delta = t_now - t0;
samples_out = time_delta ? US_TO_SAMPLES(
substream->runtime->rate,
time_delta) : 0;
samples_in = dac33->nsample;
samples = dac33->alarm_threshold;
samples += (samples_in - samples_out);
if (likely(samples > 0))
delay = samples > dac33->fifo_size ?
dac33->fifo_size : samples;
else
delay = 0;
}
break;
case DAC33_FIFO_MODE7:
spin_lock_irqsave(&dac33->lock, flags);
t0 = dac33->t_stamp1;
uthr = dac33->uthr;
spin_unlock_irqrestore(&dac33->lock, flags);
t_now = ktime_to_us(ktime_get());
/* We have not started to fill the FIFO yet, delay is 0 */
if (!t0)
goto out;
if (t_now <= t0) {
/*
* Either the timestamps are messed or equal. Report
* maximum delay
*/
delay = uthr;
goto out;
}
time_delta = t_now - t0;
if (time_delta <= dac33->mode7_us_to_lthr) {
/*
* Phase 1:
* After burst (draining phase)
*/
samples_out = US_TO_SAMPLES(
substream->runtime->rate,
time_delta);
if (likely(uthr > samples_out))
delay = uthr - samples_out;
else
delay = 0;
} else {
/*
* Phase 2:
* During burst operation
*/
time_delta = time_delta - dac33->mode7_us_to_lthr;
samples_out = US_TO_SAMPLES(
substream->runtime->rate,
time_delta);
samples_in = US_TO_SAMPLES(
dac33->burst_rate,
time_delta);
delay = DAC33_MODE7_MARGIN + samples_in - samples_out;
if (unlikely(delay > uthr))
delay = uthr;
}
break;
default:
dev_warn(codec->dev, "Unhandled FIFO mode: %d\n",
dac33->fifo_mode);
break;
}
out:
return delay;
}
static int dac33_set_dai_sysclk(struct snd_soc_dai *codec_dai,
int clk_id, unsigned int freq, int dir)
{
struct snd_soc_codec *codec = codec_dai->codec;
struct tlv320dac33_priv *dac33 = snd_soc_codec_get_drvdata(codec);
u8 ioc_reg, asrcb_reg;
ioc_reg = dac33_read_reg_cache(codec, DAC33_INT_OSC_CTRL);
asrcb_reg = dac33_read_reg_cache(codec, DAC33_ASRC_CTRL_B);
switch (clk_id) {
case TLV320DAC33_MCLK:
ioc_reg |= DAC33_REFSEL;
asrcb_reg |= DAC33_SRCREFSEL;
break;
case TLV320DAC33_SLEEPCLK:
ioc_reg &= ~DAC33_REFSEL;
asrcb_reg &= ~DAC33_SRCREFSEL;
break;
default:
dev_err(codec->dev, "Invalid clock ID (%d)\n", clk_id);
break;
}
dac33->refclk = freq;
dac33_write_reg_cache(codec, DAC33_INT_OSC_CTRL, ioc_reg);
dac33_write_reg_cache(codec, DAC33_ASRC_CTRL_B, asrcb_reg);
return 0;
}
static int dac33_set_dai_fmt(struct snd_soc_dai *codec_dai,
unsigned int fmt)
{
struct snd_soc_codec *codec = codec_dai->codec;
struct tlv320dac33_priv *dac33 = snd_soc_codec_get_drvdata(codec);
u8 aictrl_a, aictrl_b;
aictrl_a = dac33_read_reg_cache(codec, DAC33_SER_AUDIOIF_CTRL_A);
aictrl_b = dac33_read_reg_cache(codec, DAC33_SER_AUDIOIF_CTRL_B);
/* set master/slave audio interface */
switch (fmt & SND_SOC_DAIFMT_MASTER_MASK) {
case SND_SOC_DAIFMT_CBM_CFM:
/* Codec Master */
aictrl_a |= (DAC33_MSBCLK | DAC33_MSWCLK);
break;
case SND_SOC_DAIFMT_CBS_CFS:
/* Codec Slave */
if (dac33->fifo_mode) {
dev_err(codec->dev, "FIFO mode requires master mode\n");
return -EINVAL;
} else
aictrl_a &= ~(DAC33_MSBCLK | DAC33_MSWCLK);
break;
default:
return -EINVAL;
}
aictrl_a &= ~DAC33_AFMT_MASK;
switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) {
case SND_SOC_DAIFMT_I2S:
aictrl_a |= DAC33_AFMT_I2S;
break;
case SND_SOC_DAIFMT_DSP_A:
aictrl_a |= DAC33_AFMT_DSP;
aictrl_b &= ~DAC33_DATA_DELAY_MASK;
aictrl_b |= DAC33_DATA_DELAY(0);
break;
case SND_SOC_DAIFMT_RIGHT_J:
aictrl_a |= DAC33_AFMT_RIGHT_J;
break;
case SND_SOC_DAIFMT_LEFT_J:
aictrl_a |= DAC33_AFMT_LEFT_J;
break;
default:
dev_err(codec->dev, "Unsupported format (%u)\n",
fmt & SND_SOC_DAIFMT_FORMAT_MASK);
return -EINVAL;
}
dac33_write_reg_cache(codec, DAC33_SER_AUDIOIF_CTRL_A, aictrl_a);
dac33_write_reg_cache(codec, DAC33_SER_AUDIOIF_CTRL_B, aictrl_b);
return 0;
}
static int dac33_soc_probe(struct snd_soc_codec *codec)
{
struct tlv320dac33_priv *dac33 = snd_soc_codec_get_drvdata(codec);
int ret = 0;
codec->control_data = dac33->control_data;
codec->hw_write = (hw_write_t) i2c_master_send;
dac33->codec = codec;
/* Read the tlv320dac33 ID registers */
ret = dac33_hard_power(codec, 1);
if (ret != 0) {
dev_err(codec->dev, "Failed to power up codec: %d\n", ret);
goto err_power;
}
ret = dac33_read_id(codec);
dac33_hard_power(codec, 0);
if (ret < 0) {
dev_err(codec->dev, "Failed to read chip ID: %d\n", ret);
ret = -ENODEV;
goto err_power;
}
/* Check if the IRQ number is valid and request it */
if (dac33->irq >= 0) {
ret = request_irq(dac33->irq, dac33_interrupt_handler,
IRQF_TRIGGER_RISING,
codec->name, codec);
if (ret < 0) {
dev_err(codec->dev, "Could not request IRQ%d (%d)\n",
dac33->irq, ret);
dac33->irq = -1;
}
if (dac33->irq != -1) {
/* Setup work queue */
dac33->dac33_wq =
create_singlethread_workqueue("tlv320dac33");
if (dac33->dac33_wq == NULL) {
free_irq(dac33->irq, codec);
return -ENOMEM;
}
INIT_WORK(&dac33->work, dac33_work);
}
}
/* Only add the FIFO controls, if we have valid IRQ number */
if (dac33->irq >= 0)
snd_soc_add_codec_controls(codec, dac33_mode_snd_controls,
ARRAY_SIZE(dac33_mode_snd_controls));
err_power:
return ret;
}
static int dac33_soc_remove(struct snd_soc_codec *codec)
{
struct tlv320dac33_priv *dac33 = snd_soc_codec_get_drvdata(codec);
dac33_set_bias_level(codec, SND_SOC_BIAS_OFF);
if (dac33->irq >= 0) {
free_irq(dac33->irq, dac33->codec);
destroy_workqueue(dac33->dac33_wq);
}
return 0;
}
static int dac33_soc_suspend(struct snd_soc_codec *codec)
{
dac33_set_bias_level(codec, SND_SOC_BIAS_OFF);
return 0;
}
static int dac33_soc_resume(struct snd_soc_codec *codec)
{
dac33_set_bias_level(codec, SND_SOC_BIAS_STANDBY);
return 0;
}
static struct snd_soc_codec_driver soc_codec_dev_tlv320dac33 = {
.read = dac33_read_reg_cache,
.write = dac33_write_locked,
.set_bias_level = dac33_set_bias_level,
.idle_bias_off = true,
.reg_cache_size = ARRAY_SIZE(dac33_reg),
.reg_word_size = sizeof(u8),
.reg_cache_default = dac33_reg,
.probe = dac33_soc_probe,
.remove = dac33_soc_remove,
.suspend = dac33_soc_suspend,
.resume = dac33_soc_resume,
.controls = dac33_snd_controls,
.num_controls = ARRAY_SIZE(dac33_snd_controls),
.dapm_widgets = dac33_dapm_widgets,
.num_dapm_widgets = ARRAY_SIZE(dac33_dapm_widgets),
.dapm_routes = audio_map,
.num_dapm_routes = ARRAY_SIZE(audio_map),
};
#define DAC33_RATES (SNDRV_PCM_RATE_44100 | \
SNDRV_PCM_RATE_48000)
#define DAC33_FORMATS (SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S32_LE)
static const struct snd_soc_dai_ops dac33_dai_ops = {
.startup = dac33_startup,
.shutdown = dac33_shutdown,
.hw_params = dac33_hw_params,
.trigger = dac33_pcm_trigger,
.delay = dac33_dai_delay,
.set_sysclk = dac33_set_dai_sysclk,
.set_fmt = dac33_set_dai_fmt,
};
static struct snd_soc_dai_driver dac33_dai = {
.name = "tlv320dac33-hifi",
.playback = {
.stream_name = "Playback",
.channels_min = 2,
.channels_max = 2,
.rates = DAC33_RATES,
.formats = DAC33_FORMATS,
.sig_bits = 24,
},
.ops = &dac33_dai_ops,
};
static int __devinit dac33_i2c_probe(struct i2c_client *client,
const struct i2c_device_id *id)
{
struct tlv320dac33_platform_data *pdata;
struct tlv320dac33_priv *dac33;
int ret, i;
if (client->dev.platform_data == NULL) {
dev_err(&client->dev, "Platform data not set\n");
return -ENODEV;
}
pdata = client->dev.platform_data;
dac33 = devm_kzalloc(&client->dev, sizeof(struct tlv320dac33_priv),
GFP_KERNEL);
if (dac33 == NULL)
return -ENOMEM;
dac33->control_data = client;
mutex_init(&dac33->mutex);
spin_lock_init(&dac33->lock);
i2c_set_clientdata(client, dac33);
dac33->power_gpio = pdata->power_gpio;
dac33->burst_bclkdiv = pdata->burst_bclkdiv;
dac33->keep_bclk = pdata->keep_bclk;
dac33->mode1_latency = pdata->mode1_latency;
if (!dac33->mode1_latency)
dac33->mode1_latency = 10000; /* 10ms */
dac33->irq = client->irq;
/* Disable FIFO use by default */
dac33->fifo_mode = DAC33_FIFO_BYPASS;
/* Check if the reset GPIO number is valid and request it */
if (dac33->power_gpio >= 0) {
ret = gpio_request(dac33->power_gpio, "tlv320dac33 reset");
if (ret < 0) {
dev_err(&client->dev,
"Failed to request reset GPIO (%d)\n",
dac33->power_gpio);
goto err_gpio;
}
gpio_direction_output(dac33->power_gpio, 0);
}
for (i = 0; i < ARRAY_SIZE(dac33->supplies); i++)
dac33->supplies[i].supply = dac33_supply_names[i];
ret = regulator_bulk_get(&client->dev, ARRAY_SIZE(dac33->supplies),
dac33->supplies);
if (ret != 0) {
dev_err(&client->dev, "Failed to request supplies: %d\n", ret);
goto err_get;
}
ret = snd_soc_register_codec(&client->dev,
&soc_codec_dev_tlv320dac33, &dac33_dai, 1);
if (ret < 0)
goto err_register;
return ret;
err_register:
regulator_bulk_free(ARRAY_SIZE(dac33->supplies), dac33->supplies);
err_get:
if (dac33->power_gpio >= 0)
gpio_free(dac33->power_gpio);
err_gpio:
return ret;
}
static int __devexit dac33_i2c_remove(struct i2c_client *client)
{
struct tlv320dac33_priv *dac33 = i2c_get_clientdata(client);
if (unlikely(dac33->chip_power))
dac33_hard_power(dac33->codec, 0);
if (dac33->power_gpio >= 0)
gpio_free(dac33->power_gpio);
regulator_bulk_free(ARRAY_SIZE(dac33->supplies), dac33->supplies);
snd_soc_unregister_codec(&client->dev);
return 0;
}
static const struct i2c_device_id tlv320dac33_i2c_id[] = {
{
.name = "tlv320dac33",
.driver_data = 0,
},
{ },
};
MODULE_DEVICE_TABLE(i2c, tlv320dac33_i2c_id);
static struct i2c_driver tlv320dac33_i2c_driver = {
.driver = {
.name = "tlv320dac33-codec",
.owner = THIS_MODULE,
},
.probe = dac33_i2c_probe,
.remove = __devexit_p(dac33_i2c_remove),
.id_table = tlv320dac33_i2c_id,
};
static int __init dac33_module_init(void)
{
int r;
r = i2c_add_driver(&tlv320dac33_i2c_driver);
if (r < 0) {
printk(KERN_ERR "DAC33: driver registration failed\n");
return r;
}
return 0;
}
module_init(dac33_module_init);
static void __exit dac33_module_exit(void)
{
i2c_del_driver(&tlv320dac33_i2c_driver);
}
module_exit(dac33_module_exit);
MODULE_DESCRIPTION("ASoC TLV320DAC33 codec driver");
MODULE_AUTHOR("Peter Ujfalusi <peter.ujfalusi@ti.com>");
MODULE_LICENSE("GPL");