android_kernel_samsung_msm8976/drivers/misc/Kconfig

658 lines
22 KiB
Plaintext
Raw Normal View History

#
# Misc strange devices
#
menu "Misc devices"
config SENSORS_LIS3LV02D
tristate
depends on INPUT
select INPUT_POLLDEV
default n
config AD525X_DPOT
tristate "Analog Devices Digital Potentiometers"
depends on (I2C || SPI) && SYSFS
help
If you say yes here, you get support for the Analog Devices
AD5258, AD5259, AD5251, AD5252, AD5253, AD5254, AD5255
AD5160, AD5161, AD5162, AD5165, AD5200, AD5201, AD5203,
AD5204, AD5206, AD5207, AD5231, AD5232, AD5233, AD5235,
AD5260, AD5262, AD5263, AD5290, AD5291, AD5292, AD5293,
AD7376, AD8400, AD8402, AD8403, ADN2850, AD5241, AD5242,
AD5243, AD5245, AD5246, AD5247, AD5248, AD5280, AD5282,
ADN2860, AD5273, AD5171, AD5170, AD5172, AD5173, AD5270,
AD5271, AD5272, AD5274
digital potentiometer chips.
See Documentation/misc-devices/ad525x_dpot.txt for the
userspace interface.
This driver can also be built as a module. If so, the module
will be called ad525x_dpot.
config AD525X_DPOT_I2C
tristate "support I2C bus connection"
depends on AD525X_DPOT && I2C
help
Say Y here if you have a digital potentiometers hooked to an I2C bus.
To compile this driver as a module, choose M here: the
module will be called ad525x_dpot-i2c.
config AD525X_DPOT_SPI
tristate "support SPI bus connection"
depends on AD525X_DPOT && SPI_MASTER
help
Say Y here if you have a digital potentiometers hooked to an SPI bus.
If unsure, say N (but it's safe to say "Y").
To compile this driver as a module, choose M here: the
module will be called ad525x_dpot-spi.
config ATMEL_PWM
tristate "Atmel AT32/AT91 PWM support"
depends on HAVE_CLK
help
This option enables device driver support for the PWM channels
on certain Atmel processors. Pulse Width Modulation is used for
purposes including software controlled power-efficient backlights
on LCD displays, motor control, and waveform generation.
config ATMEL_TCLIB
bool "Atmel AT32/AT91 Timer/Counter Library"
depends on (AVR32 || ARCH_AT91)
help
Select this if you want a library to allocate the Timer/Counter
blocks found on many Atmel processors. This facilitates using
these blocks by different drivers despite processor differences.
config ATMEL_TCB_CLKSRC
bool "TC Block Clocksource"
depends on ATMEL_TCLIB
default y
help
Select this to get a high precision clocksource based on a
TC block with a 5+ MHz base clock rate. Two timer channels
are combined to make a single 32-bit timer.
When GENERIC_CLOCKEVENTS is defined, the third timer channel
may be used as a clock event device supporting oneshot mode
(delays of up to two seconds) based on the 32 KiHz clock.
config ATMEL_TCB_CLKSRC_BLOCK
int
depends on ATMEL_TCB_CLKSRC
prompt "TC Block" if ARCH_AT91RM9200 || ARCH_AT91SAM9260 || CPU_AT32AP700X
default 0
range 0 1
help
Some chips provide more than one TC block, so you have the
choice of which one to use for the clock framework. The other
TC can be used for other purposes, such as PWM generation and
interval timing.
config DUMMY_IRQ
tristate "Dummy IRQ handler"
default n
---help---
This module accepts a single 'irq' parameter, which it should register for.
The sole purpose of this module is to help with debugging of systems on
which spurious IRQs would happen on disabled IRQ vector.
config IBM_ASM
tristate "Device driver for IBM RSA service processor"
depends on X86 && PCI && INPUT
---help---
This option enables device driver support for in-band access to the
IBM RSA (Condor) service processor in eServer xSeries systems.
The ibmasm device driver allows user space application to access
ASM (Advanced Systems Management) functions on the service
processor. The driver is meant to be used in conjunction with
a user space API.
The ibmasm driver also enables the OS to use the UART on the
service processor board as a regular serial port. To make use of
this feature serial driver support (CONFIG_SERIAL_8250) must be
enabled.
WARNING: This software may not be supported or function
correctly on your IBM server. Please consult the IBM ServerProven
website <http://www-03.ibm.com/systems/info/x86servers/serverproven/compat/us/>
for information on the specific driver level and support statement
for your IBM server.
config PHANTOM
tristate "Sensable PHANToM (PCI)"
depends on PCI
help
Say Y here if you want to build a driver for Sensable PHANToM device.
This driver is only for PCI PHANToMs.
If you choose to build module, its name will be phantom. If unsure,
say N here.
config INTEL_MID_PTI
tristate "Parallel Trace Interface for MIPI P1149.7 cJTAG standard"
depends on PCI && TTY
default n
help
The PTI (Parallel Trace Interface) driver directs
trace data routed from various parts in the system out
through an Intel Penwell PTI port and out of the mobile
device for analysis with a debugging tool (Lauterbach or Fido).
You should select this driver if the target kernel is meant for
an Intel Atom (non-netbook) mobile device containing a MIPI
P1149.7 standard implementation.
config SGI_IOC4
tristate "SGI IOC4 Base IO support"
depends on PCI
---help---
This option enables basic support for the IOC4 chip on certain
SGI IO controller cards (IO9, IO10, and PCI-RT). This option
does not enable any specific functions on such a card, but provides
necessary infrastructure for other drivers to utilize.
If you have an SGI Altix with an IOC4-based card say Y.
Otherwise say N.
config TIFM_CORE
tristate "TI Flash Media interface support"
depends on PCI
help
If you want support for Texas Instruments(R) Flash Media adapters
you should select this option and then also choose an appropriate
host adapter, such as 'TI Flash Media PCI74xx/PCI76xx host adapter
support', if you have a TI PCI74xx compatible card reader, for
example.
You will also have to select some flash card format drivers. MMC/SD
cards are supported via 'MMC/SD Card support: TI Flash Media MMC/SD
Interface support (MMC_TIFM_SD)'.
To compile this driver as a module, choose M here: the module will
be called tifm_core.
config TIFM_7XX1
tristate "TI Flash Media PCI74xx/PCI76xx host adapter support"
depends on PCI && TIFM_CORE
default TIFM_CORE
help
This option enables support for Texas Instruments(R) PCI74xx and
PCI76xx families of Flash Media adapters, found in many laptops.
To make actual use of the device, you will have to select some
flash card format drivers, as outlined in the TIFM_CORE Help.
To compile this driver as a module, choose M here: the module will
be called tifm_7xx1.
config ICS932S401
tristate "Integrated Circuits ICS932S401"
depends on I2C
help
If you say yes here you get support for the Integrated Circuits
ICS932S401 clock control chips.
This driver can also be built as a module. If so, the module
will be called ics932s401.
config ATMEL_SSC
tristate "Device driver for Atmel SSC peripheral"
depends on HAS_IOMEM
---help---
This option enables device driver support for Atmel Synchronized
Serial Communication peripheral (SSC).
The SSC peripheral supports a wide variety of serial frame based
communications, i.e. I2S, SPI, etc.
If unsure, say N.
config ENCLOSURE_SERVICES
tristate "Enclosure Services"
default n
help
Provides support for intelligent enclosures (bays which
contain storage devices). You also need either a host
driver (SCSI/ATA) which supports enclosures
or a SCSI enclosure device (SES) to use these services.
config SGI_XP
tristate "Support communication between SGI SSIs"
depends on NET
depends on (IA64_GENERIC || IA64_SGI_SN2 || IA64_SGI_UV || X86_UV) && SMP
select IA64_UNCACHED_ALLOCATOR if IA64_GENERIC || IA64_SGI_SN2
select GENERIC_ALLOCATOR if IA64_GENERIC || IA64_SGI_SN2
select SGI_GRU if X86_64 && SMP
---help---
An SGI machine can be divided into multiple Single System
Images which act independently of each other and have
hardware based memory protection from the others. Enabling
this feature will allow for direct communication between SSIs
based on a network adapter and DMA messaging.
config CS5535_MFGPT
tristate "CS5535/CS5536 Geode Multi-Function General Purpose Timer (MFGPT) support"
depends on PCI && X86 && MFD_CS5535
default n
help
This driver provides access to MFGPT functionality for other
drivers that need timers. MFGPTs are available in the CS5535 and
CS5536 companion chips that are found in AMD Geode and several
other platforms. They have a better resolution and max interval
than the generic PIT, and are suitable for use as high-res timers.
You probably don't want to enable this manually; other drivers that
make use of it should enable it.
config CS5535_MFGPT_DEFAULT_IRQ
int
depends on CS5535_MFGPT
default 7
help
MFGPTs on the CS5535 require an interrupt. The selected IRQ
can be overridden as a module option as well as by driver that
use the cs5535_mfgpt_ API; however, different architectures might
want to use a different IRQ by default. This is here for
architectures to set as necessary.
config CS5535_CLOCK_EVENT_SRC
tristate "CS5535/CS5536 high-res timer (MFGPT) events"
depends on GENERIC_CLOCKEVENTS && CS5535_MFGPT
help
This driver provides a clock event source based on the MFGPT
timer(s) in the CS5535 and CS5536 companion chips.
MFGPTs have a better resolution and max interval than the
generic PIT, and are suitable for use as high-res timers.
config HP_ILO
tristate "Channel interface driver for the HP iLO processor"
depends on PCI
default n
help
The channel interface driver allows applications to communicate
with iLO management processors present on HP ProLiant servers.
Upon loading, the driver creates /dev/hpilo/dXccbN files, which
can be used to gather data from the management processor, via
read and write system calls.
To compile this driver as a module, choose M here: the
module will be called hpilo.
config SGI_GRU
tristate "SGI GRU driver"
depends on X86_UV && SMP
default n
select MMU_NOTIFIER
---help---
The GRU is a hardware resource located in the system chipset. The GRU
contains memory that can be mmapped into the user address space. This memory is
used to communicate with the GRU to perform functions such as load/store,
scatter/gather, bcopy, AMOs, etc. The GRU is directly accessed by user
instructions using user virtual addresses. GRU instructions (ex., bcopy) use
user virtual addresses for operands.
If you are not running on a SGI UV system, say N.
config SGI_GRU_DEBUG
bool "SGI GRU driver debug"
depends on SGI_GRU
default n
---help---
This option enables addition debugging code for the SGI GRU driver. If
you are unsure, say N.
config APDS9802ALS
tristate "Medfield Avago APDS9802 ALS Sensor module"
depends on I2C
help
If you say yes here you get support for the ALS APDS9802 ambient
light sensor.
This driver can also be built as a module. If so, the module
will be called apds9802als.
config ISL29003
tristate "Intersil ISL29003 ambient light sensor"
depends on I2C && SYSFS
help
If you say yes here you get support for the Intersil ISL29003
ambient light sensor.
This driver can also be built as a module. If so, the module
will be called isl29003.
config ISL29020
tristate "Intersil ISL29020 ambient light sensor"
depends on I2C
help
If you say yes here you get support for the Intersil ISL29020
ambient light sensor.
This driver can also be built as a module. If so, the module
will be called isl29020.
config SENSORS_TSL2550
tristate "Taos TSL2550 ambient light sensor"
depends on I2C && SYSFS
help
If you say yes here you get support for the Taos TSL2550
ambient light sensor.
This driver can also be built as a module. If so, the module
will be called tsl2550.
config SENSORS_BH1780
tristate "ROHM BH1780GLI ambient light sensor"
depends on I2C && SYSFS
help
If you say yes here you get support for the ROHM BH1780GLI
ambient light sensor.
This driver can also be built as a module. If so, the module
will be called bh1780gli.
config SENSORS_BH1770
tristate "BH1770GLC / SFH7770 combined ALS - Proximity sensor"
depends on I2C
---help---
Say Y here if you want to build a driver for BH1770GLC (ROHM) or
SFH7770 (Osram) combined ambient light and proximity sensor chip.
To compile this driver as a module, choose M here: the
module will be called bh1770glc. If unsure, say N here.
config SENSORS_APDS990X
tristate "APDS990X combined als and proximity sensors"
depends on I2C
default n
---help---
Say Y here if you want to build a driver for Avago APDS990x
combined ambient light and proximity sensor chip.
To compile this driver as a module, choose M here: the
module will be called apds990x. If unsure, say N here.
config HMC6352
tristate "Honeywell HMC6352 compass"
depends on I2C
help
This driver provides support for the Honeywell HMC6352 compass,
providing configuration and heading data via sysfs.
config EP93XX_PWM
tristate "EP93xx PWM support"
depends on ARCH_EP93XX
help
This option enables device driver support for the PWM channels
on the Cirrus EP93xx processors. The EP9307 chip only has one
PWM channel all the others have two, the second channel is an
alternate function of the EGPIO14 pin. A sysfs interface is
provided to control the PWM channels.
To compile this driver as a module, choose M here: the module will
be called ep93xx_pwm.
config DS1682
tristate "Dallas DS1682 Total Elapsed Time Recorder with Alarm"
depends on I2C
help
If you say yes here you get support for Dallas Semiconductor
DS1682 Total Elapsed Time Recorder.
This driver can also be built as a module. If so, the module
will be called ds1682.
config SPEAR13XX_PCIE_GADGET
bool "PCIe gadget support for SPEAr13XX platform"
depends on ARCH_SPEAR13XX && BROKEN
default n
help
This option enables gadget support for PCIe controller. If
board file defines any controller as PCIe endpoint then a sysfs
entry will be created for that controller. User can use these
sysfs node to configure PCIe EP as per his requirements.
config TI_DAC7512
tristate "Texas Instruments DAC7512"
depends on SPI && SYSFS
help
If you say yes here you get support for the Texas Instruments
DAC7512 16-bit digital-to-analog converter.
This driver can also be built as a module. If so, the module
will be called ti_dac7512.
config UID_STAT
bool "UID based statistics tracking exported to /proc/uid_stat"
default n
VMware Balloon driver This is a standalone version of VMware Balloon driver. Ballooning is a technique that allows hypervisor dynamically limit the amount of memory available to the guest (with guest cooperation). In the overcommit scenario, when hypervisor set detects that it needs to shuffle some memory, it instructs the driver to allocate certain number of pages, and the underlying memory gets returned to the hypervisor. Later hypervisor may return memory to the guest by reattaching memory to the pageframes and instructing the driver to "deflate" balloon. We are submitting a standalone driver because KVM maintainer (Avi Kivity) expressed opinion (rightly) that our transport does not fit well into virtqueue paradigm and thus it does not make much sense to integrate with virtio. There were also some concerns whether current ballooning technique is the right thing. If there appears a better framework to achieve this we are prepared to evaluate and switch to using it, but in the meantime we'd like to get this driver upstream. We want to get the driver accepted in distributions so that users do not have to deal with an out-of-tree module and many distributions have "upstream first" requirement. The driver has been shipping for a number of years and users running on VMware platform will have it installed as part of VMware Tools even if it will not come from a distribution, thus there should not be additional risk in pulling the driver into mainline. The driver will only activate if host is VMware so everyone else should not be affected at all. Signed-off-by: Dmitry Torokhov <dtor@vmware.com> Cc: Avi Kivity <avi@redhat.com> Cc: Jeremy Fitzhardinge <jeremy@goop.org> Cc: Ingo Molnar <mingo@elte.hu> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-04-23 17:18:08 +00:00
config VMWARE_BALLOON
tristate "VMware Balloon Driver"
depends on X86 && HYPERVISOR_GUEST
VMware Balloon driver This is a standalone version of VMware Balloon driver. Ballooning is a technique that allows hypervisor dynamically limit the amount of memory available to the guest (with guest cooperation). In the overcommit scenario, when hypervisor set detects that it needs to shuffle some memory, it instructs the driver to allocate certain number of pages, and the underlying memory gets returned to the hypervisor. Later hypervisor may return memory to the guest by reattaching memory to the pageframes and instructing the driver to "deflate" balloon. We are submitting a standalone driver because KVM maintainer (Avi Kivity) expressed opinion (rightly) that our transport does not fit well into virtqueue paradigm and thus it does not make much sense to integrate with virtio. There were also some concerns whether current ballooning technique is the right thing. If there appears a better framework to achieve this we are prepared to evaluate and switch to using it, but in the meantime we'd like to get this driver upstream. We want to get the driver accepted in distributions so that users do not have to deal with an out-of-tree module and many distributions have "upstream first" requirement. The driver has been shipping for a number of years and users running on VMware platform will have it installed as part of VMware Tools even if it will not come from a distribution, thus there should not be additional risk in pulling the driver into mainline. The driver will only activate if host is VMware so everyone else should not be affected at all. Signed-off-by: Dmitry Torokhov <dtor@vmware.com> Cc: Avi Kivity <avi@redhat.com> Cc: Jeremy Fitzhardinge <jeremy@goop.org> Cc: Ingo Molnar <mingo@elte.hu> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-04-23 17:18:08 +00:00
help
This is VMware physical memory management driver which acts
like a "balloon" that can be inflated to reclaim physical pages
by reserving them in the guest and invalidating them in the
monitor, freeing up the underlying machine pages so they can
be allocated to other guests. The balloon can also be deflated
to allow the guest to use more physical memory.
If unsure, say N.
To compile this driver as a module, choose M here: the
module will be called vmw_balloon.
VMware Balloon driver This is a standalone version of VMware Balloon driver. Ballooning is a technique that allows hypervisor dynamically limit the amount of memory available to the guest (with guest cooperation). In the overcommit scenario, when hypervisor set detects that it needs to shuffle some memory, it instructs the driver to allocate certain number of pages, and the underlying memory gets returned to the hypervisor. Later hypervisor may return memory to the guest by reattaching memory to the pageframes and instructing the driver to "deflate" balloon. We are submitting a standalone driver because KVM maintainer (Avi Kivity) expressed opinion (rightly) that our transport does not fit well into virtqueue paradigm and thus it does not make much sense to integrate with virtio. There were also some concerns whether current ballooning technique is the right thing. If there appears a better framework to achieve this we are prepared to evaluate and switch to using it, but in the meantime we'd like to get this driver upstream. We want to get the driver accepted in distributions so that users do not have to deal with an out-of-tree module and many distributions have "upstream first" requirement. The driver has been shipping for a number of years and users running on VMware platform will have it installed as part of VMware Tools even if it will not come from a distribution, thus there should not be additional risk in pulling the driver into mainline. The driver will only activate if host is VMware so everyone else should not be affected at all. Signed-off-by: Dmitry Torokhov <dtor@vmware.com> Cc: Avi Kivity <avi@redhat.com> Cc: Jeremy Fitzhardinge <jeremy@goop.org> Cc: Ingo Molnar <mingo@elte.hu> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-04-23 17:18:08 +00:00
config ARM_CHARLCD
bool "ARM Ltd. Character LCD Driver"
depends on PLAT_VERSATILE
help
This is a driver for the character LCD found on the ARM Ltd.
Versatile and RealView Platform Baseboards. It doesn't do
very much more than display the text "ARM Linux" on the first
line and the Linux version on the second line, but that's
still useful.
drivers/misc: support for the pressure sensor BMP085 from Bosch Sensortec This driver adds support for the BMP085 digital pressure sensor from Bosch Sensortec. It exposes a sysfs api to userspace where pressure and temperature measurement results can be read from the pressure0_input and temp0_input file. The chip is able to calculate the average of up to eight samples to increase the accuracy. This feature can be controlled by writing to the oversampling file. The BMP085 digital pressure sensor can measure ambient air pressure and temperature. Both values can be obtained from sysfs files. The pressure is measured by reading from pressure0_input. Valid values range from 30000 to 110000 pascal with a resolution of 1 pascal (=0.01 millibar). temp0_input holds the current temperature in degree celsius, multiplied by 10. This results in a resolution of a tenth degree celsius. Values range from -400 to 850. To increase the accuracy, this chip can calculate the average of 1, 2, 4 or 8 samples. This behavior is controlled through the oversampling sysfs file. Two to the power of the value written to that file specifies how many samples will be used. Valid values: 0..3. [akpm@linux-foundation.org: fix typo] [shubhrajyoti@ti.com: optimize the wait time for the pressure sensor, definition of long is arch dependent so make it u32] [akpm@linux-foundation.org: coding-style fixes] Signed-off-by: Christoph Mair <christoph.mair@gmail.com> Signed-off-by: Shubhrajyoti D <shubhrajyoti@ti.com> Acked-by: Jonathan Cameron <jic23@cam.ac.uk> Cc: Stefan Schmidt <stefan@datenfreihafen.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-08-10 00:20:28 +00:00
config BMP085
bool
depends on SYSFS
config BMP085_I2C
tristate "BMP085 digital pressure sensor on I2C"
select BMP085
select REGMAP_I2C
drivers/misc: support for the pressure sensor BMP085 from Bosch Sensortec This driver adds support for the BMP085 digital pressure sensor from Bosch Sensortec. It exposes a sysfs api to userspace where pressure and temperature measurement results can be read from the pressure0_input and temp0_input file. The chip is able to calculate the average of up to eight samples to increase the accuracy. This feature can be controlled by writing to the oversampling file. The BMP085 digital pressure sensor can measure ambient air pressure and temperature. Both values can be obtained from sysfs files. The pressure is measured by reading from pressure0_input. Valid values range from 30000 to 110000 pascal with a resolution of 1 pascal (=0.01 millibar). temp0_input holds the current temperature in degree celsius, multiplied by 10. This results in a resolution of a tenth degree celsius. Values range from -400 to 850. To increase the accuracy, this chip can calculate the average of 1, 2, 4 or 8 samples. This behavior is controlled through the oversampling sysfs file. Two to the power of the value written to that file specifies how many samples will be used. Valid values: 0..3. [akpm@linux-foundation.org: fix typo] [shubhrajyoti@ti.com: optimize the wait time for the pressure sensor, definition of long is arch dependent so make it u32] [akpm@linux-foundation.org: coding-style fixes] Signed-off-by: Christoph Mair <christoph.mair@gmail.com> Signed-off-by: Shubhrajyoti D <shubhrajyoti@ti.com> Acked-by: Jonathan Cameron <jic23@cam.ac.uk> Cc: Stefan Schmidt <stefan@datenfreihafen.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-08-10 00:20:28 +00:00
depends on I2C && SYSFS
help
Say Y here if you want to support Bosch Sensortec's digital pressure
sensor hooked to an I2C bus.
To compile this driver as a module, choose M here: the
module will be called bmp085-i2c.
config BMP085_SPI
tristate "BMP085 digital pressure sensor on SPI"
select BMP085
select REGMAP_SPI
depends on SPI_MASTER && SYSFS
help
Say Y here if you want to support Bosch Sensortec's digital pressure
sensor hooked to an SPI bus.
drivers/misc: support for the pressure sensor BMP085 from Bosch Sensortec This driver adds support for the BMP085 digital pressure sensor from Bosch Sensortec. It exposes a sysfs api to userspace where pressure and temperature measurement results can be read from the pressure0_input and temp0_input file. The chip is able to calculate the average of up to eight samples to increase the accuracy. This feature can be controlled by writing to the oversampling file. The BMP085 digital pressure sensor can measure ambient air pressure and temperature. Both values can be obtained from sysfs files. The pressure is measured by reading from pressure0_input. Valid values range from 30000 to 110000 pascal with a resolution of 1 pascal (=0.01 millibar). temp0_input holds the current temperature in degree celsius, multiplied by 10. This results in a resolution of a tenth degree celsius. Values range from -400 to 850. To increase the accuracy, this chip can calculate the average of 1, 2, 4 or 8 samples. This behavior is controlled through the oversampling sysfs file. Two to the power of the value written to that file specifies how many samples will be used. Valid values: 0..3. [akpm@linux-foundation.org: fix typo] [shubhrajyoti@ti.com: optimize the wait time for the pressure sensor, definition of long is arch dependent so make it u32] [akpm@linux-foundation.org: coding-style fixes] Signed-off-by: Christoph Mair <christoph.mair@gmail.com> Signed-off-by: Shubhrajyoti D <shubhrajyoti@ti.com> Acked-by: Jonathan Cameron <jic23@cam.ac.uk> Cc: Stefan Schmidt <stefan@datenfreihafen.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-08-10 00:20:28 +00:00
To compile this driver as a module, choose M here: the
module will be called bmp085-spi.
drivers/misc: support for the pressure sensor BMP085 from Bosch Sensortec This driver adds support for the BMP085 digital pressure sensor from Bosch Sensortec. It exposes a sysfs api to userspace where pressure and temperature measurement results can be read from the pressure0_input and temp0_input file. The chip is able to calculate the average of up to eight samples to increase the accuracy. This feature can be controlled by writing to the oversampling file. The BMP085 digital pressure sensor can measure ambient air pressure and temperature. Both values can be obtained from sysfs files. The pressure is measured by reading from pressure0_input. Valid values range from 30000 to 110000 pascal with a resolution of 1 pascal (=0.01 millibar). temp0_input holds the current temperature in degree celsius, multiplied by 10. This results in a resolution of a tenth degree celsius. Values range from -400 to 850. To increase the accuracy, this chip can calculate the average of 1, 2, 4 or 8 samples. This behavior is controlled through the oversampling sysfs file. Two to the power of the value written to that file specifies how many samples will be used. Valid values: 0..3. [akpm@linux-foundation.org: fix typo] [shubhrajyoti@ti.com: optimize the wait time for the pressure sensor, definition of long is arch dependent so make it u32] [akpm@linux-foundation.org: coding-style fixes] Signed-off-by: Christoph Mair <christoph.mair@gmail.com> Signed-off-by: Shubhrajyoti D <shubhrajyoti@ti.com> Acked-by: Jonathan Cameron <jic23@cam.ac.uk> Cc: Stefan Schmidt <stefan@datenfreihafen.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-08-10 00:20:28 +00:00
config PCH_PHUB
tristate "Intel EG20T PCH/LAPIS Semicon IOH(ML7213/ML7223/ML7831) PHUB"
depends on PCI
help
This driver is for PCH(Platform controller Hub) PHUB(Packet Hub) of
Intel Topcliff which is an IOH(Input/Output Hub) for x86 embedded
processor. The Topcliff has MAC address and Option ROM data in SROM.
This driver can access MAC address and Option ROM data in SROM.
This driver also can be used for LAPIS Semiconductor's IOH,
ML7213/ML7223/ML7831.
ML7213 which is for IVI(In-Vehicle Infotainment) use.
ML7223 IOH is for MP(Media Phone) use.
ML7831 IOH is for general purpose use.
ML7213/ML7223/ML7831 is companion chip for Intel Atom E6xx series.
ML7213/ML7223/ML7831 is completely compatible for Intel EG20T PCH.
To compile this driver as a module, choose M here: the module will
be called pch_phub.
config USB_SWITCH_FSA9480
tristate "FSA9480 USB Switch"
depends on I2C
help
The FSA9480 is a USB port accessory detector and switch.
The FSA9480 is fully controlled using I2C and enables USB data,
stereo and mono audio, video, microphone and UART data to use
a common connector port.
config LATTICE_ECP3_CONFIG
tristate "Lattice ECP3 FPGA bitstream configuration via SPI"
depends on SPI && SYSFS
select FW_LOADER
default n
help
This option enables support for bitstream configuration (programming
or loading) of the Lattice ECP3 FPGA family via SPI.
If unsure, say N.
config SRAM
bool "Generic on-chip SRAM driver"
depends on HAS_IOMEM
select GENERIC_ALLOCATOR
help
This driver allows you to declare a memory region to be managed by
the genalloc API. It is supposed to be used for small on-chip SRAM
areas found on many SoCs.
config TSIF
depends on ARCH_MSM
tristate "TSIF (Transport Stream InterFace) support"
default n
---help---
This driver supports low level TSIF interface. It provides API
for upper layer drivers. If you have a TSIF hardware, say
Y here and read <file:Documentation/arm/msm/tsif.txt>.
To compile this driver as module, choose M here: the
module will be called msm_tsif.
config TSIF_CHRDEV
tristate "TSIF character device"
depends on TSIF
default n
---help---
This driver uses low level TSIF interface. It provides character
device useable from user space programs: one can read TSIF stream
from this device.
This driver may be used as example for TSIF API usage.
To compile this driver as module, choose M here: the
module will be called tsif_chrdev.
config TSIF_DEBUG
bool "Turn on debugging information for tsif driver"
depends on TSIF
default n
---help---
This turns on debugging information for the tsif driver
tspp: Add transport stream packet processor Including: commit 6bac783fae7e7c5a5bfc95e2cdc9b4f22ca53d44 Author: Hamad Kadmany <hkadmany@codeaurora.org> Date: Thu Dec 20 18:30:40 2012 +0200 tspp: Disable read-complete interrupt Read-complete interrupt can be generated from TSPP HW for test purposes only. It is generated for each TS packet TSPP fetches from TSIF interface. Having it enabled cause great load of interrupts that are not used by the SW. Change-Id: If2038f184a8b0904fba3e1cca5e110fd9daa52d3 Signed-off-by: Hamad Kadmany <hkadmany@codeaurora.org> commit 81cee0596e3cdf8102bf8c8ef45e5f3a07fc8a4d Author: Hamad Kadmany <hkadmany@codeaurora.org> Date: Thu Nov 29 14:15:57 2012 +0200 tspp: Improve data-path handling Existing driver allocated BAM descriptor at fixed sizes each with interrupt flag set. Notification on data was received when the descriptor is fully consumed by the HW. The descriptor size on one hand need to be big enough so that we don't receive too much interrupts for high-bitrate streams, and on other hand needs to be small enough so that for low-bitrate stream we are not starved waiting for data for a long period of time. The change adds support of allocating small descriptors and set interrupt flags on part of descriptors. In addition, expiration timer is used so that if interrupt is not received after long period of time the timer handler reports back descriptors are already ready to be consumed. This allows low-rate of interrupts and handling of low-bitrate streams. As descriptors are smaller now (size of single TS packet), exposed API within SW demux that handles a single packet to save the function call to the API that handles multiple packets for efficiency. Information regarding the new buffer allocation was added to debugfs. CRs-Fixed: 420818 Change-Id: I4bb05177774ab0e0bad0737ca1106a0c33f843ae Signed-off-by: Hamad Kadmany <hkadmany@codeaurora.org> commit 44307d32e23a2bb2a190d88bb049cc34d1e20418 Author: Hamad Kadmany <hkadmany@codeaurora.org> Date: Sun Nov 25 09:49:51 2012 +0200 misc: tspp: Enable notification of TSIF status and expose it in debugfs Enable TSIF status interrupt to expose the following information in debugfs: - stat_rx_chunks: Counts number of TS packets chunks received from HW. - stat_overflow: Counts number of times buffer has overflowed. - stat_lost_sync: Counts number of times TSIF lost sync with input. - stat_timeout: Counts number of times TSIF reached timeout waiting for packets. All counters can read and reset by writing to the respective file. Change-Id: I475c2c0845c85ac22ea720059fb28c4a588fedcf Signed-off-by: Hamad Kadmany <hkadmany@codeaurora.org> commit 72b785570b265c6fcb4cb907c0c3a3a4b311f1f1 Author: Liron Kuch <lkuch@codeaurora.org> Date: Tue Oct 30 17:47:50 2012 +0200 media: dvb: mpq: TSPP output buffer allocation by demux plugin The TSPP driver can allocate its output buffers internally or externally. External buffer allocation is required when Demux wishes to use the ION driver to allocate a physically contiguous buffer (e.g. to pass to TZ). This commit improves the TSPP driver support for external buffer allocation and implements the external memory allocation and free functions in the Demux driver. Change-Id: I71da4f18c090ef224c4fc7b23f55b9b3636be996 Signed-off-by: Liron Kuch <lkuch@codeaurora.org> commit 92705b3eb380826abf8ddefc25a8d210ffa64ff5 Author: Hamad Kadmany <hkadmany@codeaurora.org> Date: Tue Oct 23 14:15:41 2012 +0200 tspp: Add option to inverse tsif signals TSIF signals (clock, data, enable and sync) may be configured to be inversed at TSPP unit input. This is useful in case TSIF signals from external units need to be inversed. Change-Id: Idd21948baccedc7499b31ed1d4df0f737538c870 Signed-off-by: Hamad Kadmany <hkadmany@codeaurora.org> commit 435ad8e2157eec5783a435f1e7ec47f67d759882 Author: Joel Nider <jnider@codeaurora.org> Date: Wed Dec 14 16:53:30 2011 +0200 tspp: add kernel api for video demux component The demux is an in-kernel software component whose purpose is to take an incoming TSIF stream and split it into multiple output channels based on the PID field in each TS packet. Each output channel can be used for a different purpose, such as audio, video or channel information. In order to get good performance when moving such large data streams around, the demux was placed in kernel-space as to prevent copying memory buffers between kernel-space and user-space, at least at this early stage in processing the traffic. Originally the design of the TSPP driver was based on the earlier TSIF driver, so it contained only a user-space API. Change-Id: I22799eb19d9049e3635d5c589b02f999d9b8e1c7 Signed-off-by: Joel Nider <jnider@codeaurora.org> commit 6544f3e52c9c1707a5a8fa90d32f89d80dabb4b9 Author: Joel Nider <jnider@codeaurora.org> Date: Tue Jul 10 13:50:06 2012 +0300 tspp: use new clock preparation functions Replace the clk_enable() with clk_prepare_enable() and replace clk_disable() with clk_disable_unprepare() functions. Change-Id: I63479090eccbeac46f091bf95faeb857139d23a4 Signed-off-by: Joel Nider <jnider@codeaurora.org> commit b9662ca49cfe619e076476dcf8297a4031f0c310 Author: Joel Nider <jnider@codeaurora.org> Date: Sun Jun 10 14:21:11 2012 +0300 tspp: use device name when getting clock The new method for requesting clocks requires a driver to pass its device name for comparison to the list of available clocks. Change-Id: Ica5b09447de177beead90f8b7c721b84820fbdf7 Signed-off-by: Joel Nider <jnider@codeaurora.org> commit 5556a8524591e4d1c4c9188316551900e8b8382d Author: Joel Nider <jnider@codeaurora.org> Date: Sun Oct 16 10:52:13 2011 +0200 misc: tspp: adding TSPP driver files The TSPP driver manages the transport stream packet processor. This core is used to offload the main CPU by handling MPEG TS packets, generally coming from a broadcast modem using the ISDB-T (or variant) protocol. Change-Id: Ia4c16dcce970ae0f52d8d17957a92fce34ecdb44 Signed-off-by: Joel Nider <jnider@codeaurora.org> Signed-off-by: David Brown <davidb@codeaurora.org>
2013-01-14 23:32:32 +00:00
config TSPP
depends on ARCH_MSM
tristate "TSPP (Transport Stream Packet Processor) Support"
---help---
Transport Stream Packet Processor is used to offload the
processing of MPEG transport streams from the main processor.
This can also be compiled as a loadable module.
config HAPTIC_ISA1200
tristate "ISA1200 haptic support"
depends on I2C
default n
help
The ISA1200 is a high performance enhanced haptic driver.
config PMIC8058_PWM
tristate "Qualcomm PM8058 PWM support"
depends on PMIC8058
default y
help
This option enables device driver support for the PWM channels
on Qualcomm PM8058 chip. Pulse Width Modulation is used for
purposes including software controlled brightness of backlight,
motor control, and waveform generation.
config PMIC8XXX_VIBRATOR
tristate "Qualcomm Vibrator support for PMIC8XXX"
depends on MFD_PM8XXX && ANDROID_TIMED_OUTPUT
help
This option enables device driver support for the vibrator
on the PM8XXX chips. The vibrator is controlled using the
timed output class.
config PMIC8XXX_NFC
tristate "Qualcomm PM8XXX support for Near Field Communication"
depends on MFD_PM8XXX
help
Qualcomm PM8XXX chips have a module to support NFC (Near Field
Communication). This option enables the driver to support it.
2013-01-17 20:53:49 +00:00
config PMIC8XXX_UPL
tristate "Qualcomm PM8XXX support for User Programmable Logic"
depends on MFD_PM8XXX
help
This option enables device driver support for User Programmable Logic
on Qualcomm PM8XXX chips. The UPL module provides a means to implement
simple truth table based logic via a set of control registers. I/O may
be routed in and out of the UPL module via GPIO or DTEST pins.
config PMIC8058_XOADC
tristate "Qualcomm PM8058 XOADC driver"
depends on PMIC8058
default n
help
Enables User processor ADC reads over the XOADC module of Qualcomm's
PMIC8058. Driver interface to program registers of the ADC over
AMUX channels, devices on programmable MPP's and xotherm.
config TZCOM
tristate "Trustzone Communicator driver"
default n
help
Provides a communication interface between userspace and
TrustZone Operating Environment (TZBSP) using Secure Channel
Manager (SCM) interface.
qseecom: Add qseecom Driver This driver is based of the TZCOM (planned to be deprecated soon). It shares the same design as TZCOM with some re-organization and new features added. QSEEcom (Qualcomm Secure Execution environment Communicator) is named accordingly to be consistent with the nomenclature used in the secure domain. The following additional features (on top of current TZCOM) driver are implemented: (1) Add support for multi-image loading. The image that was loaded in TZCOM was hard-coded to "tzapps". During a open() tzapps was loaded using pil driver call pil_get(). This severly limted the number of images that could be loaded to one single application: named "tzapps". qseecom driver provides a way to load any image on request. Client simply send the image data in a specific format and this data is sent over to QSEE (Qualcomm Secure Execution enviroment) to load accordingly. (2) Add support for multi-client. TZcom driver did not have provisions to support multiple clients to interface with the single tzapp image loaded on the secure domain. The changes added in qseecom driver allows for multiple client to interface with a single image laoded and running in secure domain. (3) Add support for performance tweaking in QSEE Added capability to send requests to QSEE to set specific clocks for optimal crypto performance. This essentially will increase the crypto performance on the secure domain. The crypto functionality is used extensively by the current existing qseecom client(s). (4) Retain legacy support for QSEOS version 1.3. In order for the existing applications to work with old QSEE image, qseecom also supports the old mechanism (loading tzapp image via pil). This was a requirement for existing products that are not yet using the latest secure code. Change-Id: I7cf2d62c612cb4d17b33579e66bee44c9844dfda Signed-off-by: Mona Hossain <mhossain@codeaurora.org>
2012-02-17 21:53:11 +00:00
config QSEECOM
tristate "Qualcomm Secure Execution Communicator driver"
help
Provides a communication interface between userspace and
Qualcomm Secure Execution Environment (QSEE) using Secure Channel
Manager (SCM) interface.
config QFP_FUSE
tristate "QFPROM Fuse Read/Write support"
help
This option enables device driver to read/write QFPROM
fuses. The ioctls provides the necessary interface
to the fuse block. Currently this is supported only
on FSM targets.
source "drivers/misc/c2port/Kconfig"
source "drivers/misc/eeprom/Kconfig"
source "drivers/misc/cb710/Kconfig"
source "drivers/misc/ti-st/Kconfig"
source "drivers/misc/lis3lv02d/Kconfig"
source "drivers/misc/carma/Kconfig"
source "drivers/misc/altera-stapl/Kconfig"
source "drivers/misc/mei/Kconfig"
source "drivers/misc/vmw_vmci/Kconfig"
endmenu