regulator: mem-acc-regulator: Add a driver to control the MEM ACC

The memory accelerator (MEM ACC) controls the delays applied during
memory access. These delays vary based on the power-mode (corner)
on which the memory is connected. This driver adds a regulator
interface to configure the power-mode of the memory accelerator
based on the APC (application processor) corner.

CRs-fixed: 638439
Change-Id: I830ff000f8a16c4d3de5bdebf48d424354ddb086
Signed-off-by: Anirudh Ghayal <aghayal@codeaurora.org>
Signed-off-by: Ke Liu <keliu@codeaurora.org>
This commit is contained in:
Anirudh Ghayal 2014-01-10 16:44:46 +05:30 committed by Ke Liu
parent 8415fa61c2
commit 6ece10a174
4 changed files with 523 additions and 0 deletions

View file

@ -0,0 +1,52 @@
Qualcomm Technologies Memory Accelerator
Memory accelerator configures the power-mode (corner) for the
accelerator.
Required properties:
- compatible: Must be "qcom,mem-acc-regulator"
- regulator-name: A string used to describe the regulator
- regulator-min-microvolt: Minimum corner value as min constraint, which
should be 1 for SVS corner
- regulator-max-microvolt: Maximum corner value as max constraint, which
should be 4 for SUPER_TURBO or 3 for TURBO
- qcom,corner-acc-map Array which maps the APC (application processor)
corner value to the accelerator corner.
[0] maps APC SVS corner (1) to accelerator SVS corner
[1] maps APC NOMINAL corner (2) to accelerator NOMINAL corner
[2] maps APC TURBO corner (3) to accelerator TURBO corner
Optional properties:
- reg: Register addresses for acc-en and acc-sel-l1 acc-sel-l2 control.
- reg-names: Register names. Must be "acc-sel-l1", "acc-sel-l2", "acc-en".
A given mem-acc-regulator driver must have "acc-sel-l1" or
"acc-sel-l2" reg-names property and related register address
property.
- qcom,acc-en-bit-pos Array which specifies bit positions in the
'acc-en' register. Setting these bits forces the
the acclerator to use the corner value specified
in the 'acc-sel-l1' and 'acc-sel-l2' register.
- qcom,acc-sel-l1-bit-pos Array which specifies bit positions in the
'acc-sel-l1' register. Each element in this array
is the LSB of a 2-bit value. This 2-bit value
specifies the corner value used by the
accelerator for L1 cache.
- qcom,acc-sel-l2-bit-pos Array which specifies bit positions in the
'acc-sel-l2' register. Each element in this array
is the LSB of a 2-bit value. This 2-bit value
specifies the corner value used by the
accelerator for L2 cache.
mem_acc_vreg_corner: regulator@fd4aa044 {
compatible = "qcom,mem-acc-regulator";
reg = <0xfd4aa048 0x1>, <0xfd4aa044 0x1>, <0xfd4af000 0x1>;
reg-names = "acc-en", "acc-sel-l1" , "acc-sel-l2";
regulator-name = "mem_acc_corner";
regulator-min-microvolt = <1>;
regulator-max-microvolt = <3>;
qcom,acc-en-bit-pos = <0>;
qcom,acc-sel-l1-bit-pos = <0>;
qcom,acc-sel-l2-bit-pos = <0>;
qcom,corner-acc-map = <0 1 3>;
};

View file

@ -140,6 +140,15 @@ config REGULATOR_MC13892
Say y here to support the regulators found on the Freescale MC13892
PMIC.
config REGULATOR_MEM_ACC
tristate "QTI Memory accelerator regulator driver"
help
Say y here to enable the memory accelerator driver for Qualcomm
Technologies (QTI) chips. The accelerator controls delays applied
for memory accesses.
This driver configures the power-mode (corner) for the memory
accelerator.
config REGULATOR_ISL6271A
tristate "Intersil ISL6271A Power regulator"
depends on I2C

View file

@ -34,6 +34,7 @@ obj-$(CONFIG_REGULATOR_MAX8998) += max8998.o
obj-$(CONFIG_REGULATOR_MC13783) += mc13783-regulator.o
obj-$(CONFIG_REGULATOR_MC13892) += mc13892-regulator.o
obj-$(CONFIG_REGULATOR_MC13XXX_CORE) += mc13xxx-regulator-core.o
obj-$(CONFIG_REGULATOR_MEM_ACC) += mem-acc-regulator.o
obj-$(CONFIG_REGULATOR_ONSEMI_NCP6335D) += onsemi-ncp6335d.o
obj-$(CONFIG_REGULATOR_PCAP) += pcap-regulator.o
obj-$(CONFIG_REGULATOR_PCF50633) += pcf50633-regulator.o

View file

@ -0,0 +1,461 @@
/* Copyright (c) 2014, The Linux Foundation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 and
* only version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#define pr_fmt(fmt) "ACC: %s: " fmt, __func__
#include <linux/module.h>
#include <linux/types.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/err.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/io.h>
#include <linux/platform_device.h>
#include <linux/regulator/driver.h>
#include <linux/regulator/machine.h>
#include <linux/regulator/of_regulator.h>
#define MEM_ACC_SEL_MASK 0x3
enum {
MEMORY_L1,
MEMORY_L2,
MEMORY_MAX,
};
struct mem_acc_regulator {
struct device *dev;
struct regulator_desc rdesc;
struct regulator_dev *rdev;
int corner;
bool mem_acc_supported[MEMORY_MAX];
u32 acc_sel_reg[MEMORY_MAX];
u32 *acc_sel_mask[MEMORY_MAX];
u32 *acc_sel_bit_pos[MEMORY_MAX];
u32 num_acc_sel[MEMORY_MAX];
u32 *acc_en_bit_pos;
u32 num_acc_en;
u32 *corner_acc_map;
u32 num_corners;
void __iomem *acc_sel_base[MEMORY_MAX];
void __iomem *acc_en_base;
phys_addr_t acc_sel_addr[MEMORY_MAX];
phys_addr_t acc_en_addr;
};
static inline u32 apc_to_acc_corner(struct mem_acc_regulator *mem_acc_vreg,
int corner)
{
/*
* corner_acc_map maps the corner from index 0 and APC corner value
* starts from the value 1
*/
return mem_acc_vreg->corner_acc_map[corner - 1];
}
static void __update_acc_sel(struct mem_acc_regulator *mem_acc_vreg,
int corner, int mem_type)
{
u32 acc_data, i, bit, acc_corner;
acc_data = mem_acc_vreg->acc_sel_reg[mem_type];
for (i = 0; i < mem_acc_vreg->num_acc_sel[mem_type]; i++) {
bit = mem_acc_vreg->acc_sel_bit_pos[mem_type][i];
acc_data &= ~mem_acc_vreg->acc_sel_mask[mem_type][i];
acc_corner = apc_to_acc_corner(mem_acc_vreg, corner);
acc_data |= (acc_corner << bit) &
mem_acc_vreg->acc_sel_mask[mem_type][i];
}
pr_debug("corner=%d old_acc_sel=0x%02x new_acc_sel=0x%02x mem_type=%d\n",
corner, mem_acc_vreg->acc_sel_reg[mem_type],
acc_data, mem_type);
writel_relaxed(acc_data, mem_acc_vreg->acc_sel_base[mem_type]);
mem_acc_vreg->acc_sel_reg[mem_type] = acc_data;
}
static void update_acc_sel(struct mem_acc_regulator *mem_acc_vreg, int corner)
{
int i;
for (i = 0; i < MEMORY_MAX; i++) {
if (mem_acc_vreg->mem_acc_supported[i])
__update_acc_sel(mem_acc_vreg, corner, i);
}
}
static int mem_acc_regulator_set_voltage(struct regulator_dev *rdev,
int corner, int corner_max, unsigned *selector)
{
struct mem_acc_regulator *mem_acc_vreg = rdev_get_drvdata(rdev);
int i;
if (corner > mem_acc_vreg->num_corners) {
pr_err("Invalid corner=%d requested\n", corner);
return -EINVAL;
}
pr_debug("old corner=%d, new corner=%d\n",
mem_acc_vreg->corner, corner);
if (corner == mem_acc_vreg->corner)
return 0;
/* go up or down one level at a time */
if (corner > mem_acc_vreg->corner) {
for (i = mem_acc_vreg->corner + 1; i <= corner; i++) {
pr_debug("UP: to corner %d\n", i);
update_acc_sel(mem_acc_vreg, i);
}
} else {
for (i = mem_acc_vreg->corner - 1; i >= corner; i--) {
pr_debug("DOWN: to corner %d\n", i);
update_acc_sel(mem_acc_vreg, i);
}
}
pr_debug("new voltage corner set %d\n", corner);
mem_acc_vreg->corner = corner;
return 0;
}
static int mem_acc_regulator_get_voltage(struct regulator_dev *rdev)
{
struct mem_acc_regulator *mem_acc_vreg = rdev_get_drvdata(rdev);
return mem_acc_vreg->corner;
}
static struct regulator_ops mem_acc_corner_ops = {
.set_voltage = mem_acc_regulator_set_voltage,
.get_voltage = mem_acc_regulator_get_voltage,
};
static int __mem_acc_sel_init(struct mem_acc_regulator *mem_acc_vreg,
int mem_type)
{
int i;
u32 bit;
mem_acc_vreg->acc_sel_mask[mem_type] = devm_kzalloc(mem_acc_vreg->dev,
mem_acc_vreg->num_acc_sel[mem_type] * sizeof(u32), GFP_KERNEL);
if (!mem_acc_vreg->acc_sel_mask[mem_type]) {
pr_err("Unable to allocate memory for mem_type=%d\n", mem_type);
return -ENOMEM;
}
for (i = 0; i < mem_acc_vreg->num_acc_sel[mem_type]; i++) {
bit = mem_acc_vreg->acc_sel_bit_pos[mem_type][i];
mem_acc_vreg->acc_sel_mask[mem_type][i] =
MEM_ACC_SEL_MASK << bit;
}
mem_acc_vreg->acc_sel_reg[mem_type] =
readl_relaxed(mem_acc_vreg->acc_sel_base[mem_type]);
return 0;
}
static int mem_acc_sel_init(struct mem_acc_regulator *mem_acc_vreg)
{
int i, rc;
for (i = 0; i < MEMORY_MAX; i++) {
if (mem_acc_vreg->mem_acc_supported[i]) {
rc = __mem_acc_sel_init(mem_acc_vreg, i);
if (rc) {
pr_err("Unable to intialize mem_type=%d rc=%d\n",
i, rc);
return rc;
}
}
}
return 0;
}
static void mem_acc_en_init(struct mem_acc_regulator *mem_acc_vreg)
{
int i, bit;
u32 acc_data;
acc_data = readl_relaxed(mem_acc_vreg->acc_en_base);
pr_debug("init: acc_en_register=%x\n", acc_data);
for (i = 0; i < mem_acc_vreg->num_acc_en; i++) {
bit = mem_acc_vreg->acc_en_bit_pos[i];
acc_data |= BIT(bit);
}
pr_debug("final: acc_en_register=%x\n", acc_data);
writel_relaxed(acc_data, mem_acc_vreg->acc_en_base);
}
static int populate_acc_data(struct mem_acc_regulator *mem_acc_vreg,
const char *prop_name, u32 **value, u32 *len)
{
int rc;
if (!of_get_property(mem_acc_vreg->dev->of_node, prop_name, len)) {
pr_err("Unable to find %s property\n", prop_name);
return -EINVAL;
}
*len /= sizeof(u32);
if (!(*len)) {
pr_err("Incorrect entries in %s\n", prop_name);
return -EINVAL;
}
*value = devm_kzalloc(mem_acc_vreg->dev, (*len) * sizeof(u32),
GFP_KERNEL);
if (!(*value)) {
pr_err("Unable to allocate memory for %s\n", prop_name);
return -ENOMEM;
}
pr_debug("Found %s, data-length = %d\n", prop_name, *len);
rc = of_property_read_u32_array(mem_acc_vreg->dev->of_node,
prop_name, *value, *len);
if (rc) {
pr_err("Unable to populate %s rc=%d\n", prop_name, rc);
return rc;
}
return 0;
}
static int mem_acc_sel_setup(struct mem_acc_regulator *mem_acc_vreg,
struct resource *res, int mem_type)
{
int len, rc;
char *mem_select_str;
mem_acc_vreg->acc_sel_addr[mem_type] = res->start;
len = res->end - res->start + 1;
pr_debug("'acc_sel_addr' = %pa mem_type=%d (len=%d)\n",
&res->start, mem_type, len);
mem_acc_vreg->acc_sel_base[mem_type] = devm_ioremap(mem_acc_vreg->dev,
mem_acc_vreg->acc_sel_addr[mem_type], len);
if (!mem_acc_vreg->acc_sel_base[mem_type]) {
pr_err("Unable to map 'acc_sel_addr' %pa for mem_type=%d\n",
&mem_acc_vreg->acc_sel_addr[mem_type], mem_type);
return -EINVAL;
}
switch (mem_type) {
case MEMORY_L1:
mem_select_str = "qcom,acc-sel-l1-bit-pos";
break;
case MEMORY_L2:
mem_select_str = "qcom,acc-sel-l2-bit-pos";
break;
}
rc = populate_acc_data(mem_acc_vreg, mem_select_str,
&mem_acc_vreg->acc_sel_bit_pos[mem_type],
&mem_acc_vreg->num_acc_sel[mem_type]);
if (rc)
pr_err("Unable to populate '%s' rc=%d\n", mem_select_str, rc);
return rc;
}
static int mem_acc_init(struct platform_device *pdev,
struct mem_acc_regulator *mem_acc_vreg)
{
struct resource *res;
int len, rc, i;
res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "acc-en");
if (!res || !res->start) {
pr_debug("'acc-en' resource missing or not used.\n");
} else {
mem_acc_vreg->acc_en_addr = res->start;
len = res->end - res->start + 1;
pr_debug("'acc_en_addr' = %pa (len=0x%x)\n", &res->start, len);
mem_acc_vreg->acc_en_base = devm_ioremap(mem_acc_vreg->dev,
mem_acc_vreg->acc_en_addr, len);
if (!mem_acc_vreg->acc_en_base) {
pr_err("Unable to map 'acc_en_addr' %pa\n",
&mem_acc_vreg->acc_en_addr);
return -EINVAL;
}
rc = populate_acc_data(mem_acc_vreg, "qcom,acc-en-bit-pos",
&mem_acc_vreg->acc_en_bit_pos,
&mem_acc_vreg->num_acc_en);
if (rc) {
pr_err("Unable to populate 'qcom,acc-en-bit-pos' rc=%d\n",
rc);
return rc;
}
}
res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "acc-sel-l1");
if (!res || !res->start) {
pr_debug("'acc-sel-l1' resource missing or not used.\n");
} else {
rc = mem_acc_sel_setup(mem_acc_vreg, res, MEMORY_L1);
if (rc) {
pr_err("Unable to setup mem-acc for mem_type=%d rc=%d\n",
MEMORY_L1, rc);
return rc;
}
mem_acc_vreg->mem_acc_supported[MEMORY_L1] = true;
}
res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "acc-sel-l2");
if (!res || !res->start) {
pr_debug("'acc-sel-l2' resource missing or not used.\n");
} else {
rc = mem_acc_sel_setup(mem_acc_vreg, res, MEMORY_L2);
if (rc) {
pr_err("Unable to setup mem-acc for mem_type=%d rc=%d\n",
MEMORY_L2, rc);
return rc;
}
mem_acc_vreg->mem_acc_supported[MEMORY_L2] = true;
}
rc = populate_acc_data(mem_acc_vreg, "qcom,corner-acc-map",
&mem_acc_vreg->corner_acc_map,
&mem_acc_vreg->num_corners);
if (rc) {
pr_err("Unable to find 'qcom,corner-acc-map' rc=%d\n", rc);
return rc;
}
pr_debug("num_corners = %d\n", mem_acc_vreg->num_corners);
/* Check if at least one valid mem-acc config. is specified */
for (i = 0; i < MEMORY_MAX; i++) {
if (mem_acc_vreg->mem_acc_supported[i])
break;
}
if (i == MEMORY_MAX) {
pr_err("No mem-acc configuration specified\n");
return -EINVAL;
}
if (mem_acc_vreg->num_acc_en)
mem_acc_en_init(mem_acc_vreg);
rc = mem_acc_sel_init(mem_acc_vreg);
if (rc) {
pr_err("Unable to intialize mem_acc_sel reg rc=%d\n", rc);
return rc;
}
return 0;
}
static int mem_acc_regulator_probe(struct platform_device *pdev)
{
struct mem_acc_regulator *mem_acc_vreg;
struct regulator_desc *rdesc;
struct regulator_init_data *init_data;
int rc;
if (!pdev->dev.of_node) {
pr_err("Device tree node is missing\n");
return -EINVAL;
}
init_data = of_get_regulator_init_data(&pdev->dev, pdev->dev.of_node);
if (!init_data) {
pr_err("regulator init data is missing\n");
return -EINVAL;
} else {
init_data->constraints.input_uV
= init_data->constraints.max_uV;
init_data->constraints.valid_ops_mask
|= REGULATOR_CHANGE_VOLTAGE;
}
mem_acc_vreg = devm_kzalloc(&pdev->dev, sizeof(*mem_acc_vreg),
GFP_KERNEL);
if (!mem_acc_vreg) {
pr_err("Can't allocate mem_acc_vreg memory\n");
return -ENOMEM;
}
mem_acc_vreg->dev = &pdev->dev;
rc = mem_acc_init(pdev, mem_acc_vreg);
if (rc) {
pr_err("Unable to initialize mem_acc configuration rc=%d\n",
rc);
return rc;
}
rdesc = &mem_acc_vreg->rdesc;
rdesc->owner = THIS_MODULE;
rdesc->type = REGULATOR_VOLTAGE;
rdesc->ops = &mem_acc_corner_ops;
rdesc->name = init_data->constraints.name;
mem_acc_vreg->rdev = regulator_register(rdesc, &pdev->dev,
init_data, mem_acc_vreg, pdev->dev.of_node);
if (IS_ERR(mem_acc_vreg->rdev)) {
rc = PTR_ERR(mem_acc_vreg->rdev);
if (rc != -EPROBE_DEFER)
pr_err("regulator_register failed: rc=%d\n", rc);
return rc;
}
platform_set_drvdata(pdev, mem_acc_vreg);
return 0;
}
static int mem_acc_regulator_remove(struct platform_device *pdev)
{
struct mem_acc_regulator *mem_acc_vreg = platform_get_drvdata(pdev);
regulator_unregister(mem_acc_vreg->rdev);
return 0;
}
static struct of_device_id mem_acc_regulator_match_table[] = {
{ .compatible = "qcom,mem-acc-regulator", },
{}
};
static struct platform_driver mem_acc_regulator_driver = {
.probe = mem_acc_regulator_probe,
.remove = mem_acc_regulator_remove,
.driver = {
.name = "qcom,mem-acc-regulator",
.of_match_table = mem_acc_regulator_match_table,
.owner = THIS_MODULE,
},
};
int __init mem_acc_regulator_init(void)
{
return platform_driver_register(&mem_acc_regulator_driver);
}
postcore_initcall(mem_acc_regulator_init);
static void __exit mem_acc_regulator_exit(void)
{
platform_driver_unregister(&mem_acc_regulator_driver);
}
module_exit(mem_acc_regulator_exit);
MODULE_DESCRIPTION("MEM-ACC-SEL regulator driver");
MODULE_LICENSE("GPL v2");