android_kernel_samsung_msm8226/crypto/fips_integrity.c

455 lines
11 KiB
C

/*
* Perform FIPS Integrity test on Kernel Crypto API
*
* At build time, hmac(sha256) of crypto code, avaiable in different ELF sections
* of vmlinux file, is generated. vmlinux file is updated with built-time hmac
* in a read-only data variable, so that it is available at run-time
*
* At run time, hmac(sha256) is again calculated using crypto bytes of a running
* kernel.
* Run time hmac is compared to built time hmac to verify the integrity.
*
*
* Author : Rohit Kothari (r.kothari@samsung.com)
* Date : 11 Feb 2014
*
* Copyright (c) 2014 Samsung Electronics
*
*/
#include <linux/crypto.h>
#include <linux/kallsyms.h>
#include <linux/err.h>
#include <linux/scatterlist.h>
#include "internal.h" /* For Functional test macros */
static const char *
symtab[][3] = {{".text", "first_crypto_text", "last_crypto_text" },
{".rodata", "first_crypto_rodata", "last_crypto_rodata"},
{".init.text", "first_crypto_init", "last_crypto_init" },
{".exit.text", "first_crypto_exit", "last_crypto_exit" },
{"asm.text", "first_crypto_asm_text", "last_crypto_asm_text" },
{"asm.rodata", "first_crypto_asm_rodata", "last_crypto_asm_rodata"},
{"asm.init.text", "first_crypto_asm_init", "last_crypto_asm_init" },
{"asm.exit.text", "first_crypto_asm_exit", "last_crypto_asm_exit" }};
extern const char * get_builtime_crypto_hmac(void);
#ifdef FIPS_DEBUG
static int
dump_bytes(const char * section_name, const char * first_symbol, const char * last_symbol)
{
u8 * start_addr = (u8 *) kallsyms_lookup_name (first_symbol);
u8 * end_addr = (u8 *) kallsyms_lookup_name (last_symbol);
if (!start_addr || !end_addr || start_addr >= end_addr)
{
printk(KERN_ERR "FIPS(%s): Error Invalid Addresses in Section : %s, Start_Addr : %p , End_Addr : %p",
__FUNCTION__,section_name, start_addr, end_addr);
return -1;
}
printk(KERN_INFO "FIPS CRYPTO RUNTIME : Section - %s, %s : %p, %s : %p \n", section_name, first_symbol, start_addr, last_symbol, end_addr);
print_hex_dump_bytes ("FIPS CRYPTO RUNTIME : ",DUMP_PREFIX_NONE, start_addr, end_addr - start_addr);
return 0;
}
#endif
static int
query_symbol_addresses (const char * first_symbol, const char * last_symbol,
unsigned long * start_addr,unsigned long * end_addr)
{
unsigned long start = kallsyms_lookup_name (first_symbol);
unsigned long end = kallsyms_lookup_name (last_symbol);
#ifdef FIPS_DEBUG
printk(KERN_INFO "FIPS CRYPTO RUNTIME : %s : %p, %s : %p\n", first_symbol, (u8*)start, last_symbol, (u8*)end);
#endif
if (!start || !end || start >= end)
{
printk(KERN_ERR "FIPS(%s): Error Invalid Addresses.", __FUNCTION__);
return -1;
}
*start_addr = start;
*end_addr = end;
return 0;
}
static int
init_hash (struct hash_desc * desc)
{
struct crypto_hash * tfm = NULL;
int ret = -1;
/* Same as build time */
const unsigned char * key = "The quick brown fox jumps over the lazy dog";
tfm = crypto_alloc_hash ("hmac(sha256)", 0, 0);
if (IS_ERR(tfm)) {
printk(KERN_ERR "FIPS(%s): integ failed to allocate tfm %ld", __FUNCTION__, PTR_ERR(tfm));
return -1;
}
ret = crypto_hash_setkey (tfm, key, strlen(key));
if (ret) {
printk(KERN_ERR "FIPS(%s): fail at crypto_hash_setkey", __FUNCTION__);
return -1;
}
desc->tfm = tfm;
desc->flags = 0;
ret = crypto_hash_init (desc);
if (ret) {
printk(KERN_ERR "FIPS(%s): fail at crypto_hash_init", __FUNCTION__);
return -1;
}
return 0;
}
static int
finalize_hash (struct hash_desc *desc, unsigned char * out, unsigned int out_size)
{
int ret = -1;
if (!desc || !desc->tfm || !out || !out_size)
{
printk(KERN_ERR "FIPS(%s): Invalid args", __FUNCTION__);
return ret;
}
if (crypto_hash_digestsize(desc->tfm) > out_size)
{
printk(KERN_ERR "FIPS(%s): Not enough space for digest", __FUNCTION__);
return ret;
}
ret = crypto_hash_final (desc, out);
if (ret)
{
printk(KERN_ERR "FIPS(%s): crypto_hash_final failed", __FUNCTION__);
return -1;
}
return 0;
}
static int
update_hash (struct hash_desc * desc, unsigned char * start_addr, unsigned int size)
{
struct scatterlist sg;
unsigned char * buf = NULL;
unsigned char * cur = NULL;
unsigned int bytes_remaining;
unsigned int bytes;
int ret = -1;
#if FIPS_FUNC_TEST == 2
static int total = 0;
#endif
buf = kmalloc (PAGE_SIZE, GFP_KERNEL);
if (!buf)
{
printk(KERN_ERR "FIPS(%s): kmalloc failed", __FUNCTION__);
return ret;
}
bytes_remaining = size;
cur = start_addr;
while (bytes_remaining > 0)
{
if (bytes_remaining >= PAGE_SIZE)
bytes = PAGE_SIZE;
else
bytes = bytes_remaining;
memcpy (buf, cur, bytes);
sg_init_one (&sg, buf, bytes);
#if FIPS_FUNC_TEST == 2
if (total == 0)
{
printk(KERN_INFO "FIPS : Failing Integrity Test");
buf[bytes / 2] += 1;
}
#endif
ret = crypto_hash_update (desc, &sg, bytes);
if (ret)
{
printk(KERN_ERR "FIPS(%s): crypto_hash_update failed", __FUNCTION__);
kfree(buf);
buf = 0;
return -1;
}
cur += bytes;
bytes_remaining -= bytes;
#if FIPS_FUNC_TEST == 2
total += bytes;
#endif
}
//printk(KERN_INFO "FIPS : total bytes = %d\n", total);
if (buf)
{
kfree(buf);
buf = 0;
}
return 0;
}
int
do_integrity_check (void)
{
int i,rows, err;
unsigned long start_addr = 0;
unsigned long end_addr = 0;
unsigned char runtime_hmac[32];
struct hash_desc desc;
const char * builtime_hmac = 0;
unsigned int size = 0;
err = init_hash (&desc);
if (err)
{
printk (KERN_ERR "FIPS(%s): init_hash failed", __FUNCTION__);
return -1;
}
rows = (unsigned int) sizeof (symtab) / sizeof (symtab[0]);
for (i = 0; i < rows; i++)
{
err = query_symbol_addresses (symtab[i][1], symtab[i][2], &start_addr, &end_addr);
if (err)
{
printk (KERN_ERR "FIPS(%s): Error to get start / end addresses", __FUNCTION__);
crypto_free_hash (desc.tfm);
return -1;
}
#ifdef FIPS_DEBUG
dump_bytes(symtab[i][0], symtab[i][1], symtab[i][2]);
#endif
size = end_addr - start_addr;
err = update_hash (&desc, (unsigned char *)start_addr, size);
if (err)
{
printk (KERN_ERR "FIPS(%s): Error to update hash", __FUNCTION__);
crypto_free_hash (desc.tfm);
return -1;
}
}
err = finalize_hash (&desc, runtime_hmac, sizeof(runtime_hmac));
crypto_free_hash (desc.tfm);
if (err)
{
printk (KERN_ERR "FIPS(%s): Error in finalize", __FUNCTION__);
return -1;
}
builtime_hmac = get_builtime_crypto_hmac();
if (!builtime_hmac)
{
printk (KERN_ERR "FIPS(%s): Unable to retrieve builtime_hmac", __FUNCTION__);
return -1;
}
#ifdef FIPS_DEBUG
print_hex_dump_bytes ("FIPS CRYPTO RUNTIME : runtime hmac = ",DUMP_PREFIX_NONE, runtime_hmac, sizeof(runtime_hmac));
print_hex_dump_bytes ("FIPS CRYPTO RUNTIME : builtime_hmac = ",DUMP_PREFIX_NONE, builtime_hmac , sizeof(runtime_hmac));
#endif
if (!memcmp (builtime_hmac, runtime_hmac, sizeof(runtime_hmac)))
{
printk (KERN_INFO "FIPS: Integrity Check Passed");
return 0;
}
else
{
printk (KERN_ERR "FIPS(%s): Integrity Check Failed", __FUNCTION__);
set_in_fips_err();
return -1;
}
return -1;
}
EXPORT_SYMBOL_GPL(do_integrity_check);
#ifdef CONFIG_CRYPTO_FIPS_OLD_INTEGRITY_CHECK
/*
* Integrity check code for crypto module.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the Free
* Software Foundation; either version 2 of the License, or (at your option)
* any later version.
*
*/
#include <crypto/hash.h>
#include <crypto/sha.h>
#include <linux/err.h>
#include <linux/scatterlist.h>
#include <asm-generic/sections.h>
#include <linux/vmalloc.h>
#include <linux/slab.h>
#include "internal.h"
static bool need_integrity_check = true;
extern long integrity_mem_reservoir;
//extern void free_bootmem(unsigned long addr, unsigned long size);
void do_integrity_check(void)
{
u8 *rbuf = 0;
u32 len;
u8 hmac[SHA256_DIGEST_SIZE];
struct hash_desc desc;
struct scatterlist sg;
u8 *key = "12345678";
int i, step_len = PAGE_SIZE, err;
u8 *pAllocBuf = 0;
printk(KERN_INFO "FIPS: integrity start\n");
if (unlikely(!need_integrity_check || in_fips_err())) {
printk(KERN_INFO "FIPS: integrity check not needed\n");
return;
}
rbuf = (u8*)phys_to_virt((unsigned long)CONFIG_CRYPTO_FIPS_INTEG_COPY_ADDRESS);
if (*((u32 *) &rbuf[36]) != 0x016F2818) {
printk(KERN_ERR "FIPS: invalid zImage magic number.");
set_in_fips_err();
goto err1;
}
if (*(u32 *) &rbuf[44] <= *(u32 *) &rbuf[40]) {
printk(KERN_ERR "FIPS: invalid zImage calculated len");
set_in_fips_err();
goto err1;
}
len = *(u32 *) &rbuf[44] - *(u32 *) &rbuf[40];
printk(KERN_INFO "FIPS: integrity actual zImageLen = %d\n", len);
printk(KERN_INFO "FIPS: do kernel integrity check address: %lx \n", (unsigned long)rbuf);
desc.tfm = crypto_alloc_hash("hmac(sha256)", 0, 0);
if (IS_ERR(desc.tfm)) {
printk(KERN_ERR "FIPS: integ failed to allocate tfm %ld\n",
PTR_ERR(desc.tfm));
set_in_fips_err();
goto err1;
}
#if FIPS_FUNC_TEST == 2
rbuf[1024] = rbuf[1024] + 1;
#endif
crypto_hash_setkey(desc.tfm, key, strlen(key));
pAllocBuf = kmalloc(step_len,GFP_KERNEL);
if (!pAllocBuf) {
printk(KERN_INFO "Fail to alloc memory, length %d\n", step_len);
set_in_fips_err();
goto err1;
}
err = crypto_hash_init(&desc);
if (err) {
printk(KERN_INFO "fail at crypto_hash_init\n");
set_in_fips_err();
kfree(pAllocBuf);
goto err1;
}
for (i = 0; i < len; i += step_len) {
//last is reached
if (i + step_len >= len - 1) {
memcpy(pAllocBuf, &rbuf[i], len - i);
sg_init_one(&sg, pAllocBuf, len - i);
err = crypto_hash_update(&desc, &sg, len - i);
if (err) {
printk(KERN_INFO "Fail to crypto_hash_update1\n");
set_in_fips_err();
goto err;
}
err = crypto_hash_final(&desc, hmac);
if (err) {
printk(KERN_INFO "Fail to crypto_hash_final\n");
set_in_fips_err();
goto err;
}
} else {
memcpy(pAllocBuf, &rbuf[i], step_len);
sg_init_one(&sg, pAllocBuf, step_len);
err = crypto_hash_update(&desc, &sg, step_len);
if (err) {
printk(KERN_INFO "Fail to crypto_hash_update\n");
set_in_fips_err();
goto err;
}
}
}
#if FIPS_FUNC_TEST == 2
rbuf[1024] = rbuf[1024] - 1;
#endif
if (!strncmp(hmac, &rbuf[len], SHA256_DIGEST_SIZE)) {
printk(KERN_INFO "FIPS: integrity check passed\n");
} else {
printk(KERN_ERR "FIPS: integrity check failed. hmac:%lx, buf:%lx.\n",(long) hmac, (long)rbuf[len] );
set_in_fips_err();
}
err:
kfree(pAllocBuf);
crypto_free_hash(desc.tfm);
err1:
need_integrity_check = false;
/* if(integrity_mem_reservoir != 0) {
printk(KERN_NOTICE "FIPS free integrity_mem_reservoir = %ld\n", integrity_mem_reservoir);
free_bootmem((unsigned long)CONFIG_CRYPTO_FIPS_INTEG_COPY_ADDRESS, integrity_mem_reservoir);
}
*/
}
EXPORT_SYMBOL_GPL(do_integrity_check);
#endif //CONFIG_CRYPTO_FIPS_OLD_INTEGRITY_CHECK