android_kernel_samsung_msm8226/drivers/dma/ioat/dma_v3.c

1281 lines
36 KiB
C
Raw Normal View History

/*
* This file is provided under a dual BSD/GPLv2 license. When using or
* redistributing this file, you may do so under either license.
*
* GPL LICENSE SUMMARY
*
* Copyright(c) 2004 - 2009 Intel Corporation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
*
* The full GNU General Public License is included in this distribution in
* the file called "COPYING".
*
* BSD LICENSE
*
* Copyright(c) 2004-2009 Intel Corporation. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*
* Support routines for v3+ hardware
*/
#include <linux/pci.h>
#include <linux/dmaengine.h>
#include <linux/dma-mapping.h>
#include "registers.h"
#include "hw.h"
#include "dma.h"
#include "dma_v2.h"
/* ioat hardware assumes at least two sources for raid operations */
#define src_cnt_to_sw(x) ((x) + 2)
#define src_cnt_to_hw(x) ((x) - 2)
/* provide a lookup table for setting the source address in the base or
* extended descriptor of an xor or pq descriptor
*/
static const u8 xor_idx_to_desc __read_mostly = 0xd0;
static const u8 xor_idx_to_field[] __read_mostly = { 1, 4, 5, 6, 7, 0, 1, 2 };
static const u8 pq_idx_to_desc __read_mostly = 0xf8;
static const u8 pq_idx_to_field[] __read_mostly = { 1, 4, 5, 0, 1, 2, 4, 5 };
static dma_addr_t xor_get_src(struct ioat_raw_descriptor *descs[2], int idx)
{
struct ioat_raw_descriptor *raw = descs[xor_idx_to_desc >> idx & 1];
return raw->field[xor_idx_to_field[idx]];
}
static void xor_set_src(struct ioat_raw_descriptor *descs[2],
dma_addr_t addr, u32 offset, int idx)
{
struct ioat_raw_descriptor *raw = descs[xor_idx_to_desc >> idx & 1];
raw->field[xor_idx_to_field[idx]] = addr + offset;
}
static dma_addr_t pq_get_src(struct ioat_raw_descriptor *descs[2], int idx)
{
struct ioat_raw_descriptor *raw = descs[pq_idx_to_desc >> idx & 1];
return raw->field[pq_idx_to_field[idx]];
}
static void pq_set_src(struct ioat_raw_descriptor *descs[2],
dma_addr_t addr, u32 offset, u8 coef, int idx)
{
struct ioat_pq_descriptor *pq = (struct ioat_pq_descriptor *) descs[0];
struct ioat_raw_descriptor *raw = descs[pq_idx_to_desc >> idx & 1];
raw->field[pq_idx_to_field[idx]] = addr + offset;
pq->coef[idx] = coef;
}
static void ioat3_dma_unmap(struct ioat2_dma_chan *ioat,
struct ioat_ring_ent *desc, int idx)
{
struct ioat_chan_common *chan = &ioat->base;
struct pci_dev *pdev = chan->device->pdev;
size_t len = desc->len;
size_t offset = len - desc->hw->size;
struct dma_async_tx_descriptor *tx = &desc->txd;
enum dma_ctrl_flags flags = tx->flags;
switch (desc->hw->ctl_f.op) {
case IOAT_OP_COPY:
if (!desc->hw->ctl_f.null) /* skip 'interrupt' ops */
ioat_dma_unmap(chan, flags, len, desc->hw);
break;
case IOAT_OP_FILL: {
struct ioat_fill_descriptor *hw = desc->fill;
if (!(flags & DMA_COMPL_SKIP_DEST_UNMAP))
ioat_unmap(pdev, hw->dst_addr - offset, len,
PCI_DMA_FROMDEVICE, flags, 1);
break;
}
case IOAT_OP_XOR_VAL:
case IOAT_OP_XOR: {
struct ioat_xor_descriptor *xor = desc->xor;
struct ioat_ring_ent *ext;
struct ioat_xor_ext_descriptor *xor_ex = NULL;
int src_cnt = src_cnt_to_sw(xor->ctl_f.src_cnt);
struct ioat_raw_descriptor *descs[2];
int i;
if (src_cnt > 5) {
ext = ioat2_get_ring_ent(ioat, idx + 1);
xor_ex = ext->xor_ex;
}
if (!(flags & DMA_COMPL_SKIP_SRC_UNMAP)) {
descs[0] = (struct ioat_raw_descriptor *) xor;
descs[1] = (struct ioat_raw_descriptor *) xor_ex;
for (i = 0; i < src_cnt; i++) {
dma_addr_t src = xor_get_src(descs, i);
ioat_unmap(pdev, src - offset, len,
PCI_DMA_TODEVICE, flags, 0);
}
/* dest is a source in xor validate operations */
if (xor->ctl_f.op == IOAT_OP_XOR_VAL) {
ioat_unmap(pdev, xor->dst_addr - offset, len,
PCI_DMA_TODEVICE, flags, 1);
break;
}
}
if (!(flags & DMA_COMPL_SKIP_DEST_UNMAP))
ioat_unmap(pdev, xor->dst_addr - offset, len,
PCI_DMA_FROMDEVICE, flags, 1);
break;
}
case IOAT_OP_PQ_VAL:
case IOAT_OP_PQ: {
struct ioat_pq_descriptor *pq = desc->pq;
struct ioat_ring_ent *ext;
struct ioat_pq_ext_descriptor *pq_ex = NULL;
int src_cnt = src_cnt_to_sw(pq->ctl_f.src_cnt);
struct ioat_raw_descriptor *descs[2];
int i;
if (src_cnt > 3) {
ext = ioat2_get_ring_ent(ioat, idx + 1);
pq_ex = ext->pq_ex;
}
/* in the 'continue' case don't unmap the dests as sources */
if (dmaf_p_disabled_continue(flags))
src_cnt--;
else if (dmaf_continue(flags))
src_cnt -= 3;
if (!(flags & DMA_COMPL_SKIP_SRC_UNMAP)) {
descs[0] = (struct ioat_raw_descriptor *) pq;
descs[1] = (struct ioat_raw_descriptor *) pq_ex;
for (i = 0; i < src_cnt; i++) {
dma_addr_t src = pq_get_src(descs, i);
ioat_unmap(pdev, src - offset, len,
PCI_DMA_TODEVICE, flags, 0);
}
/* the dests are sources in pq validate operations */
if (pq->ctl_f.op == IOAT_OP_XOR_VAL) {
if (!(flags & DMA_PREP_PQ_DISABLE_P))
ioat_unmap(pdev, pq->p_addr - offset,
len, PCI_DMA_TODEVICE, flags, 0);
if (!(flags & DMA_PREP_PQ_DISABLE_Q))
ioat_unmap(pdev, pq->q_addr - offset,
len, PCI_DMA_TODEVICE, flags, 0);
break;
}
}
if (!(flags & DMA_COMPL_SKIP_DEST_UNMAP)) {
if (!(flags & DMA_PREP_PQ_DISABLE_P))
ioat_unmap(pdev, pq->p_addr - offset, len,
PCI_DMA_BIDIRECTIONAL, flags, 1);
if (!(flags & DMA_PREP_PQ_DISABLE_Q))
ioat_unmap(pdev, pq->q_addr - offset, len,
PCI_DMA_BIDIRECTIONAL, flags, 1);
}
break;
}
default:
dev_err(&pdev->dev, "%s: unknown op type: %#x\n",
__func__, desc->hw->ctl_f.op);
}
}
static bool desc_has_ext(struct ioat_ring_ent *desc)
{
struct ioat_dma_descriptor *hw = desc->hw;
if (hw->ctl_f.op == IOAT_OP_XOR ||
hw->ctl_f.op == IOAT_OP_XOR_VAL) {
struct ioat_xor_descriptor *xor = desc->xor;
if (src_cnt_to_sw(xor->ctl_f.src_cnt) > 5)
return true;
} else if (hw->ctl_f.op == IOAT_OP_PQ ||
hw->ctl_f.op == IOAT_OP_PQ_VAL) {
struct ioat_pq_descriptor *pq = desc->pq;
if (src_cnt_to_sw(pq->ctl_f.src_cnt) > 3)
return true;
}
return false;
}
/**
* __cleanup - reclaim used descriptors
* @ioat: channel (ring) to clean
*
* The difference from the dma_v2.c __cleanup() is that this routine
* handles extended descriptors and dma-unmapping raid operations.
*/
static void __cleanup(struct ioat2_dma_chan *ioat, unsigned long phys_complete)
{
struct ioat_chan_common *chan = &ioat->base;
struct ioat_ring_ent *desc;
bool seen_current = false;
u16 active;
int i;
dev_dbg(to_dev(chan), "%s: head: %#x tail: %#x issued: %#x\n",
__func__, ioat->head, ioat->tail, ioat->issued);
active = ioat2_ring_active(ioat);
for (i = 0; i < active && !seen_current; i++) {
struct dma_async_tx_descriptor *tx;
prefetch(ioat2_get_ring_ent(ioat, ioat->tail + i + 1));
desc = ioat2_get_ring_ent(ioat, ioat->tail + i);
dump_desc_dbg(ioat, desc);
tx = &desc->txd;
if (tx->cookie) {
chan->completed_cookie = tx->cookie;
ioat3_dma_unmap(ioat, desc, ioat->tail + i);
tx->cookie = 0;
if (tx->callback) {
tx->callback(tx->callback_param);
tx->callback = NULL;
}
}
if (tx->phys == phys_complete)
seen_current = true;
/* skip extended descriptors */
if (desc_has_ext(desc)) {
BUG_ON(i + 1 >= active);
i++;
}
}
ioat->tail += i;
BUG_ON(!seen_current); /* no active descs have written a completion? */
chan->last_completion = phys_complete;
if (ioat->head == ioat->tail) {
dev_dbg(to_dev(chan), "%s: cancel completion timeout\n",
__func__);
clear_bit(IOAT_COMPLETION_PENDING, &chan->state);
mod_timer(&chan->timer, jiffies + IDLE_TIMEOUT);
}
}
static void ioat3_cleanup(struct ioat2_dma_chan *ioat)
{
struct ioat_chan_common *chan = &ioat->base;
unsigned long phys_complete;
prefetch(chan->completion);
if (!spin_trylock_bh(&chan->cleanup_lock))
return;
if (!ioat_cleanup_preamble(chan, &phys_complete)) {
spin_unlock_bh(&chan->cleanup_lock);
return;
}
if (!spin_trylock_bh(&ioat->ring_lock)) {
spin_unlock_bh(&chan->cleanup_lock);
return;
}
__cleanup(ioat, phys_complete);
spin_unlock_bh(&ioat->ring_lock);
spin_unlock_bh(&chan->cleanup_lock);
}
static void ioat3_cleanup_tasklet(unsigned long data)
{
struct ioat2_dma_chan *ioat = (void *) data;
ioat3_cleanup(ioat);
writew(IOAT_CHANCTRL_RUN, ioat->base.reg_base + IOAT_CHANCTRL_OFFSET);
}
static void ioat3_restart_channel(struct ioat2_dma_chan *ioat)
{
struct ioat_chan_common *chan = &ioat->base;
unsigned long phys_complete;
u32 status;
status = ioat_chansts(chan);
if (is_ioat_active(status) || is_ioat_idle(status))
ioat_suspend(chan);
while (is_ioat_active(status) || is_ioat_idle(status)) {
status = ioat_chansts(chan);
cpu_relax();
}
if (ioat_cleanup_preamble(chan, &phys_complete))
__cleanup(ioat, phys_complete);
__ioat2_restart_chan(ioat);
}
static void ioat3_timer_event(unsigned long data)
{
struct ioat2_dma_chan *ioat = (void *) data;
struct ioat_chan_common *chan = &ioat->base;
spin_lock_bh(&chan->cleanup_lock);
if (test_bit(IOAT_COMPLETION_PENDING, &chan->state)) {
unsigned long phys_complete;
u64 status;
spin_lock_bh(&ioat->ring_lock);
status = ioat_chansts(chan);
/* when halted due to errors check for channel
* programming errors before advancing the completion state
*/
if (is_ioat_halted(status)) {
u32 chanerr;
chanerr = readl(chan->reg_base + IOAT_CHANERR_OFFSET);
dev_err(to_dev(chan), "%s: Channel halted (%x)\n",
__func__, chanerr);
BUG_ON(is_ioat_bug(chanerr));
}
/* if we haven't made progress and we have already
* acknowledged a pending completion once, then be more
* forceful with a restart
*/
if (ioat_cleanup_preamble(chan, &phys_complete))
__cleanup(ioat, phys_complete);
else if (test_bit(IOAT_COMPLETION_ACK, &chan->state))
ioat3_restart_channel(ioat);
else {
set_bit(IOAT_COMPLETION_ACK, &chan->state);
mod_timer(&chan->timer, jiffies + COMPLETION_TIMEOUT);
}
spin_unlock_bh(&ioat->ring_lock);
} else {
u16 active;
/* if the ring is idle, empty, and oversized try to step
* down the size
*/
spin_lock_bh(&ioat->ring_lock);
active = ioat2_ring_active(ioat);
if (active == 0 && ioat->alloc_order > ioat_get_alloc_order())
reshape_ring(ioat, ioat->alloc_order-1);
spin_unlock_bh(&ioat->ring_lock);
/* keep shrinking until we get back to our minimum
* default size
*/
if (ioat->alloc_order > ioat_get_alloc_order())
mod_timer(&chan->timer, jiffies + IDLE_TIMEOUT);
}
spin_unlock_bh(&chan->cleanup_lock);
}
static enum dma_status
ioat3_is_complete(struct dma_chan *c, dma_cookie_t cookie,
dma_cookie_t *done, dma_cookie_t *used)
{
struct ioat2_dma_chan *ioat = to_ioat2_chan(c);
if (ioat_is_complete(c, cookie, done, used) == DMA_SUCCESS)
return DMA_SUCCESS;
ioat3_cleanup(ioat);
return ioat_is_complete(c, cookie, done, used);
}
static struct dma_async_tx_descriptor *
ioat3_prep_memset_lock(struct dma_chan *c, dma_addr_t dest, int value,
size_t len, unsigned long flags)
{
struct ioat2_dma_chan *ioat = to_ioat2_chan(c);
struct ioat_ring_ent *desc;
size_t total_len = len;
struct ioat_fill_descriptor *fill;
int num_descs;
u64 src_data = (0x0101010101010101ULL) * (value & 0xff);
u16 idx;
int i;
num_descs = ioat2_xferlen_to_descs(ioat, len);
if (likely(num_descs) &&
ioat2_alloc_and_lock(&idx, ioat, num_descs) == 0)
/* pass */;
else
return NULL;
i = 0;
do {
size_t xfer_size = min_t(size_t, len, 1 << ioat->xfercap_log);
desc = ioat2_get_ring_ent(ioat, idx + i);
fill = desc->fill;
fill->size = xfer_size;
fill->src_data = src_data;
fill->dst_addr = dest;
fill->ctl = 0;
fill->ctl_f.op = IOAT_OP_FILL;
len -= xfer_size;
dest += xfer_size;
dump_desc_dbg(ioat, desc);
} while (++i < num_descs);
desc->txd.flags = flags;
desc->len = total_len;
fill->ctl_f.int_en = !!(flags & DMA_PREP_INTERRUPT);
fill->ctl_f.fence = !!(flags & DMA_PREP_FENCE);
fill->ctl_f.compl_write = 1;
dump_desc_dbg(ioat, desc);
/* we leave the channel locked to ensure in order submission */
return &desc->txd;
}
static struct dma_async_tx_descriptor *
__ioat3_prep_xor_lock(struct dma_chan *c, enum sum_check_flags *result,
dma_addr_t dest, dma_addr_t *src, unsigned int src_cnt,
size_t len, unsigned long flags)
{
struct ioat2_dma_chan *ioat = to_ioat2_chan(c);
struct ioat_ring_ent *compl_desc;
struct ioat_ring_ent *desc;
struct ioat_ring_ent *ext;
size_t total_len = len;
struct ioat_xor_descriptor *xor;
struct ioat_xor_ext_descriptor *xor_ex = NULL;
struct ioat_dma_descriptor *hw;
u32 offset = 0;
int num_descs;
int with_ext;
int i;
u16 idx;
u8 op = result ? IOAT_OP_XOR_VAL : IOAT_OP_XOR;
BUG_ON(src_cnt < 2);
num_descs = ioat2_xferlen_to_descs(ioat, len);
/* we need 2x the number of descriptors to cover greater than 5
* sources
*/
if (src_cnt > 5) {
with_ext = 1;
num_descs *= 2;
} else
with_ext = 0;
/* completion writes from the raid engine may pass completion
* writes from the legacy engine, so we need one extra null
* (legacy) descriptor to ensure all completion writes arrive in
* order.
*/
if (likely(num_descs) &&
ioat2_alloc_and_lock(&idx, ioat, num_descs+1) == 0)
/* pass */;
else
return NULL;
i = 0;
do {
struct ioat_raw_descriptor *descs[2];
size_t xfer_size = min_t(size_t, len, 1 << ioat->xfercap_log);
int s;
desc = ioat2_get_ring_ent(ioat, idx + i);
xor = desc->xor;
/* save a branch by unconditionally retrieving the
* extended descriptor xor_set_src() knows to not write
* to it in the single descriptor case
*/
ext = ioat2_get_ring_ent(ioat, idx + i + 1);
xor_ex = ext->xor_ex;
descs[0] = (struct ioat_raw_descriptor *) xor;
descs[1] = (struct ioat_raw_descriptor *) xor_ex;
for (s = 0; s < src_cnt; s++)
xor_set_src(descs, src[s], offset, s);
xor->size = xfer_size;
xor->dst_addr = dest + offset;
xor->ctl = 0;
xor->ctl_f.op = op;
xor->ctl_f.src_cnt = src_cnt_to_hw(src_cnt);
len -= xfer_size;
offset += xfer_size;
dump_desc_dbg(ioat, desc);
} while ((i += 1 + with_ext) < num_descs);
/* last xor descriptor carries the unmap parameters and fence bit */
desc->txd.flags = flags;
desc->len = total_len;
if (result)
desc->result = result;
xor->ctl_f.fence = !!(flags & DMA_PREP_FENCE);
/* completion descriptor carries interrupt bit */
compl_desc = ioat2_get_ring_ent(ioat, idx + i);
compl_desc->txd.flags = flags & DMA_PREP_INTERRUPT;
hw = compl_desc->hw;
hw->ctl = 0;
hw->ctl_f.null = 1;
hw->ctl_f.int_en = !!(flags & DMA_PREP_INTERRUPT);
hw->ctl_f.compl_write = 1;
hw->size = NULL_DESC_BUFFER_SIZE;
dump_desc_dbg(ioat, compl_desc);
/* we leave the channel locked to ensure in order submission */
return &compl_desc->txd;
}
static struct dma_async_tx_descriptor *
ioat3_prep_xor(struct dma_chan *chan, dma_addr_t dest, dma_addr_t *src,
unsigned int src_cnt, size_t len, unsigned long flags)
{
return __ioat3_prep_xor_lock(chan, NULL, dest, src, src_cnt, len, flags);
}
struct dma_async_tx_descriptor *
ioat3_prep_xor_val(struct dma_chan *chan, dma_addr_t *src,
unsigned int src_cnt, size_t len,
enum sum_check_flags *result, unsigned long flags)
{
/* the cleanup routine only sets bits on validate failure, it
* does not clear bits on validate success... so clear it here
*/
*result = 0;
return __ioat3_prep_xor_lock(chan, result, src[0], &src[1],
src_cnt - 1, len, flags);
}
static void
dump_pq_desc_dbg(struct ioat2_dma_chan *ioat, struct ioat_ring_ent *desc, struct ioat_ring_ent *ext)
{
struct device *dev = to_dev(&ioat->base);
struct ioat_pq_descriptor *pq = desc->pq;
struct ioat_pq_ext_descriptor *pq_ex = ext ? ext->pq_ex : NULL;
struct ioat_raw_descriptor *descs[] = { (void *) pq, (void *) pq_ex };
int src_cnt = src_cnt_to_sw(pq->ctl_f.src_cnt);
int i;
dev_dbg(dev, "desc[%d]: (%#llx->%#llx) flags: %#x"
" sz: %#x ctl: %#x (op: %d int: %d compl: %d pq: '%s%s' src_cnt: %d)\n",
desc_id(desc), (unsigned long long) desc->txd.phys,
(unsigned long long) (pq_ex ? pq_ex->next : pq->next),
desc->txd.flags, pq->size, pq->ctl, pq->ctl_f.op, pq->ctl_f.int_en,
pq->ctl_f.compl_write,
pq->ctl_f.p_disable ? "" : "p", pq->ctl_f.q_disable ? "" : "q",
pq->ctl_f.src_cnt);
for (i = 0; i < src_cnt; i++)
dev_dbg(dev, "\tsrc[%d]: %#llx coef: %#x\n", i,
(unsigned long long) pq_get_src(descs, i), pq->coef[i]);
dev_dbg(dev, "\tP: %#llx\n", pq->p_addr);
dev_dbg(dev, "\tQ: %#llx\n", pq->q_addr);
}
static struct dma_async_tx_descriptor *
__ioat3_prep_pq_lock(struct dma_chan *c, enum sum_check_flags *result,
const dma_addr_t *dst, const dma_addr_t *src,
unsigned int src_cnt, const unsigned char *scf,
size_t len, unsigned long flags)
{
struct ioat2_dma_chan *ioat = to_ioat2_chan(c);
struct ioat_chan_common *chan = &ioat->base;
struct ioat_ring_ent *compl_desc;
struct ioat_ring_ent *desc;
struct ioat_ring_ent *ext;
size_t total_len = len;
struct ioat_pq_descriptor *pq;
struct ioat_pq_ext_descriptor *pq_ex = NULL;
struct ioat_dma_descriptor *hw;
u32 offset = 0;
int num_descs;
int with_ext;
int i, s;
u16 idx;
u8 op = result ? IOAT_OP_PQ_VAL : IOAT_OP_PQ;
dev_dbg(to_dev(chan), "%s\n", __func__);
/* the engine requires at least two sources (we provide
* at least 1 implied source in the DMA_PREP_CONTINUE case)
*/
BUG_ON(src_cnt + dmaf_continue(flags) < 2);
num_descs = ioat2_xferlen_to_descs(ioat, len);
/* we need 2x the number of descriptors to cover greater than 3
* sources (we need 1 extra source in the q-only continuation
* case and 3 extra sources in the p+q continuation case.
*/
if (src_cnt + dmaf_p_disabled_continue(flags) > 3 ||
(dmaf_continue(flags) && !dmaf_p_disabled_continue(flags))) {
with_ext = 1;
num_descs *= 2;
} else
with_ext = 0;
/* completion writes from the raid engine may pass completion
* writes from the legacy engine, so we need one extra null
* (legacy) descriptor to ensure all completion writes arrive in
* order.
*/
if (likely(num_descs) &&
ioat2_alloc_and_lock(&idx, ioat, num_descs+1) == 0)
/* pass */;
else
return NULL;
i = 0;
do {
struct ioat_raw_descriptor *descs[2];
size_t xfer_size = min_t(size_t, len, 1 << ioat->xfercap_log);
desc = ioat2_get_ring_ent(ioat, idx + i);
pq = desc->pq;
/* save a branch by unconditionally retrieving the
* extended descriptor pq_set_src() knows to not write
* to it in the single descriptor case
*/
ext = ioat2_get_ring_ent(ioat, idx + i + with_ext);
pq_ex = ext->pq_ex;
descs[0] = (struct ioat_raw_descriptor *) pq;
descs[1] = (struct ioat_raw_descriptor *) pq_ex;
for (s = 0; s < src_cnt; s++)
pq_set_src(descs, src[s], offset, scf[s], s);
/* see the comment for dma_maxpq in include/linux/dmaengine.h */
if (dmaf_p_disabled_continue(flags))
pq_set_src(descs, dst[1], offset, 1, s++);
else if (dmaf_continue(flags)) {
pq_set_src(descs, dst[0], offset, 0, s++);
pq_set_src(descs, dst[1], offset, 1, s++);
pq_set_src(descs, dst[1], offset, 0, s++);
}
pq->size = xfer_size;
pq->p_addr = dst[0] + offset;
pq->q_addr = dst[1] + offset;
pq->ctl = 0;
pq->ctl_f.op = op;
pq->ctl_f.src_cnt = src_cnt_to_hw(s);
pq->ctl_f.p_disable = !!(flags & DMA_PREP_PQ_DISABLE_P);
pq->ctl_f.q_disable = !!(flags & DMA_PREP_PQ_DISABLE_Q);
len -= xfer_size;
offset += xfer_size;
} while ((i += 1 + with_ext) < num_descs);
/* last pq descriptor carries the unmap parameters and fence bit */
desc->txd.flags = flags;
desc->len = total_len;
if (result)
desc->result = result;
pq->ctl_f.fence = !!(flags & DMA_PREP_FENCE);
dump_pq_desc_dbg(ioat, desc, ext);
/* completion descriptor carries interrupt bit */
compl_desc = ioat2_get_ring_ent(ioat, idx + i);
compl_desc->txd.flags = flags & DMA_PREP_INTERRUPT;
hw = compl_desc->hw;
hw->ctl = 0;
hw->ctl_f.null = 1;
hw->ctl_f.int_en = !!(flags & DMA_PREP_INTERRUPT);
hw->ctl_f.compl_write = 1;
hw->size = NULL_DESC_BUFFER_SIZE;
dump_desc_dbg(ioat, compl_desc);
/* we leave the channel locked to ensure in order submission */
return &compl_desc->txd;
}
static struct dma_async_tx_descriptor *
ioat3_prep_pq(struct dma_chan *chan, dma_addr_t *dst, dma_addr_t *src,
unsigned int src_cnt, const unsigned char *scf, size_t len,
unsigned long flags)
{
/* specify valid address for disabled result */
if (flags & DMA_PREP_PQ_DISABLE_P)
dst[0] = dst[1];
if (flags & DMA_PREP_PQ_DISABLE_Q)
dst[1] = dst[0];
/* handle the single source multiply case from the raid6
* recovery path
*/
if ((flags & DMA_PREP_PQ_DISABLE_P) && src_cnt == 1) {
dma_addr_t single_source[2];
unsigned char single_source_coef[2];
BUG_ON(flags & DMA_PREP_PQ_DISABLE_Q);
single_source[0] = src[0];
single_source[1] = src[0];
single_source_coef[0] = scf[0];
single_source_coef[1] = 0;
return __ioat3_prep_pq_lock(chan, NULL, dst, single_source, 2,
single_source_coef, len, flags);
} else
return __ioat3_prep_pq_lock(chan, NULL, dst, src, src_cnt, scf,
len, flags);
}
struct dma_async_tx_descriptor *
ioat3_prep_pq_val(struct dma_chan *chan, dma_addr_t *pq, dma_addr_t *src,
unsigned int src_cnt, const unsigned char *scf, size_t len,
enum sum_check_flags *pqres, unsigned long flags)
{
/* specify valid address for disabled result */
if (flags & DMA_PREP_PQ_DISABLE_P)
pq[0] = pq[1];
if (flags & DMA_PREP_PQ_DISABLE_Q)
pq[1] = pq[0];
/* the cleanup routine only sets bits on validate failure, it
* does not clear bits on validate success... so clear it here
*/
*pqres = 0;
return __ioat3_prep_pq_lock(chan, pqres, pq, src, src_cnt, scf, len,
flags);
}
static struct dma_async_tx_descriptor *
ioat3_prep_pqxor(struct dma_chan *chan, dma_addr_t dst, dma_addr_t *src,
unsigned int src_cnt, size_t len, unsigned long flags)
{
unsigned char scf[src_cnt];
dma_addr_t pq[2];
memset(scf, 0, src_cnt);
pq[0] = dst;
flags |= DMA_PREP_PQ_DISABLE_Q;
pq[1] = dst; /* specify valid address for disabled result */
return __ioat3_prep_pq_lock(chan, NULL, pq, src, src_cnt, scf, len,
flags);
}
struct dma_async_tx_descriptor *
ioat3_prep_pqxor_val(struct dma_chan *chan, dma_addr_t *src,
unsigned int src_cnt, size_t len,
enum sum_check_flags *result, unsigned long flags)
{
unsigned char scf[src_cnt];
dma_addr_t pq[2];
/* the cleanup routine only sets bits on validate failure, it
* does not clear bits on validate success... so clear it here
*/
*result = 0;
memset(scf, 0, src_cnt);
pq[0] = src[0];
flags |= DMA_PREP_PQ_DISABLE_Q;
pq[1] = pq[0]; /* specify valid address for disabled result */
return __ioat3_prep_pq_lock(chan, result, pq, &src[1], src_cnt - 1, scf,
len, flags);
}
static struct dma_async_tx_descriptor *
ioat3_prep_interrupt_lock(struct dma_chan *c, unsigned long flags)
{
struct ioat2_dma_chan *ioat = to_ioat2_chan(c);
struct ioat_ring_ent *desc;
struct ioat_dma_descriptor *hw;
u16 idx;
if (ioat2_alloc_and_lock(&idx, ioat, 1) == 0)
desc = ioat2_get_ring_ent(ioat, idx);
else
return NULL;
hw = desc->hw;
hw->ctl = 0;
hw->ctl_f.null = 1;
hw->ctl_f.int_en = 1;
hw->ctl_f.fence = !!(flags & DMA_PREP_FENCE);
hw->ctl_f.compl_write = 1;
hw->size = NULL_DESC_BUFFER_SIZE;
hw->src_addr = 0;
hw->dst_addr = 0;
desc->txd.flags = flags;
desc->len = 1;
dump_desc_dbg(ioat, desc);
/* we leave the channel locked to ensure in order submission */
return &desc->txd;
}
static void __devinit ioat3_dma_test_callback(void *dma_async_param)
{
struct completion *cmp = dma_async_param;
complete(cmp);
}
#define IOAT_NUM_SRC_TEST 6 /* must be <= 8 */
static int __devinit ioat_xor_val_self_test(struct ioatdma_device *device)
{
int i, src_idx;
struct page *dest;
struct page *xor_srcs[IOAT_NUM_SRC_TEST];
struct page *xor_val_srcs[IOAT_NUM_SRC_TEST + 1];
dma_addr_t dma_srcs[IOAT_NUM_SRC_TEST + 1];
dma_addr_t dma_addr, dest_dma;
struct dma_async_tx_descriptor *tx;
struct dma_chan *dma_chan;
dma_cookie_t cookie;
u8 cmp_byte = 0;
u32 cmp_word;
u32 xor_val_result;
int err = 0;
struct completion cmp;
unsigned long tmo;
struct device *dev = &device->pdev->dev;
struct dma_device *dma = &device->common;
dev_dbg(dev, "%s\n", __func__);
if (!dma_has_cap(DMA_XOR, dma->cap_mask))
return 0;
for (src_idx = 0; src_idx < IOAT_NUM_SRC_TEST; src_idx++) {
xor_srcs[src_idx] = alloc_page(GFP_KERNEL);
if (!xor_srcs[src_idx]) {
while (src_idx--)
__free_page(xor_srcs[src_idx]);
return -ENOMEM;
}
}
dest = alloc_page(GFP_KERNEL);
if (!dest) {
while (src_idx--)
__free_page(xor_srcs[src_idx]);
return -ENOMEM;
}
/* Fill in src buffers */
for (src_idx = 0; src_idx < IOAT_NUM_SRC_TEST; src_idx++) {
u8 *ptr = page_address(xor_srcs[src_idx]);
for (i = 0; i < PAGE_SIZE; i++)
ptr[i] = (1 << src_idx);
}
for (src_idx = 0; src_idx < IOAT_NUM_SRC_TEST; src_idx++)
cmp_byte ^= (u8) (1 << src_idx);
cmp_word = (cmp_byte << 24) | (cmp_byte << 16) |
(cmp_byte << 8) | cmp_byte;
memset(page_address(dest), 0, PAGE_SIZE);
dma_chan = container_of(dma->channels.next, struct dma_chan,
device_node);
if (dma->device_alloc_chan_resources(dma_chan) < 1) {
err = -ENODEV;
goto out;
}
/* test xor */
dest_dma = dma_map_page(dev, dest, 0, PAGE_SIZE, DMA_FROM_DEVICE);
for (i = 0; i < IOAT_NUM_SRC_TEST; i++)
dma_srcs[i] = dma_map_page(dev, xor_srcs[i], 0, PAGE_SIZE,
DMA_TO_DEVICE);
tx = dma->device_prep_dma_xor(dma_chan, dest_dma, dma_srcs,
IOAT_NUM_SRC_TEST, PAGE_SIZE,
DMA_PREP_INTERRUPT);
if (!tx) {
dev_err(dev, "Self-test xor prep failed\n");
err = -ENODEV;
goto free_resources;
}
async_tx_ack(tx);
init_completion(&cmp);
tx->callback = ioat3_dma_test_callback;
tx->callback_param = &cmp;
cookie = tx->tx_submit(tx);
if (cookie < 0) {
dev_err(dev, "Self-test xor setup failed\n");
err = -ENODEV;
goto free_resources;
}
dma->device_issue_pending(dma_chan);
tmo = wait_for_completion_timeout(&cmp, msecs_to_jiffies(3000));
if (dma->device_is_tx_complete(dma_chan, cookie, NULL, NULL) != DMA_SUCCESS) {
dev_err(dev, "Self-test xor timed out\n");
err = -ENODEV;
goto free_resources;
}
dma_sync_single_for_cpu(dev, dest_dma, PAGE_SIZE, DMA_FROM_DEVICE);
for (i = 0; i < (PAGE_SIZE / sizeof(u32)); i++) {
u32 *ptr = page_address(dest);
if (ptr[i] != cmp_word) {
dev_err(dev, "Self-test xor failed compare\n");
err = -ENODEV;
goto free_resources;
}
}
dma_sync_single_for_device(dev, dest_dma, PAGE_SIZE, DMA_TO_DEVICE);
/* skip validate if the capability is not present */
if (!dma_has_cap(DMA_XOR_VAL, dma_chan->device->cap_mask))
goto free_resources;
/* validate the sources with the destintation page */
for (i = 0; i < IOAT_NUM_SRC_TEST; i++)
xor_val_srcs[i] = xor_srcs[i];
xor_val_srcs[i] = dest;
xor_val_result = 1;
for (i = 0; i < IOAT_NUM_SRC_TEST + 1; i++)
dma_srcs[i] = dma_map_page(dev, xor_val_srcs[i], 0, PAGE_SIZE,
DMA_TO_DEVICE);
tx = dma->device_prep_dma_xor_val(dma_chan, dma_srcs,
IOAT_NUM_SRC_TEST + 1, PAGE_SIZE,
&xor_val_result, DMA_PREP_INTERRUPT);
if (!tx) {
dev_err(dev, "Self-test zero prep failed\n");
err = -ENODEV;
goto free_resources;
}
async_tx_ack(tx);
init_completion(&cmp);
tx->callback = ioat3_dma_test_callback;
tx->callback_param = &cmp;
cookie = tx->tx_submit(tx);
if (cookie < 0) {
dev_err(dev, "Self-test zero setup failed\n");
err = -ENODEV;
goto free_resources;
}
dma->device_issue_pending(dma_chan);
tmo = wait_for_completion_timeout(&cmp, msecs_to_jiffies(3000));
if (dma->device_is_tx_complete(dma_chan, cookie, NULL, NULL) != DMA_SUCCESS) {
dev_err(dev, "Self-test validate timed out\n");
err = -ENODEV;
goto free_resources;
}
if (xor_val_result != 0) {
dev_err(dev, "Self-test validate failed compare\n");
err = -ENODEV;
goto free_resources;
}
/* skip memset if the capability is not present */
if (!dma_has_cap(DMA_MEMSET, dma_chan->device->cap_mask))
goto free_resources;
/* test memset */
dma_addr = dma_map_page(dev, dest, 0,
PAGE_SIZE, DMA_FROM_DEVICE);
tx = dma->device_prep_dma_memset(dma_chan, dma_addr, 0, PAGE_SIZE,
DMA_PREP_INTERRUPT);
if (!tx) {
dev_err(dev, "Self-test memset prep failed\n");
err = -ENODEV;
goto free_resources;
}
async_tx_ack(tx);
init_completion(&cmp);
tx->callback = ioat3_dma_test_callback;
tx->callback_param = &cmp;
cookie = tx->tx_submit(tx);
if (cookie < 0) {
dev_err(dev, "Self-test memset setup failed\n");
err = -ENODEV;
goto free_resources;
}
dma->device_issue_pending(dma_chan);
tmo = wait_for_completion_timeout(&cmp, msecs_to_jiffies(3000));
if (dma->device_is_tx_complete(dma_chan, cookie, NULL, NULL) != DMA_SUCCESS) {
dev_err(dev, "Self-test memset timed out\n");
err = -ENODEV;
goto free_resources;
}
for (i = 0; i < PAGE_SIZE/sizeof(u32); i++) {
u32 *ptr = page_address(dest);
if (ptr[i]) {
dev_err(dev, "Self-test memset failed compare\n");
err = -ENODEV;
goto free_resources;
}
}
/* test for non-zero parity sum */
xor_val_result = 0;
for (i = 0; i < IOAT_NUM_SRC_TEST + 1; i++)
dma_srcs[i] = dma_map_page(dev, xor_val_srcs[i], 0, PAGE_SIZE,
DMA_TO_DEVICE);
tx = dma->device_prep_dma_xor_val(dma_chan, dma_srcs,
IOAT_NUM_SRC_TEST + 1, PAGE_SIZE,
&xor_val_result, DMA_PREP_INTERRUPT);
if (!tx) {
dev_err(dev, "Self-test 2nd zero prep failed\n");
err = -ENODEV;
goto free_resources;
}
async_tx_ack(tx);
init_completion(&cmp);
tx->callback = ioat3_dma_test_callback;
tx->callback_param = &cmp;
cookie = tx->tx_submit(tx);
if (cookie < 0) {
dev_err(dev, "Self-test 2nd zero setup failed\n");
err = -ENODEV;
goto free_resources;
}
dma->device_issue_pending(dma_chan);
tmo = wait_for_completion_timeout(&cmp, msecs_to_jiffies(3000));
if (dma->device_is_tx_complete(dma_chan, cookie, NULL, NULL) != DMA_SUCCESS) {
dev_err(dev, "Self-test 2nd validate timed out\n");
err = -ENODEV;
goto free_resources;
}
if (xor_val_result != SUM_CHECK_P_RESULT) {
dev_err(dev, "Self-test validate failed compare\n");
err = -ENODEV;
goto free_resources;
}
free_resources:
dma->device_free_chan_resources(dma_chan);
out:
src_idx = IOAT_NUM_SRC_TEST;
while (src_idx--)
__free_page(xor_srcs[src_idx]);
__free_page(dest);
return err;
}
static int __devinit ioat3_dma_self_test(struct ioatdma_device *device)
{
int rc = ioat_dma_self_test(device);
if (rc)
return rc;
rc = ioat_xor_val_self_test(device);
if (rc)
return rc;
return 0;
}
static int ioat3_reset_hw(struct ioat_chan_common *chan)
{
/* throw away whatever the channel was doing and get it
* initialized, with ioat3 specific workarounds
*/
struct ioatdma_device *device = chan->device;
struct pci_dev *pdev = device->pdev;
u32 chanerr;
u16 dev_id;
int err;
ioat2_quiesce(chan, msecs_to_jiffies(100));
chanerr = readl(chan->reg_base + IOAT_CHANERR_OFFSET);
writel(chanerr, chan->reg_base + IOAT_CHANERR_OFFSET);
/* -= IOAT ver.3 workarounds =- */
/* Write CHANERRMSK_INT with 3E07h to mask out the errors
* that can cause stability issues for IOAT ver.3, and clear any
* pending errors
*/
pci_write_config_dword(pdev, IOAT_PCI_CHANERRMASK_INT_OFFSET, 0x3e07);
err = pci_read_config_dword(pdev, IOAT_PCI_CHANERR_INT_OFFSET, &chanerr);
if (err) {
dev_err(&pdev->dev, "channel error register unreachable\n");
return err;
}
pci_write_config_dword(pdev, IOAT_PCI_CHANERR_INT_OFFSET, chanerr);
/* Clear DMAUNCERRSTS Cfg-Reg Parity Error status bit
* (workaround for spurious config parity error after restart)
*/
pci_read_config_word(pdev, IOAT_PCI_DEVICE_ID_OFFSET, &dev_id);
if (dev_id == PCI_DEVICE_ID_INTEL_IOAT_TBG0)
pci_write_config_dword(pdev, IOAT_PCI_DMAUNCERRSTS_OFFSET, 0x10);
return ioat2_reset_sync(chan, msecs_to_jiffies(200));
}
int __devinit ioat3_dma_probe(struct ioatdma_device *device, int dca)
{
struct pci_dev *pdev = device->pdev;
int dca_en = system_has_dca_enabled(pdev);
struct dma_device *dma;
struct dma_chan *c;
struct ioat_chan_common *chan;
bool is_raid_device = false;
int err;
u32 cap;
device->enumerate_channels = ioat2_enumerate_channels;
device->reset_hw = ioat3_reset_hw;
device->self_test = ioat3_dma_self_test;
dma = &device->common;
dma->device_prep_dma_memcpy = ioat2_dma_prep_memcpy_lock;
dma->device_issue_pending = ioat2_issue_pending;
dma->device_alloc_chan_resources = ioat2_alloc_chan_resources;
dma->device_free_chan_resources = ioat2_free_chan_resources;
dma_cap_set(DMA_INTERRUPT, dma->cap_mask);
dma->device_prep_dma_interrupt = ioat3_prep_interrupt_lock;
cap = readl(device->reg_base + IOAT_DMA_CAP_OFFSET);
/* dca is incompatible with raid operations */
if (dca_en && (cap & (IOAT_CAP_XOR|IOAT_CAP_PQ)))
cap &= ~(IOAT_CAP_XOR|IOAT_CAP_PQ);
if (cap & IOAT_CAP_XOR) {
is_raid_device = true;
dma->max_xor = 8;
dma->xor_align = 2;
dma_cap_set(DMA_XOR, dma->cap_mask);
dma->device_prep_dma_xor = ioat3_prep_xor;
dma_cap_set(DMA_XOR_VAL, dma->cap_mask);
dma->device_prep_dma_xor_val = ioat3_prep_xor_val;
}
if (cap & IOAT_CAP_PQ) {
is_raid_device = true;
dma_set_maxpq(dma, 8, 0);
dma->pq_align = 2;
dma_cap_set(DMA_PQ, dma->cap_mask);
dma->device_prep_dma_pq = ioat3_prep_pq;
dma_cap_set(DMA_PQ_VAL, dma->cap_mask);
dma->device_prep_dma_pq_val = ioat3_prep_pq_val;
if (!(cap & IOAT_CAP_XOR)) {
dma->max_xor = 8;
dma->xor_align = 2;
dma_cap_set(DMA_XOR, dma->cap_mask);
dma->device_prep_dma_xor = ioat3_prep_pqxor;
dma_cap_set(DMA_XOR_VAL, dma->cap_mask);
dma->device_prep_dma_xor_val = ioat3_prep_pqxor_val;
}
}
if (is_raid_device && (cap & IOAT_CAP_FILL_BLOCK)) {
dma_cap_set(DMA_MEMSET, dma->cap_mask);
dma->device_prep_dma_memset = ioat3_prep_memset_lock;
}
if (is_raid_device) {
dma->device_is_tx_complete = ioat3_is_complete;
device->cleanup_tasklet = ioat3_cleanup_tasklet;
device->timer_fn = ioat3_timer_event;
} else {
dma->device_is_tx_complete = ioat2_is_complete;
device->cleanup_tasklet = ioat2_cleanup_tasklet;
device->timer_fn = ioat2_timer_event;
}
#ifdef CONFIG_ASYNC_TX_DISABLE_PQ_VAL_DMA
dma_cap_clear(DMA_PQ_VAL, dma->cap_mask);
dma->device_prep_dma_pq_val = NULL;
#endif
#ifdef CONFIG_ASYNC_TX_DISABLE_XOR_VAL_DMA
dma_cap_clear(DMA_XOR_VAL, dma->cap_mask);
dma->device_prep_dma_xor_val = NULL;
#endif
err = ioat_probe(device);
if (err)
return err;
ioat_set_tcp_copy_break(262144);
list_for_each_entry(c, &dma->channels, device_node) {
chan = to_chan_common(c);
writel(IOAT_DMA_DCA_ANY_CPU,
chan->reg_base + IOAT_DCACTRL_OFFSET);
}
err = ioat_register(device);
if (err)
return err;
ioat_kobject_add(device, &ioat2_ktype);
if (dca)
device->dca = ioat3_dca_init(pdev, device->reg_base);
return 0;
}