android_kernel_samsung_msm8226/sound/pci/asihpi/hpi6205.c

2208 lines
64 KiB
C
Raw Normal View History

/******************************************************************************
AudioScience HPI driver
Copyright (C) 1997-2010 AudioScience Inc. <support@audioscience.com>
This program is free software; you can redistribute it and/or modify
it under the terms of version 2 of the GNU General Public License as
published by the Free Software Foundation;
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
Hardware Programming Interface (HPI) for AudioScience
ASI50xx, AS51xx, ASI6xxx, ASI87xx ASI89xx series adapters.
These PCI and PCIe bus adapters are based on a
TMS320C6205 PCI bus mastering DSP,
and (except ASI50xx) TI TMS320C6xxx floating point DSP
Exported function:
void HPI_6205(struct hpi_message *phm, struct hpi_response *phr)
(C) Copyright AudioScience Inc. 1998-2010
*******************************************************************************/
#define SOURCEFILE_NAME "hpi6205.c"
#include "hpi_internal.h"
#include "hpimsginit.h"
#include "hpidebug.h"
#include "hpi6205.h"
#include "hpidspcd.h"
#include "hpicmn.h"
/*****************************************************************************/
/* HPI6205 specific error codes */
#define HPI6205_ERROR_BASE 1000 /* not actually used anywhere */
/* operational/messaging errors */
#define HPI6205_ERROR_MSG_RESP_IDLE_TIMEOUT 1015
#define HPI6205_ERROR_MSG_RESP_TIMEOUT 1016
/* initialization/bootload errors */
#define HPI6205_ERROR_6205_NO_IRQ 1002
#define HPI6205_ERROR_6205_INIT_FAILED 1003
#define HPI6205_ERROR_6205_REG 1006
#define HPI6205_ERROR_6205_DSPPAGE 1007
#define HPI6205_ERROR_C6713_HPIC 1009
#define HPI6205_ERROR_C6713_HPIA 1010
#define HPI6205_ERROR_C6713_PLL 1011
#define HPI6205_ERROR_DSP_INTMEM 1012
#define HPI6205_ERROR_DSP_EXTMEM 1013
#define HPI6205_ERROR_DSP_PLD 1014
#define HPI6205_ERROR_6205_EEPROM 1017
#define HPI6205_ERROR_DSP_EMIF 1018
/*****************************************************************************/
/* for C6205 PCI i/f */
/* Host Status Register (HSR) bitfields */
#define C6205_HSR_INTSRC 0x01
#define C6205_HSR_INTAVAL 0x02
#define C6205_HSR_INTAM 0x04
#define C6205_HSR_CFGERR 0x08
#define C6205_HSR_EEREAD 0x10
/* Host-to-DSP Control Register (HDCR) bitfields */
#define C6205_HDCR_WARMRESET 0x01
#define C6205_HDCR_DSPINT 0x02
#define C6205_HDCR_PCIBOOT 0x04
/* DSP Page Register (DSPP) bitfields, */
/* defines 4 Mbyte page that BAR0 points to */
#define C6205_DSPP_MAP1 0x400
/* BAR0 maps to prefetchable 4 Mbyte memory block set by DSPP.
* BAR1 maps to non-prefetchable 8 Mbyte memory block
* of DSP memory mapped registers (starting at 0x01800000).
* 0x01800000 is hardcoded in the PCI i/f, so that only the offset from this
* needs to be added to the BAR1 base address set in the PCI config reg
*/
#define C6205_BAR1_PCI_IO_OFFSET (0x027FFF0L)
#define C6205_BAR1_HSR (C6205_BAR1_PCI_IO_OFFSET)
#define C6205_BAR1_HDCR (C6205_BAR1_PCI_IO_OFFSET+4)
#define C6205_BAR1_DSPP (C6205_BAR1_PCI_IO_OFFSET+8)
/* used to control LED (revA) and reset C6713 (revB) */
#define C6205_BAR0_TIMER1_CTL (0x01980000L)
/* For first 6713 in CE1 space, using DA17,16,2 */
#define HPICL_ADDR 0x01400000L
#define HPICH_ADDR 0x01400004L
#define HPIAL_ADDR 0x01410000L
#define HPIAH_ADDR 0x01410004L
#define HPIDIL_ADDR 0x01420000L
#define HPIDIH_ADDR 0x01420004L
#define HPIDL_ADDR 0x01430000L
#define HPIDH_ADDR 0x01430004L
#define C6713_EMIF_GCTL 0x01800000
#define C6713_EMIF_CE1 0x01800004
#define C6713_EMIF_CE0 0x01800008
#define C6713_EMIF_CE2 0x01800010
#define C6713_EMIF_CE3 0x01800014
#define C6713_EMIF_SDRAMCTL 0x01800018
#define C6713_EMIF_SDRAMTIMING 0x0180001C
#define C6713_EMIF_SDRAMEXT 0x01800020
struct hpi_hw_obj {
/* PCI registers */
__iomem u32 *prHSR;
__iomem u32 *prHDCR;
__iomem u32 *prDSPP;
u32 dsp_page;
struct consistent_dma_area h_locked_mem;
struct bus_master_interface *p_interface_buffer;
u16 flag_outstream_just_reset[HPI_MAX_STREAMS];
/* a non-NULL handle means there is an HPI allocated buffer */
struct consistent_dma_area instream_host_buffers[HPI_MAX_STREAMS];
struct consistent_dma_area outstream_host_buffers[HPI_MAX_STREAMS];
/* non-zero size means a buffer exists, may be external */
u32 instream_host_buffer_size[HPI_MAX_STREAMS];
u32 outstream_host_buffer_size[HPI_MAX_STREAMS];
struct consistent_dma_area h_control_cache;
struct hpi_control_cache *p_cache;
};
/*****************************************************************************/
/* local prototypes */
#define check_before_bbm_copy(status, p_bbm_data, l_first_write, l_second_write)
static int wait_dsp_ack(struct hpi_hw_obj *phw, int state, int timeout_us);
static void send_dsp_command(struct hpi_hw_obj *phw, int cmd);
static u16 adapter_boot_load_dsp(struct hpi_adapter_obj *pao,
u32 *pos_error_code);
static u16 message_response_sequence(struct hpi_adapter_obj *pao,
struct hpi_message *phm, struct hpi_response *phr);
static void hw_message(struct hpi_adapter_obj *pao, struct hpi_message *phm,
struct hpi_response *phr);
#define HPI6205_TIMEOUT 1000000
static void subsys_create_adapter(struct hpi_message *phm,
struct hpi_response *phr);
static void adapter_delete(struct hpi_adapter_obj *pao,
struct hpi_message *phm, struct hpi_response *phr);
static u16 create_adapter_obj(struct hpi_adapter_obj *pao,
u32 *pos_error_code);
static void delete_adapter_obj(struct hpi_adapter_obj *pao);
static void outstream_host_buffer_allocate(struct hpi_adapter_obj *pao,
struct hpi_message *phm, struct hpi_response *phr);
static void outstream_host_buffer_get_info(struct hpi_adapter_obj *pao,
struct hpi_message *phm, struct hpi_response *phr);
static void outstream_host_buffer_free(struct hpi_adapter_obj *pao,
struct hpi_message *phm, struct hpi_response *phr);
static void outstream_write(struct hpi_adapter_obj *pao,
struct hpi_message *phm, struct hpi_response *phr);
static void outstream_get_info(struct hpi_adapter_obj *pao,
struct hpi_message *phm, struct hpi_response *phr);
static void outstream_start(struct hpi_adapter_obj *pao,
struct hpi_message *phm, struct hpi_response *phr);
static void outstream_open(struct hpi_adapter_obj *pao,
struct hpi_message *phm, struct hpi_response *phr);
static void outstream_reset(struct hpi_adapter_obj *pao,
struct hpi_message *phm, struct hpi_response *phr);
static void instream_host_buffer_allocate(struct hpi_adapter_obj *pao,
struct hpi_message *phm, struct hpi_response *phr);
static void instream_host_buffer_get_info(struct hpi_adapter_obj *pao,
struct hpi_message *phm, struct hpi_response *phr);
static void instream_host_buffer_free(struct hpi_adapter_obj *pao,
struct hpi_message *phm, struct hpi_response *phr);
static void instream_read(struct hpi_adapter_obj *pao,
struct hpi_message *phm, struct hpi_response *phr);
static void instream_get_info(struct hpi_adapter_obj *pao,
struct hpi_message *phm, struct hpi_response *phr);
static void instream_start(struct hpi_adapter_obj *pao,
struct hpi_message *phm, struct hpi_response *phr);
static u32 boot_loader_read_mem32(struct hpi_adapter_obj *pao, int dsp_index,
u32 address);
static void boot_loader_write_mem32(struct hpi_adapter_obj *pao,
int dsp_index, u32 address, u32 data);
static u16 boot_loader_config_emif(struct hpi_adapter_obj *pao,
int dsp_index);
static u16 boot_loader_test_memory(struct hpi_adapter_obj *pao, int dsp_index,
u32 address, u32 length);
static u16 boot_loader_test_internal_memory(struct hpi_adapter_obj *pao,
int dsp_index);
static u16 boot_loader_test_external_memory(struct hpi_adapter_obj *pao,
int dsp_index);
static u16 boot_loader_test_pld(struct hpi_adapter_obj *pao, int dsp_index);
/*****************************************************************************/
static void subsys_message(struct hpi_adapter_obj *pao,
struct hpi_message *phm, struct hpi_response *phr)
{
switch (phm->function) {
case HPI_SUBSYS_CREATE_ADAPTER:
subsys_create_adapter(phm, phr);
break;
default:
phr->error = HPI_ERROR_INVALID_FUNC;
break;
}
}
static void control_message(struct hpi_adapter_obj *pao,
struct hpi_message *phm, struct hpi_response *phr)
{
struct hpi_hw_obj *phw = pao->priv;
u16 pending_cache_error = 0;
switch (phm->function) {
case HPI_CONTROL_GET_STATE:
if (pao->has_control_cache) {
rmb(); /* make sure we see updates DMAed from DSP */
if (hpi_check_control_cache(phw->p_cache, phm, phr)) {
break;
} else if (phm->u.c.attribute == HPI_METER_PEAK) {
pending_cache_error =
HPI_ERROR_CONTROL_CACHING;
}
}
hw_message(pao, phm, phr);
if (pending_cache_error && !phr->error)
phr->error = pending_cache_error;
break;
case HPI_CONTROL_GET_INFO:
hw_message(pao, phm, phr);
break;
case HPI_CONTROL_SET_STATE:
hw_message(pao, phm, phr);
if (pao->has_control_cache)
hpi_cmn_control_cache_sync_to_msg(phw->p_cache, phm,
phr);
break;
default:
phr->error = HPI_ERROR_INVALID_FUNC;
break;
}
}
static void adapter_message(struct hpi_adapter_obj *pao,
struct hpi_message *phm, struct hpi_response *phr)
{
switch (phm->function) {
case HPI_ADAPTER_DELETE:
adapter_delete(pao, phm, phr);
break;
default:
hw_message(pao, phm, phr);
break;
}
}
static void outstream_message(struct hpi_adapter_obj *pao,
struct hpi_message *phm, struct hpi_response *phr)
{
if (phm->obj_index >= HPI_MAX_STREAMS) {
phr->error = HPI_ERROR_INVALID_OBJ_INDEX;
HPI_DEBUG_LOG(WARNING,
"Message referencing invalid stream %d "
"on adapter index %d\n", phm->obj_index,
phm->adapter_index);
return;
}
switch (phm->function) {
case HPI_OSTREAM_WRITE:
outstream_write(pao, phm, phr);
break;
case HPI_OSTREAM_GET_INFO:
outstream_get_info(pao, phm, phr);
break;
case HPI_OSTREAM_HOSTBUFFER_ALLOC:
outstream_host_buffer_allocate(pao, phm, phr);
break;
case HPI_OSTREAM_HOSTBUFFER_GET_INFO:
outstream_host_buffer_get_info(pao, phm, phr);
break;
case HPI_OSTREAM_HOSTBUFFER_FREE:
outstream_host_buffer_free(pao, phm, phr);
break;
case HPI_OSTREAM_START:
outstream_start(pao, phm, phr);
break;
case HPI_OSTREAM_OPEN:
outstream_open(pao, phm, phr);
break;
case HPI_OSTREAM_RESET:
outstream_reset(pao, phm, phr);
break;
default:
hw_message(pao, phm, phr);
break;
}
}
static void instream_message(struct hpi_adapter_obj *pao,
struct hpi_message *phm, struct hpi_response *phr)
{
if (phm->obj_index >= HPI_MAX_STREAMS) {
phr->error = HPI_ERROR_INVALID_OBJ_INDEX;
HPI_DEBUG_LOG(WARNING,
"Message referencing invalid stream %d "
"on adapter index %d\n", phm->obj_index,
phm->adapter_index);
return;
}
switch (phm->function) {
case HPI_ISTREAM_READ:
instream_read(pao, phm, phr);
break;
case HPI_ISTREAM_GET_INFO:
instream_get_info(pao, phm, phr);
break;
case HPI_ISTREAM_HOSTBUFFER_ALLOC:
instream_host_buffer_allocate(pao, phm, phr);
break;
case HPI_ISTREAM_HOSTBUFFER_GET_INFO:
instream_host_buffer_get_info(pao, phm, phr);
break;
case HPI_ISTREAM_HOSTBUFFER_FREE:
instream_host_buffer_free(pao, phm, phr);
break;
case HPI_ISTREAM_START:
instream_start(pao, phm, phr);
break;
default:
hw_message(pao, phm, phr);
break;
}
}
/*****************************************************************************/
/** Entry point to this HPI backend
* All calls to the HPI start here
*/
static
void _HPI_6205(struct hpi_adapter_obj *pao, struct hpi_message *phm,
struct hpi_response *phr)
{
if (pao && (pao->dsp_crashed >= 10)
&& (phm->function != HPI_ADAPTER_DEBUG_READ)) {
/* allow last resort debug read even after crash */
hpi_init_response(phr, phm->object, phm->function,
HPI_ERROR_DSP_HARDWARE);
HPI_DEBUG_LOG(WARNING, " %d,%d dsp crashed.\n", phm->object,
phm->function);
return;
}
/* Init default response */
if (phm->function != HPI_SUBSYS_CREATE_ADAPTER)
phr->error = HPI_ERROR_PROCESSING_MESSAGE;
HPI_DEBUG_LOG(VERBOSE, "start of switch\n");
switch (phm->type) {
case HPI_TYPE_REQUEST:
switch (phm->object) {
case HPI_OBJ_SUBSYSTEM:
subsys_message(pao, phm, phr);
break;
case HPI_OBJ_ADAPTER:
adapter_message(pao, phm, phr);
break;
case HPI_OBJ_CONTROL:
control_message(pao, phm, phr);
break;
case HPI_OBJ_OSTREAM:
outstream_message(pao, phm, phr);
break;
case HPI_OBJ_ISTREAM:
instream_message(pao, phm, phr);
break;
default:
hw_message(pao, phm, phr);
break;
}
break;
default:
phr->error = HPI_ERROR_INVALID_TYPE;
break;
}
}
void HPI_6205(struct hpi_message *phm, struct hpi_response *phr)
{
struct hpi_adapter_obj *pao = NULL;
if (phm->object != HPI_OBJ_SUBSYSTEM) {
/* normal messages must have valid adapter index */
pao = hpi_find_adapter(phm->adapter_index);
} else {
/* subsys messages don't address an adapter */
_HPI_6205(NULL, phm, phr);
return;
}
if (pao)
_HPI_6205(pao, phm, phr);
else
hpi_init_response(phr, phm->object, phm->function,
HPI_ERROR_BAD_ADAPTER_NUMBER);
}
/*****************************************************************************/
/* SUBSYSTEM */
/** Create an adapter object and initialise it based on resource information
* passed in in the message
* *** NOTE - you cannot use this function AND the FindAdapters function at the
* same time, the application must use only one of them to get the adapters ***
*/
static void subsys_create_adapter(struct hpi_message *phm,
struct hpi_response *phr)
{
/* create temp adapter obj, because we don't know what index yet */
struct hpi_adapter_obj ao;
u32 os_error_code;
u16 err;
HPI_DEBUG_LOG(DEBUG, " subsys_create_adapter\n");
memset(&ao, 0, sizeof(ao));
ao.priv = kzalloc(sizeof(struct hpi_hw_obj), GFP_KERNEL);
if (!ao.priv) {
HPI_DEBUG_LOG(ERROR, "can't get mem for adapter object\n");
phr->error = HPI_ERROR_MEMORY_ALLOC;
return;
}
ao.pci = *phm->u.s.resource.r.pci;
err = create_adapter_obj(&ao, &os_error_code);
if (err) {
delete_adapter_obj(&ao);
if (err >= HPI_ERROR_BACKEND_BASE) {
phr->error = HPI_ERROR_DSP_BOOTLOAD;
phr->specific_error = err;
} else {
phr->error = err;
}
phr->u.s.data = os_error_code;
return;
}
phr->u.s.adapter_type = ao.adapter_type;
phr->u.s.adapter_index = ao.index;
phr->error = 0;
}
/** delete an adapter - required by WDM driver */
static void adapter_delete(struct hpi_adapter_obj *pao,
struct hpi_message *phm, struct hpi_response *phr)
{
struct hpi_hw_obj *phw;
if (!pao) {
phr->error = HPI_ERROR_INVALID_OBJ_INDEX;
return;
}
phw = (struct hpi_hw_obj *)pao->priv;
/* reset adapter h/w */
/* Reset C6713 #1 */
boot_loader_write_mem32(pao, 0, C6205_BAR0_TIMER1_CTL, 0);
/* reset C6205 */
iowrite32(C6205_HDCR_WARMRESET, phw->prHDCR);
delete_adapter_obj(pao);
hpi_delete_adapter(pao);
phr->error = 0;
}
/** Create adapter object
allocate buffers, bootload DSPs, initialise control cache
*/
static u16 create_adapter_obj(struct hpi_adapter_obj *pao,
u32 *pos_error_code)
{
struct hpi_hw_obj *phw = pao->priv;
struct bus_master_interface *interface;
u32 phys_addr;
int i;
u16 err;
/* init error reporting */
pao->dsp_crashed = 0;
for (i = 0; i < HPI_MAX_STREAMS; i++)
phw->flag_outstream_just_reset[i] = 1;
/* The C6205 memory area 1 is 8Mbyte window into DSP registers */
phw->prHSR =
pao->pci.ap_mem_base[1] +
C6205_BAR1_HSR / sizeof(*pao->pci.ap_mem_base[1]);
phw->prHDCR =
pao->pci.ap_mem_base[1] +
C6205_BAR1_HDCR / sizeof(*pao->pci.ap_mem_base[1]);
phw->prDSPP =
pao->pci.ap_mem_base[1] +
C6205_BAR1_DSPP / sizeof(*pao->pci.ap_mem_base[1]);
pao->has_control_cache = 0;
if (hpios_locked_mem_alloc(&phw->h_locked_mem,
sizeof(struct bus_master_interface),
pao->pci.pci_dev))
phw->p_interface_buffer = NULL;
else if (hpios_locked_mem_get_virt_addr(&phw->h_locked_mem,
(void *)&phw->p_interface_buffer))
phw->p_interface_buffer = NULL;
HPI_DEBUG_LOG(DEBUG, "interface buffer address %p\n",
phw->p_interface_buffer);
if (phw->p_interface_buffer) {
memset((void *)phw->p_interface_buffer, 0,
sizeof(struct bus_master_interface));
phw->p_interface_buffer->dsp_ack = H620_HIF_UNKNOWN;
}
err = adapter_boot_load_dsp(pao, pos_error_code);
if (err) {
HPI_DEBUG_LOG(ERROR, "DSP code load failed\n");
/* no need to clean up as SubSysCreateAdapter */
/* calls DeleteAdapter on error. */
return err;
}
HPI_DEBUG_LOG(INFO, "load DSP code OK\n");
/* allow boot load even if mem alloc wont work */
if (!phw->p_interface_buffer)
return HPI_ERROR_MEMORY_ALLOC;
interface = phw->p_interface_buffer;
/* make sure the DSP has started ok */
if (!wait_dsp_ack(phw, H620_HIF_RESET, HPI6205_TIMEOUT * 10)) {
HPI_DEBUG_LOG(ERROR, "timed out waiting reset state \n");
return HPI6205_ERROR_6205_INIT_FAILED;
}
/* Note that *pao, *phw are zeroed after allocation,
* so pointers and flags are NULL by default.
* Allocate bus mastering control cache buffer and tell the DSP about it
*/
if (interface->control_cache.number_of_controls) {
u8 *p_control_cache_virtual;
err = hpios_locked_mem_alloc(&phw->h_control_cache,
interface->control_cache.size_in_bytes,
pao->pci.pci_dev);
if (!err)
err = hpios_locked_mem_get_virt_addr(&phw->
h_control_cache,
(void *)&p_control_cache_virtual);
if (!err) {
memset(p_control_cache_virtual, 0,
interface->control_cache.size_in_bytes);
phw->p_cache =
hpi_alloc_control_cache(interface->
control_cache.number_of_controls,
interface->control_cache.size_in_bytes,
p_control_cache_virtual);
if (!phw->p_cache)
err = HPI_ERROR_MEMORY_ALLOC;
}
if (!err) {
err = hpios_locked_mem_get_phys_addr(&phw->
h_control_cache, &phys_addr);
interface->control_cache.physical_address32 =
phys_addr;
}
if (!err)
pao->has_control_cache = 1;
else {
if (hpios_locked_mem_valid(&phw->h_control_cache))
hpios_locked_mem_free(&phw->h_control_cache);
pao->has_control_cache = 0;
}
}
send_dsp_command(phw, H620_HIF_IDLE);
{
struct hpi_message hm;
struct hpi_response hr;
u32 max_streams;
HPI_DEBUG_LOG(VERBOSE, "init ADAPTER_GET_INFO\n");
memset(&hm, 0, sizeof(hm));
/* wAdapterIndex == version == 0 */
hm.type = HPI_TYPE_REQUEST;
hm.size = sizeof(hm);
hm.object = HPI_OBJ_ADAPTER;
hm.function = HPI_ADAPTER_GET_INFO;
memset(&hr, 0, sizeof(hr));
hr.size = sizeof(hr);
err = message_response_sequence(pao, &hm, &hr);
if (err) {
HPI_DEBUG_LOG(ERROR, "message transport error %d\n",
err);
return err;
}
if (hr.error)
return hr.error;
pao->adapter_type = hr.u.ax.info.adapter_type;
pao->index = hr.u.ax.info.adapter_index;
max_streams =
hr.u.ax.info.num_outstreams +
hr.u.ax.info.num_instreams;
HPI_DEBUG_LOG(VERBOSE,
"got adapter info type %x index %d serial %d\n",
hr.u.ax.info.adapter_type, hr.u.ax.info.adapter_index,
hr.u.ax.info.serial_number);
}
pao->open = 0; /* upon creation the adapter is closed */
if (phw->p_cache)
phw->p_cache->adap_idx = pao->index;
HPI_DEBUG_LOG(INFO, "bootload DSP OK\n");
return hpi_add_adapter(pao);
}
/** Free memory areas allocated by adapter
* this routine is called from AdapterDelete,
* and SubSysCreateAdapter if duplicate index
*/
static void delete_adapter_obj(struct hpi_adapter_obj *pao)
{
struct hpi_hw_obj *phw = pao->priv;
int i;
if (hpios_locked_mem_valid(&phw->h_control_cache)) {
hpios_locked_mem_free(&phw->h_control_cache);
hpi_free_control_cache(phw->p_cache);
}
if (hpios_locked_mem_valid(&phw->h_locked_mem)) {
hpios_locked_mem_free(&phw->h_locked_mem);
phw->p_interface_buffer = NULL;
}
for (i = 0; i < HPI_MAX_STREAMS; i++)
if (hpios_locked_mem_valid(&phw->instream_host_buffers[i])) {
hpios_locked_mem_free(&phw->instream_host_buffers[i]);
/*?phw->InStreamHostBuffers[i] = NULL; */
phw->instream_host_buffer_size[i] = 0;
}
for (i = 0; i < HPI_MAX_STREAMS; i++)
if (hpios_locked_mem_valid(&phw->outstream_host_buffers[i])) {
hpios_locked_mem_free(&phw->outstream_host_buffers
[i]);
phw->outstream_host_buffer_size[i] = 0;
}
kfree(phw);
}
/*****************************************************************************/
/* Adapter functions */
/*****************************************************************************/
/* OutStream Host buffer functions */
/** Allocate or attach buffer for busmastering
*/
static void outstream_host_buffer_allocate(struct hpi_adapter_obj *pao,
struct hpi_message *phm, struct hpi_response *phr)
{
u16 err = 0;
u32 command = phm->u.d.u.buffer.command;
struct hpi_hw_obj *phw = pao->priv;
struct bus_master_interface *interface = phw->p_interface_buffer;
hpi_init_response(phr, phm->object, phm->function, 0);
if (command == HPI_BUFFER_CMD_EXTERNAL
|| command == HPI_BUFFER_CMD_INTERNAL_ALLOC) {
/* ALLOC phase, allocate a buffer with power of 2 size,
get its bus address for PCI bus mastering
*/
phm->u.d.u.buffer.buffer_size =
roundup_pow_of_two(phm->u.d.u.buffer.buffer_size);
/* return old size and allocated size,
so caller can detect change */
phr->u.d.u.stream_info.data_available =
phw->outstream_host_buffer_size[phm->obj_index];
phr->u.d.u.stream_info.buffer_size =
phm->u.d.u.buffer.buffer_size;
if (phw->outstream_host_buffer_size[phm->obj_index] ==
phm->u.d.u.buffer.buffer_size) {
/* Same size, no action required */
return;
}
if (hpios_locked_mem_valid(&phw->outstream_host_buffers[phm->
obj_index]))
hpios_locked_mem_free(&phw->outstream_host_buffers
[phm->obj_index]);
err = hpios_locked_mem_alloc(&phw->outstream_host_buffers
[phm->obj_index], phm->u.d.u.buffer.buffer_size,
pao->pci.pci_dev);
if (err) {
phr->error = HPI_ERROR_INVALID_DATASIZE;
phw->outstream_host_buffer_size[phm->obj_index] = 0;
return;
}
err = hpios_locked_mem_get_phys_addr
(&phw->outstream_host_buffers[phm->obj_index],
&phm->u.d.u.buffer.pci_address);
/* get the phys addr into msg for single call alloc caller
* needs to do this for split alloc (or use the same message)
* return the phy address for split alloc in the respose too
*/
phr->u.d.u.stream_info.auxiliary_data_available =
phm->u.d.u.buffer.pci_address;
if (err) {
hpios_locked_mem_free(&phw->outstream_host_buffers
[phm->obj_index]);
phw->outstream_host_buffer_size[phm->obj_index] = 0;
phr->error = HPI_ERROR_MEMORY_ALLOC;
return;
}
}
if (command == HPI_BUFFER_CMD_EXTERNAL
|| command == HPI_BUFFER_CMD_INTERNAL_GRANTADAPTER) {
/* GRANT phase. Set up the BBM status, tell the DSP about
the buffer so it can start using BBM.
*/
struct hpi_hostbuffer_status *status;
if (phm->u.d.u.buffer.buffer_size & (phm->u.d.u.buffer.
buffer_size - 1)) {
HPI_DEBUG_LOG(ERROR,
"Buffer size must be 2^N not %d\n",
phm->u.d.u.buffer.buffer_size);
phr->error = HPI_ERROR_INVALID_DATASIZE;
return;
}
phw->outstream_host_buffer_size[phm->obj_index] =
phm->u.d.u.buffer.buffer_size;
status = &interface->outstream_host_buffer_status[phm->
obj_index];
status->samples_processed = 0;
status->stream_state = HPI_STATE_STOPPED;
status->dSP_index = 0;
status->host_index = status->dSP_index;
status->size_in_bytes = phm->u.d.u.buffer.buffer_size;
status->auxiliary_data_available = 0;
hw_message(pao, phm, phr);
if (phr->error
&& hpios_locked_mem_valid(&phw->
outstream_host_buffers[phm->obj_index])) {
hpios_locked_mem_free(&phw->outstream_host_buffers
[phm->obj_index]);
phw->outstream_host_buffer_size[phm->obj_index] = 0;
}
}
}
static void outstream_host_buffer_get_info(struct hpi_adapter_obj *pao,
struct hpi_message *phm, struct hpi_response *phr)
{
struct hpi_hw_obj *phw = pao->priv;
struct bus_master_interface *interface = phw->p_interface_buffer;
struct hpi_hostbuffer_status *status;
u8 *p_bbm_data;
if (hpios_locked_mem_valid(&phw->outstream_host_buffers[phm->
obj_index])) {
if (hpios_locked_mem_get_virt_addr(&phw->
outstream_host_buffers[phm->obj_index],
(void *)&p_bbm_data)) {
phr->error = HPI_ERROR_INVALID_OPERATION;
return;
}
status = &interface->outstream_host_buffer_status[phm->
obj_index];
hpi_init_response(phr, HPI_OBJ_OSTREAM,
HPI_OSTREAM_HOSTBUFFER_GET_INFO, 0);
phr->u.d.u.hostbuffer_info.p_buffer = p_bbm_data;
phr->u.d.u.hostbuffer_info.p_status = status;
} else {
hpi_init_response(phr, HPI_OBJ_OSTREAM,
HPI_OSTREAM_HOSTBUFFER_GET_INFO,
HPI_ERROR_INVALID_OPERATION);
}
}
static void outstream_host_buffer_free(struct hpi_adapter_obj *pao,
struct hpi_message *phm, struct hpi_response *phr)
{
struct hpi_hw_obj *phw = pao->priv;
u32 command = phm->u.d.u.buffer.command;
if (phw->outstream_host_buffer_size[phm->obj_index]) {
if (command == HPI_BUFFER_CMD_EXTERNAL
|| command == HPI_BUFFER_CMD_INTERNAL_REVOKEADAPTER) {
phw->outstream_host_buffer_size[phm->obj_index] = 0;
hw_message(pao, phm, phr);
/* Tell adapter to stop using the host buffer. */
}
if (command == HPI_BUFFER_CMD_EXTERNAL
|| command == HPI_BUFFER_CMD_INTERNAL_FREE)
hpios_locked_mem_free(&phw->outstream_host_buffers
[phm->obj_index]);
}
/* Should HPI_ERROR_INVALID_OPERATION be returned
if no host buffer is allocated? */
else
hpi_init_response(phr, HPI_OBJ_OSTREAM,
HPI_OSTREAM_HOSTBUFFER_FREE, 0);
}
static u32 outstream_get_space_available(struct hpi_hostbuffer_status *status)
{
return status->size_in_bytes - (status->host_index -
status->dSP_index);
}
static void outstream_write(struct hpi_adapter_obj *pao,
struct hpi_message *phm, struct hpi_response *phr)
{
struct hpi_hw_obj *phw = pao->priv;
struct bus_master_interface *interface = phw->p_interface_buffer;
struct hpi_hostbuffer_status *status;
u32 space_available;
if (!phw->outstream_host_buffer_size[phm->obj_index]) {
/* there is no BBM buffer, write via message */
hw_message(pao, phm, phr);
return;
}
hpi_init_response(phr, phm->object, phm->function, 0);
status = &interface->outstream_host_buffer_status[phm->obj_index];
space_available = outstream_get_space_available(status);
if (space_available < phm->u.d.u.data.data_size) {
phr->error = HPI_ERROR_INVALID_DATASIZE;
return;
}
/* HostBuffers is used to indicate host buffer is internally allocated.
otherwise, assumed external, data written externally */
if (phm->u.d.u.data.pb_data
&& hpios_locked_mem_valid(&phw->outstream_host_buffers[phm->
obj_index])) {
u8 *p_bbm_data;
u32 l_first_write;
u8 *p_app_data = (u8 *)phm->u.d.u.data.pb_data;
if (hpios_locked_mem_get_virt_addr(&phw->
outstream_host_buffers[phm->obj_index],
(void *)&p_bbm_data)) {
phr->error = HPI_ERROR_INVALID_OPERATION;
return;
}
/* either all data,
or enough to fit from current to end of BBM buffer */
l_first_write =
min(phm->u.d.u.data.data_size,
status->size_in_bytes -
(status->host_index & (status->size_in_bytes - 1)));
memcpy(p_bbm_data +
(status->host_index & (status->size_in_bytes - 1)),
p_app_data, l_first_write);
/* remaining data if any */
memcpy(p_bbm_data, p_app_data + l_first_write,
phm->u.d.u.data.data_size - l_first_write);
}
/*
* This version relies on the DSP code triggering an OStream buffer
* update immediately following a SET_FORMAT call. The host has
* already written data into the BBM buffer, but the DSP won't know
* about it until dwHostIndex is adjusted.
*/
if (phw->flag_outstream_just_reset[phm->obj_index]) {
/* Format can only change after reset. Must tell DSP. */
u16 function = phm->function;
phw->flag_outstream_just_reset[phm->obj_index] = 0;
phm->function = HPI_OSTREAM_SET_FORMAT;
hw_message(pao, phm, phr); /* send the format to the DSP */
phm->function = function;
if (phr->error)
return;
}
status->host_index += phm->u.d.u.data.data_size;
}
static void outstream_get_info(struct hpi_adapter_obj *pao,
struct hpi_message *phm, struct hpi_response *phr)
{
struct hpi_hw_obj *phw = pao->priv;
struct bus_master_interface *interface = phw->p_interface_buffer;
struct hpi_hostbuffer_status *status;
if (!phw->outstream_host_buffer_size[phm->obj_index]) {
hw_message(pao, phm, phr);
return;
}
hpi_init_response(phr, phm->object, phm->function, 0);
status = &interface->outstream_host_buffer_status[phm->obj_index];
phr->u.d.u.stream_info.state = (u16)status->stream_state;
phr->u.d.u.stream_info.samples_transferred =
status->samples_processed;
phr->u.d.u.stream_info.buffer_size = status->size_in_bytes;
phr->u.d.u.stream_info.data_available =
status->size_in_bytes - outstream_get_space_available(status);
phr->u.d.u.stream_info.auxiliary_data_available =
status->auxiliary_data_available;
}
static void outstream_start(struct hpi_adapter_obj *pao,
struct hpi_message *phm, struct hpi_response *phr)
{
hw_message(pao, phm, phr);
}
static void outstream_reset(struct hpi_adapter_obj *pao,
struct hpi_message *phm, struct hpi_response *phr)
{
struct hpi_hw_obj *phw = pao->priv;
phw->flag_outstream_just_reset[phm->obj_index] = 1;
hw_message(pao, phm, phr);
}
static void outstream_open(struct hpi_adapter_obj *pao,
struct hpi_message *phm, struct hpi_response *phr)
{
outstream_reset(pao, phm, phr);
}
/*****************************************************************************/
/* InStream Host buffer functions */
static void instream_host_buffer_allocate(struct hpi_adapter_obj *pao,
struct hpi_message *phm, struct hpi_response *phr)
{
u16 err = 0;
u32 command = phm->u.d.u.buffer.command;
struct hpi_hw_obj *phw = pao->priv;
struct bus_master_interface *interface = phw->p_interface_buffer;
hpi_init_response(phr, phm->object, phm->function, 0);
if (command == HPI_BUFFER_CMD_EXTERNAL
|| command == HPI_BUFFER_CMD_INTERNAL_ALLOC) {
phm->u.d.u.buffer.buffer_size =
roundup_pow_of_two(phm->u.d.u.buffer.buffer_size);
phr->u.d.u.stream_info.data_available =
phw->instream_host_buffer_size[phm->obj_index];
phr->u.d.u.stream_info.buffer_size =
phm->u.d.u.buffer.buffer_size;
if (phw->instream_host_buffer_size[phm->obj_index] ==
phm->u.d.u.buffer.buffer_size) {
/* Same size, no action required */
return;
}
if (hpios_locked_mem_valid(&phw->instream_host_buffers[phm->
obj_index]))
hpios_locked_mem_free(&phw->instream_host_buffers
[phm->obj_index]);
err = hpios_locked_mem_alloc(&phw->instream_host_buffers[phm->
obj_index], phm->u.d.u.buffer.buffer_size,
pao->pci.pci_dev);
if (err) {
phr->error = HPI_ERROR_INVALID_DATASIZE;
phw->instream_host_buffer_size[phm->obj_index] = 0;
return;
}
err = hpios_locked_mem_get_phys_addr
(&phw->instream_host_buffers[phm->obj_index],
&phm->u.d.u.buffer.pci_address);
/* get the phys addr into msg for single call alloc. Caller
needs to do this for split alloc so return the phy address */
phr->u.d.u.stream_info.auxiliary_data_available =
phm->u.d.u.buffer.pci_address;
if (err) {
hpios_locked_mem_free(&phw->instream_host_buffers
[phm->obj_index]);
phw->instream_host_buffer_size[phm->obj_index] = 0;
phr->error = HPI_ERROR_MEMORY_ALLOC;
return;
}
}
if (command == HPI_BUFFER_CMD_EXTERNAL
|| command == HPI_BUFFER_CMD_INTERNAL_GRANTADAPTER) {
struct hpi_hostbuffer_status *status;
if (phm->u.d.u.buffer.buffer_size & (phm->u.d.u.buffer.
buffer_size - 1)) {
HPI_DEBUG_LOG(ERROR,
"Buffer size must be 2^N not %d\n",
phm->u.d.u.buffer.buffer_size);
phr->error = HPI_ERROR_INVALID_DATASIZE;
return;
}
phw->instream_host_buffer_size[phm->obj_index] =
phm->u.d.u.buffer.buffer_size;
status = &interface->instream_host_buffer_status[phm->
obj_index];
status->samples_processed = 0;
status->stream_state = HPI_STATE_STOPPED;
status->dSP_index = 0;
status->host_index = status->dSP_index;
status->size_in_bytes = phm->u.d.u.buffer.buffer_size;
status->auxiliary_data_available = 0;
hw_message(pao, phm, phr);
if (phr->error
&& hpios_locked_mem_valid(&phw->
instream_host_buffers[phm->obj_index])) {
hpios_locked_mem_free(&phw->instream_host_buffers
[phm->obj_index]);
phw->instream_host_buffer_size[phm->obj_index] = 0;
}
}
}
static void instream_host_buffer_get_info(struct hpi_adapter_obj *pao,
struct hpi_message *phm, struct hpi_response *phr)
{
struct hpi_hw_obj *phw = pao->priv;
struct bus_master_interface *interface = phw->p_interface_buffer;
struct hpi_hostbuffer_status *status;
u8 *p_bbm_data;
if (hpios_locked_mem_valid(&phw->instream_host_buffers[phm->
obj_index])) {
if (hpios_locked_mem_get_virt_addr(&phw->
instream_host_buffers[phm->obj_index],
(void *)&p_bbm_data)) {
phr->error = HPI_ERROR_INVALID_OPERATION;
return;
}
status = &interface->instream_host_buffer_status[phm->
obj_index];
hpi_init_response(phr, HPI_OBJ_ISTREAM,
HPI_ISTREAM_HOSTBUFFER_GET_INFO, 0);
phr->u.d.u.hostbuffer_info.p_buffer = p_bbm_data;
phr->u.d.u.hostbuffer_info.p_status = status;
} else {
hpi_init_response(phr, HPI_OBJ_ISTREAM,
HPI_ISTREAM_HOSTBUFFER_GET_INFO,
HPI_ERROR_INVALID_OPERATION);
}
}
static void instream_host_buffer_free(struct hpi_adapter_obj *pao,
struct hpi_message *phm, struct hpi_response *phr)
{
struct hpi_hw_obj *phw = pao->priv;
u32 command = phm->u.d.u.buffer.command;
if (phw->instream_host_buffer_size[phm->obj_index]) {
if (command == HPI_BUFFER_CMD_EXTERNAL
|| command == HPI_BUFFER_CMD_INTERNAL_REVOKEADAPTER) {
phw->instream_host_buffer_size[phm->obj_index] = 0;
hw_message(pao, phm, phr);
}
if (command == HPI_BUFFER_CMD_EXTERNAL
|| command == HPI_BUFFER_CMD_INTERNAL_FREE)
hpios_locked_mem_free(&phw->instream_host_buffers
[phm->obj_index]);
} else {
/* Should HPI_ERROR_INVALID_OPERATION be returned
if no host buffer is allocated? */
hpi_init_response(phr, HPI_OBJ_ISTREAM,
HPI_ISTREAM_HOSTBUFFER_FREE, 0);
}
}
static void instream_start(struct hpi_adapter_obj *pao,
struct hpi_message *phm, struct hpi_response *phr)
{
hw_message(pao, phm, phr);
}
static u32 instream_get_bytes_available(struct hpi_hostbuffer_status *status)
{
return status->dSP_index - status->host_index;
}
static void instream_read(struct hpi_adapter_obj *pao,
struct hpi_message *phm, struct hpi_response *phr)
{
struct hpi_hw_obj *phw = pao->priv;
struct bus_master_interface *interface = phw->p_interface_buffer;
struct hpi_hostbuffer_status *status;
u32 data_available;
u8 *p_bbm_data;
u32 l_first_read;
u8 *p_app_data = (u8 *)phm->u.d.u.data.pb_data;
if (!phw->instream_host_buffer_size[phm->obj_index]) {
hw_message(pao, phm, phr);
return;
}
hpi_init_response(phr, phm->object, phm->function, 0);
status = &interface->instream_host_buffer_status[phm->obj_index];
data_available = instream_get_bytes_available(status);
if (data_available < phm->u.d.u.data.data_size) {
phr->error = HPI_ERROR_INVALID_DATASIZE;
return;
}
if (hpios_locked_mem_valid(&phw->instream_host_buffers[phm->
obj_index])) {
if (hpios_locked_mem_get_virt_addr(&phw->
instream_host_buffers[phm->obj_index],
(void *)&p_bbm_data)) {
phr->error = HPI_ERROR_INVALID_OPERATION;
return;
}
/* either all data,
or enough to fit from current to end of BBM buffer */
l_first_read =
min(phm->u.d.u.data.data_size,
status->size_in_bytes -
(status->host_index & (status->size_in_bytes - 1)));
memcpy(p_app_data,
p_bbm_data +
(status->host_index & (status->size_in_bytes - 1)),
l_first_read);
/* remaining data if any */
memcpy(p_app_data + l_first_read, p_bbm_data,
phm->u.d.u.data.data_size - l_first_read);
}
status->host_index += phm->u.d.u.data.data_size;
}
static void instream_get_info(struct hpi_adapter_obj *pao,
struct hpi_message *phm, struct hpi_response *phr)
{
struct hpi_hw_obj *phw = pao->priv;
struct bus_master_interface *interface = phw->p_interface_buffer;
struct hpi_hostbuffer_status *status;
if (!phw->instream_host_buffer_size[phm->obj_index]) {
hw_message(pao, phm, phr);
return;
}
status = &interface->instream_host_buffer_status[phm->obj_index];
hpi_init_response(phr, phm->object, phm->function, 0);
phr->u.d.u.stream_info.state = (u16)status->stream_state;
phr->u.d.u.stream_info.samples_transferred =
status->samples_processed;
phr->u.d.u.stream_info.buffer_size = status->size_in_bytes;
phr->u.d.u.stream_info.data_available =
instream_get_bytes_available(status);
phr->u.d.u.stream_info.auxiliary_data_available =
status->auxiliary_data_available;
}
/*****************************************************************************/
/* LOW-LEVEL */
#define HPI6205_MAX_FILES_TO_LOAD 2
static u16 adapter_boot_load_dsp(struct hpi_adapter_obj *pao,
u32 *pos_error_code)
{
struct hpi_hw_obj *phw = pao->priv;
struct dsp_code dsp_code;
u16 boot_code_id[HPI6205_MAX_FILES_TO_LOAD];
u32 temp;
int dsp = 0, i = 0;
u16 err = 0;
boot_code_id[0] = HPI_ADAPTER_ASI(0x6205);
boot_code_id[1] = pao->pci.pci_dev->subsystem_device;
boot_code_id[1] = HPI_ADAPTER_FAMILY_ASI(boot_code_id[1]);
/* fix up cases where bootcode id[1] != subsys id */
switch (boot_code_id[1]) {
case HPI_ADAPTER_FAMILY_ASI(0x5000):
boot_code_id[0] = boot_code_id[1];
boot_code_id[1] = 0;
break;
case HPI_ADAPTER_FAMILY_ASI(0x5300):
case HPI_ADAPTER_FAMILY_ASI(0x5400):
case HPI_ADAPTER_FAMILY_ASI(0x6300):
boot_code_id[1] = HPI_ADAPTER_FAMILY_ASI(0x6400);
break;
case HPI_ADAPTER_FAMILY_ASI(0x5500):
case HPI_ADAPTER_FAMILY_ASI(0x5600):
case HPI_ADAPTER_FAMILY_ASI(0x6500):
boot_code_id[1] = HPI_ADAPTER_FAMILY_ASI(0x6600);
break;
case HPI_ADAPTER_FAMILY_ASI(0x8800):
boot_code_id[1] = HPI_ADAPTER_FAMILY_ASI(0x8900);
break;
default:
break;
}
/* reset DSP by writing a 1 to the WARMRESET bit */
temp = C6205_HDCR_WARMRESET;
iowrite32(temp, phw->prHDCR);
hpios_delay_micro_seconds(1000);
/* check that PCI i/f was configured by EEPROM */
temp = ioread32(phw->prHSR);
if ((temp & (C6205_HSR_CFGERR | C6205_HSR_EEREAD)) !=
C6205_HSR_EEREAD)
return HPI6205_ERROR_6205_EEPROM;
temp |= 0x04;
/* disable PINTA interrupt */
iowrite32(temp, phw->prHSR);
/* check control register reports PCI boot mode */
temp = ioread32(phw->prHDCR);
if (!(temp & C6205_HDCR_PCIBOOT))
return HPI6205_ERROR_6205_REG;
/* try writing a few numbers to the DSP page register */
/* and reading them back. */
temp = 3;
iowrite32(temp, phw->prDSPP);
if ((temp | C6205_DSPP_MAP1) != ioread32(phw->prDSPP))
return HPI6205_ERROR_6205_DSPPAGE;
temp = 2;
iowrite32(temp, phw->prDSPP);
if ((temp | C6205_DSPP_MAP1) != ioread32(phw->prDSPP))
return HPI6205_ERROR_6205_DSPPAGE;
temp = 1;
iowrite32(temp, phw->prDSPP);
if ((temp | C6205_DSPP_MAP1) != ioread32(phw->prDSPP))
return HPI6205_ERROR_6205_DSPPAGE;
/* reset DSP page to the correct number */
temp = 0;
iowrite32(temp, phw->prDSPP);
if ((temp | C6205_DSPP_MAP1) != ioread32(phw->prDSPP))
return HPI6205_ERROR_6205_DSPPAGE;
phw->dsp_page = 0;
/* release 6713 from reset before 6205 is bootloaded.
This ensures that the EMIF is inactive,
and the 6713 HPI gets the correct bootmode etc
*/
if (boot_code_id[1] != 0) {
/* DSP 1 is a C6713 */
/* CLKX0 <- '1' release the C6205 bootmode pulldowns */
boot_loader_write_mem32(pao, 0, (0x018C0024L), 0x00002202);
hpios_delay_micro_seconds(100);
/* Reset the 6713 #1 - revB */
boot_loader_write_mem32(pao, 0, C6205_BAR0_TIMER1_CTL, 0);
/* dummy read every 4 words for 6205 advisory 1.4.4 */
boot_loader_read_mem32(pao, 0, 0);
hpios_delay_micro_seconds(100);
/* Release C6713 from reset - revB */
boot_loader_write_mem32(pao, 0, C6205_BAR0_TIMER1_CTL, 4);
hpios_delay_micro_seconds(100);
}
for (dsp = 0; dsp < HPI6205_MAX_FILES_TO_LOAD; dsp++) {
/* is there a DSP to load? */
if (boot_code_id[dsp] == 0)
continue;
err = boot_loader_config_emif(pao, dsp);
if (err)
return err;
err = boot_loader_test_internal_memory(pao, dsp);
if (err)
return err;
err = boot_loader_test_external_memory(pao, dsp);
if (err)
return err;
err = boot_loader_test_pld(pao, dsp);
if (err)
return err;
/* write the DSP code down into the DSPs memory */
err = hpi_dsp_code_open(boot_code_id[dsp], pao->pci.pci_dev,
&dsp_code, pos_error_code);
if (err)
return err;
while (1) {
u32 length;
u32 address;
u32 type;
u32 *pcode;
err = hpi_dsp_code_read_word(&dsp_code, &length);
if (err)
break;
if (length == 0xFFFFFFFF)
break; /* end of code */
err = hpi_dsp_code_read_word(&dsp_code, &address);
if (err)
break;
err = hpi_dsp_code_read_word(&dsp_code, &type);
if (err)
break;
err = hpi_dsp_code_read_block(length, &dsp_code,
&pcode);
if (err)
break;
for (i = 0; i < (int)length; i++) {
boot_loader_write_mem32(pao, dsp, address,
*pcode);
/* dummy read every 4 words */
/* for 6205 advisory 1.4.4 */
if (i % 4 == 0)
boot_loader_read_mem32(pao, dsp,
address);
pcode++;
address += 4;
}
}
if (err) {
hpi_dsp_code_close(&dsp_code);
return err;
}
/* verify code */
hpi_dsp_code_rewind(&dsp_code);
while (1) {
u32 length = 0;
u32 address = 0;
u32 type = 0;
u32 *pcode = NULL;
u32 data = 0;
hpi_dsp_code_read_word(&dsp_code, &length);
if (length == 0xFFFFFFFF)
break; /* end of code */
hpi_dsp_code_read_word(&dsp_code, &address);
hpi_dsp_code_read_word(&dsp_code, &type);
hpi_dsp_code_read_block(length, &dsp_code, &pcode);
for (i = 0; i < (int)length; i++) {
data = boot_loader_read_mem32(pao, dsp,
address);
if (data != *pcode) {
err = 0;
break;
}
pcode++;
address += 4;
}
if (err)
break;
}
hpi_dsp_code_close(&dsp_code);
if (err)
return err;
}
/* After bootloading all DSPs, start DSP0 running
* The DSP0 code will handle starting and synchronizing with its slaves
*/
if (phw->p_interface_buffer) {
/* we need to tell the card the physical PCI address */
u32 physicalPC_iaddress;
struct bus_master_interface *interface =
phw->p_interface_buffer;
u32 host_mailbox_address_on_dsp;
u32 physicalPC_iaddress_verify = 0;
int time_out = 10;
/* set ack so we know when DSP is ready to go */
/* (dwDspAck will be changed to HIF_RESET) */
interface->dsp_ack = H620_HIF_UNKNOWN;
wmb(); /* ensure ack is written before dsp writes back */
err = hpios_locked_mem_get_phys_addr(&phw->h_locked_mem,
&physicalPC_iaddress);
/* locate the host mailbox on the DSP. */
host_mailbox_address_on_dsp = 0x80000000;
while ((physicalPC_iaddress != physicalPC_iaddress_verify)
&& time_out--) {
boot_loader_write_mem32(pao, 0,
host_mailbox_address_on_dsp,
physicalPC_iaddress);
physicalPC_iaddress_verify =
boot_loader_read_mem32(pao, 0,
host_mailbox_address_on_dsp);
}
}
HPI_DEBUG_LOG(DEBUG, "starting DS_ps running\n");
/* enable interrupts */
temp = ioread32(phw->prHSR);
temp &= ~(u32)C6205_HSR_INTAM;
iowrite32(temp, phw->prHSR);
/* start code running... */
temp = ioread32(phw->prHDCR);
temp |= (u32)C6205_HDCR_DSPINT;
iowrite32(temp, phw->prHDCR);
/* give the DSP 10ms to start up */
hpios_delay_micro_seconds(10000);
return err;
}
/*****************************************************************************/
/* Bootloader utility functions */
static u32 boot_loader_read_mem32(struct hpi_adapter_obj *pao, int dsp_index,
u32 address)
{
struct hpi_hw_obj *phw = pao->priv;
u32 data = 0;
__iomem u32 *p_data;
if (dsp_index == 0) {
/* DSP 0 is always C6205 */
if ((address >= 0x01800000) & (address < 0x02000000)) {
/* BAR1 register access */
p_data = pao->pci.ap_mem_base[1] +
(address & 0x007fffff) /
sizeof(*pao->pci.ap_mem_base[1]);
/* HPI_DEBUG_LOG(WARNING,
"BAR1 access %08x\n", dwAddress); */
} else {
u32 dw4M_page = address >> 22L;
if (dw4M_page != phw->dsp_page) {
phw->dsp_page = dw4M_page;
/* *INDENT OFF* */
iowrite32(phw->dsp_page, phw->prDSPP);
/* *INDENT-ON* */
}
address &= 0x3fffff; /* address within 4M page */
/* BAR0 memory access */
p_data = pao->pci.ap_mem_base[0] +
address / sizeof(u32);
}
data = ioread32(p_data);
} else if (dsp_index == 1) {
/* DSP 1 is a C6713 */
u32 lsb;
boot_loader_write_mem32(pao, 0, HPIAL_ADDR, address);
boot_loader_write_mem32(pao, 0, HPIAH_ADDR, address >> 16);
lsb = boot_loader_read_mem32(pao, 0, HPIDL_ADDR);
data = boot_loader_read_mem32(pao, 0, HPIDH_ADDR);
data = (data << 16) | (lsb & 0xFFFF);
}
return data;
}
static void boot_loader_write_mem32(struct hpi_adapter_obj *pao,
int dsp_index, u32 address, u32 data)
{
struct hpi_hw_obj *phw = pao->priv;
__iomem u32 *p_data;
/* u32 dwVerifyData=0; */
if (dsp_index == 0) {
/* DSP 0 is always C6205 */
if ((address >= 0x01800000) & (address < 0x02000000)) {
/* BAR1 - DSP register access using */
/* Non-prefetchable PCI access */
p_data = pao->pci.ap_mem_base[1] +
(address & 0x007fffff) /
sizeof(*pao->pci.ap_mem_base[1]);
} else {
/* BAR0 access - all of DSP memory using */
/* pre-fetchable PCI access */
u32 dw4M_page = address >> 22L;
if (dw4M_page != phw->dsp_page) {
phw->dsp_page = dw4M_page;
/* *INDENT-OFF* */
iowrite32(phw->dsp_page, phw->prDSPP);
/* *INDENT-ON* */
}
address &= 0x3fffff; /* address within 4M page */
p_data = pao->pci.ap_mem_base[0] +
address / sizeof(u32);
}
iowrite32(data, p_data);
} else if (dsp_index == 1) {
/* DSP 1 is a C6713 */
boot_loader_write_mem32(pao, 0, HPIAL_ADDR, address);
boot_loader_write_mem32(pao, 0, HPIAH_ADDR, address >> 16);
/* dummy read every 4 words for 6205 advisory 1.4.4 */
boot_loader_read_mem32(pao, 0, 0);
boot_loader_write_mem32(pao, 0, HPIDL_ADDR, data);
boot_loader_write_mem32(pao, 0, HPIDH_ADDR, data >> 16);
/* dummy read every 4 words for 6205 advisory 1.4.4 */
boot_loader_read_mem32(pao, 0, 0);
}
}
static u16 boot_loader_config_emif(struct hpi_adapter_obj *pao, int dsp_index)
{
if (dsp_index == 0) {
u32 setting;
/* DSP 0 is always C6205 */
/* Set the EMIF */
/* memory map of C6205 */
/* 00000000-0000FFFF 16Kx32 internal program */
/* 00400000-00BFFFFF CE0 2Mx32 SDRAM running @ 100MHz */
/* EMIF config */
/*------------ */
/* Global EMIF control */
boot_loader_write_mem32(pao, dsp_index, 0x01800000, 0x3779);
#define WS_OFS 28
#define WST_OFS 22
#define WH_OFS 20
#define RS_OFS 16
#define RST_OFS 8
#define MTYPE_OFS 4
#define RH_OFS 0
/* EMIF CE0 setup - 2Mx32 Sync DRAM on ASI5000 cards only */
setting = 0x00000030;
boot_loader_write_mem32(pao, dsp_index, 0x01800008, setting);
if (setting != boot_loader_read_mem32(pao, dsp_index,
0x01800008))
return HPI6205_ERROR_DSP_EMIF;
/* EMIF CE1 setup - 32 bit async. This is 6713 #1 HPI, */
/* which occupies D15..0. 6713 starts at 27MHz, so need */
/* plenty of wait states. See dsn8701.rtf, and 6713 errata. */
/* WST should be 71, but 63 is max possible */
setting =
(1L << WS_OFS) | (63L << WST_OFS) | (1L << WH_OFS) |
(1L << RS_OFS) | (63L << RST_OFS) | (1L << RH_OFS) |
(2L << MTYPE_OFS);
boot_loader_write_mem32(pao, dsp_index, 0x01800004, setting);
if (setting != boot_loader_read_mem32(pao, dsp_index,
0x01800004))
return HPI6205_ERROR_DSP_EMIF;
/* EMIF CE2 setup - 32 bit async. This is 6713 #2 HPI, */
/* which occupies D15..0. 6713 starts at 27MHz, so need */
/* plenty of wait states */
setting =
(1L << WS_OFS) | (28L << WST_OFS) | (1L << WH_OFS) |
(1L << RS_OFS) | (63L << RST_OFS) | (1L << RH_OFS) |
(2L << MTYPE_OFS);
boot_loader_write_mem32(pao, dsp_index, 0x01800010, setting);
if (setting != boot_loader_read_mem32(pao, dsp_index,
0x01800010))
return HPI6205_ERROR_DSP_EMIF;
/* EMIF CE3 setup - 32 bit async. */
/* This is the PLD on the ASI5000 cards only */
setting =
(1L << WS_OFS) | (10L << WST_OFS) | (1L << WH_OFS) |
(1L << RS_OFS) | (10L << RST_OFS) | (1L << RH_OFS) |
(2L << MTYPE_OFS);
boot_loader_write_mem32(pao, dsp_index, 0x01800014, setting);
if (setting != boot_loader_read_mem32(pao, dsp_index,
0x01800014))
return HPI6205_ERROR_DSP_EMIF;
/* set EMIF SDRAM control for 2Mx32 SDRAM (512x32x4 bank) */
/* need to use this else DSP code crashes? */
boot_loader_write_mem32(pao, dsp_index, 0x01800018,
0x07117000);
/* EMIF SDRAM Refresh Timing */
/* EMIF SDRAM timing (orig = 0x410, emulator = 0x61a) */
boot_loader_write_mem32(pao, dsp_index, 0x0180001C,
0x00000410);
} else if (dsp_index == 1) {
/* test access to the C6713s HPI registers */
u32 write_data = 0, read_data = 0, i = 0;
/* Set up HPIC for little endian, by setiing HPIC:HWOB=1 */
write_data = 1;
boot_loader_write_mem32(pao, 0, HPICL_ADDR, write_data);
boot_loader_write_mem32(pao, 0, HPICH_ADDR, write_data);
/* C67 HPI is on lower 16bits of 32bit EMIF */
read_data =
0xFFF7 & boot_loader_read_mem32(pao, 0, HPICL_ADDR);
if (write_data != read_data) {
HPI_DEBUG_LOG(ERROR, "HPICL %x %x\n", write_data,
read_data);
return HPI6205_ERROR_C6713_HPIC;
}
/* HPIA - walking ones test */
write_data = 1;
for (i = 0; i < 32; i++) {
boot_loader_write_mem32(pao, 0, HPIAL_ADDR,
write_data);
boot_loader_write_mem32(pao, 0, HPIAH_ADDR,
(write_data >> 16));
read_data =
0xFFFF & boot_loader_read_mem32(pao, 0,
HPIAL_ADDR);
read_data =
read_data | ((0xFFFF &
boot_loader_read_mem32(pao, 0,
HPIAH_ADDR))
<< 16);
if (read_data != write_data) {
HPI_DEBUG_LOG(ERROR, "HPIA %x %x\n",
write_data, read_data);
return HPI6205_ERROR_C6713_HPIA;
}
write_data = write_data << 1;
}
/* setup C67x PLL
* ** C6713 datasheet says we cannot program PLL from HPI,
* and indeed if we try to set the PLL multiply from the HPI,
* the PLL does not seem to lock, so we enable the PLL and
* use the default multiply of x 7, which for a 27MHz clock
* gives a DSP speed of 189MHz
*/
/* bypass PLL */
boot_loader_write_mem32(pao, dsp_index, 0x01B7C100, 0x0000);
hpios_delay_micro_seconds(1000);
/* EMIF = 189/3=63MHz */
boot_loader_write_mem32(pao, dsp_index, 0x01B7C120, 0x8002);
/* peri = 189/2 */
boot_loader_write_mem32(pao, dsp_index, 0x01B7C11C, 0x8001);
/* cpu = 189/1 */
boot_loader_write_mem32(pao, dsp_index, 0x01B7C118, 0x8000);
hpios_delay_micro_seconds(1000);
/* ** SGT test to take GPO3 high when we start the PLL */
/* and low when the delay is completed */
/* FSX0 <- '1' (GPO3) */
boot_loader_write_mem32(pao, 0, (0x018C0024L), 0x00002A0A);
/* PLL not bypassed */
boot_loader_write_mem32(pao, dsp_index, 0x01B7C100, 0x0001);
hpios_delay_micro_seconds(1000);
/* FSX0 <- '0' (GPO3) */
boot_loader_write_mem32(pao, 0, (0x018C0024L), 0x00002A02);
/* 6205 EMIF CE1 resetup - 32 bit async. */
/* Now 6713 #1 is running at 189MHz can reduce waitstates */
boot_loader_write_mem32(pao, 0, 0x01800004, /* CE1 */
(1L << WS_OFS) | (8L << WST_OFS) | (1L << WH_OFS) |
(1L << RS_OFS) | (12L << RST_OFS) | (1L << RH_OFS) |
(2L << MTYPE_OFS));
hpios_delay_micro_seconds(1000);
/* check that we can read one of the PLL registers */
/* PLL should not be bypassed! */
if ((boot_loader_read_mem32(pao, dsp_index, 0x01B7C100) & 0xF)
!= 0x0001) {
return HPI6205_ERROR_C6713_PLL;
}
/* setup C67x EMIF (note this is the only use of
BAR1 via BootLoader_WriteMem32) */
boot_loader_write_mem32(pao, dsp_index, C6713_EMIF_GCTL,
0x000034A8);
/* EMIF CE0 setup - 2Mx32 Sync DRAM
31..28 Wr setup
27..22 Wr strobe
21..20 Wr hold
19..16 Rd setup
15..14 -
13..8 Rd strobe
7..4 MTYPE 0011 Sync DRAM 32bits
3 Wr hold MSB
2..0 Rd hold
*/
boot_loader_write_mem32(pao, dsp_index, C6713_EMIF_CE0,
0x00000030);
/* EMIF SDRAM Extension
0x00
31-21 0000b 0000b 000b
20 WR2RD = 2cycles-1 = 1b
19-18 WR2DEAC = 3cycle-1 = 10b
17 WR2WR = 2cycle-1 = 1b
16-15 R2WDQM = 4cycle-1 = 11b
14-12 RD2WR = 6cycles-1 = 101b
11-10 RD2DEAC = 4cycle-1 = 11b
9 RD2RD = 2cycle-1 = 1b
8-7 THZP = 3cycle-1 = 10b
6-5 TWR = 2cycle-1 = 01b (tWR = 17ns)
4 TRRD = 2cycle = 0b (tRRD = 14ns)
3-1 TRAS = 5cycle-1 = 100b (Tras=42ns)
1 CAS latency = 3cyc = 1b
(for Micron 2M32-7 operating at 100MHz)
*/
boot_loader_write_mem32(pao, dsp_index, C6713_EMIF_SDRAMEXT,
0x001BDF29);
/* EMIF SDRAM control - set up for a 2Mx32 SDRAM (512x32x4 bank)
31 - 0b -
30 SDBSZ 1b 4 bank
29..28 SDRSZ 00b 11 row address pins
27..26 SDCSZ 01b 8 column address pins
25 RFEN 1b refersh enabled
24 INIT 1b init SDRAM!
23..20 TRCD 0001b (Trcd/Tcyc)-1 = (20/10)-1 = 1
19..16 TRP 0001b (Trp/Tcyc)-1 = (20/10)-1 = 1
15..12 TRC 0110b (Trc/Tcyc)-1 = (70/10)-1 = 6
11..0 - 0000b 0000b 0000b
*/
boot_loader_write_mem32(pao, dsp_index, C6713_EMIF_SDRAMCTL,
0x47116000);
/* SDRAM refresh timing
Need 4,096 refresh cycles every 64ms = 15.625us = 1562cycles of 100MHz = 0x61A
*/
boot_loader_write_mem32(pao, dsp_index,
C6713_EMIF_SDRAMTIMING, 0x00000410);
hpios_delay_micro_seconds(1000);
} else if (dsp_index == 2) {
/* DSP 2 is a C6713 */
}
return 0;
}
static u16 boot_loader_test_memory(struct hpi_adapter_obj *pao, int dsp_index,
u32 start_address, u32 length)
{
u32 i = 0, j = 0;
u32 test_addr = 0;
u32 test_data = 0, data = 0;
length = 1000;
/* for 1st word, test each bit in the 32bit word, */
/* dwLength specifies number of 32bit words to test */
/*for(i=0; i<dwLength; i++) */
i = 0;
{
test_addr = start_address + i * 4;
test_data = 0x00000001;
for (j = 0; j < 32; j++) {
boot_loader_write_mem32(pao, dsp_index, test_addr,
test_data);
data = boot_loader_read_mem32(pao, dsp_index,
test_addr);
if (data != test_data) {
HPI_DEBUG_LOG(VERBOSE,
"Memtest error details "
"%08x %08x %08x %i\n", test_addr,
test_data, data, dsp_index);
return 1; /* error */
}
test_data = test_data << 1;
} /* for(j) */
} /* for(i) */
/* for the next 100 locations test each location, leaving it as zero */
/* write a zero to the next word in memory before we read */
/* the previous write to make sure every memory location is unique */
for (i = 0; i < 100; i++) {
test_addr = start_address + i * 4;
test_data = 0xA5A55A5A;
boot_loader_write_mem32(pao, dsp_index, test_addr, test_data);
boot_loader_write_mem32(pao, dsp_index, test_addr + 4, 0);
data = boot_loader_read_mem32(pao, dsp_index, test_addr);
if (data != test_data) {
HPI_DEBUG_LOG(VERBOSE,
"Memtest error details "
"%08x %08x %08x %i\n", test_addr, test_data,
data, dsp_index);
return 1; /* error */
}
/* leave location as zero */
boot_loader_write_mem32(pao, dsp_index, test_addr, 0x0);
}
/* zero out entire memory block */
for (i = 0; i < length; i++) {
test_addr = start_address + i * 4;
boot_loader_write_mem32(pao, dsp_index, test_addr, 0x0);
}
return 0;
}
static u16 boot_loader_test_internal_memory(struct hpi_adapter_obj *pao,
int dsp_index)
{
int err = 0;
if (dsp_index == 0) {
/* DSP 0 is a C6205 */
/* 64K prog mem */
err = boot_loader_test_memory(pao, dsp_index, 0x00000000,
0x10000);
if (!err)
/* 64K data mem */
err = boot_loader_test_memory(pao, dsp_index,
0x80000000, 0x10000);
} else if (dsp_index == 1) {
/* DSP 1 is a C6713 */
/* 192K internal mem */
err = boot_loader_test_memory(pao, dsp_index, 0x00000000,
0x30000);
if (!err)
/* 64K internal mem / L2 cache */
err = boot_loader_test_memory(pao, dsp_index,
0x00030000, 0x10000);
}
if (err)
return HPI6205_ERROR_DSP_INTMEM;
else
return 0;
}
static u16 boot_loader_test_external_memory(struct hpi_adapter_obj *pao,
int dsp_index)
{
u32 dRAM_start_address = 0;
u32 dRAM_size = 0;
if (dsp_index == 0) {
/* only test for SDRAM if an ASI5000 card */
if (pao->pci.pci_dev->subsystem_device == 0x5000) {
/* DSP 0 is always C6205 */
dRAM_start_address = 0x00400000;
dRAM_size = 0x200000;
/*dwDRAMinc=1024; */
} else
return 0;
} else if (dsp_index == 1) {
/* DSP 1 is a C6713 */
dRAM_start_address = 0x80000000;
dRAM_size = 0x200000;
/*dwDRAMinc=1024; */
}
if (boot_loader_test_memory(pao, dsp_index, dRAM_start_address,
dRAM_size))
return HPI6205_ERROR_DSP_EXTMEM;
return 0;
}
static u16 boot_loader_test_pld(struct hpi_adapter_obj *pao, int dsp_index)
{
u32 data = 0;
if (dsp_index == 0) {
/* only test for DSP0 PLD on ASI5000 card */
if (pao->pci.pci_dev->subsystem_device == 0x5000) {
/* PLD is located at CE3=0x03000000 */
data = boot_loader_read_mem32(pao, dsp_index,
0x03000008);
if ((data & 0xF) != 0x5)
return HPI6205_ERROR_DSP_PLD;
data = boot_loader_read_mem32(pao, dsp_index,
0x0300000C);
if ((data & 0xF) != 0xA)
return HPI6205_ERROR_DSP_PLD;
}
} else if (dsp_index == 1) {
/* DSP 1 is a C6713 */
if (pao->pci.pci_dev->subsystem_device == 0x8700) {
/* PLD is located at CE1=0x90000000 */
data = boot_loader_read_mem32(pao, dsp_index,
0x90000010);
if ((data & 0xFF) != 0xAA)
return HPI6205_ERROR_DSP_PLD;
/* 8713 - LED on */
boot_loader_write_mem32(pao, dsp_index, 0x90000000,
0x02);
}
}
return 0;
}
/** Transfer data to or from DSP
nOperation = H620_H620_HIF_SEND_DATA or H620_HIF_GET_DATA
*/
static short hpi6205_transfer_data(struct hpi_adapter_obj *pao, u8 *p_data,
u32 data_size, int operation)
{
struct hpi_hw_obj *phw = pao->priv;
u32 data_transferred = 0;
u16 err = 0;
u32 temp2;
struct bus_master_interface *interface = phw->p_interface_buffer;
if (!p_data)
return HPI_ERROR_INVALID_DATA_POINTER;
data_size &= ~3L; /* round data_size down to nearest 4 bytes */
/* make sure state is IDLE */
if (!wait_dsp_ack(phw, H620_HIF_IDLE, HPI6205_TIMEOUT))
return HPI_ERROR_DSP_HARDWARE;
while (data_transferred < data_size) {
u32 this_copy = data_size - data_transferred;
if (this_copy > HPI6205_SIZEOF_DATA)
this_copy = HPI6205_SIZEOF_DATA;
if (operation == H620_HIF_SEND_DATA)
memcpy((void *)&interface->u.b_data[0],
&p_data[data_transferred], this_copy);
interface->transfer_size_in_bytes = this_copy;
/* DSP must change this back to nOperation */
interface->dsp_ack = H620_HIF_IDLE;
send_dsp_command(phw, operation);
temp2 = wait_dsp_ack(phw, operation, HPI6205_TIMEOUT);
HPI_DEBUG_LOG(DEBUG, "spun %d times for data xfer of %d\n",
HPI6205_TIMEOUT - temp2, this_copy);
if (!temp2) {
/* timed out */
HPI_DEBUG_LOG(ERROR,
"Timed out waiting for " "state %d got %d\n",
operation, interface->dsp_ack);
break;
}
if (operation == H620_HIF_GET_DATA)
memcpy(&p_data[data_transferred],
(void *)&interface->u.b_data[0], this_copy);
data_transferred += this_copy;
}
if (interface->dsp_ack != operation)
HPI_DEBUG_LOG(DEBUG, "interface->dsp_ack=%d, expected %d\n",
interface->dsp_ack, operation);
/* err=HPI_ERROR_DSP_HARDWARE; */
send_dsp_command(phw, H620_HIF_IDLE);
return err;
}
/* wait for up to timeout_us microseconds for the DSP
to signal state by DMA into dwDspAck
*/
static int wait_dsp_ack(struct hpi_hw_obj *phw, int state, int timeout_us)
{
struct bus_master_interface *interface = phw->p_interface_buffer;
int t = timeout_us / 4;
rmb(); /* ensure interface->dsp_ack is up to date */
while ((interface->dsp_ack != state) && --t) {
hpios_delay_micro_seconds(4);
rmb(); /* DSP changes dsp_ack by DMA */
}
/*HPI_DEBUG_LOG(VERBOSE, "Spun %d for %d\n", timeout_us/4-t, state); */
return t * 4;
}
/* set the busmaster interface to cmd, then interrupt the DSP */
static void send_dsp_command(struct hpi_hw_obj *phw, int cmd)
{
struct bus_master_interface *interface = phw->p_interface_buffer;
u32 r;
interface->host_cmd = cmd;
wmb(); /* DSP gets state by DMA, make sure it is written to memory */
/* before we interrupt the DSP */
r = ioread32(phw->prHDCR);
r |= (u32)C6205_HDCR_DSPINT;
iowrite32(r, phw->prHDCR);
r &= ~(u32)C6205_HDCR_DSPINT;
iowrite32(r, phw->prHDCR);
}
static unsigned int message_count;
static u16 message_response_sequence(struct hpi_adapter_obj *pao,
struct hpi_message *phm, struct hpi_response *phr)
{
u32 time_out, time_out2;
struct hpi_hw_obj *phw = pao->priv;
struct bus_master_interface *interface = phw->p_interface_buffer;
u16 err = 0;
message_count++;
if (phm->size > sizeof(interface->u.message_buffer)) {
phr->error = HPI_ERROR_MESSAGE_BUFFER_TOO_SMALL;
phr->specific_error = sizeof(interface->u.message_buffer);
phr->size = sizeof(struct hpi_response_header);
HPI_DEBUG_LOG(ERROR,
"message len %d too big for buffer %zd \n", phm->size,
sizeof(interface->u.message_buffer));
return 0;
}
/* Assume buffer of type struct bus_master_interface
is allocated "noncacheable" */
if (!wait_dsp_ack(phw, H620_HIF_IDLE, HPI6205_TIMEOUT)) {
HPI_DEBUG_LOG(DEBUG, "timeout waiting for idle\n");
return HPI6205_ERROR_MSG_RESP_IDLE_TIMEOUT;
}
memcpy(&interface->u.message_buffer, phm, phm->size);
/* signal we want a response */
send_dsp_command(phw, H620_HIF_GET_RESP);
time_out2 = wait_dsp_ack(phw, H620_HIF_GET_RESP, HPI6205_TIMEOUT);
if (!time_out2) {
HPI_DEBUG_LOG(ERROR,
"(%u) Timed out waiting for " "GET_RESP state [%x]\n",
message_count, interface->dsp_ack);
} else {
HPI_DEBUG_LOG(VERBOSE,
"(%u) transition to GET_RESP after %u\n",
message_count, HPI6205_TIMEOUT - time_out2);
}
/* spin waiting on HIF interrupt flag (end of msg process) */
time_out = HPI6205_TIMEOUT;
/* read the result */
if (time_out) {
if (interface->u.response_buffer.response.size <= phr->size)
memcpy(phr, &interface->u.response_buffer,
interface->u.response_buffer.response.size);
else {
HPI_DEBUG_LOG(ERROR,
"response len %d too big for buffer %d\n",
interface->u.response_buffer.response.size,
phr->size);
memcpy(phr, &interface->u.response_buffer,
sizeof(struct hpi_response_header));
phr->error = HPI_ERROR_RESPONSE_BUFFER_TOO_SMALL;
phr->specific_error =
interface->u.response_buffer.response.size;
phr->size = sizeof(struct hpi_response_header);
}
}
/* set interface back to idle */
send_dsp_command(phw, H620_HIF_IDLE);
if (!time_out || !time_out2) {
HPI_DEBUG_LOG(DEBUG, "something timed out!\n");
return HPI6205_ERROR_MSG_RESP_TIMEOUT;
}
/* special case for adapter close - */
/* wait for the DSP to indicate it is idle */
if (phm->function == HPI_ADAPTER_CLOSE) {
if (!wait_dsp_ack(phw, H620_HIF_IDLE, HPI6205_TIMEOUT)) {
HPI_DEBUG_LOG(DEBUG,
"Timeout waiting for idle "
"(on adapter_close)\n");
return HPI6205_ERROR_MSG_RESP_IDLE_TIMEOUT;
}
}
err = hpi_validate_response(phm, phr);
return err;
}
static void hw_message(struct hpi_adapter_obj *pao, struct hpi_message *phm,
struct hpi_response *phr)
{
u16 err = 0;
hpios_dsplock_lock(pao);
err = message_response_sequence(pao, phm, phr);
/* maybe an error response */
if (err) {
/* something failed in the HPI/DSP interface */
if (err >= HPI_ERROR_BACKEND_BASE) {
phr->error = HPI_ERROR_DSP_COMMUNICATION;
phr->specific_error = err;
} else {
phr->error = err;
}
pao->dsp_crashed++;
/* just the header of the response is valid */
phr->size = sizeof(struct hpi_response_header);
goto err;
} else
pao->dsp_crashed = 0;
if (phr->error != 0) /* something failed in the DSP */
goto err;
switch (phm->function) {
case HPI_OSTREAM_WRITE:
case HPI_ISTREAM_ANC_WRITE:
err = hpi6205_transfer_data(pao, phm->u.d.u.data.pb_data,
phm->u.d.u.data.data_size, H620_HIF_SEND_DATA);
break;
case HPI_ISTREAM_READ:
case HPI_OSTREAM_ANC_READ:
err = hpi6205_transfer_data(pao, phm->u.d.u.data.pb_data,
phm->u.d.u.data.data_size, H620_HIF_GET_DATA);
break;
}
phr->error = err;
err:
hpios_dsplock_unlock(pao);
return;
}