android_kernel_samsung_msm8226/drivers/sensors/cm36686.c
Francescodario Cuzzocrea 85baa390bf misc: Import SM-G900H kernel source code
* Samsung Package Version: G800HXXU1CRJ1
    * CAF Tag: LA.BF.1.1.3-00110-8x26.0
2019-08-02 15:14:10 +02:00

1644 lines
44 KiB
C

/* driver/sensor/cm36686.c
* Copyright (c) 2011 SAMSUNG
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
* MA 02110-1301, USA.
*/
#include <linux/interrupt.h>
#include <linux/irq.h>
#include <linux/i2c.h>
#include <linux/errno.h>
#include <linux/device.h>
#include <linux/gpio.h>
#include <linux/wakelock.h>
#include <linux/input.h>
#include <linux/workqueue.h>
#include <linux/slab.h>
#include <linux/delay.h>
#include <linux/fs.h>
#include <linux/module.h>
#include <linux/uaccess.h>
#include <linux/of_gpio.h>
#include <linux/regulator/consumer.h>
#include <linux/sensor/cm36686.h>
#include <linux/sensor/sensors_core.h>
/* For debugging */
#undef cm36686_DEBUG
#define VENDOR "CAPELLA"
#define CHIP_ID "CM36686"
#define I2C_M_WR 0 /* for i2c Write */
#define I2c_M_RD 1 /* for i2c Read */
/* register addresses */
/* Ambient light sensor */
#define REG_CS_CONF1 0x00
#define REG_ALS_DATA 0x09
#define REG_WHITE_DATA 0x0A
/* Proximity sensor */
#define REG_PS_CONF1 0x03
#define REG_PS_CONF3 0x04
#define REG_PS_CANC 0x05
#define REG_PS_THD_LOW 0x06
#define REG_PS_THD_HIGH 0x07
#define REG_PS_DATA 0x08
#define ALS_REG_NUM 2
#define PS_REG_NUM 5
#define MSK_L(x) (x & 0xff)
#define MSK_H(x) ((x & 0xff00) >> 8)
/* Intelligent Cancelation*/
#define CM36686_CANCELATION
#ifdef CM36686_CANCELATION
#define SUCCESS 1
#define FAIL 0
#define ERROR -1
#define CANCELATION_FILE_PATH "/efs/prox_cal"
#define CAL_SKIP_ADC 4
#define CAL_FAIL_ADC 14
#endif
#define PROX_READ_NUM 40
/* proximity sensor threshold */
#define DEFUALT_HI_THD 0x0022
#define DEFUALT_LOW_THD 0x001E
#define CANCEL_HI_THD 0x0022
#define CANCEL_LOW_THD 0x001E
/*lightsnesor log time 6SEC 200mec X 30*/
#define LIGHT_LOG_TIME 30
#define LIGHT_ADD_STARTTIME 300000000
enum {
LIGHT_ENABLED = BIT(0),
PROXIMITY_ENABLED = BIT(1),
};
/* register settings */
static u16 als_reg_setting[ALS_REG_NUM][2] = {
{REG_CS_CONF1, 0x0000}, /* enable */
{REG_CS_CONF1, 0x0001}, /* disable */
};
/* Change threshold value on the midas-sensor.c */
enum {
PS_CONF1 = 0,
PS_CONF3,
PS_THD_LOW,
PS_THD_HIGH,
PS_CANCEL,
};
enum {
REG_ADDR = 0,
CMD,
};
static u16 ps_reg_init_setting[PS_REG_NUM][2] = {
{REG_PS_CONF1, 0x0300}, /* REG_PS_CONF1 */
{REG_PS_CONF3, 0x4200}, /* REG_PS_CONF3 */
{REG_PS_THD_LOW, DEFUALT_LOW_THD}, /* REG_PS_THD_LOW */
{REG_PS_THD_HIGH, DEFUALT_HI_THD}, /* REG_PS_THD_HIGH */
{REG_PS_CANC, 0x0000}, /* REG_PS_CANC */
};
/* driver data */
struct cm36686_data {
struct i2c_client *i2c_client;
struct wake_lock prx_wake_lock;
struct input_dev *proximity_input_dev;
struct input_dev *light_input_dev;
struct cm36686_platform_data *pdata;
struct mutex power_lock;
struct mutex read_lock;
struct hrtimer light_timer;
struct hrtimer prox_timer;
struct workqueue_struct *light_wq;
struct workqueue_struct *prox_wq;
struct work_struct work_light;
struct work_struct work_prox;
struct device *proximity_dev;
struct device *light_dev;
ktime_t light_poll_delay;
ktime_t prox_poll_delay;
int irq;
u8 power_state;
int avg[3];
u16 als_data;
u16 white_data;
int count_log_time;
unsigned int uProxCalResult;
};
int cm36686_i2c_read_word(struct cm36686_data *cm36686, u8 command, u16 *val)
{
int err = 0;
int retry = 3;
struct i2c_client *client = cm36686->i2c_client;
struct i2c_msg msg[2];
unsigned char data[2] = {0,};
u16 value = 0;
if ((client == NULL) || (!client->adapter))
return -ENODEV;
while (retry--) {
/* send slave address & command */
msg[0].addr = client->addr;
msg[0].flags = I2C_M_WR;
msg[0].len = 1;
msg[0].buf = &command;
/* read word data */
msg[1].addr = client->addr;
msg[1].flags = I2C_M_RD;
msg[1].len = 2;
msg[1].buf = data;
err = i2c_transfer(client->adapter, msg, 2);
if (err >= 0) {
value = (u16)data[1];
*val = (value << 8) | (u16)data[0];
return err;
}
}
pr_err("%s, i2c transfer error ret=%d\n", __func__, err);
return err;
}
int cm36686_i2c_write_word(struct cm36686_data *cm36686, u8 command,
u16 val)
{
int err = 0;
struct i2c_client *client = cm36686->i2c_client;
int retry = 3;
if ((client == NULL) || (!client->adapter))
return -ENODEV;
while (retry--) {
err = i2c_smbus_write_word_data(client, command, val);
if (err >= 0)
return 0;
}
pr_err("%s, i2c transfer error(%d)\n", __func__, err);
return err;
}
static void cm36686_light_enable(struct cm36686_data *cm36686)
{
/* enable setting */
cm36686_i2c_write_word(cm36686, REG_CS_CONF1,
als_reg_setting[0][1]);
hrtimer_start(&cm36686->light_timer, ns_to_ktime(200 * NSEC_PER_MSEC),
HRTIMER_MODE_REL);
}
static void cm36686_light_disable(struct cm36686_data *cm36686)
{
/* disable setting */
cm36686_i2c_write_word(cm36686, REG_CS_CONF1,
als_reg_setting[1][1]);
hrtimer_cancel(&cm36686->light_timer);
cancel_work_sync(&cm36686->work_light);
}
/* sysfs */
static ssize_t cm36686_poll_delay_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct cm36686_data *cm36686 = dev_get_drvdata(dev);
return snprintf(buf, PAGE_SIZE, "%lld\n",
ktime_to_ns(cm36686->light_poll_delay));
}
static ssize_t cm36686_poll_delay_store(struct device *dev,
struct device_attribute *attr, const char *buf, size_t size)
{
struct cm36686_data *cm36686 = dev_get_drvdata(dev);
int64_t new_delay;
int err;
err = kstrtoll(buf, 10, &new_delay);
if (err < 0)
return err;
mutex_lock(&cm36686->power_lock);
if (new_delay != ktime_to_ns(cm36686->light_poll_delay)) {
cm36686->light_poll_delay = ns_to_ktime(new_delay);
if (cm36686->power_state & LIGHT_ENABLED) {
cm36686_light_disable(cm36686);
cm36686_light_enable(cm36686);
}
pr_info("[SENSOR] %s, poll_delay = %lld\n",
__func__, new_delay);
}
mutex_unlock(&cm36686->power_lock);
return size;
}
static ssize_t light_enable_store(struct device *dev,
struct device_attribute *attr, const char *buf, size_t size)
{
struct cm36686_data *cm36686 = dev_get_drvdata(dev);
bool new_value;
if (sysfs_streq(buf, "1"))
new_value = true;
else if (sysfs_streq(buf, "0"))
new_value = false;
else {
pr_err("[SENSOR] %s: invalid value %d\n", __func__, *buf);
return -EINVAL;
}
mutex_lock(&cm36686->power_lock);
pr_info("[SENSOR] %s,new_value=%d\n", __func__, new_value);
if (new_value && !(cm36686->power_state & LIGHT_ENABLED)) {
cm36686->power_state |= LIGHT_ENABLED;
cm36686_light_enable(cm36686);
} else if (!new_value && (cm36686->power_state & LIGHT_ENABLED)) {
cm36686_light_disable(cm36686);
cm36686->power_state &= ~LIGHT_ENABLED;
}
mutex_unlock(&cm36686->power_lock);
return size;
}
static ssize_t light_enable_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct cm36686_data *cm36686 = dev_get_drvdata(dev);
return snprintf(buf, PAGE_SIZE, "%d\n",
(cm36686->power_state & LIGHT_ENABLED) ? 1 : 0);
}
#ifdef CM36686_CANCELATION
void set_default_proximity_threshold(struct cm36686_data *data)
{
pr_info("%s: called\n", __func__);
if (data->pdata->default_hi_thd) {
ps_reg_init_setting[PS_THD_HIGH][CMD] =
data->pdata->default_hi_thd;
} else
ps_reg_init_setting[PS_THD_HIGH][CMD] = DEFUALT_HI_THD;
if (data->pdata->default_low_thd) {
ps_reg_init_setting[PS_THD_LOW][CMD] =
data->pdata->default_low_thd;
} else
ps_reg_init_setting[PS_THD_LOW][CMD] = DEFUALT_LOW_THD;
}
static int get_proximity_threshold(struct cm36686_data *data)
{
if (ps_reg_init_setting[PS_CANCEL][CMD] <= CAL_SKIP_ADC) { /* SKIP */
ps_reg_init_setting[PS_CANCEL][CMD] = 0;
data->uProxCalResult = 2;
pr_info("%s: crosstalk <= %d, skip calibration\n", __func__, CAL_SKIP_ADC);
return ERROR;
} else if (ps_reg_init_setting[PS_CANCEL][CMD] <= CAL_FAIL_ADC) { /* CANCELATION */
ps_reg_init_setting[PS_CANCEL][CMD] = ps_reg_init_setting[PS_CANCEL][CMD];
data->uProxCalResult = 1;
} else { /* FAIL */
ps_reg_init_setting[PS_CANCEL][CMD] = 0;
data->uProxCalResult = 0;
pr_info("%s: crosstalk > %d, calibration failed\n", __func__, CAL_FAIL_ADC);
return ERROR;
}
pr_info("%s: crosstalk_offset = %u",
__func__, ps_reg_init_setting[PS_CANCEL][CMD]);
return SUCCESS;
}
static int proximity_open_cancelation(struct cm36686_data *data)
{
struct file *cancel_filp = NULL;
int err = 0;
mm_segment_t old_fs;
old_fs = get_fs();
set_fs(KERNEL_DS);
cancel_filp = filp_open(CANCELATION_FILE_PATH, O_RDONLY, 0666);
if (IS_ERR(cancel_filp)) {
err = PTR_ERR(cancel_filp);
if (err != -ENOENT)
pr_err("[SENSOR] %s: Can't open cancelation file\n",
__func__);
set_fs(old_fs);
return err;
}
err = cancel_filp->f_op->read(cancel_filp,
(char *)&ps_reg_init_setting[PS_CANCEL][CMD],
sizeof(u16), &cancel_filp->f_pos);
if (err != sizeof(u16)) {
pr_err("%s: Can't read the cancel data from file\n", __func__);
err = -EIO;
}
/*If there is an offset cal data. */
if (ps_reg_init_setting[PS_CANCEL][CMD] != 0) {
if (data->pdata->cancel_hi_thd) {
ps_reg_init_setting[PS_THD_HIGH][CMD] =
data->pdata->cancel_hi_thd;
} else
ps_reg_init_setting[PS_THD_HIGH][CMD] = CANCEL_HI_THD;
if (data->pdata->cancel_low_thd) {
ps_reg_init_setting[PS_THD_LOW][CMD] =
data->pdata->cancel_low_thd;
} else
ps_reg_init_setting[PS_THD_LOW][CMD] = CANCEL_LOW_THD;
}
pr_err("[SENSOR] %s: prox_cal = 0x%x, ps_high_thresh = 0x%x, ps_low_thresh = 0x%x\n",
__func__,
ps_reg_init_setting[PS_CANCEL][CMD],
ps_reg_init_setting[PS_THD_HIGH][CMD],
ps_reg_init_setting[PS_THD_LOW][CMD]);
filp_close(cancel_filp, current->files);
set_fs(old_fs);
return err;
}
static int proximity_store_cancelation(struct device *dev, bool do_calib)
{
struct cm36686_data *cm36686 = dev_get_drvdata(dev);
struct file *cancel_filp = NULL;
mm_segment_t old_fs;
int err = 0;
u16 ps_data = 0;
if (do_calib) {
mutex_lock(&cm36686->read_lock);
cm36686_i2c_read_word(cm36686,
REG_PS_DATA, &ps_data);
ps_reg_init_setting[PS_CANCEL][CMD] = ps_data;
mutex_unlock(&cm36686->read_lock);
err = get_proximity_threshold(cm36686);
if(err != ERROR) {
if (cm36686->pdata->cancel_hi_thd) {
ps_reg_init_setting[PS_THD_HIGH][CMD] =
cm36686->pdata->cancel_hi_thd;
} else
ps_reg_init_setting[PS_THD_HIGH][CMD] = CANCEL_HI_THD;
if (cm36686->pdata->cancel_low_thd) {
ps_reg_init_setting[PS_THD_LOW][CMD] =
cm36686->pdata->cancel_low_thd;
} else
ps_reg_init_setting[PS_THD_LOW][CMD] = DEFUALT_LOW_THD;
} else {
set_default_proximity_threshold(cm36686);
}
} else { /* reset */
ps_reg_init_setting[PS_CANCEL][CMD] = 0;
set_default_proximity_threshold(cm36686);
}
err = cm36686_i2c_write_word(cm36686, REG_PS_CANC,
ps_reg_init_setting[PS_CANCEL][CMD]);
if (err < 0)
pr_err("%s: cm36686_ps_canc_reg is failed. %d\n", __func__,
err);
err = cm36686_i2c_write_word(cm36686, REG_PS_THD_HIGH,
ps_reg_init_setting[PS_THD_HIGH][CMD]);
if (err < 0)
pr_err("%s: cm36686_ps_high_reg is failed. %d\n", __func__,
err);
err = cm36686_i2c_write_word(cm36686, REG_PS_THD_LOW,
ps_reg_init_setting[PS_THD_LOW][CMD]);
if (err < 0)
pr_err("%s: cm36686_ps_low_reg is failed. %d\n", __func__,
err);
pr_info("%s: prox_cal = 0x%x, ps_high_thresh = 0x%x, ps_low_thresh = 0x%x\n",
__func__,
ps_reg_init_setting[PS_CANCEL][CMD],
ps_reg_init_setting[PS_THD_HIGH][CMD],
ps_reg_init_setting[PS_THD_LOW][CMD]);
old_fs = get_fs();
set_fs(KERNEL_DS);
cancel_filp = filp_open(CANCELATION_FILE_PATH,
O_CREAT | O_TRUNC | O_WRONLY | O_SYNC, 0666);
if (IS_ERR(cancel_filp)) {
pr_err("[SENSOR] %s: Can't open cancelation file\n", __func__);
set_fs(old_fs);
err = PTR_ERR(cancel_filp);
return err;
}
err = cancel_filp->f_op->write(cancel_filp,
(char *)&ps_reg_init_setting[PS_CANCEL][CMD],
sizeof(u16), &cancel_filp->f_pos);
if (err != sizeof(u16)) {
pr_err("%s: Can't write the cancel data to file\n", __func__);
err = -EIO;
}
filp_close(cancel_filp, current->files);
set_fs(old_fs);
if (!do_calib) /* delay for clearing */
msleep(150);
return err;
}
static ssize_t proximity_cancel_store(struct device *dev,
struct device_attribute *attr, const char *buf, size_t size)
{
bool do_calib;
int err;
if (sysfs_streq(buf, "1")) /* calibrate cancelation value */
do_calib = true;
else if (sysfs_streq(buf, "0")) /* reset cancelation value */
do_calib = false;
else {
pr_debug("[SENSOR] %s: invalid value %d\n", __func__, *buf);
return -EINVAL;
}
err = proximity_store_cancelation(dev, do_calib);
if (err < 0) {
pr_err("[SENSOR] %s: proximity_store_cancelation() failed\n",
__func__);
return err;
}
return size;
}
static ssize_t proximity_cancel_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
return snprintf(buf, PAGE_SIZE, "%u,%u,%u\n",
ps_reg_init_setting[PS_CANCEL][CMD],
ps_reg_init_setting[PS_THD_HIGH][CMD],
ps_reg_init_setting[PS_THD_LOW][CMD]);
}
static ssize_t proximity_cancel_pass_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct cm36686_data *cm36686 = dev_get_drvdata(dev);
pr_info("%s, %u\n", __func__, cm36686->uProxCalResult);
return snprintf(buf, PAGE_SIZE, "%u\n", cm36686->uProxCalResult);
}
#endif
#if defined(CONFIG_SENSORS_CM36686_LEDA_EN_GPIO)
static int cm36686_setup_leden_gpio(struct cm36686_data *cm36686)
{
int rc;
struct cm36686_platform_data *pdata = cm36686->pdata;
rc = gpio_request(pdata->leden_gpio, "prox_en");
if (rc < 0) {
pr_err("%s: gpio %d request failed (%d)\n",
__func__, pdata->leden_gpio, rc);
}
rc = gpio_direction_output(pdata->leden_gpio, 1);
if (rc)
pr_err("%s: unable to set_direction for prox_en [%d]\n",
__func__, pdata->leden_gpio);
return rc;
}
static int cm36686_leden_gpio_onoff(struct cm36686_data *cm36686, bool onoff)
{
struct cm36686_platform_data *pdata = cm36686->pdata;
gpio_set_value(pdata->leden_gpio, onoff);
if (onoff)
msleep(20);
return 0;
}
#else
static int prox_led_onoff(struct cm36686_data *cm36686, bool onoff)
{
#if !defined(CONFIG_SEC_ATLANTIC3G_COMMON)
struct regulator *leda;
leda = devm_regulator_get(&cm36686->i2c_client->dev, "reg_leda");
if (IS_ERR(leda)) {
pr_err("%s: regulator pointer null leda fail\n", __func__);
return -ENOMEM;
}
if (onoff)
regulator_enable(leda);
else
regulator_disable(leda);
devm_regulator_put(leda);
msleep(20);
return 0;
#else
return 0;
#endif
}
#endif
static ssize_t proximity_enable_store(struct device *dev,
struct device_attribute *attr, const char *buf, size_t size)
{
struct cm36686_data *cm36686 = dev_get_drvdata(dev);
bool new_value;
if (sysfs_streq(buf, "1"))
new_value = true;
else if (sysfs_streq(buf, "0"))
new_value = false;
else {
pr_err("[SENSOR] %s: invalid value %d\n", __func__, *buf);
return -EINVAL;
}
mutex_lock(&cm36686->power_lock);
pr_info("[SENSOR] %s, new_value = %d\n", __func__, new_value);
if (new_value && !(cm36686->power_state & PROXIMITY_ENABLED)) {
u8 val = 1;
int i;
#ifdef CM36686_CANCELATION
int err = 0;
#endif
cm36686->power_state |= PROXIMITY_ENABLED;
#if defined(CONFIG_SENSORS_CM36686_LEDA_EN_GPIO)
cm36686_leden_gpio_onoff(cm36686, 1);
#else
prox_led_onoff(cm36686, 1);
#endif
#ifdef CM36686_CANCELATION
/* open cancelation data */
err = proximity_open_cancelation(cm36686);
if (err < 0 && err != -ENOENT)
pr_err("[SENSOR] %s: proximity_open_cancelation() failed\n",
__func__);
#endif
/* enable settings */
for (i = 0; i < PS_REG_NUM; i++) {
cm36686_i2c_write_word(cm36686,
ps_reg_init_setting[i][REG_ADDR],
ps_reg_init_setting[i][CMD]);
}
val = gpio_get_value(cm36686->pdata->irq);
/* 0 is close, 1 is far */
input_report_abs(cm36686->proximity_input_dev,
ABS_DISTANCE, val);
input_sync(cm36686->proximity_input_dev);
enable_irq(cm36686->irq);
enable_irq_wake(cm36686->irq);
} else if (!new_value && (cm36686->power_state & PROXIMITY_ENABLED)) {
cm36686->power_state &= ~PROXIMITY_ENABLED;
disable_irq_wake(cm36686->irq);
disable_irq(cm36686->irq);
/* disable settings */
cm36686_i2c_write_word(cm36686, REG_PS_CONF1, 0x0001);
#if defined(CONFIG_SENSORS_CM36686_LEDA_EN_GPIO)
cm36686_leden_gpio_onoff(cm36686, 0);
#else
prox_led_onoff(cm36686, 0);
#endif
}
mutex_unlock(&cm36686->power_lock);
return size;
}
static ssize_t proximity_enable_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct cm36686_data *cm36686 = dev_get_drvdata(dev);
return snprintf(buf, PAGE_SIZE, "%d\n",
(cm36686->power_state & PROXIMITY_ENABLED) ? 1 : 0);
}
static DEVICE_ATTR(poll_delay, S_IRUGO | S_IWUSR | S_IWGRP,
cm36686_poll_delay_show, cm36686_poll_delay_store);
static struct device_attribute dev_attr_light_enable =
__ATTR(enable, S_IRUGO | S_IWUSR | S_IWGRP,
light_enable_show, light_enable_store);
static struct device_attribute dev_attr_proximity_enable =
__ATTR(enable, S_IRUGO | S_IWUSR | S_IWGRP,
proximity_enable_show, proximity_enable_store);
static struct attribute *light_sysfs_attrs[] = {
&dev_attr_light_enable.attr,
&dev_attr_poll_delay.attr,
NULL
};
static struct attribute_group light_attribute_group = {
.attrs = light_sysfs_attrs,
};
static struct attribute *proximity_sysfs_attrs[] = {
&dev_attr_proximity_enable.attr,
NULL
};
static struct attribute_group proximity_attribute_group = {
.attrs = proximity_sysfs_attrs,
};
/* sysfs for vendor & name */
static ssize_t cm36686_vendor_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
return snprintf(buf, PAGE_SIZE, "%s\n", VENDOR);
}
static ssize_t cm36686_name_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
return snprintf(buf, PAGE_SIZE, "%s\n", CHIP_ID);
}
static struct device_attribute dev_attr_prox_sensor_vendor =
__ATTR(vendor, S_IRUSR | S_IRGRP, cm36686_vendor_show, NULL);
static struct device_attribute dev_attr_light_sensor_vendor =
__ATTR(vendor, S_IRUSR | S_IRGRP, cm36686_vendor_show, NULL);
static struct device_attribute dev_attr_prox_sensor_name =
__ATTR(name, S_IRUSR | S_IRGRP, cm36686_name_show, NULL);
static struct device_attribute dev_attr_light_sensor_name =
__ATTR(name, S_IRUSR | S_IRGRP, cm36686_name_show, NULL);
/* proximity sysfs */
static ssize_t proximity_avg_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct cm36686_data *cm36686 = dev_get_drvdata(dev);
return snprintf(buf, PAGE_SIZE, "%d,%d,%d\n", cm36686->avg[0],
cm36686->avg[1], cm36686->avg[2]);
}
static ssize_t proximity_avg_store(struct device *dev,
struct device_attribute *attr, const char *buf, size_t size)
{
struct cm36686_data *cm36686 = dev_get_drvdata(dev);
bool new_value = false;
if (sysfs_streq(buf, "1"))
new_value = true;
else if (sysfs_streq(buf, "0"))
new_value = false;
else {
pr_err("[SENSOR] %s, invalid value %d\n", __func__, *buf);
return -EINVAL;
}
pr_info("[SENSOR] %s, average enable = %d\n", __func__, new_value);
mutex_lock(&cm36686->power_lock);
if (new_value) {
if (!(cm36686->power_state & PROXIMITY_ENABLED)) {
#if defined(CONFIG_SENSORS_CM36686_LEDA_EN_GPIO)
cm36686_leden_gpio_onoff(cm36686, 1);
#else
prox_led_onoff(cm36686, 1);
#endif
cm36686_i2c_write_word(cm36686, REG_PS_CONF1,
ps_reg_init_setting[PS_CONF1][CMD]);
}
hrtimer_start(&cm36686->prox_timer, cm36686->prox_poll_delay,
HRTIMER_MODE_REL);
} else if (!new_value) {
hrtimer_cancel(&cm36686->prox_timer);
cancel_work_sync(&cm36686->work_prox);
if (!(cm36686->power_state & PROXIMITY_ENABLED)) {
cm36686_i2c_write_word(cm36686, REG_PS_CONF1,
0x0001);
#if defined(CONFIG_SENSORS_CM36686_LEDA_EN_GPIO)
cm36686_leden_gpio_onoff(cm36686, 0);
#else
prox_led_onoff(cm36686, 0);
#endif
}
}
mutex_unlock(&cm36686->power_lock);
return size;
}
static ssize_t proximity_state_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct cm36686_data *cm36686 = dev_get_drvdata(dev);
u16 ps_data;
mutex_lock(&cm36686->power_lock);
if (!(cm36686->power_state & PROXIMITY_ENABLED)) {
#if defined(CONFIG_SENSORS_CM36686_LEDA_EN_GPIO)
cm36686_leden_gpio_onoff(cm36686, 1);
#else
prox_led_onoff(cm36686, 1);
#endif
cm36686_i2c_write_word(cm36686, REG_PS_CONF1,
ps_reg_init_setting[PS_CONF1][CMD]);
}
mutex_lock(&cm36686->read_lock);
cm36686_i2c_read_word(cm36686, REG_PS_DATA, &ps_data);
mutex_unlock(&cm36686->read_lock);
if (!(cm36686->power_state & PROXIMITY_ENABLED)) {
cm36686_i2c_write_word(cm36686, REG_PS_CONF1, 0x0001);
#if defined(CONFIG_SENSORS_CM36686_LEDA_EN_GPIO)
cm36686_leden_gpio_onoff(cm36686, 0);
#else
prox_led_onoff(cm36686, 0);
#endif
}
mutex_unlock(&cm36686->power_lock);
return snprintf(buf, PAGE_SIZE, "%u\n", ps_data);
}
static ssize_t proximity_thresh_high_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
pr_info("%s = %u,%u\n", __func__,
ps_reg_init_setting[PS_THD_HIGH][CMD],
ps_reg_init_setting[PS_THD_LOW][CMD]);
return snprintf(buf, PAGE_SIZE, "%u,%u\n",
ps_reg_init_setting[PS_THD_HIGH][CMD],
ps_reg_init_setting[PS_THD_LOW][CMD]);
}
static ssize_t proximity_thresh_high_store(struct device *dev,
struct device_attribute *attr, const char *buf, size_t size)
{
struct cm36686_data *cm36686 = dev_get_drvdata(dev);
u16 thresh_value = ps_reg_init_setting[PS_THD_HIGH][CMD];
int err;
err = kstrtou16(buf, 10, &thresh_value);
if (err < 0)
pr_err("%s, kstrtoint failed.", __func__);
if (thresh_value > 2) {
ps_reg_init_setting[PS_THD_HIGH][CMD] = thresh_value;
err = cm36686_i2c_write_word(cm36686, REG_PS_THD_HIGH,
ps_reg_init_setting[PS_THD_HIGH][CMD]);
if (err < 0)
pr_err("%s: cm36686_ps_high_reg is failed. %d\n",
__func__, err);
pr_info("%s, new high threshold = 0x%x\n",
__func__, thresh_value);
msleep(150);
} else
pr_err("%s, wrong high threshold value(0x%x)!!\n",
__func__, thresh_value);
return size;
}
static ssize_t proximity_thresh_low_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
pr_info("%s = %u,%u\n", __func__,
ps_reg_init_setting[PS_THD_HIGH][CMD],
ps_reg_init_setting[PS_THD_LOW][CMD]);
return snprintf(buf, PAGE_SIZE, "%u,%u\n",
ps_reg_init_setting[PS_THD_HIGH][CMD],
ps_reg_init_setting[PS_THD_LOW][CMD]);
}
static ssize_t proximity_thresh_low_store(struct device *dev,
struct device_attribute *attr, const char *buf, size_t size)
{
struct cm36686_data *cm36686 = dev_get_drvdata(dev);
u16 thresh_value = ps_reg_init_setting[PS_THD_LOW][CMD];
int err;
err = kstrtou16(buf, 10, &thresh_value);
if (err < 0)
pr_err("%s, kstrtoint failed.", __func__);
if (thresh_value > 2) {
ps_reg_init_setting[PS_THD_LOW][CMD] = thresh_value;
err = cm36686_i2c_write_word(cm36686, REG_PS_THD_LOW,
ps_reg_init_setting[PS_THD_LOW][CMD]);
if (err < 0)
pr_err("%s: cm36686_ps_low_reg is failed. %d\n",
__func__, err);
pr_info("%s, new low threshold = 0x%x\n",
__func__, thresh_value);
msleep(150);
} else
pr_err("%s, wrong low threshold value(0x%x)!!\n",
__func__, thresh_value);
return size;
}
#ifdef CM36686_CANCELATION
static DEVICE_ATTR(prox_cal, S_IRUGO | S_IWUSR | S_IWGRP,
proximity_cancel_show, proximity_cancel_store);
static DEVICE_ATTR(prox_offset_pass, S_IRUGO, proximity_cancel_pass_show, NULL);
#endif
static DEVICE_ATTR(prox_avg, S_IRUGO | S_IWUSR | S_IWGRP,
proximity_avg_show, proximity_avg_store);
static DEVICE_ATTR(state, S_IRUGO, proximity_state_show, NULL);
static struct device_attribute dev_attr_prox_raw = __ATTR(raw_data,
S_IRUGO, proximity_state_show, NULL);
static DEVICE_ATTR(thresh_high, S_IRUGO | S_IWUSR | S_IWGRP,
proximity_thresh_high_show, proximity_thresh_high_store);
static DEVICE_ATTR(thresh_low, S_IRUGO | S_IWUSR | S_IWGRP,
proximity_thresh_low_show, proximity_thresh_low_store);
static struct device_attribute *prox_sensor_attrs[] = {
&dev_attr_prox_sensor_vendor,
&dev_attr_prox_sensor_name,
#ifdef CM36686_CANCELATION
&dev_attr_prox_cal,
&dev_attr_prox_offset_pass,
#endif
&dev_attr_prox_avg,
&dev_attr_state,
&dev_attr_thresh_high,
&dev_attr_thresh_low,
&dev_attr_prox_raw,
NULL,
};
/* light sysfs */
static ssize_t light_lux_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct cm36686_data *cm36686 = dev_get_drvdata(dev);
return snprintf(buf, PAGE_SIZE, "%u,%u\n", cm36686->als_data,
cm36686->white_data);
}
static ssize_t light_data_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct cm36686_data *cm36686 = dev_get_drvdata(dev);
#ifdef cm36686_DEBUG
pr_info("%s = %u,%u\n", __func__, cm36686->als_data,
cm36686->white_data);
#endif
return snprintf(buf, PAGE_SIZE, "%u,%u\n", cm36686->als_data,
cm36686->white_data);
}
static DEVICE_ATTR(lux, S_IRUGO, light_lux_show, NULL);
static DEVICE_ATTR(raw_data, S_IRUGO, light_data_show, NULL);
static struct device_attribute *light_sensor_attrs[] = {
&dev_attr_light_sensor_vendor,
&dev_attr_light_sensor_name,
&dev_attr_lux,
&dev_attr_raw_data,
NULL,
};
/* interrupt happened due to transition/change of near/far proximity state */
irqreturn_t cm36686_irq_thread_fn(int irq, void *data)
{
struct cm36686_data *cm36686 = data;
u8 val = 1;
u16 ps_data = 0;
#ifdef cm36686_DEBUG
static int count;
pr_info("%s\n", __func__);
#endif
val = gpio_get_value(cm36686->pdata->irq);
cm36686_i2c_read_word(cm36686, REG_PS_DATA, &ps_data);
#ifdef cm36686_DEBUG
pr_info("[SENSOR] %s: count = %d\n", __func__, count++);
#endif
if (cm36686->power_state & PROXIMITY_ENABLED) {
/* 0 is close, 1 is far */
input_report_abs(cm36686->proximity_input_dev, ABS_DISTANCE,
val);
input_sync(cm36686->proximity_input_dev);
}
wake_lock_timeout(&cm36686->prx_wake_lock, 3 * HZ);
pr_info("%s: val = %u, ps_data = %u (close:0, far:1)\n",
__func__, val, ps_data);
return IRQ_HANDLED;
}
static int cm36686_setup_reg(struct cm36686_data *cm36686)
{
int err = 0, i = 0;
u16 tmp = 0;
/* ALS initialization */
err = cm36686_i2c_write_word(cm36686,
als_reg_setting[0][0],
als_reg_setting[0][1]);
if (err < 0) {
pr_err("[SENSOR] %s: cm36686_als_reg is failed. %d\n", __func__,
err);
return err;
}
/* PS initialization */
for (i = 0; i < PS_REG_NUM; i++) {
err = cm36686_i2c_write_word(cm36686,
ps_reg_init_setting[i][REG_ADDR],
ps_reg_init_setting[i][CMD]);
if (err < 0) {
pr_err("[SENSOR] %s: cm36686_ps_reg is failed. %d\n",
__func__, err);
return err;
}
}
/* printing the inital proximity value with no contact */
msleep(50);
mutex_lock(&cm36686->read_lock);
err = cm36686_i2c_read_word(cm36686, REG_PS_DATA, &tmp);
mutex_unlock(&cm36686->read_lock);
if (err < 0) {
pr_err("[SENSOR] %s: read ps_data failed\n", __func__);
err = -EIO;
}
/* turn off */
cm36686_i2c_write_word(cm36686, REG_CS_CONF1, 0x0001);
cm36686_i2c_write_word(cm36686, REG_PS_CONF1, 0x0001);
cm36686_i2c_write_word(cm36686, REG_PS_CONF3, 0x0000);
return err;
}
static int cm36686_setup_irq(struct cm36686_data *cm36686)
{
int rc;
struct cm36686_platform_data *pdata = cm36686->pdata;
rc = gpio_request(pdata->irq, "gpio_proximity_out");
if (rc < 0) {
pr_err("%s: gpio %d request failed (%d)\n",
__func__, pdata->irq, rc);
return rc;
}
rc = gpio_direction_input(pdata->irq);
if (rc < 0) {
pr_err("%s: failed to set gpio %d as input (%d)\n",
__func__, pdata->irq, rc);
goto err_gpio_direction_input;
}
cm36686->irq = gpio_to_irq(pdata->irq);
rc = request_threaded_irq(cm36686->irq, NULL,
cm36686_irq_thread_fn,
IRQF_TRIGGER_RISING | IRQF_TRIGGER_FALLING,
"proximity_int", cm36686);
if (rc < 0) {
pr_err("%s: request_irq(%d) failed for gpio %d (%d)\n",
__func__, cm36686->irq, pdata->irq, rc);
goto err_request_irq;
}
/* start with interrupts disabled */
disable_irq(cm36686->irq);
goto done;
err_request_irq:
err_gpio_direction_input:
gpio_free(pdata->irq);
done:
return rc;
}
/* This function is for light sensor. It operates every a few seconds.
* It asks for work to be done on a thread because i2c needs a thread
* context (slow and blocking) and then reschedules the timer to run again.
*/
static enum hrtimer_restart cm36686_light_timer_func(struct hrtimer *timer)
{
struct cm36686_data *cm36686
= container_of(timer, struct cm36686_data, light_timer);
queue_work(cm36686->light_wq, &cm36686->work_light);
hrtimer_forward_now(&cm36686->light_timer, cm36686->light_poll_delay);
return HRTIMER_RESTART;
}
static void cm36686_work_func_light(struct work_struct *work)
{
struct cm36686_data *cm36686 = container_of(work, struct cm36686_data,
work_light);
mutex_lock(&cm36686->read_lock);
cm36686_i2c_read_word(cm36686, REG_ALS_DATA, &cm36686->als_data);
cm36686_i2c_read_word(cm36686, REG_WHITE_DATA, &cm36686->white_data);
mutex_unlock(&cm36686->read_lock);
input_report_rel(cm36686->light_input_dev, REL_DIAL,
cm36686->als_data + 1);
input_report_rel(cm36686->light_input_dev, REL_WHEEL,
cm36686->white_data + 1);
input_sync(cm36686->light_input_dev);
if (cm36686->count_log_time >= LIGHT_LOG_TIME) {
pr_info("%s, %u,%u\n", __func__,
cm36686->als_data, cm36686->white_data);
cm36686->count_log_time = 0;
} else
cm36686->count_log_time++;
#ifdef cm36686_DEBUG
pr_info("%s, %u,%u\n", __func__,
cm36686->als_data, cm36686->white_data);
#endif
}
static void proxsensor_get_avg_val(struct cm36686_data *cm36686)
{
int min = 0, max = 0, avg = 0;
int i;
u16 ps_data = 0;
for (i = 0; i < PROX_READ_NUM; i++) {
msleep(40);
cm36686_i2c_read_word(cm36686, REG_PS_DATA,
&ps_data);
avg += ps_data;
if (!i)
min = ps_data;
else if (ps_data < min)
min = ps_data;
if (ps_data > max)
max = ps_data;
}
avg /= PROX_READ_NUM;
cm36686->avg[0] = min;
cm36686->avg[1] = avg;
cm36686->avg[2] = max;
}
static void cm36686_work_func_prox(struct work_struct *work)
{
struct cm36686_data *cm36686 = container_of(work, struct cm36686_data,
work_prox);
proxsensor_get_avg_val(cm36686);
}
static enum hrtimer_restart cm36686_prox_timer_func(struct hrtimer *timer)
{
struct cm36686_data *cm36686
= container_of(timer, struct cm36686_data, prox_timer);
queue_work(cm36686->prox_wq, &cm36686->work_prox);
hrtimer_forward_now(&cm36686->prox_timer, cm36686->prox_poll_delay);
return HRTIMER_RESTART;
}
#ifdef CONFIG_OF
/* device tree parsing function */
static int cm36686_parse_dt(struct device *dev,
struct cm36686_platform_data *pdata)
{
struct device_node *np = dev->of_node;
enum of_gpio_flags flags;
int ret;
pdata->irq = of_get_named_gpio_flags(np, "cm36686,irq_gpio", 0, &flags);
if (pdata->irq < 0) {
pr_err("[SENSOR]: %s - get prox_int error\n", __func__);
return -ENODEV;
}
#if defined(CONFIG_SENSORS_CM36686_LEDA_EN_GPIO)
pdata->leden_gpio = of_get_named_gpio_flags(np, "cm36686,leden_gpio", 0,
&flags);
if (pdata->leden_gpio < 0) {
pr_err("[SENSOR]: %s - get prox_leden_gpio error\n", __func__);
return -ENODEV;
}
#endif
ret = of_property_read_u32(np, "cm36686,default_hi_thd",
&pdata->default_hi_thd);
if (ret < 0) {
pr_err("[SENSOR]: %s - Cannot set default_hi_thd through DTSI\n",
__func__);
pdata->default_hi_thd = DEFUALT_HI_THD;
}
ret = of_property_read_u32(np, "cm36686,default_low_thd",
&pdata->default_low_thd);
if (ret < 0) {
pr_err("[SENSOR]: %s - Cannot set default_low_thd through DTSI\n",
__func__);
pdata->default_low_thd = DEFUALT_LOW_THD;
}
ret = of_property_read_u32(np, "cm36686,cancel_hi_thd",
&pdata->cancel_hi_thd);
if (ret < 0) {
pr_err("[SENSOR]: %s - Cannot set cancel_hi_thd through DTSI\n",
__func__);
pdata->cancel_hi_thd = CANCEL_HI_THD;
}
ret = of_property_read_u32(np, "cm36686,cancel_low_thd",
&pdata->cancel_low_thd);
if (ret < 0) {
pr_err("[SENSOR]: %s - Cannot set cancel_low_thd through DTSI\n",
__func__);
pdata->cancel_low_thd = CANCEL_LOW_THD;
}
ps_reg_init_setting[2][CMD] = pdata->default_low_thd;
ps_reg_init_setting[3][CMD] = pdata->default_hi_thd;
return 0;
}
#else
static int cm36686_parse_dt(struct device *dev, struct cm36686_platform_data)
{
return -ENODEV;
}
#endif
static int prox_regulator_onoff(struct device *dev, bool onoff)
{
struct regulator *vdd;
struct regulator *vio;
pr_err("%s %s\n", __func__, (onoff) ? "on" : "off");
vdd = devm_regulator_get(dev, "reg_vdd");
if (IS_ERR(vdd)) {
pr_err("%s: cannot get vdd\n", __func__);
return -ENOMEM;
}
vio = devm_regulator_get(dev, "reg_vio");
if (IS_ERR(vio)) {
pr_err("%s: cannot get vio\n", __func__);
return -ENOMEM;
}
if (onoff) {
regulator_enable(vdd);
msleep(20);
regulator_enable(vio);
msleep(20);
} else {
regulator_disable(vdd);
msleep(20);
regulator_disable(vio);
msleep(20);
}
devm_regulator_put(vdd);
devm_regulator_put(vio);
msleep(20);
return 0;
}
static int cm36686_i2c_probe(struct i2c_client *client,
const struct i2c_device_id *id)
{
int ret = -ENODEV;
int err;
struct cm36686_data *cm36686 = NULL;
struct cm36686_platform_data *pdata = NULL;
pr_info("[SENSOR] %s: Probe Start!\n", __func__);
if (!i2c_check_functionality(client->adapter, I2C_FUNC_I2C)) {
pr_err("[SENSOR] %s: i2c functionality check failed!\n",
__func__);
return ret;
}
cm36686 = kzalloc(sizeof(struct cm36686_data), GFP_KERNEL);
if (!cm36686) {
pr_err("[SENSOR] %s: failed to alloc memory for RGB sensor module data\n",
__func__);
return -ENOMEM;
}
if (client->dev.of_node) {
pdata = devm_kzalloc(&client->dev,
sizeof(struct cm36686_platform_data), GFP_KERNEL);
if (!pdata) {
dev_err(&client->dev, "Failed to allocate memory\n");
if (cm36686)
kfree(cm36686);
return -ENOMEM;
}
err = cm36686_parse_dt(&client->dev, pdata);
if (err)
goto err_devicetree;
} else
pdata = client->dev.platform_data;
if (!pdata) {
pr_err("%s: missing pdata!\n", __func__);
if (cm36686)
kfree(cm36686);
return ret;
}
prox_regulator_onoff(&client->dev, 1);
cm36686->pdata = pdata;
cm36686->i2c_client = client;
i2c_set_clientdata(client, cm36686);
mutex_init(&cm36686->power_lock);
mutex_init(&cm36686->read_lock);
/* wake lock init for proximity sensor */
wake_lock_init(&cm36686->prx_wake_lock, WAKE_LOCK_SUSPEND,
"prx_wake_lock");
#if defined(CONFIG_SENSORS_CM36686_LEDA_EN_GPIO)
/* setup leden_gpio */
ret = cm36686_setup_leden_gpio(cm36686);
if (ret) {
pr_err("%s: could not setup leden_gpio\n", __func__);
goto err_setup_leden_gpio;
}
cm36686_leden_gpio_onoff(cm36686, 1);
#else
prox_led_onoff(cm36686, 1);
#endif
/* Check if the device is there or not. */
ret = cm36686_i2c_write_word(cm36686, REG_CS_CONF1, 0x0001);
if (ret < 0) {
pr_err("[SENSOR] %s: cm36686 is not connected.(%d)\n", __func__,
ret);
goto err_setup_reg;
}
/* setup initial registers */
ret = cm36686_setup_reg(cm36686);
if (ret < 0) {
pr_err("[SENSOR] %s: could not setup regs\n", __func__);
goto err_setup_reg;
}
#if defined(CONFIG_SENSORS_CM36686_LEDA_EN_GPIO)
cm36686_leden_gpio_onoff(cm36686, 0);
#else
prox_led_onoff(cm36686, 0);
#endif
/* allocate proximity input_device */
cm36686->proximity_input_dev = input_allocate_device();
if (!cm36686->proximity_input_dev) {
pr_err("%s: could not allocate proximity input device\n",
__func__);
goto err_input_allocate_device_proximity;
}
input_set_drvdata(cm36686->proximity_input_dev, cm36686);
cm36686->proximity_input_dev->name = "proximity_sensor";
input_set_capability(cm36686->proximity_input_dev, EV_ABS,
ABS_DISTANCE);
input_set_abs_params(cm36686->proximity_input_dev, ABS_DISTANCE, 0, 1,
0, 0);
ret = input_register_device(cm36686->proximity_input_dev);
if (ret < 0) {
input_free_device(cm36686->proximity_input_dev);
pr_err("[SENSOR] %s: could not register input device\n",
__func__);
goto err_input_register_device_proximity;
}
ret = sensors_create_symlink(&cm36686->proximity_input_dev->dev.kobj,
cm36686->proximity_input_dev->name);
if (ret < 0) {
pr_err("[SENSOR] %s: create_symlink error\n", __func__);
goto err_sensors_create_symlink_prox;
}
ret = sysfs_create_group(&cm36686->proximity_input_dev->dev.kobj,
&proximity_attribute_group);
if (ret) {
pr_err("[SENSOR] %s: could not create sysfs group\n", __func__);
goto err_sysfs_create_group_proximity;
}
/* setup irq */
ret = cm36686_setup_irq(cm36686);
if (ret) {
pr_err("%s: could not setup irq\n", __func__);
goto err_setup_irq;
}
/* For factory test mode, we use timer to get average proximity data. */
/* prox_timer settings. we poll for light values using a timer. */
hrtimer_init(&cm36686->prox_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
cm36686->prox_poll_delay = ns_to_ktime(2000 * NSEC_PER_MSEC);/*2 sec*/
cm36686->prox_timer.function = cm36686_prox_timer_func;
/* the timer just fires off a work queue request. we need a thread
to read the i2c (can be slow and blocking). */
cm36686->prox_wq = create_singlethread_workqueue("cm36686_prox_wq");
if (!cm36686->prox_wq) {
ret = -ENOMEM;
pr_err("[SENSOR] %s: could not create prox workqueue\n",
__func__);
goto err_create_prox_workqueue;
}
/* this is the thread function we run on the work queue */
INIT_WORK(&cm36686->work_prox, cm36686_work_func_prox);
/* allocate lightsensor input_device */
cm36686->light_input_dev = input_allocate_device();
if (!cm36686->light_input_dev) {
pr_err("%s: could not allocate light input device\n", __func__);
goto err_input_allocate_device_light;
}
input_set_drvdata(cm36686->light_input_dev, cm36686);
cm36686->light_input_dev->name = "light_sensor";
input_set_capability(cm36686->light_input_dev, EV_REL, REL_MISC);
input_set_capability(cm36686->light_input_dev, EV_REL, REL_DIAL);
input_set_capability(cm36686->light_input_dev, EV_REL, REL_WHEEL);
ret = input_register_device(cm36686->light_input_dev);
if (ret < 0) {
input_free_device(cm36686->light_input_dev);
pr_err("%s: could not register input device\n", __func__);
goto err_input_register_device_light;
}
ret = sensors_create_symlink(&cm36686->light_input_dev->dev.kobj,
cm36686->light_input_dev->name);
if (ret < 0) {
pr_err("[SENSOR] %s: create_symlink error\n", __func__);
goto err_sensors_create_symlink_light;
}
ret = sysfs_create_group(&cm36686->light_input_dev->dev.kobj,
&light_attribute_group);
if (ret) {
pr_err("[SENSOR] %s: could not create sysfs group\n", __func__);
goto err_sysfs_create_group_light;
}
/* light_timer settings. we poll for light values using a timer. */
hrtimer_init(&cm36686->light_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
cm36686->light_poll_delay = ns_to_ktime(200 * NSEC_PER_MSEC);
cm36686->light_timer.function = cm36686_light_timer_func;
/* the timer just fires off a work queue request. we need a thread
to read the i2c (can be slow and blocking). */
cm36686->light_wq = create_singlethread_workqueue("cm36686_light_wq");
if (!cm36686->light_wq) {
ret = -ENOMEM;
pr_err("[SENSOR] %s: could not create light workqueue\n",
__func__);
goto err_create_light_workqueue;
}
/* this is the thread function we run on the work queue */
INIT_WORK(&cm36686->work_light, cm36686_work_func_light);
/* set sysfs for proximity sensor */
ret = sensors_register(cm36686->proximity_dev,
cm36686, prox_sensor_attrs, "proximity_sensor");
if (ret) {
pr_err("[SENSOR] %s: could not create proximity_dev ret is %d\n",
__func__, ret);
goto prox_sensor_register_failed;
}
/* set sysfs for light sensor */
ret = sensors_register(cm36686->light_dev,
cm36686, light_sensor_attrs, "light_sensor");
if (ret) {
pr_err("[SENSOR] %s: could not create light_dev ret is %d\n",
__func__, ret);
goto light_sensor_register_failed;
}
pr_info("[SENSOR] %s is success.\n", __func__);
goto done;
err_devicetree:
pr_err("[SENSOR] error in device tree");
/* error, unwind it all */
light_sensor_register_failed:
sensors_unregister(cm36686->proximity_dev, prox_sensor_attrs);
prox_sensor_register_failed:
destroy_workqueue(cm36686->light_wq);
err_create_light_workqueue:
sysfs_remove_group(&cm36686->light_input_dev->dev.kobj,
&light_attribute_group);
err_sysfs_create_group_light:
sensors_remove_symlink(&cm36686->light_input_dev->dev.kobj,
cm36686->light_input_dev->name);
err_sensors_create_symlink_light:
input_unregister_device(cm36686->light_input_dev);
err_input_register_device_light:
err_input_allocate_device_light:
destroy_workqueue(cm36686->prox_wq);
err_create_prox_workqueue:
free_irq(cm36686->irq, cm36686);
gpio_free(cm36686->pdata->irq);
err_setup_irq:
sysfs_remove_group(&cm36686->proximity_input_dev->dev.kobj,
&proximity_attribute_group);
err_sysfs_create_group_proximity:
sensors_remove_symlink(&cm36686->proximity_input_dev->dev.kobj,
cm36686->proximity_input_dev->name);
err_sensors_create_symlink_prox:
input_unregister_device(cm36686->proximity_input_dev);
err_input_register_device_proximity:
err_input_allocate_device_proximity:
err_setup_reg:
#if defined(CONFIG_SENSORS_CM36686_LEDA_EN_GPIO)
cm36686_leden_gpio_onoff(cm36686, 0);
gpio_free(cm36686->pdata->leden_gpio);
err_setup_leden_gpio:
#else
prox_led_onoff(cm36686, 0);
#endif
wake_lock_destroy(&cm36686->prx_wake_lock);
mutex_destroy(&cm36686->read_lock);
mutex_destroy(&cm36686->power_lock);
kfree(cm36686);
prox_regulator_onoff(&client->dev, 0);
done:
return ret;
}
static int cm36686_i2c_remove(struct i2c_client *client)
{
struct cm36686_data *cm36686 = i2c_get_clientdata(client);
/* free irq */
if (cm36686->power_state & PROXIMITY_ENABLED) {
disable_irq_wake(cm36686->irq);
disable_irq(cm36686->irq);
}
free_irq(cm36686->irq, cm36686);
gpio_free(cm36686->pdata->irq);
/* device off */
if (cm36686->power_state & LIGHT_ENABLED)
cm36686_light_disable(cm36686);
if (cm36686->power_state & PROXIMITY_ENABLED) {
cm36686_i2c_write_word(cm36686, REG_PS_CONF1,
0x0001);
}
/* destroy workqueue */
destroy_workqueue(cm36686->light_wq);
destroy_workqueue(cm36686->prox_wq);
/* sysfs destroy */
sensors_unregister(cm36686->light_dev, light_sensor_attrs);
sensors_unregister(cm36686->proximity_dev, prox_sensor_attrs);
sensors_remove_symlink(&cm36686->light_input_dev->dev.kobj,
cm36686->light_input_dev->name);
sensors_remove_symlink(&cm36686->proximity_input_dev->dev.kobj,
cm36686->proximity_input_dev->name);
/* input device destroy */
sysfs_remove_group(&cm36686->light_input_dev->dev.kobj,
&light_attribute_group);
input_unregister_device(cm36686->light_input_dev);
sysfs_remove_group(&cm36686->proximity_input_dev->dev.kobj,
&proximity_attribute_group);
input_unregister_device(cm36686->proximity_input_dev);
#if defined(CONFIG_SENSORS_CM36686_LEDA_EN_GPIO)
cm36686_leden_gpio_onoff(cm36686, 0);
gpio_free(cm36686->pdata->leden_gpio);
#else
prox_led_onoff(cm36686, 0);
#endif
/* lock destroy */
mutex_destroy(&cm36686->read_lock);
mutex_destroy(&cm36686->power_lock);
wake_lock_destroy(&cm36686->prx_wake_lock);
kfree(cm36686);
return 0;
}
static int cm36686_suspend(struct device *dev)
{
/* We disable power only if proximity is disabled. If proximity
is enabled, we leave power on because proximity is allowed
to wake up device. We remove power without changing
cm36686->power_state because we use that state in resume.
*/
struct cm36686_data *cm36686 = dev_get_drvdata(dev);
if (cm36686->power_state & LIGHT_ENABLED)
cm36686_light_disable(cm36686);
return 0;
}
static int cm36686_resume(struct device *dev)
{
struct cm36686_data *cm36686 = dev_get_drvdata(dev);
if (cm36686->power_state & LIGHT_ENABLED)
cm36686_light_enable(cm36686);
return 0;
}
#ifdef CONFIG_OF
static struct of_device_id cm36686_match_table[] = {
{ .compatible = "cm36686",},
{},
};
#else
#define cm36686_match_table NULL
#endif
static const struct i2c_device_id cm36686_device_id[] = {
{"cm36686", 0},
{}
};
MODULE_DEVICE_TABLE(i2c, cm36686_device_id);
static const struct dev_pm_ops cm36686_pm_ops = {
.suspend = cm36686_suspend,
.resume = cm36686_resume
};
static struct i2c_driver cm36686_i2c_driver = {
.driver = {
.name = "cm36686",
.owner = THIS_MODULE,
.of_match_table = cm36686_match_table,
.pm = &cm36686_pm_ops
},
.probe = cm36686_i2c_probe,
.remove = cm36686_i2c_remove,
.id_table = cm36686_device_id,
};
static int __init cm36686_init(void)
{
return i2c_add_driver(&cm36686_i2c_driver);
}
static void __exit cm36686_exit(void)
{
i2c_del_driver(&cm36686_i2c_driver);
}
module_init(cm36686_init);
module_exit(cm36686_exit);
MODULE_AUTHOR("Samsung Electronics");
MODULE_DESCRIPTION("RGB Sensor device driver for cm36686");
MODULE_LICENSE("GPL");