android_kernel_samsung_msm8226/drivers/sensors/lis2hh_acc.c

2068 lines
52 KiB
C

/******************** (C) COPYRIGHT 2013 STMicroelectronics ********************
*
* File Name : lis2hh_acc.c
* Authors : AMS - Motion Mems Division - Application Team
* : Matteo Dameno (matteo.dameno@st.com)
* : Denis Ciocca (denis.ciocca@st.com)
* : Both authors are willing to be considered the contact
* : and update points for the driver.
* Version : V.1.1.0
* Date : 2013/Mar/28
* Description : LIS2HH accelerometer sensor API
*
*******************************************************************************
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* THE PRESENT SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES
* OR CONDITIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED, FOR THE SOLE
* PURPOSE TO SUPPORT YOUR APPLICATION DEVELOPMENT.
* AS A RESULT, STMICROELECTRONICS SHALL NOT BE HELD LIABLE FOR ANY DIRECT,
* INDIRECT OR CONSEQUENTIAL DAMAGES WITH RESPECT TO ANY CLAIMS ARISING FROM THE
* CONTENT OF SUCH SOFTWARE AND/OR THE USE MADE BY CUSTOMERS OF THE CODING
* INFORMATION CONTAINED HEREIN IN CONNECTION WITH THEIR PRODUCTS.
*
******************************************************************************
Revision 1.0.0 25/Feb/2013
first revision
supports sysfs;
Revision 1.1.0 28/Mar/2013
introduces hr_timers for polling;
******************************************************************************/
#include <linux/err.h>
#include <linux/errno.h>
#include <linux/delay.h>
#include <linux/fs.h>
#include <linux/i2c.h>
#include <linux/input.h>
#include <linux/uaccess.h>
#include <linux/workqueue.h>
#include <linux/irq.h>
#include <linux/gpio.h>
#include <linux/interrupt.h>
#include <linux/slab.h>
#include <linux/kernel.h>
#include <linux/device.h>
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/of_gpio.h>
#include <linux/math64.h>
#include <linux/regulator/consumer.h>
#include "sensors_core.h"
#include "lis2hh.h"
#define DEBUG 1
#define VENDOR "STM"
#define CHIP_ID "K2HH"
#define MODULE_NAME "accelerometer_sensor"
#define G_MAX 7995148 /* (SENSITIVITY_8G*(2^15-1)) */
#define G_MIN - 7995392 /* (-SENSITIVITY_8G*(2^15) */
#define FUZZ 0
#define FLAT 0
#define I2C_RETRY_DELAY 5
#define I2C_RETRIES 5
#define I2C_AUTO_INCREMENT (0x00)
#define MS_TO_NS(x) (x*1000000L)
#define SENSITIVITY_2G 61 /** ug/LSB */
#define SENSITIVITY_4G 122 /** ug/LSB */
#define SENSITIVITY_8G 244 /** ug/LSB */
/* Accelerometer Sensor Operating Mode */
#define LIS2HH_ACC_ENABLE (0x01)
#define LIS2HH_ACC_DISABLE (0x00)
#define AXISDATA_REG (0x28)
#define WHOAMI_LIS2HH_ACC (0x41) /* Expctd content for WAI */
#define ALL_ZEROES (0x00)
#define LIS2HH_ACC_PM_OFF (0x00)
#define ACC_ENABLE_ALL_AXES (0x07)
/* Register Auto-increase */
#define AC (1 << 7)
/* CONTROL REGISTERS */
#define TEMP_L (0x0B)
#define TEMP_H (0x0C)
#define WHO_AM_I (0x0F) /* WhoAmI register */
#define ACT_THS (0x1E) /* Activity Threshold */
#define ACT_DUR (0x1F) /* Activity Duration */
/* ctrl 1: HR ODR2 ODR1 ODR0 BDU Zenable Yenable Xenable */
#define CTRL1 (0x20) /* control reg 1 */
#define CTRL2 (0x21) /* control reg 2 */
#define CTRL3 (0x22) /* control reg 3 */
#define CTRL4 (0x23) /* control reg 4 */
#define CTRL5 (0x24) /* control reg 5 */
#define CTRL6 (0x25) /* control reg 6 */
#define CTRL7 (0x26) /* control reg 7 */
#define STATUS_REG 0x27
#define OUT_X_L 0x28
#define OUT_X_H 0x29
#define OUT_Y_L 0x2A
#define OUT_Y_H 0x2B
#define OUT_Z_L 0x2C
#define OUT_Z_H 0x2D
#define FIFO_CTRL (0x2E) /* fifo control reg */
#define FIFO_SRC_REG 0x2F
#define INT_CFG1 (0x30) /* interrupt 1 config */
#define INT_SRC1 (0x31) /* interrupt 1 source */
#define INT_THSX1 (0x32) /* interrupt 1 threshold x */
#define INT_THSY1 (0x33) /* interrupt 1 threshold y */
#define INT_THSZ1 (0x34) /* interrupt 1 threshold z */
#define INT_DUR1 (0x35) /* interrupt 1 duration */
#define INT_CFG2 (0x36) /* interrupt 2 config */
#define INT_SRC2 (0x37) /* interrupt 2 source */
#define INT_THS2 (0x38) /* interrupt 2 threshold */
#define INT_DUR2 (0x39) /* interrupt 2 duration */
#define REF_XL (0x3A) /* reference_l_x */
#define REF_XH (0x3B) /* reference_h_x */
#define REF_YL (0x3C) /* reference_l_y */
#define REF_YH (0x3D) /* reference_h_y */
#define REF_ZL (0x3E) /* reference_l_z */
#define REF_ZH (0x3F) /* reference_h_z */
/* end CONTROL REGISTRES */
#define ACC_ODR10 (0x10) /* 10Hz output data rate */
#define ACC_ODR50 (0x20) /* 50Hz output data rate */
#define ACC_ODR100 (0x30) /* 100Hz output data rate */
#define ACC_ODR200 (0x40) /* 200Hz output data rate */
#define ACC_ODR400 (0x50) /* 400Hz output data rate */
#define ACC_ODR800 (0x60) /* 800Hz output data rate */
#define ACC_ODR_MASK (0X70)
/* Registers configuration Mask and settings */
/* CTRL1 */
#define CTRL1_HR_DISABLE (0x00)
#define CTRL1_HR_ENABLE (0x80)
#define CTRL1_HR_MASK (0x80)
#define CTRL1_BDU_ENABLE (0x08)
#define CTRL1_BDU_MASK (0x08)
/* CTRL2 */
#define CTRL2_IG1_INT1 (0x08)
/* CTRL3 */
#define CTRL3_IG1_INT1 (0x08)
#define CTRL3_DRDY_INT1
/* CTRL4 */
#define CTRL4_IF_ADD_INC_EN (0x04)
#define CTRL4_BW_SCALE_ODR_AUT (0x00)
#define CTRL4_BW_SCALE_ODR_SEL (0x08)
#define CTRL4_ANTALIAS_BW_400 (0x00)
#define CTRL4_ANTALIAS_BW_200 (0x40)
#define CTRL4_ANTALIAS_BW_100 (0x80)
#define CTRL4_ANTALIAS_BW_50 (0xC0)
#define CTRL4_ANTALIAS_BW_MASK (0xC0)
/* CTRL5 */
#define CTRL5_HLACTIVE_L (0x02)
#define CTRL5_HLACTIVE_H (0x00)
/* CTRL6 */
#define CTRL6_IG2_INT2 (0x10)
#define CTRL6_DRDY_INT2 (0x01)
/* CTRL7 */
#define CTRL7_LIR2 (0x08)
#define CTRL7_LIR1 (0x04)
/* */
#define NO_MASK (0xFF)
#define INT1_DURATION_MASK (0x7F)
#define INT1_THRESHOLD_MASK (0x7F)
/* RESUME STATE INDICES */
#define RES_CTRL1 0
#define RES_CTRL2 1
#define RES_CTRL3 2
#define RES_CTRL4 3
#define RES_CTRL5 4
#define RES_CTRL6 5
#define RES_CTRL7 6
#define RES_INT_CFG1 7
#define RES_INT_THSX1 8
#define RES_INT_THSY1 9
#define RES_INT_THSZ1 10
#define RES_INT_DUR1 11
#define RES_INT_CFG2 12
#define RES_INT_THS2 13
#define RES_INT_DUR2 14
#define RES_TEMP_CFG_REG 15
#define RES_REFERENCE_REG 16
#define RES_FIFO_CTRL 17
#define RESUME_ENTRIES 18
#define CAL_DATA_AMOUNT 20
/* end RESUME STATE INDICES */
#define PM_OFF 0x00
#define ODR400 0x70 /* 400Hz output data rate */
#define CALIBRATION_FILE_PATH "/efs/calibration_data"
#define OUTPUT_ALWAYS_ANTI_ALIASED 1
#define DEFAULT_POWER_ON_SETTING (ODR400 | STATUS_REG)
#define SELF_TEST_2G_MAX_LSB (24576)
#define SELF_TEST_2G_MIN_LSB (1146)
struct {
unsigned int cutoff_ms;
unsigned int mask;
} lis2hh_acc_odr_table[] = {
{ 2, ACC_ODR800 },
{ 3, ACC_ODR400 },
{ 5, ACC_ODR200 },
{ 10, ACC_ODR100 },
#if(!OUTPUT_ALWAYS_ANTI_ALIASED)
{ 20, ACC_ODR50 },
{ 100, ACC_ODR10 },
#endif
};
struct k2hh_acc {
s16 x;
s16 y;
s16 z;
};
static int int1_gpio = LIS2HH_ACC_DEFAULT_INT1_GPIO;
static int int2_gpio = LIS2HH_ACC_DEFAULT_INT2_GPIO;
module_param(int1_gpio, int, S_IRUGO);
module_param(int2_gpio, int, S_IRUGO);
struct lis2hh_acc_status {
struct i2c_client *client;
struct lis2hh_acc_platform_data *pdata;
struct mutex lock;
struct work_struct input_poll_work;
struct hrtimer hr_timer_poll;
ktime_t polling_ktime;
struct workqueue_struct *hr_timer_poll_work_queue;
struct input_dev *input_dev;
int hw_initialized;
/* hw_working=-1 means not tested yet */
int hw_working;
atomic_t enable;
int on_before_suspend;
int use_smbus;
u8 sensitivity;
u8 resume_state[RESUME_ENTRIES];
struct device *dev;
int irq1;
struct work_struct irq1_work;
struct workqueue_struct *irq1_work_queue;
int irq2;
struct work_struct irq2_work;
struct workqueue_struct *irq2_work_queue;
struct regulator *l19;
struct regulator *lvs1_1p8;
struct k2hh_acc cal_data;
#ifdef DEBUG
u8 reg_addr;
#endif
};
/* sets default init values to be written in registers at probe stage */
static void lis2hh_acc_set_init_register_values(struct lis2hh_acc_status *stat)
{
memset(stat->resume_state, 0, ARRAY_SIZE(stat->resume_state));
stat->resume_state[RES_CTRL1] = (ALL_ZEROES | \
CTRL1_HR_DISABLE | \
CTRL1_BDU_ENABLE | \
ACC_ENABLE_ALL_AXES);
if(stat->pdata->gpio_int1 >= 0)
stat->resume_state[RES_CTRL3] =
(stat->resume_state[RES_CTRL3] | \
CTRL3_IG1_INT1);
stat->resume_state[RES_CTRL4] = (ALL_ZEROES | \
CTRL4_IF_ADD_INC_EN);
stat->resume_state[RES_CTRL5] = (ALL_ZEROES | \
CTRL5_HLACTIVE_H);
if(stat->pdata->gpio_int2 >= 0)
stat->resume_state[RES_CTRL6] =
(stat->resume_state[RES_CTRL6] | \
CTRL6_IG2_INT2);
stat->resume_state[RES_CTRL7] = (ALL_ZEROES | \
CTRL7_LIR2 | CTRL7_LIR1);
}
int k2hh_power_on(struct lis2hh_acc_status *data, bool onoff)
{
int ret = -1;
if (!data->l19) {
data->l19 = regulator_get(&data->client->dev, "8226_l19");
if (!data->l19) {
pr_err("%s: regulator pointer null l19, rc=%d\n",
__func__, ret);
return ret;
}
ret = regulator_set_voltage(data->l19, 2850000, 2850000);
if (ret) {
pr_err("%s: set voltage failed on l19, rc=%d\n",
__func__, ret);
return ret;
}
}
if (!data->lvs1_1p8) {
data->lvs1_1p8 = regulator_get(&data->client->dev, "8226_lvs1");
if(!data->lvs1_1p8){
pr_err("%s: regulator_get for 8226_lvs1 failed\n", __func__);
return 0;
}
}
if(onoff){
ret = regulator_enable(data->l19);
if (ret) {
pr_err("%s: Failed to enable regulator l19.\n",
__func__);
return ret;
}
ret = regulator_enable(data->lvs1_1p8);
if (ret) {
pr_err("%s: Failed to enable regulator lvs1_1p8.\n",
__func__);
return ret;
}
}
else {
ret = regulator_disable(data->l19);
if (ret) {
pr_err("%s: Failed to disable regulatorl19.\n",
__func__);
return ret;
}
ret = regulator_enable(data->lvs1_1p8);
if (ret) {
pr_err("%s: Failed to disable regulator lvs1_1p8.\n",
__func__);
return ret;
}
}
return 0;
}
static int lis2hh_acc_i2c_read(struct lis2hh_acc_status *stat, u8 *buf,
int len)
{
int ret;
u8 reg = buf[0];
u8 cmd = reg;
unsigned int ii;
if (len > 1)
cmd = (I2C_AUTO_INCREMENT | reg);
if (stat->use_smbus) {
if (len == 1) {
ret = i2c_smbus_read_byte_data(stat->client, cmd);
buf[0] = ret & 0xff;
#ifdef DEBUG
dev_warn(&stat->client->dev,
"i2c_smbus_read_byte_data: ret=0x%02x, len:%d ,"
"command=0x%02x, buf[0]=0x%02x\n",
ret, len, cmd , buf[0]);
#endif
} else if (len > 1) {
ret = i2c_smbus_read_i2c_block_data(stat->client,
cmd, len, buf);
#ifdef DEBUG
dev_warn(&stat->client->dev,
"i2c_smbus_read_i2c_block_data: ret:%d len:%d, "
"command=0x%02x, ",
ret, len, cmd);
for (ii = 0; ii < len; ii++)
printk(KERN_DEBUG "buf[%d]=0x%02x,",
ii, buf[ii]);
printk("\n");
#endif
} else
ret = -1;
if (ret < 0) {
dev_err(&stat->client->dev,
"read transfer error: len:%d, command=0x%02x\n",
len, cmd);
return 0; /* failure */
}
return len; /* success */
}
ret = i2c_master_send(stat->client, &cmd, sizeof(cmd));
if (ret != sizeof(cmd))
return ret;
return i2c_master_recv(stat->client, buf, len);
}
static int lis2hh_acc_i2c_write(struct lis2hh_acc_status *stat, u8 *buf,
int len)
{
int ret;
u8 reg, value;
unsigned int ii;
if (len > 1)
buf[0] = (I2C_AUTO_INCREMENT | buf[0]);
reg = buf[0];
value = buf[1];
if (stat->use_smbus) {
if (len == 1) {
ret = i2c_smbus_write_byte_data(stat->client,
reg, value);
#ifdef DEBUG
dev_warn(&stat->client->dev,
"i2c_smbus_write_byte_data: ret=%d, len:%d, "
"command=0x%02x, value=0x%02x\n",
ret, len, reg , value);
#endif
return ret;
} else if (len > 1) {
ret = i2c_smbus_write_i2c_block_data(stat->client,
reg, len, buf + 1);
#ifdef DEBUG
dev_warn(&stat->client->dev,
"i2c_smbus_write_i2c_block_data: ret=%d, "
"len:%d, command=0x%02x, ",
ret, len, reg);
for (ii = 0; ii < (len + 1); ii++)
printk(KERN_DEBUG "value[%d]=0x%02x,",
ii, buf[ii]);
printk("\n");
#endif
return ret;
}
}
ret = i2c_master_send(stat->client, buf, len+1);
return (ret == len+1) ? 0 : ret;
}
static int lis2hh_acc_hw_init(struct lis2hh_acc_status *stat)
{
int err = -1;
u8 buf[7];
pr_info("%s: hw init start\n", LIS2HH_ACC_DEV_NAME);
buf[0] = WHO_AM_I;
err = lis2hh_acc_i2c_read(stat, buf, 1);
if (err < 0) {
dev_warn(&stat->client->dev, "Error reading WHO_AM_I:"
" is device available/working?\n");
goto err_firstread;
} else
stat->hw_working = 1;
if (buf[0] != WHOAMI_LIS2HH_ACC) {
dev_err(&stat->client->dev,
"device unknown. Expected: 0x%02x,"
" Replies: 0x%02x\n",
WHOAMI_LIS2HH_ACC, buf[0]);
err = -1; /* choose the right coded error */
goto err_unknown_device;
}
buf[0] = FIFO_CTRL;
buf[1] = stat->resume_state[RES_FIFO_CTRL];
err = lis2hh_acc_i2c_write(stat, buf, 1);
if (err < 0)
goto err_resume_state;
buf[0] = INT_THSX1;
buf[1] = stat->resume_state[RES_INT_THSX1];
buf[2] = stat->resume_state[RES_INT_THSY1];
buf[3] = stat->resume_state[RES_INT_THSZ1];
buf[4] = stat->resume_state[RES_INT_DUR1];
err = lis2hh_acc_i2c_write(stat, buf, 4);
if (err < 0)
goto err_resume_state;
buf[0] = INT_CFG1;
buf[1] = stat->resume_state[RES_INT_CFG1];
err = lis2hh_acc_i2c_write(stat, buf, 1);
if (err < 0)
goto err_resume_state;
buf[0] = CTRL2;
buf[1] = stat->resume_state[RES_CTRL2];
buf[2] = stat->resume_state[RES_CTRL3];
buf[3] = stat->resume_state[RES_CTRL4];
buf[4] = stat->resume_state[RES_CTRL5];
buf[5] = stat->resume_state[RES_CTRL6];
buf[6] = stat->resume_state[RES_CTRL7];
err = lis2hh_acc_i2c_write(stat, buf, 6);
if (err < 0)
goto err_resume_state;
buf[0] = CTRL1;
buf[1] = stat->resume_state[RES_CTRL1];
err = lis2hh_acc_i2c_write(stat, buf, 1);
if (err < 0)
goto err_resume_state;
stat->hw_initialized = 1;
pr_info("%s: hw init done\n", LIS2HH_ACC_DEV_NAME);
return 0;
err_firstread:
stat->hw_working = 0;
err_unknown_device:
err_resume_state:
stat->hw_initialized = 0;
dev_err(&stat->client->dev, "hw init error 0x%02x,0x%02x: %d\n", buf[0],
buf[1], err);
return err;
}
static void lis2hh_acc_device_power_off(struct lis2hh_acc_status *stat)
{
int err;
u8 buf[2] = { CTRL1, LIS2HH_ACC_PM_OFF };
err = lis2hh_acc_i2c_write(stat, buf, 1);
if (err < 0)
dev_err(&stat->client->dev, "soft power off failed: %d\n", err);
if (stat->pdata->power_off) {
if (stat->pdata->gpio_int1 >= 0)
disable_irq_nosync(stat->irq1);
if (stat->pdata->gpio_int2 >= 0)
disable_irq_nosync(stat->irq2);
stat->pdata->power_off();
stat->hw_initialized = 0;
}
if (stat->hw_initialized) {
if (stat->pdata->gpio_int1 >= 0)
disable_irq_nosync(stat->irq1);
if (stat->pdata->gpio_int2 >= 0)
disable_irq_nosync(stat->irq2);
stat->hw_initialized = 0;
}
}
static int lis2hh_acc_device_power_on(struct lis2hh_acc_status *stat)
{
int err = -1;
if (stat->pdata->power_on) {
err = stat->pdata->power_on();
if (err < 0) {
dev_err(&stat->client->dev,
"power_on failed: %d\n", err);
return err;
}
if (stat->pdata->gpio_int1 >= 0)
enable_irq(stat->irq1);
if (stat->pdata->gpio_int2 >= 0)
enable_irq(stat->irq2);
}
mdelay(30);
if (!stat->hw_initialized) {
err = lis2hh_acc_hw_init(stat);
if (stat->hw_working == 1 && err < 0) {
lis2hh_acc_device_power_off(stat);
return err;
}
}
if (stat->hw_initialized) {
if (stat->pdata->gpio_int1 >= 0)
enable_irq(stat->irq1);
if (stat->pdata->gpio_int2 >= 0)
enable_irq(stat->irq2);
}
return 0;
}
static int lis2hh_acc_update_fs_range(struct lis2hh_acc_status *stat,
u8 new_fs_range)
{
int err = -1;
u8 sensitivity;
u8 buf[2];
u8 updated_val;
u8 init_val;
u8 new_val;
u8 mask = LIS2HH_ACC_FS_MASK;
switch (new_fs_range) {
case LIS2HH_ACC_FS_2G:
sensitivity = SENSITIVITY_2G;
break;
case LIS2HH_ACC_FS_4G:
sensitivity = SENSITIVITY_4G;
break;
case LIS2HH_ACC_FS_8G:
sensitivity = SENSITIVITY_8G;
break;
default:
dev_err(&stat->client->dev, "invalid fs range requested: %u\n",
new_fs_range);
return -EINVAL;
}
/* Updates configuration register 4,
* which contains fs range setting */
buf[0] = CTRL4;
err = lis2hh_acc_i2c_read(stat, buf, 1);
if (err < 0)
goto error;
init_val = buf[0];
stat->resume_state[RES_CTRL4] = init_val;
new_val = new_fs_range;
updated_val = ((mask & new_val) | ((~mask) & init_val));
buf[1] = updated_val;
buf[0] = CTRL4;
err = lis2hh_acc_i2c_write(stat, buf, 1);
if (err < 0)
goto error;
stat->resume_state[RES_CTRL4] = updated_val;
stat->sensitivity = sensitivity;
return err;
error:
dev_err(&stat->client->dev,
"update fs range failed 0x%02x,0x%02x: %d\n",
buf[0], buf[1], err);
return err;
}
static int lis2hh_acc_update_odr(struct lis2hh_acc_status *stat,
int poll_interval_ms)
{
int err;
int i;
u8 config[2];
u8 updated_val;
u8 init_val;
u8 new_val;
u8 mask = ACC_ODR_MASK;
/* Following, looks for the longest possible odr interval scrolling the
* odr_table vector from the end (shortest interval) backward (longest
* interval), to support the poll_interval requested by the system.
* It must be the longest interval lower then the poll interval.*/
for (i = ARRAY_SIZE(lis2hh_acc_odr_table) - 1; i >= 0; i--) {
if ((lis2hh_acc_odr_table[i].cutoff_ms <= poll_interval_ms)
|| (i == 0))
break;
}
new_val = lis2hh_acc_odr_table[i].mask;
/* Updates configuration register 1,
* which contains odr range setting if enabled,
* otherwise updates RES_CTRL1 for when it will */
if (atomic_read(&stat->enable)) {
config[0] = CTRL1;
err = lis2hh_acc_i2c_read(stat, config, 1);
if (err < 0)
goto error;
init_val = config[0];
stat->resume_state[RES_CTRL1] = init_val;
updated_val = ((mask & new_val) | ((~mask) & init_val));
config[1] = updated_val;
config[0] = CTRL1;
err = lis2hh_acc_i2c_write(stat, config, 1);
if (err < 0)
goto error;
stat->resume_state[RES_CTRL1] = updated_val;
return err;
} else {
init_val = stat->resume_state[RES_CTRL1];
updated_val = ((mask & new_val) | ((~mask) & init_val));
stat->resume_state[RES_CTRL1] = updated_val;
return 0;
}
error:
dev_err(&stat->client->dev,
"update odr failed 0x%02x,0x%02x: %d\n",
config[0], config[1], err);
return err;
}
static int lis2hh_acc_register_write(struct lis2hh_acc_status *stat,
u8 *buf, u8 reg_address, u8 new_value)
{
int err = -1;
/* Sets configuration register at reg_address
* NOTE: this is a straight overwrite */
buf[0] = reg_address;
buf[1] = new_value;
err = lis2hh_acc_i2c_write(stat, buf, 1);
if (err < 0)
return err;
return err;
}
static int lis2hh_acc_get_data(
struct lis2hh_acc_status *stat, int *xyz)
{
int err = -1;
/* Data bytes from hardware xL, xH, yL, yH, zL, zH */
u8 acc_data[6];
/* x,y,z hardware data */
s32 hw_d[3] = { 0 };
mutex_lock(&stat->lock);
acc_data[0] = (AXISDATA_REG);
err = lis2hh_acc_i2c_read(stat, acc_data, 6);
mutex_unlock(&stat->lock);
if (err < 0)
return err;
hw_d[0] = ((s16) ((acc_data[1] << 8) | acc_data[0]));
hw_d[1] = ((s16) ((acc_data[3] << 8) | acc_data[2]));
hw_d[2] = ((s16) ((acc_data[5] << 8) | acc_data[4]));
#if 0
hw_d[0] = hw_d[0] * stat->sensitivity;
hw_d[1] = hw_d[1] * stat->sensitivity;
hw_d[2] = hw_d[2] * stat->sensitivity;
#endif
xyz[0] = ((stat->pdata->negate_x) ? (-hw_d[stat->pdata->axis_map_x])
: (hw_d[stat->pdata->axis_map_x]));
xyz[1] = ((stat->pdata->negate_y) ? (-hw_d[stat->pdata->axis_map_y])
: (hw_d[stat->pdata->axis_map_y]));
xyz[2] = ((stat->pdata->negate_z) ? (-hw_d[stat->pdata->axis_map_z])
: (hw_d[stat->pdata->axis_map_z]));
xyz[0] = xyz[0] - stat->cal_data.x ;
xyz[1] = xyz[1] - stat->cal_data.y ;
xyz[2] = xyz[2] - stat->cal_data.z ;
/*printk("%s read x=%d, y=%d, z=%d\n",
LIS2HH_ACC_DEV_NAME, xyz[0], xyz[1], xyz[2]);*/
#ifdef DEBUG
dev_dbg(&stat->client->dev,"%s read x=%d, y=%d, z=%d\n",
LIS2HH_ACC_DEV_NAME, xyz[0], xyz[1], xyz[2]);
#endif
return err;
}
static void lis2hh_acc_report_values(struct lis2hh_acc_status *stat,
int *xyz)
{
input_report_rel(stat->input_dev, REL_X, xyz[0]);
input_report_rel(stat->input_dev, REL_Y, xyz[1]);
input_report_rel(stat->input_dev, REL_Z, xyz[2]);
input_sync(stat->input_dev);
}
static void lis2hh_acc_report_triple(struct lis2hh_acc_status *stat)
{
int err;
int xyz[3];
err = lis2hh_acc_get_data(stat, xyz);
if (err < 0)
dev_err(&stat->client->dev, "get_data failed\n");
else
lis2hh_acc_report_values(stat, xyz);
}
static irqreturn_t lis2hh_acc_isr1(int irq, void *dev)
{
struct lis2hh_acc_status *stat = dev;
printk("lis2hh_acc lis2hh_acc_isr1 called END \n");
disable_irq_nosync(irq);
queue_work(stat->irq1_work_queue, &stat->irq1_work);
printk("%s: isr1 queued %d \n", LIS2HH_ACC_DEV_NAME,stat->irq1);
printk("lis2hh_acc lis2hh_acc_isr1 called END \n");
return IRQ_HANDLED;
}
static irqreturn_t lis2hh_acc_isr2(int irq, void *dev)
{
struct lis2hh_acc_status *stat = dev;
disable_irq_nosync(irq);
queue_work(stat->irq2_work_queue, &stat->irq2_work);
pr_debug("%s: isr2 queued\n", LIS2HH_ACC_DEV_NAME);
return IRQ_HANDLED;
}
static void lis2hh_acc_irq1_work_func(struct work_struct *work)
{
struct lis2hh_acc_status *stat =
container_of(work, struct lis2hh_acc_status, irq1_work);
/* TODO add interrupt service procedure.
ie:lis2hh_acc_get_int1_source(stat); */
/* ; */
pr_debug("%s: IRQ1 served\n", LIS2HH_ACC_DEV_NAME);
/* exit: */
enable_irq(stat->irq1);
}
static void lis2hh_acc_irq2_work_func(struct work_struct *work)
{
struct lis2hh_acc_status *stat =
container_of(work, struct lis2hh_acc_status, irq2_work);
/* TODO add interrupt service procedure.
ie:lis2hh_acc_get_tap_source(stat); */
/* ; */
pr_debug("%s: IRQ2 served\n", LIS2HH_ACC_DEV_NAME);
/* exit: */
enable_irq(stat->irq2);
}
static int k2hh_open_calibration(struct lis2hh_acc_status *data)
{
struct file *cal_filp = NULL;
int err = 0;
mm_segment_t old_fs;
old_fs = get_fs();
set_fs(KERNEL_DS);
cal_filp = filp_open(CALIBRATION_FILE_PATH, O_RDONLY, 0666);
if (IS_ERR(cal_filp)) {
err = PTR_ERR(cal_filp);
if (err != -ENOENT)
pr_err("%s: Can't open calibration file\n", __func__);
set_fs(old_fs);
return err;
}
err = cal_filp->f_op->read(cal_filp,
(char *)&data->cal_data, 3 * sizeof(s16), &cal_filp->f_pos);
if (err != 3 * sizeof(s16)) {
pr_err("%s: Can't read the cal data from file\n", __func__);
err = -EIO;
}
printk("%s: (%d,%d,%d)\n", __func__,
data->cal_data.x, data->cal_data.y, data->cal_data.z);
filp_close(cal_filp, current->files);
set_fs(old_fs);
return err;
}
static int lis2hh_acc_enable(struct lis2hh_acc_status *stat)
{
int err;
if (!atomic_cmpxchg(&stat->enable, 0, 1)) {
err = lis2hh_acc_device_power_on(stat);
if (err < 0) {
atomic_set(&stat->enable, 0);
return err;
}
err = k2hh_open_calibration(stat);
if (err < 0 && err != -ENOENT)
pr_err("%s: k2hh_open_calibration() failed\n",
__func__);
stat->polling_ktime = ktime_set(stat->pdata->poll_interval / 1000,
MS_TO_NS(stat->pdata->poll_interval % 1000));
hrtimer_start(&stat->hr_timer_poll,
stat->polling_ktime, HRTIMER_MODE_REL);
}
return 0;
}
static int lis2hh_acc_disable(struct lis2hh_acc_status *stat)
{
if (atomic_cmpxchg(&stat->enable, 1, 0)) {
cancel_work_sync(&stat->input_poll_work);
lis2hh_acc_device_power_off(stat);
}
return 0;
}
static ssize_t read_single_reg(struct device *dev, char *buf, u8 reg)
{
ssize_t ret;
struct lis2hh_acc_status *stat = dev_get_drvdata(dev);
int err;
u8 data = reg;
err = lis2hh_acc_i2c_read(stat, &data, 1);
if (err < 0)
return err;
ret = sprintf(buf, "0x%02x\n", data);
return ret;
}
static int write_reg(struct device *dev, const char *buf, u8 reg,
u8 mask, int resumeIndex)
{
int err = -1;
struct lis2hh_acc_status *stat = dev_get_drvdata(dev);
u8 x[2];
u8 new_val;
unsigned long val;
if (strict_strtoul(buf, 16, &val))
return -EINVAL;
new_val = ((u8) val & mask);
x[0] = reg;
x[1] = new_val;
err = lis2hh_acc_register_write(stat, x, reg, new_val);
if (err < 0)
return err;
stat->resume_state[resumeIndex] = new_val;
return err;
}
static ssize_t attr_get_polling_rate(struct device *dev,
struct device_attribute *attr,
char *buf)
{
int val;
struct lis2hh_acc_status *stat = dev_get_drvdata(dev);
mutex_lock(&stat->lock);
val = stat->pdata->poll_interval;
mutex_unlock(&stat->lock);
return sprintf(buf, "%d\n", val);
}
static ssize_t attr_set_polling_rate(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t size)
{
int err;
struct lis2hh_acc_status *stat = dev_get_drvdata(dev);
int64_t nsdelay;
unsigned long interval_ms;
if (kstrtoll(buf, 10, &nsdelay))
return -EINVAL;
if (!nsdelay)
return -EINVAL;
interval_ms = div_s64(nsdelay, 1000000);
interval_ms = max((unsigned int)interval_ms, stat->pdata->min_interval);
mutex_lock(&stat->lock);
stat->pdata->poll_interval = interval_ms;
err = lis2hh_acc_update_odr(stat, interval_ms);
if(err >= 0) {
stat->pdata->poll_interval = interval_ms;
stat->polling_ktime = ktime_set(stat->pdata->poll_interval / 1000,
MS_TO_NS(stat->pdata->poll_interval % 1000));
}
mutex_unlock(&stat->lock);
return size;
}
static ssize_t attr_get_range(struct device *dev,
struct device_attribute *attr, char *buf)
{
char val;
struct lis2hh_acc_status *stat = dev_get_drvdata(dev);
char range = 2;
mutex_lock(&stat->lock);
val = stat->pdata->fs_range ;
switch (val) {
case LIS2HH_ACC_FS_2G:
range = 2;
break;
case LIS2HH_ACC_FS_4G:
range = 4;
break;
case LIS2HH_ACC_FS_8G:
range = 8;
break;
}
mutex_unlock(&stat->lock);
return sprintf(buf, "%d\n", range);
}
static ssize_t attr_set_range(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t size)
{
struct lis2hh_acc_status *stat = dev_get_drvdata(dev);
unsigned long val;
u8 range;
int err;
if (strict_strtoul(buf, 10, &val))
return -EINVAL;
switch (val) {
case 2:
range = LIS2HH_ACC_FS_2G;
break;
case 4:
range = LIS2HH_ACC_FS_4G;
break;
case 8:
range = LIS2HH_ACC_FS_8G;
break;
default:
dev_err(&stat->client->dev, "invalid range request: %lu,"
" discarded\n", val);
return -EINVAL;
}
mutex_lock(&stat->lock);
err = lis2hh_acc_update_fs_range(stat, range);
if (err < 0) {
mutex_unlock(&stat->lock);
return err;
}
stat->pdata->fs_range = range;
mutex_unlock(&stat->lock);
dev_info(&stat->client->dev, "range set to: %lu g\n", val);
return size;
}
static ssize_t attr_get_enable(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct lis2hh_acc_status *stat = dev_get_drvdata(dev);
int val = atomic_read(&stat->enable);
return sprintf(buf, "%d\n", val);
}
static ssize_t attr_set_enable(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t size)
{
struct lis2hh_acc_status *stat = dev_get_drvdata(dev);
unsigned long val;
if (strict_strtoul(buf, 10, &val))
return -EINVAL;
if (val)
lis2hh_acc_enable(stat);
else
lis2hh_acc_disable(stat);
return size;
}
static ssize_t attr_set_intconfig1(struct device *dev,
struct device_attribute *attr, const char *buf, size_t size)
{
return write_reg(dev, buf, INT_CFG1, NO_MASK, RES_INT_CFG1);
}
static ssize_t attr_get_intconfig1(struct device *dev,
struct device_attribute *attr, char *buf)
{
return read_single_reg(dev, buf, INT_CFG1);
}
static ssize_t attr_set_duration1(struct device *dev,
struct device_attribute *attr, const char *buf, size_t size)
{
return write_reg(dev, buf, INT_DUR1, INT1_DURATION_MASK, RES_INT_DUR1);
}
static ssize_t attr_get_duration1(struct device *dev,
struct device_attribute *attr, char *buf)
{
return read_single_reg(dev, buf, INT_DUR1);
}
static ssize_t attr_set_threshx1(struct device *dev,
struct device_attribute *attr, const char *buf, size_t size)
{
return write_reg(dev, buf, INT_THSX1, INT1_THRESHOLD_MASK, RES_INT_THSX1);
}
static ssize_t attr_get_threshx1(struct device *dev,
struct device_attribute *attr, char *buf)
{
return read_single_reg(dev, buf, INT_THSX1);
}
static ssize_t attr_set_threshy1(struct device *dev,
struct device_attribute *attr, const char *buf, size_t size)
{
return write_reg(dev, buf, INT_THSY1, INT1_THRESHOLD_MASK, RES_INT_THSY1);
}
static ssize_t attr_get_threshy1(struct device *dev,
struct device_attribute *attr, char *buf)
{
return read_single_reg(dev, buf, INT_THSY1);
}
static ssize_t attr_set_threshz1(struct device *dev,
struct device_attribute *attr, const char *buf, size_t size)
{
return write_reg(dev, buf, INT_THSZ1, INT1_THRESHOLD_MASK, RES_INT_THSZ1);
}
static ssize_t attr_get_threshz1(struct device *dev,
struct device_attribute *attr, char *buf)
{
return read_single_reg(dev, buf, INT_THSZ1);
}
static ssize_t attr_get_source1(struct device *dev,
struct device_attribute *attr, char *buf)
{
return read_single_reg(dev, buf, INT_SRC1);
}
#ifdef DEBUG
/* PAY ATTENTION: These DEBUG functions don't manage resume_state */
static ssize_t attr_reg_set(struct device *dev, struct device_attribute *attr,
const char *buf, size_t size)
{
int rc;
struct lis2hh_acc_status *stat = dev_get_drvdata(dev);
u8 x[2];
unsigned long val;
if (strict_strtoul(buf, 16, &val))
return -EINVAL;
mutex_lock(&stat->lock);
x[0] = stat->reg_addr;
mutex_unlock(&stat->lock);
x[1] = val;
rc = lis2hh_acc_i2c_write(stat, x, 1);
/*TODO: error need to be managed */
if (rc < 0) {
pr_err("%s: lis2hh_acc_i2c_write() failed\n", __func__);
return rc;
}
return size;
}
static ssize_t attr_reg_get(struct device *dev, struct device_attribute *attr,
char *buf)
{
ssize_t ret;
struct lis2hh_acc_status *stat = dev_get_drvdata(dev);
int rc;
u8 data;
mutex_lock(&stat->lock);
data = stat->reg_addr;
mutex_unlock(&stat->lock);
rc = lis2hh_acc_i2c_read(stat, &data, 1);
/*TODO: error need to be managed */
if (rc < 0) {
pr_err("%s: lis2hh_acc_i2c_read() failed\n", __func__);
return rc;
}
ret = sprintf(buf, "0x%02x\n", data);
return ret;
}
static ssize_t attr_addr_set(struct device *dev, struct device_attribute *attr,
const char *buf, size_t size)
{
struct lis2hh_acc_status *stat = dev_get_drvdata(dev);
unsigned long val;
if (strict_strtoul(buf, 16, &val))
return -EINVAL;
mutex_lock(&stat->lock);
stat->reg_addr = val;
mutex_unlock(&stat->lock);
return size;
}
#endif
static ssize_t k2hh_accel_vendor_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
return sprintf(buf, "%s\n", VENDOR);
}
static ssize_t k2hh_accel_name_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
return sprintf(buf, "%s\n", CHIP_ID);
}
static ssize_t k2hh_fs_read(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct lis2hh_acc_status *data = dev_get_drvdata(dev);
int xyz[3];
lis2hh_acc_get_data(data,xyz);
return sprintf(buf, "%d,%d,%d\n", xyz[0], xyz[1], xyz[2]);
}
static ssize_t k2hh_calibration_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
int err;
struct lis2hh_acc_status *stat = dev_get_drvdata(dev);
err = k2hh_open_calibration(stat);
if (err < 0)
pr_err("%s: k2hh_open_calibration() failed\n", __func__);
if (!stat->cal_data.x && !stat->cal_data.y && !stat->cal_data.z)
err = -1;
return sprintf(buf, "%d %d %d %d\n",
err, stat->cal_data.x, stat->cal_data.y, stat->cal_data.z);
}
static int k2hh_do_calibrate(struct device *dev, bool do_calib)
{
struct lis2hh_acc_status *acc_data = dev_get_drvdata(dev);
struct file *cal_filp = NULL;
int sum[3] = { 0, };
int err = 0;
int i;
mm_segment_t old_fs;
int xyz[3];
if (do_calib) {
acc_data->cal_data.x = 0;
acc_data->cal_data.y = 0;
acc_data->cal_data.z = 0;
for (i = 0; i < CAL_DATA_AMOUNT; i++) {
err = lis2hh_acc_get_data(acc_data,xyz);
if (err < 0) {
pr_err("%s: lis2hh_acc_get_data() "
"failed in the %dth loop\n",
__func__, i);
return err;
}
sum[0] += xyz[0];
sum[1] += xyz[1];
sum[2] += xyz[2];
}
acc_data->cal_data.x = sum[0] / CAL_DATA_AMOUNT;
acc_data->cal_data.y = sum[1] / CAL_DATA_AMOUNT;
if (sum[2] >= 0)
acc_data->cal_data.z = (sum[2] / CAL_DATA_AMOUNT)-16384;
else
acc_data->cal_data.z = (sum[2] / CAL_DATA_AMOUNT)+16384;
} else {
acc_data->cal_data.x = 0;
acc_data->cal_data.y = 0;
acc_data->cal_data.z = 0;
}
printk(KERN_INFO "%s: cal data (%d,%d,%d)\n", __func__,
acc_data->cal_data.x, acc_data->cal_data.y, acc_data->cal_data.z);
old_fs = get_fs();
set_fs(KERNEL_DS);
cal_filp = filp_open(CALIBRATION_FILE_PATH,
O_CREAT | O_TRUNC | O_WRONLY, 0666);
if (IS_ERR(cal_filp)) {
pr_err("%s: Can't open calibration file\n", __func__);
set_fs(old_fs);
err = PTR_ERR(cal_filp);
return err;
}
err = cal_filp->f_op->write(cal_filp,
(char *)&acc_data->cal_data, 3 * sizeof(s16), &cal_filp->f_pos);
if (err != 3 * sizeof(s16)) {
pr_err("%s: Can't write the cal data to file\n", __func__);
err = -EIO;
}
filp_close(cal_filp, current->files);
set_fs(old_fs);
return err;
}
static ssize_t k2hh_calibration_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
bool do_calib;
int err;
if (sysfs_streq(buf, "1"))
do_calib = true;
else if (sysfs_streq(buf, "0"))
do_calib = false;
else {
pr_debug("%s: invalid value %d\n", __func__, *buf);
return -EINVAL;
}
err = k2hh_do_calibrate(dev, do_calib);
if (err < 0) {
pr_err("%s: k2hh_do_calibrate() failed\n", __func__);
return err;
}
return count;
}
static ssize_t attr_get_selftest(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct lis2hh_acc_status *stat = dev_get_drvdata(dev);
int val, i, en_state = 0;
ssize_t ret;
u8 x[8];
s32 NO_ST[3] = {0, 0, 0};
s32 ST[3] = {0, 0, 0};
en_state = atomic_read(&stat->enable);
lis2hh_acc_disable(stat);
lis2hh_acc_device_power_on(stat);
x[0] = CTRL1;
x[1] = 0x3f;
lis2hh_acc_i2c_write(stat, x, 1);
x[0] = CTRL4;
x[1] = 0x04;
x[2] = 0x00;
x[3] = 0x00;
lis2hh_acc_i2c_write(stat, x, 3);
mdelay(80);
x[0] = AXISDATA_REG;
lis2hh_acc_i2c_read(stat, x, 6);
for (i = 0; i < 5; i++) {
while (1) {
x[0] = 0x27;
val = lis2hh_acc_i2c_read(stat, x, 1);
if (val < 0) {
ret = sprintf(buf, "I2C fail. (%d)\n", val);
goto ST_EXIT;
}
if (x[0] & 0x08)
break;
}
x[0] = AXISDATA_REG;
lis2hh_acc_i2c_read(stat, x, 6);
NO_ST[0] += (s16)(x[1] << 8 | x[0]);
NO_ST[1] += (s16)(x[3] << 8 | x[2]);
NO_ST[2] += (s16)(x[5] << 8 | x[4]);
}
NO_ST[0] /= 5;
NO_ST[1] /= 5;
NO_ST[2] /= 5;
x[0] = CTRL5;
x[1] = 0x04;
lis2hh_acc_i2c_write(stat, x, 1);
mdelay(80);
x[0] = AXISDATA_REG;
lis2hh_acc_i2c_read(stat, x, 6);
for (i = 0; i < 5; i++) {
while (1) {
x[0] = 0x27;
val = lis2hh_acc_i2c_read(stat, x, 1);
if (val < 0) {
ret = sprintf(buf, "I2C fail. (%d)\n", val);
goto ST_EXIT;
}
if (x[0] & 0x08)
break;
}
x[0] = AXISDATA_REG;
lis2hh_acc_i2c_read(stat, x, 6);
ST[0] += (s16)(x[1] << 8 | x[0]);
ST[1] += (s16)(x[3] << 8 | x[2]);
ST[2] += (s16)(x[5] << 8 | x[4]);
}
ST[0] /= 5;
ST[1] /= 5;
ST[2] /= 5;
for (val = 1, i = 0; i < 3; i++) {
ST[i] -= NO_ST[i];
ST[i] = abs(ST[i]);
if ((SELF_TEST_2G_MIN_LSB > ST[i]) || (ST[i] > SELF_TEST_2G_MAX_LSB)) {
pr_info("ST[%d]: Out of range!! (%d)\n", i, ST[i]);
val = 0;
}
}
if (val)
ret = sprintf(buf, "1, %d, %d, %d \n", ST[0], ST[1], ST[2]);
else
ret = sprintf(buf, "0, %d, %d, %d \n", ST[0], ST[1], ST[2]);
ST_EXIT:
x[0] = CTRL1;
x[1] = 0x00;
lis2hh_acc_i2c_write(stat, x, 1);
x[0] = CTRL5;
x[1] = 0x00;
lis2hh_acc_i2c_write(stat, x, 1);
lis2hh_acc_device_power_off(stat);
if (en_state) lis2hh_acc_enable(stat);
return ret;
}
/*
static ssize_t
k2hh_accel_position_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct lis2hh_acc_status *data = dev_get_drvdata(dev);
return sprintf(buf, "%d\n", data->position);
}
static ssize_t
k2hh_accel_position_store(struct device *dev,
struct device_attribute *attr,
const char *buf,
size_t count)
{
struct lis2hh_acc_status *data = dev_get_drvdata(dev);
int err = 0;
err = kstrtoint(buf, 10, &data->position);
if (err < 0)
pr_err("%s, kstrtoint failed.", __func__);
return count;
}*/
static DEVICE_ATTR(name, 0664, k2hh_accel_name_show, NULL);
static DEVICE_ATTR(vendor, 0664, k2hh_accel_vendor_show, NULL);
static DEVICE_ATTR(range, 0664, attr_get_range, attr_set_range);
static DEVICE_ATTR(int1_config, 0664, attr_get_intconfig1, attr_set_intconfig1);
static DEVICE_ATTR(int1_duration, 0664, attr_get_duration1, attr_set_duration1);
static DEVICE_ATTR(int1_thresholdx, 0664, attr_get_threshx1, attr_set_threshx1);
static DEVICE_ATTR(int1_thresholdy, 0664, attr_get_threshy1, attr_set_threshy1);
static DEVICE_ATTR(int1_thresholdz, 0664, attr_get_threshz1, attr_set_threshz1);
static DEVICE_ATTR(int1_source, 0444, attr_get_source1, NULL);
static DEVICE_ATTR(raw_data, 0664, k2hh_fs_read, NULL);
static DEVICE_ATTR(calibration, 0664, k2hh_calibration_show, k2hh_calibration_store);
static DEVICE_ATTR(selftest, 0444, attr_get_selftest, NULL);
#ifdef DEBUG
static DEVICE_ATTR(reg_value, 0600, attr_reg_get, attr_reg_set);
static DEVICE_ATTR(reg_addr, 0200, NULL, attr_addr_set);
#endif
static DEVICE_ATTR(enable,S_IRUGO | S_IWUSR | S_IWGRP,attr_get_enable, attr_set_enable);
static DEVICE_ATTR(poll_delay,S_IRUGO | S_IWUSR | S_IWGRP,attr_get_polling_rate, attr_set_polling_rate);
static struct attribute *k2hh_attributes[] = {
&dev_attr_enable.attr,
&dev_attr_poll_delay.attr,
NULL
};
static struct attribute_group k2hh_attribute_group = {
.attrs = k2hh_attributes
};
static struct device_attribute *sensor_attrs[] = {
&dev_attr_name,
&dev_attr_vendor,
&dev_attr_range,
&dev_attr_int1_config,
&dev_attr_int1_duration,
&dev_attr_int1_thresholdx,
&dev_attr_int1_thresholdy,
&dev_attr_int1_thresholdz,
&dev_attr_int1_source,
&dev_attr_raw_data,
&dev_attr_calibration,
&dev_attr_selftest,
#ifdef DEBUG
&dev_attr_reg_value,
&dev_attr_reg_addr,
#endif
NULL,
};
/*
static int create_sysfs_interfaces(struct device *dev)
{
int i;
for (i = 0; i < ARRAY_SIZE(attributes); i++)
if (device_create_file(dev, attributes + i))
goto error;
return 0;
error:
for ( ; i >= 0; i--)
device_remove_file(dev, attributes + i);
dev_err(dev, "%s:Unable to create interface\n", __func__);
return -1;
}
static int remove_sysfs_interfaces(struct device *dev)
{
int i;
for (i = 0; i < ARRAY_SIZE(attributes); i++)
device_remove_file(dev, attributes + i);
return 0;
}
*/
static void lis2hh_acc_input_poll_work_func(struct work_struct *work)
{
struct lis2hh_acc_status *stat;
stat = container_of((struct work_struct *) work,
struct lis2hh_acc_status, input_poll_work);
lis2hh_acc_report_triple(stat);
if (atomic_read(&stat->enable))
hrtimer_start(&stat->hr_timer_poll, stat->polling_ktime, HRTIMER_MODE_REL);
}
enum hrtimer_restart lis2hh_acc_hr_timer_poll_function(struct hrtimer *timer)
{
struct lis2hh_acc_status *stat;
stat = container_of((struct hrtimer *)timer,
struct lis2hh_acc_status, hr_timer_poll);
queue_work(stat->hr_timer_poll_work_queue, &stat->input_poll_work);
return HRTIMER_NORESTART;
}
#if 0
int lis2hh_acc_input_open(struct input_dev *input)
{
struct lis2hh_acc_status *stat = input_get_drvdata(input);
dev_dbg(&stat->client->dev, "%s\n", __func__);
return lis2hh_acc_enable(stat);
}
void lis2hh_acc_input_close(struct input_dev *dev)
{
struct lis2hh_acc_status *stat = input_get_drvdata(dev);
dev_dbg(&stat->client->dev, "%s\n", __func__);
lis2hh_acc_disable(stat);
}
#endif
static int lis2hh_acc_validate_pdata(struct lis2hh_acc_status *stat)
{
/* checks for correctness of minimal polling period */
stat->pdata->min_interval =
max((unsigned int)LIS2HH_ACC_MIN_POLL_PERIOD_MS,
stat->pdata->min_interval);
stat->pdata->poll_interval = max(stat->pdata->poll_interval,
stat->pdata->min_interval);
if (stat->pdata->axis_map_x > 2 ||
stat->pdata->axis_map_y > 2 ||
stat->pdata->axis_map_z > 2) {
dev_err(&stat->client->dev, "invalid axis_map value "
"x:%u y:%u z%u\n", stat->pdata->axis_map_x,
stat->pdata->axis_map_y,
stat->pdata->axis_map_z);
return -EINVAL;
}
/* Only allow 0 and 1 for negation boolean flag */
if (stat->pdata->negate_x > 1 || stat->pdata->negate_y > 1
|| stat->pdata->negate_z > 1) {
dev_err(&stat->client->dev, "invalid negate value "
"x:%u y:%u z:%u\n", stat->pdata->negate_x,
stat->pdata->negate_y, stat->pdata->negate_z);
return -EINVAL;
}
/* Enforce minimum polling interval */
if (stat->pdata->poll_interval < stat->pdata->min_interval) {
dev_err(&stat->client->dev, "minimum poll interval violated\n");
return -EINVAL;
}
return 0;
}
static int lis2hh_acc_input_init(struct lis2hh_acc_status *stat)
{
int err;
INIT_WORK(&stat->input_poll_work, lis2hh_acc_input_poll_work_func);
stat->input_dev = input_allocate_device();
if (!stat->input_dev) {
err = -ENOMEM;
dev_err(&stat->client->dev, "input device allocation failed\n");
goto err0;
}
#if 0
stat->input_dev->open = lis2hh_acc_input_open;
stat->input_dev->close = lis2hh_acc_input_close;
#endif
//stat->input_dev->name = LIS2HH_ACC_DEV_NAME;
stat->input_dev->name = "accelerometer_sensor";
stat->input_dev->id.bustype = BUS_I2C;
//stat->input_dev->dev.parent = &stat->client->dev;
input_set_capability(stat->input_dev, EV_REL, REL_X);
input_set_capability(stat->input_dev, EV_REL, REL_Y);
input_set_capability(stat->input_dev, EV_REL, REL_Z);
input_set_drvdata(stat->input_dev, stat);
#if 0
set_bit(EV_ABS, stat->input_dev->evbit);
/* next is used for interruptA sources data if the case */
set_bit(ABS_MISC, stat->input_dev->absbit);
/* next is used for interruptB sources data if the case */
set_bit(ABS_WHEEL, stat->input_dev->absbit);
input_set_abs_params(stat->input_dev, ABS_X, G_MIN, G_MAX, FUZZ, FLAT);
input_set_abs_params(stat->input_dev, ABS_Y, G_MIN, G_MAX, FUZZ, FLAT);
input_set_abs_params(stat->input_dev, ABS_Z, G_MIN, G_MAX, FUZZ, FLAT);
/* next is used for interruptA sources data if the case */
input_set_abs_params(stat->input_dev, ABS_MISC, INT_MIN, INT_MAX, 0, 0);
/* next is used for interruptB sources data if the case */
input_set_abs_params(stat->input_dev, ABS_WHEEL, INT_MIN,
INT_MAX, 0, 0);
#endif
err = input_register_device(stat->input_dev);
if (err) {
dev_err(&stat->client->dev,
"unable to register input device %s\n",
stat->input_dev->name);
goto err1;
}
err = sensors_create_symlink(&stat->input_dev->dev.kobj, stat->input_dev->name);
if (err < 0) {
input_unregister_device(stat->input_dev);
return err;
}
/* Setup sysfs */
err =sysfs_create_group(&stat->input_dev->dev.kobj,&k2hh_attribute_group);
if (err < 0)
{
sensors_remove_symlink(&stat->input_dev->dev.kobj,stat->input_dev->name);
input_unregister_device(stat->input_dev);
return err;
}
return 0;
err1:
input_free_device(stat->input_dev);
err0:
return err;
}
static void lis2hh_acc_input_cleanup(struct lis2hh_acc_status *stat)
{
input_unregister_device(stat->input_dev);
input_free_device(stat->input_dev);
}
#ifdef CONFIG_OF
/* device tree parsing function */
static int k2hh_parse_dt(struct device *dev,
struct lis2hh_acc_platform_data *pdata)
{
unsigned int poll_interval;
unsigned int min_interval;
u32 axis_map_x;
u32 axis_map_y;
u32 axis_map_z;
u32 negate_x;
u32 negate_y;
u32 negate_z;
struct device_node *dNode = dev->of_node;
if (dNode == NULL)
return -ENODEV;
pdata->gpio_int1 = of_get_named_gpio_flags(dNode, "stm,irq_gpio", 0, &pdata->int_flags);
of_property_read_u32(dNode,"stm,axis_map_x" ,&axis_map_x);
of_property_read_u32(dNode,"stm,axis_map_y" ,&axis_map_y);
of_property_read_u32(dNode,"stm,axis_map_z" ,&axis_map_z);
of_property_read_u32(dNode,"stm,negate_x" ,&negate_x);
of_property_read_u32(dNode,"stm,negate_y" ,&negate_y);
of_property_read_u32(dNode,"stm,negate_z" ,&negate_z);
of_property_read_u32(dNode,"stm,poll_interval" ,&poll_interval);
of_property_read_u32(dNode,"stm,min_interval" ,&min_interval);
pdata->fs_range = LIS2HH_ACC_FS_2G;
pdata->axis_map_x=axis_map_x;
pdata->axis_map_y = axis_map_y;
pdata->axis_map_z = axis_map_z;
pdata->negate_x = negate_x;
pdata->negate_y = negate_y;
pdata->negate_z = negate_z;
pdata->poll_interval = poll_interval;
pdata->min_interval = min_interval;
pdata->gpio_int2 = -1;
if (pdata->gpio_int1 < 0) {
pr_err("[SENSOR]: %s - get irq_gpio error\n", __func__);
return -ENODEV;
}
printk(KERN_INFO "%s pull-up:%d \n", __func__, pdata->gpio_int1);
return 0;
}
#else
static int k2hh_parse_dt(struct device *dev,
struct lis2hh_acc_platform_data)
{
return -ENODEV;
}
#endif
static int lis2hh_acc_probe(struct i2c_client *client,
const struct i2c_device_id *id)
{
struct lis2hh_acc_status *stat;
struct lis2hh_acc_platform_data *pdata=NULL;
u32 smbus_func = (I2C_FUNC_SMBUS_BYTE_DATA |
I2C_FUNC_SMBUS_WORD_DATA | I2C_FUNC_SMBUS_I2C_BLOCK);
int err = -1;
dev_info(&client->dev, "probe start.\n");
if (client-> dev.of_node) {
pdata = devm_kzalloc (&client->dev ,
sizeof (struct lis2hh_acc_platform_data), GFP_KERNEL);
if (!pdata) {
dev_err(&client->dev, "Failed to allocate memory\n");
return -ENOMEM;
}
err = k2hh_parse_dt(&client->dev, pdata);
pr_info("%s: x=%d , y= %d , z = %d \n", __func__,
pdata->axis_map_x, pdata->axis_map_y, pdata->axis_map_z);
if (err) {
printk("%s err_free_pdata \n",__func__ );
goto err_free_pdata;
}
} else {
pdata = client->dev.platform_data;
dev_err(&client->dev,
"%s: K2hh failed to align dtsi", __func__);
}
if (!pdata)
return -EINVAL;
stat = kzalloc(sizeof(struct lis2hh_acc_status), GFP_KERNEL);
if (stat == NULL) {
dev_err(&client->dev,
"failed to allocate memory for module data\n");
err = -ENOMEM;
printk("%s exit \n",__func__ );
goto exit;
}
stat->use_smbus = 0;
if (!i2c_check_functionality(client->adapter, I2C_FUNC_I2C)) {
dev_warn(&client->dev, "client not i2c capable\n");
if (i2c_check_functionality(client->adapter, smbus_func)) {
stat->use_smbus = 1;
dev_warn(&client->dev, "client using SMBUS\n");
} else {
err = -ENODEV;
dev_err(&client->dev, "client nor SMBUS capable\n");
goto exit_check_functionality_failed;
}
}
mutex_init(&stat->lock);
mutex_lock(&stat->lock);
stat->client = client;
i2c_set_clientdata(client, stat);
k2hh_power_on(stat,1);
stat->pdata= pdata;
stat->hr_timer_poll_work_queue = 0;
err = lis2hh_acc_validate_pdata(stat);
if (err < 0) {
dev_err(&client->dev, "failed to validate platform data\n");
goto err_mutexunlock;
}
if (stat->pdata->init) {
err = stat->pdata->init();
if (err < 0) {
dev_err(&client->dev, "init failed: %d\n", err);
goto err_pdata_init;
}
}
if (stat->pdata->gpio_int1 >= 0) {
stat->irq1 = gpio_to_irq(stat->pdata->gpio_int1);
pr_info("%s: %s has set irq1 to irq: %d, "
"mapped on gpio:%d\n",
LIS2HH_ACC_DEV_NAME, __func__, stat->irq1,
stat->pdata->gpio_int1);
}
if (stat->pdata->gpio_int2 >= 0) {
stat->irq2 = gpio_to_irq(stat->pdata->gpio_int2);
pr_info("%s: %s has set irq2 to irq: %d, "
"mapped on gpio:%d\n",
LIS2HH_ACC_DEV_NAME, __func__, stat->irq2,
stat->pdata->gpio_int2);
}
lis2hh_acc_set_init_register_values(stat);
err = lis2hh_acc_device_power_on(stat);
if (err < 0) {
dev_err(&client->dev, "power on failed: %d\n", err);
goto err_pdata_init;
}
atomic_set(&stat->enable, 1);
err = lis2hh_acc_update_fs_range(stat, stat->pdata->fs_range);
if (err < 0) {
dev_err(&client->dev, "update_fs_range failed\n");
goto err_power_off;
}
err = lis2hh_acc_update_odr(stat, stat->pdata->poll_interval);
if (err < 0) {
dev_err(&client->dev, "update_odr failed\n");
goto err_power_off;
}
stat->hr_timer_poll_work_queue = create_workqueue("lis2hh_acc_hr_timer_poll_wq");
hrtimer_init(&stat->hr_timer_poll, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
stat->hr_timer_poll.function = &lis2hh_acc_hr_timer_poll_function;
err=sensors_register(stat->dev, stat, sensor_attrs, MODULE_NAME);
if (err < 0)
goto err_power_off;
//need to WORK CAK
err = lis2hh_acc_input_init(stat);
if (err < 0) {
dev_err(&client->dev, "input init failed\n");
goto err_remove_hr_work_queue;
}
lis2hh_acc_device_power_off(stat);
/* As default, do not report information */
atomic_set(&stat->enable, 0);
if (stat->pdata->gpio_int1 >= 0) {
INIT_WORK(&stat->irq1_work, lis2hh_acc_irq1_work_func);
stat->irq1_work_queue =
create_singlethread_workqueue("lis2hh_acc_wq1");
if (!stat->irq1_work_queue) {
err = -ENOMEM;
dev_err(&client->dev,
"cannot create work queue1: %d\n", err);
goto err_remove_hr_work_queue;
}
err = request_irq(stat->irq1, lis2hh_acc_isr1,
IRQF_TRIGGER_RISING, "lis2hh_acc_irq1", stat);
if (err < 0) {
dev_err(&client->dev, "request irq1 failed: %d\n", err);
goto err_destoyworkqueue1;
}
disable_irq_nosync(stat->irq1);
}
if (stat->pdata->gpio_int2 >= 0) {
INIT_WORK(&stat->irq2_work, lis2hh_acc_irq2_work_func);
stat->irq2_work_queue =
create_singlethread_workqueue("lis2hh_acc_wq2");
if (!stat->irq2_work_queue) {
err = -ENOMEM;
dev_err(&client->dev,
"cannot create work queue2: %d\n", err);
goto err_free_irq1;
}
err = request_irq(stat->irq2, lis2hh_acc_isr2,
IRQF_TRIGGER_RISING, "lis2hh_acc_irq2", stat);
if (err < 0) {
dev_err(&client->dev, "request irq2 failed: %d\n", err);
goto err_destoyworkqueue2;
}
disable_irq_nosync(stat->irq2);
}
mutex_unlock(&stat->lock);
dev_info(&client->dev, "%s: probed\n", LIS2HH_ACC_DEV_NAME);
return 0;
err_destoyworkqueue2:
if (stat->pdata->gpio_int2 >= 0)
destroy_workqueue(stat->irq2_work_queue);
err_free_irq1:
free_irq(stat->irq1, stat);
err_destoyworkqueue1:
if (stat->pdata->gpio_int1 >= 0)
destroy_workqueue(stat->irq1_work_queue);
err_remove_hr_work_queue:
if(stat->hr_timer_poll_work_queue) {
flush_workqueue(stat->hr_timer_poll_work_queue);
destroy_workqueue(stat->hr_timer_poll_work_queue);
}
err_power_off:
lis2hh_acc_device_power_off(stat);
err_pdata_init:
if (stat->pdata->exit)
stat->pdata->exit();
err_mutexunlock:
mutex_unlock(&stat->lock);
exit_check_functionality_failed:
pr_err("%s: Driver Init failed\n", LIS2HH_ACC_DEV_NAME);
exit:
kfree(stat);
err_free_pdata:
kfree(pdata);
return err;
}
static int __devexit lis2hh_acc_remove(struct i2c_client *client)
{
struct lis2hh_acc_status *stat = i2c_get_clientdata(client);
dev_info(&stat->client->dev, "driver removing\n");
if (stat->pdata->gpio_int1 >= 0) {
free_irq(stat->irq1, stat);
gpio_free(stat->pdata->gpio_int1);
destroy_workqueue(stat->irq1_work_queue);
}
if (stat->pdata->gpio_int2 >= 0) {
free_irq(stat->irq2, stat);
gpio_free(stat->pdata->gpio_int2);
destroy_workqueue(stat->irq2_work_queue);
}
lis2hh_acc_disable(stat);
lis2hh_acc_input_cleanup(stat);
//remove_sysfs_interfaces(&client->dev);
if(stat->hr_timer_poll_work_queue) {
flush_workqueue(stat->hr_timer_poll_work_queue);
destroy_workqueue(stat->hr_timer_poll_work_queue);
}
if (stat->pdata->exit)
stat->pdata->exit();
kfree(stat);
return 0;
}
#ifdef CONFIG_PM
static int lis2hh_acc_resume(struct i2c_client *client)
{
struct lis2hh_acc_status *stat = i2c_get_clientdata(client);
if (stat->on_before_suspend)
return lis2hh_acc_enable(stat);
return 0;
}
static int lis2hh_acc_suspend(struct i2c_client *client, pm_message_t mesg)
{
struct lis2hh_acc_status *stat = i2c_get_clientdata(client);
stat->on_before_suspend = atomic_read(&stat->enable);
return lis2hh_acc_disable(stat);
}
#else
#define lis2hh_acc_suspend NULL
#define lis2hh_acc_resume NULL
#endif /* CONFIG_PM */
#ifdef CONFIG_OF
static struct of_device_id k2hh_match_table[] = {
{ .compatible = "stm,k2hh",},
{},
};
#else
#define k2hh_match_table NULL
#endif
static const struct i2c_device_id lis2hh_acc_id[]
= { { LIS2HH_ACC_DEV_NAME, 0 }, { }, };
MODULE_DEVICE_TABLE(i2c, lis2hh_acc_id);
static struct i2c_driver lis2hh_acc_driver = {
.driver = {
.owner = THIS_MODULE,
.name = LIS2HH_ACC_DEV_NAME,
.of_match_table = k2hh_match_table,
},
.probe = lis2hh_acc_probe,
.remove = __devexit_p(lis2hh_acc_remove),
.suspend = lis2hh_acc_suspend,
.resume = lis2hh_acc_resume,
.id_table = lis2hh_acc_id,
};
module_i2c_driver(lis2hh_acc_driver)
MODULE_DESCRIPTION("lis2hh accelerometer sysfs driver");
MODULE_AUTHOR("Matteo Dameno, Denis Ciocca, STMicroelectronics");
MODULE_LICENSE("GPL");