android_kernel_samsung_msm8226/net/ipv6/Kconfig
Masahide NAKAMURA 59fbb3a61e [IPV6] MIP6: Loadable module support for MIPv6.
This patch makes MIPv6 loadable module named "mip6".

Here is a modprobe.conf(5) example to load it automatically
when user application uses XFRM state for MIPv6:

alias xfrm-type-10-43 mip6
alias xfrm-type-10-60 mip6

Some MIPv6 feature is not included by this modular, however,
it should not be affected to other features like either IPsec
or IPv6 with and without the patch.
We may discuss XFRM, MH (RAW socket) and ancillary data/sockopt
separately for future work.

Loadable features:
* MH receiving check (to send ICMP error back)
* RO header parsing and building (i.e. RH2 and HAO in DSTOPTS)
* XFRM policy/state database handling for RO

These are NOT covered as loadable:
* Home Address flags and its rule on source address selection
* XFRM sub policy (depends on its own kernel option)
* XFRM functions to receive RO as IPv6 extension header
* MH sending/receiving through raw socket if user application
  opens it (since raw socket allows to do so)
* RH2 sending as ancillary data
* RH2 operation with setsockopt(2)

Signed-off-by: Masahide NAKAMURA <nakam@linux-ipv6.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
2007-07-10 22:15:42 -07:00

209 lines
5.3 KiB
Text

#
# IPv6 configuration
#
# IPv6 as module will cause a CRASH if you try to unload it
config IPV6
tristate "The IPv6 protocol"
default m
---help---
This is complemental support for the IP version 6.
You will still be able to do traditional IPv4 networking as well.
For general information about IPv6, see
<http://playground.sun.com/pub/ipng/html/ipng-main.html>.
For Linux IPv6 development information, see <http://www.linux-ipv6.org>.
For specific information about IPv6 under Linux, read the HOWTO at
<http://www.bieringer.de/linux/IPv6/>.
To compile this protocol support as a module, choose M here: the
module will be called ipv6.
config IPV6_PRIVACY
bool "IPv6: Privacy Extensions support"
depends on IPV6
---help---
Privacy Extensions for Stateless Address Autoconfiguration in IPv6
support. With this option, additional periodically-alter
pseudo-random global-scope unicast address(es) will assigned to
your interface(s).
We use our standard pseudo random algorithm to generate randomized
interface identifier, instead of one described in RFC 3041.
By default, kernel do not generate temporary addresses.
To use temporary addresses, do
echo 2 >/proc/sys/net/ipv6/conf/all/use_tempaddr
See <file:Documentation/networking/ip-sysctl.txt> for details.
config IPV6_ROUTER_PREF
bool "IPv6: Router Preference (RFC 4191) support"
depends on IPV6
---help---
Router Preference is an optional extension to the Router
Advertisement message to improve the ability of hosts
to pick more appropriate router, especially when the hosts
is placed in a multi-homed network.
If unsure, say N.
config IPV6_ROUTE_INFO
bool "IPv6: Route Information (RFC 4191) support (EXPERIMENTAL)"
depends on IPV6_ROUTER_PREF && EXPERIMENTAL
---help---
This is experimental support of Route Information.
If unsure, say N.
config IPV6_OPTIMISTIC_DAD
bool "IPv6: Enable RFC 4429 Optimistic DAD (EXPERIMENTAL)"
depends on IPV6 && EXPERIMENTAL
---help---
This is experimental support for optimistic Duplicate
Address Detection. It allows for autoconfigured addresses
to be used more quickly.
If unsure, say N.
config INET6_AH
tristate "IPv6: AH transformation"
depends on IPV6
select XFRM
select CRYPTO
select CRYPTO_HMAC
select CRYPTO_MD5
select CRYPTO_SHA1
---help---
Support for IPsec AH.
If unsure, say Y.
config INET6_ESP
tristate "IPv6: ESP transformation"
depends on IPV6
select XFRM
select CRYPTO
select CRYPTO_HMAC
select CRYPTO_MD5
select CRYPTO_CBC
select CRYPTO_SHA1
select CRYPTO_DES
---help---
Support for IPsec ESP.
If unsure, say Y.
config INET6_IPCOMP
tristate "IPv6: IPComp transformation"
depends on IPV6
select XFRM
select INET6_XFRM_TUNNEL
select CRYPTO
select CRYPTO_DEFLATE
---help---
Support for IP Payload Compression Protocol (IPComp) (RFC3173),
typically needed for IPsec.
If unsure, say Y.
config IPV6_MIP6
tristate "IPv6: Mobility (EXPERIMENTAL)"
depends on IPV6 && EXPERIMENTAL
select XFRM
---help---
Support for IPv6 Mobility described in RFC 3775.
If unsure, say N.
config INET6_XFRM_TUNNEL
tristate
select INET6_TUNNEL
default n
config INET6_TUNNEL
tristate
default n
config INET6_XFRM_MODE_TRANSPORT
tristate "IPv6: IPsec transport mode"
depends on IPV6
default IPV6
select XFRM
---help---
Support for IPsec transport mode.
If unsure, say Y.
config INET6_XFRM_MODE_TUNNEL
tristate "IPv6: IPsec tunnel mode"
depends on IPV6
default IPV6
select XFRM
---help---
Support for IPsec tunnel mode.
If unsure, say Y.
config INET6_XFRM_MODE_BEET
tristate "IPv6: IPsec BEET mode"
depends on IPV6
default IPV6
select XFRM
---help---
Support for IPsec BEET mode.
If unsure, say Y.
config INET6_XFRM_MODE_ROUTEOPTIMIZATION
tristate "IPv6: MIPv6 route optimization mode (EXPERIMENTAL)"
depends on IPV6 && EXPERIMENTAL
select XFRM
---help---
Support for MIPv6 route optimization mode.
config IPV6_SIT
tristate "IPv6: IPv6-in-IPv4 tunnel (SIT driver)"
depends on IPV6
select INET_TUNNEL
default y
---help---
Tunneling means encapsulating data of one protocol type within
another protocol and sending it over a channel that understands the
encapsulating protocol. This driver implements encapsulation of IPv6
into IPv4 packets. This is useful if you want to connect two IPv6
networks over an IPv4-only path.
Saying M here will produce a module called sit.ko. If unsure, say Y.
config IPV6_TUNNEL
tristate "IPv6: IPv6-in-IPv6 tunnel"
select INET6_TUNNEL
depends on IPV6
---help---
Support for IPv6-in-IPv6 tunnels described in RFC 2473.
If unsure, say N.
config IPV6_MULTIPLE_TABLES
bool "IPv6: Multiple Routing Tables"
depends on IPV6 && EXPERIMENTAL
select FIB_RULES
---help---
Support multiple routing tables.
config IPV6_SUBTREES
bool "IPv6: source address based routing"
depends on IPV6_MULTIPLE_TABLES
---help---
Enable routing by source address or prefix.
The destination address is still the primary routing key, so mixing
normal and source prefix specific routes in the same routing table
may sometimes lead to unintended routing behavior. This can be
avoided by defining different routing tables for the normal and
source prefix specific routes.
If unsure, say N.