android_kernel_samsung_msm8976/arch/ia64/sn/kernel/sn2/sn_hwperf.c

999 lines
23 KiB
C
Raw Normal View History

/*
* This file is subject to the terms and conditions of the GNU General Public
* License. See the file "COPYING" in the main directory of this archive
* for more details.
*
* Copyright (C) 2004-2006 Silicon Graphics, Inc. All rights reserved.
*
* SGI Altix topology and hardware performance monitoring API.
* Mark Goodwin <markgw@sgi.com>.
*
* Creates /proc/sgi_sn/sn_topology (read-only) to export
* info about Altix nodes, routers, CPUs and NumaLink
* interconnection/topology.
*
* Also creates a dynamic misc device named "sn_hwperf"
* that supports an ioctl interface to call down into SAL
* to discover hw objects, topology and to read/write
* memory mapped registers, e.g. for performance monitoring.
* The "sn_hwperf" device is registered only after the procfs
* file is first opened, i.e. only if/when it's needed.
*
* This API is used by SGI Performance Co-Pilot and other
* tools, see http://oss.sgi.com/projects/pcp
*/
#include <linux/fs.h>
#include <linux/slab.h>
#include <linux/vmalloc.h>
#include <linux/seq_file.h>
#include <linux/miscdevice.h>
#include <linux/utsname.h>
#include <linux/cpumask.h>
#include <linux/nodemask.h>
#include <linux/smp.h>
#include <linux/mutex.h>
#include <asm/processor.h>
#include <asm/topology.h>
#include <asm/uaccess.h>
#include <asm/sal.h>
#include <asm/sn/io.h>
#include <asm/sn/sn_sal.h>
#include <asm/sn/module.h>
#include <asm/sn/geo.h>
#include <asm/sn/sn2/sn_hwperf.h>
#include <asm/sn/addrs.h>
static void *sn_hwperf_salheap = NULL;
static int sn_hwperf_obj_cnt = 0;
static nasid_t sn_hwperf_master_nasid = INVALID_NASID;
static int sn_hwperf_init(void);
static DEFINE_MUTEX(sn_hwperf_init_mutex);
#define cnode_possible(n) ((n) < num_cnodes)
static int sn_hwperf_enum_objects(int *nobj, struct sn_hwperf_object_info **ret)
{
int e;
u64 sz;
struct sn_hwperf_object_info *objbuf = NULL;
if ((e = sn_hwperf_init()) < 0) {
printk(KERN_ERR "sn_hwperf_init failed: err %d\n", e);
goto out;
}
sz = sn_hwperf_obj_cnt * sizeof(struct sn_hwperf_object_info);
objbuf = vmalloc(sz);
if (objbuf == NULL) {
printk("sn_hwperf_enum_objects: vmalloc(%d) failed\n", (int)sz);
e = -ENOMEM;
goto out;
}
e = ia64_sn_hwperf_op(sn_hwperf_master_nasid, SN_HWPERF_ENUM_OBJECTS,
0, sz, (u64) objbuf, 0, 0, NULL);
if (e != SN_HWPERF_OP_OK) {
e = -EINVAL;
vfree(objbuf);
}
out:
*nobj = sn_hwperf_obj_cnt;
*ret = objbuf;
return e;
}
static int sn_hwperf_location_to_bpos(char *location,
int *rack, int *bay, int *slot, int *slab)
{
char type;
/* first scan for an old style geoid string */
if (sscanf(location, "%03d%c%02d#%d",
rack, &type, bay, slab) == 4)
*slot = 0;
else /* scan for a new bladed geoid string */
if (sscanf(location, "%03d%c%02d^%02d#%d",
rack, &type, bay, slot, slab) != 5)
return -1;
/* success */
return 0;
}
static int sn_hwperf_geoid_to_cnode(char *location)
{
int cnode;
geoid_t geoid;
moduleid_t module_id;
int rack, bay, slot, slab;
int this_rack, this_bay, this_slot, this_slab;
if (sn_hwperf_location_to_bpos(location, &rack, &bay, &slot, &slab))
return -1;
/*
* FIXME: replace with cleaner for_each_XXX macro which addresses
* both compute and IO nodes once ACPI3.0 is available.
*/
for (cnode = 0; cnode < num_cnodes; cnode++) {
geoid = cnodeid_get_geoid(cnode);
module_id = geo_module(geoid);
this_rack = MODULE_GET_RACK(module_id);
this_bay = MODULE_GET_BPOS(module_id);
this_slot = geo_slot(geoid);
this_slab = geo_slab(geoid);
if (rack == this_rack && bay == this_bay &&
slot == this_slot && slab == this_slab) {
break;
}
}
return cnode_possible(cnode) ? cnode : -1;
}
static int sn_hwperf_obj_to_cnode(struct sn_hwperf_object_info * obj)
{
if (!SN_HWPERF_IS_NODE(obj) && !SN_HWPERF_IS_IONODE(obj))
BUG();
if (SN_HWPERF_FOREIGN(obj))
return -1;
return sn_hwperf_geoid_to_cnode(obj->location);
}
static int sn_hwperf_generic_ordinal(struct sn_hwperf_object_info *obj,
struct sn_hwperf_object_info *objs)
{
int ordinal;
struct sn_hwperf_object_info *p;
for (ordinal=0, p=objs; p != obj; p++) {
if (SN_HWPERF_FOREIGN(p))
continue;
if (SN_HWPERF_SAME_OBJTYPE(p, obj))
ordinal++;
}
return ordinal;
}
static const char *slabname_node = "node"; /* SHub asic */
static const char *slabname_ionode = "ionode"; /* TIO asic */
static const char *slabname_router = "router"; /* NL3R or NL4R */
static const char *slabname_other = "other"; /* unknown asic */
static const char *sn_hwperf_get_slabname(struct sn_hwperf_object_info *obj,
struct sn_hwperf_object_info *objs, int *ordinal)
{
int isnode;
const char *slabname = slabname_other;
if ((isnode = SN_HWPERF_IS_NODE(obj)) || SN_HWPERF_IS_IONODE(obj)) {
slabname = isnode ? slabname_node : slabname_ionode;
*ordinal = sn_hwperf_obj_to_cnode(obj);
}
else {
*ordinal = sn_hwperf_generic_ordinal(obj, objs);
if (SN_HWPERF_IS_ROUTER(obj))
slabname = slabname_router;
}
return slabname;
}
static void print_pci_topology(struct seq_file *s)
{
char *p;
size_t sz;
int e;
for (sz = PAGE_SIZE; sz < 16 * PAGE_SIZE; sz += PAGE_SIZE) {
[PATCH] getting rid of all casts of k[cmz]alloc() calls Run this: #!/bin/sh for f in $(grep -Erl "\([^\)]*\) *k[cmz]alloc" *) ; do echo "De-casting $f..." perl -pi -e "s/ ?= ?\([^\)]*\) *(k[cmz]alloc) *\(/ = \1\(/" $f done And then go through and reinstate those cases where code is casting pointers to non-pointers. And then drop a few hunks which conflicted with outstanding work. Cc: Russell King <rmk@arm.linux.org.uk>, Ian Molton <spyro@f2s.com> Cc: Mikael Starvik <starvik@axis.com> Cc: Yoshinori Sato <ysato@users.sourceforge.jp> Cc: Roman Zippel <zippel@linux-m68k.org> Cc: Geert Uytterhoeven <geert@linux-m68k.org> Cc: Ralf Baechle <ralf@linux-mips.org> Cc: Paul Mackerras <paulus@samba.org> Cc: Kyle McMartin <kyle@mcmartin.ca> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: "David S. Miller" <davem@davemloft.net> Cc: Jeff Dike <jdike@addtoit.com> Cc: Greg KH <greg@kroah.com> Cc: Jens Axboe <jens.axboe@oracle.com> Cc: Paul Fulghum <paulkf@microgate.com> Cc: Alan Cox <alan@lxorguk.ukuu.org.uk> Cc: Karsten Keil <kkeil@suse.de> Cc: Mauro Carvalho Chehab <mchehab@infradead.org> Cc: Jeff Garzik <jeff@garzik.org> Cc: James Bottomley <James.Bottomley@steeleye.com> Cc: Ian Kent <raven@themaw.net> Cc: Steven French <sfrench@us.ibm.com> Cc: David Woodhouse <dwmw2@infradead.org> Cc: Neil Brown <neilb@cse.unsw.edu.au> Cc: Jaroslav Kysela <perex@suse.cz> Cc: Takashi Iwai <tiwai@suse.de> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-12-13 08:35:56 +00:00
if (!(p = kmalloc(sz, GFP_KERNEL)))
break;
e = ia64_sn_ioif_get_pci_topology(__pa(p), sz);
if (e == SALRET_OK)
seq_puts(s, p);
kfree(p);
if (e == SALRET_OK || e == SALRET_NOT_IMPLEMENTED)
break;
}
}
static inline int sn_hwperf_has_cpus(cnodeid_t node)
{
return node < MAX_NUMNODES && node_online(node) && nr_cpus_node(node);
}
static inline int sn_hwperf_has_mem(cnodeid_t node)
{
return node < MAX_NUMNODES && node_online(node) && NODE_DATA(node)->node_present_pages;
}
static struct sn_hwperf_object_info *
sn_hwperf_findobj_id(struct sn_hwperf_object_info *objbuf,
int nobj, int id)
{
int i;
struct sn_hwperf_object_info *p = objbuf;
for (i=0; i < nobj; i++, p++) {
if (p->id == id)
return p;
}
return NULL;
}
static int sn_hwperf_get_nearest_node_objdata(struct sn_hwperf_object_info *objbuf,
int nobj, cnodeid_t node, cnodeid_t *near_mem_node, cnodeid_t *near_cpu_node)
{
int e;
struct sn_hwperf_object_info *nodeobj = NULL;
struct sn_hwperf_object_info *op;
struct sn_hwperf_object_info *dest;
struct sn_hwperf_object_info *router;
struct sn_hwperf_port_info ptdata[16];
int sz, i, j;
cnodeid_t c;
int found_mem = 0;
int found_cpu = 0;
if (!cnode_possible(node))
return -EINVAL;
if (sn_hwperf_has_cpus(node)) {
if (near_cpu_node)
*near_cpu_node = node;
found_cpu++;
}
if (sn_hwperf_has_mem(node)) {
if (near_mem_node)
*near_mem_node = node;
found_mem++;
}
if (found_cpu && found_mem)
return 0; /* trivially successful */
/* find the argument node object */
for (i=0, op=objbuf; i < nobj; i++, op++) {
if (!SN_HWPERF_IS_NODE(op) && !SN_HWPERF_IS_IONODE(op))
continue;
if (node == sn_hwperf_obj_to_cnode(op)) {
nodeobj = op;
break;
}
}
if (!nodeobj) {
e = -ENOENT;
goto err;
}
/* get it's interconnect topology */
sz = op->ports * sizeof(struct sn_hwperf_port_info);
BUG_ON(sz > sizeof(ptdata));
e = ia64_sn_hwperf_op(sn_hwperf_master_nasid,
SN_HWPERF_ENUM_PORTS, nodeobj->id, sz,
(u64)&ptdata, 0, 0, NULL);
if (e != SN_HWPERF_OP_OK) {
e = -EINVAL;
goto err;
}
/* find nearest node with cpus and nearest memory */
for (router=NULL, j=0; j < op->ports; j++) {
dest = sn_hwperf_findobj_id(objbuf, nobj, ptdata[j].conn_id);
if (dest && SN_HWPERF_IS_ROUTER(dest))
router = dest;
if (!dest || SN_HWPERF_FOREIGN(dest) ||
!SN_HWPERF_IS_NODE(dest) || SN_HWPERF_IS_IONODE(dest)) {
continue;
}
c = sn_hwperf_obj_to_cnode(dest);
if (!found_cpu && sn_hwperf_has_cpus(c)) {
if (near_cpu_node)
*near_cpu_node = c;
found_cpu++;
}
if (!found_mem && sn_hwperf_has_mem(c)) {
if (near_mem_node)
*near_mem_node = c;
found_mem++;
}
}
if (router && (!found_cpu || !found_mem)) {
/* search for a node connected to the same router */
sz = router->ports * sizeof(struct sn_hwperf_port_info);
BUG_ON(sz > sizeof(ptdata));
e = ia64_sn_hwperf_op(sn_hwperf_master_nasid,
SN_HWPERF_ENUM_PORTS, router->id, sz,
(u64)&ptdata, 0, 0, NULL);
if (e != SN_HWPERF_OP_OK) {
e = -EINVAL;
goto err;
}
for (j=0; j < router->ports; j++) {
dest = sn_hwperf_findobj_id(objbuf, nobj,
ptdata[j].conn_id);
if (!dest || dest->id == node ||
SN_HWPERF_FOREIGN(dest) ||
!SN_HWPERF_IS_NODE(dest) ||
SN_HWPERF_IS_IONODE(dest)) {
continue;
}
c = sn_hwperf_obj_to_cnode(dest);
if (!found_cpu && sn_hwperf_has_cpus(c)) {
if (near_cpu_node)
*near_cpu_node = c;
found_cpu++;
}
if (!found_mem && sn_hwperf_has_mem(c)) {
if (near_mem_node)
*near_mem_node = c;
found_mem++;
}
if (found_cpu && found_mem)
break;
}
}
if (!found_cpu || !found_mem) {
/* resort to _any_ node with CPUs and memory */
for (i=0, op=objbuf; i < nobj; i++, op++) {
if (SN_HWPERF_FOREIGN(op) ||
SN_HWPERF_IS_IONODE(op) ||
!SN_HWPERF_IS_NODE(op)) {
continue;
}
c = sn_hwperf_obj_to_cnode(op);
if (!found_cpu && sn_hwperf_has_cpus(c)) {
if (near_cpu_node)
*near_cpu_node = c;
found_cpu++;
}
if (!found_mem && sn_hwperf_has_mem(c)) {
if (near_mem_node)
*near_mem_node = c;
found_mem++;
}
if (found_cpu && found_mem)
break;
}
}
if (!found_cpu || !found_mem)
e = -ENODATA;
err:
return e;
}
static int sn_topology_show(struct seq_file *s, void *d)
{
int sz;
int pt;
int e = 0;
int i;
int j;
const char *slabname;
int ordinal;
char slice;
struct cpuinfo_ia64 *c;
struct sn_hwperf_port_info *ptdata;
struct sn_hwperf_object_info *p;
struct sn_hwperf_object_info *obj = d; /* this object */
struct sn_hwperf_object_info *objs = s->private; /* all objects */
u8 shubtype;
u8 system_size;
u8 sharing_size;
u8 partid;
u8 coher;
u8 nasid_shift;
u8 region_size;
u16 nasid_mask;
int nasid_msb;
if (obj == objs) {
seq_printf(s, "# sn_topology version 2\n");
seq_printf(s, "# objtype ordinal location partition"
" [attribute value [, ...]]\n");
if (ia64_sn_get_sn_info(0,
&shubtype, &nasid_mask, &nasid_shift, &system_size,
&sharing_size, &partid, &coher, &region_size))
BUG();
for (nasid_msb=63; nasid_msb > 0; nasid_msb--) {
if (((u64)nasid_mask << nasid_shift) & (1ULL << nasid_msb))
break;
}
seq_printf(s, "partition %u %s local "
"shubtype %s, "
"nasid_mask 0x%016llx, "
"nasid_bits %d:%d, "
"system_size %d, "
"sharing_size %d, "
"coherency_domain %d, "
"region_size %d\n",
partid, utsname()->nodename,
shubtype ? "shub2" : "shub1",
(u64)nasid_mask << nasid_shift, nasid_msb, nasid_shift,
system_size, sharing_size, coher, region_size);
print_pci_topology(s);
}
if (SN_HWPERF_FOREIGN(obj)) {
/* private in another partition: not interesting */
return 0;
}
for (i = 0; i < SN_HWPERF_MAXSTRING && obj->name[i]; i++) {
if (obj->name[i] == ' ')
obj->name[i] = '_';
}
slabname = sn_hwperf_get_slabname(obj, objs, &ordinal);
seq_printf(s, "%s %d %s %s asic %s", slabname, ordinal, obj->location,
obj->sn_hwp_this_part ? "local" : "shared", obj->name);
if (ordinal < 0 || (!SN_HWPERF_IS_NODE(obj) && !SN_HWPERF_IS_IONODE(obj)))
seq_putc(s, '\n');
else {
cnodeid_t near_mem = -1;
cnodeid_t near_cpu = -1;
seq_printf(s, ", nasid 0x%x", cnodeid_to_nasid(ordinal));
if (sn_hwperf_get_nearest_node_objdata(objs, sn_hwperf_obj_cnt,
ordinal, &near_mem, &near_cpu) == 0) {
seq_printf(s, ", near_mem_nodeid %d, near_cpu_nodeid %d",
near_mem, near_cpu);
}
if (!SN_HWPERF_IS_IONODE(obj)) {
for_each_online_node(i) {
seq_printf(s, i ? ":%d" : ", dist %d",
node_distance(ordinal, i));
}
}
seq_putc(s, '\n');
/*
* CPUs on this node, if any
*/
if (!SN_HWPERF_IS_IONODE(obj)) {
for_each_cpu_and(i, cpu_online_mask,
cpumask_of_node(ordinal)) {
slice = 'a' + cpuid_to_slice(i);
c = cpu_data(i);
seq_printf(s, "cpu %d %s%c local"
" freq %luMHz, arch ia64",
i, obj->location, slice,
c->proc_freq / 1000000);
for_each_online_cpu(j) {
seq_printf(s, j ? ":%d" : ", dist %d",
node_distance(
cpu_to_node(i),
cpu_to_node(j)));
}
seq_putc(s, '\n');
}
}
}
if (obj->ports) {
/*
* numalink ports
*/
sz = obj->ports * sizeof(struct sn_hwperf_port_info);
if ((ptdata = kmalloc(sz, GFP_KERNEL)) == NULL)
return -ENOMEM;
e = ia64_sn_hwperf_op(sn_hwperf_master_nasid,
SN_HWPERF_ENUM_PORTS, obj->id, sz,
(u64) ptdata, 0, 0, NULL);
if (e != SN_HWPERF_OP_OK)
return -EINVAL;
for (ordinal=0, p=objs; p != obj; p++) {
if (!SN_HWPERF_FOREIGN(p))
ordinal += p->ports;
}
for (pt = 0; pt < obj->ports; pt++) {
for (p = objs, i = 0; i < sn_hwperf_obj_cnt; i++, p++) {
if (ptdata[pt].conn_id == p->id) {
break;
}
}
seq_printf(s, "numalink %d %s-%d",
ordinal+pt, obj->location, ptdata[pt].port);
if (i >= sn_hwperf_obj_cnt) {
/* no connection */
seq_puts(s, " local endpoint disconnected"
", protocol unknown\n");
continue;
}
if (obj->sn_hwp_this_part && p->sn_hwp_this_part)
/* both ends local to this partition */
seq_puts(s, " local");
else if (SN_HWPERF_FOREIGN(p))
/* both ends of the link in foreign partiton */
seq_puts(s, " foreign");
else
/* link straddles a partition */
seq_puts(s, " shared");
/*
* Unlikely, but strictly should query the LLP config
* registers because an NL4R can be configured to run
* NL3 protocol, even when not talking to an NL3 router.
* Ditto for node-node.
*/
seq_printf(s, " endpoint %s-%d, protocol %s\n",
p->location, ptdata[pt].conn_port,
(SN_HWPERF_IS_NL3ROUTER(obj) ||
SN_HWPERF_IS_NL3ROUTER(p)) ? "LLP3" : "LLP4");
}
kfree(ptdata);
}
return 0;
}
static void *sn_topology_start(struct seq_file *s, loff_t * pos)
{
struct sn_hwperf_object_info *objs = s->private;
if (*pos < sn_hwperf_obj_cnt)
return (void *)(objs + *pos);
return NULL;
}
static void *sn_topology_next(struct seq_file *s, void *v, loff_t * pos)
{
++*pos;
return sn_topology_start(s, pos);
}
static void sn_topology_stop(struct seq_file *m, void *v)
{
return;
}
/*
* /proc/sgi_sn/sn_topology, read-only using seq_file
*/
static const struct seq_operations sn_topology_seq_ops = {
.start = sn_topology_start,
.next = sn_topology_next,
.stop = sn_topology_stop,
.show = sn_topology_show
};
struct sn_hwperf_op_info {
u64 op;
struct sn_hwperf_ioctl_args *a;
void *p;
int *v0;
int ret;
};
static void sn_hwperf_call_sal(void *info)
{
struct sn_hwperf_op_info *op_info = info;
int r;
r = ia64_sn_hwperf_op(sn_hwperf_master_nasid, op_info->op,
op_info->a->arg, op_info->a->sz,
(u64) op_info->p, 0, 0, op_info->v0);
op_info->ret = r;
}
static int sn_hwperf_op_cpu(struct sn_hwperf_op_info *op_info)
{
u32 cpu;
u32 use_ipi;
int r = 0;
cpumask_t save_allowed;
cpu = (op_info->a->arg & SN_HWPERF_ARG_CPU_MASK) >> 32;
use_ipi = op_info->a->arg & SN_HWPERF_ARG_USE_IPI_MASK;
op_info->a->arg &= SN_HWPERF_ARG_OBJID_MASK;
if (cpu != SN_HWPERF_ARG_ANY_CPU) {
if (cpu >= nr_cpu_ids || !cpu_online(cpu)) {
r = -EINVAL;
goto out;
}
}
if (cpu == SN_HWPERF_ARG_ANY_CPU || cpu == get_cpu()) {
/* don't care, or already on correct cpu */
sn_hwperf_call_sal(op_info);
}
else {
if (use_ipi) {
/* use an interprocessor interrupt to call SAL */
smp_call_function_single(cpu, sn_hwperf_call_sal,
op_info, 1);
}
else {
/* migrate the task before calling SAL */
save_allowed = current->cpus_allowed;
set_cpus_allowed_ptr(current, cpumask_of(cpu));
sn_hwperf_call_sal(op_info);
set_cpus_allowed_ptr(current, &save_allowed);
}
}
r = op_info->ret;
out:
return r;
}
/* map SAL hwperf error code to system error code */
static int sn_hwperf_map_err(int hwperf_err)
{
int e;
switch(hwperf_err) {
case SN_HWPERF_OP_OK:
e = 0;
break;
case SN_HWPERF_OP_NOMEM:
e = -ENOMEM;
break;
case SN_HWPERF_OP_NO_PERM:
e = -EPERM;
break;
case SN_HWPERF_OP_IO_ERROR:
e = -EIO;
break;
case SN_HWPERF_OP_BUSY:
e = -EBUSY;
break;
case SN_HWPERF_OP_RECONFIGURE:
e = -EAGAIN;
break;
case SN_HWPERF_OP_INVAL:
default:
e = -EINVAL;
break;
}
return e;
}
/*
* ioctl for "sn_hwperf" misc device
*/
static long sn_hwperf_ioctl(struct file *fp, u32 op, unsigned long arg)
{
struct sn_hwperf_ioctl_args a;
struct cpuinfo_ia64 *cdata;
struct sn_hwperf_object_info *objs;
struct sn_hwperf_object_info *cpuobj;
struct sn_hwperf_op_info op_info;
void *p = NULL;
int nobj;
char slice;
int node;
int r;
int v0;
int i;
int j;
/* only user requests are allowed here */
if ((op & SN_HWPERF_OP_MASK) < 10) {
r = -EINVAL;
goto error;
}
r = copy_from_user(&a, (const void __user *)arg,
sizeof(struct sn_hwperf_ioctl_args));
if (r != 0) {
r = -EFAULT;
goto error;
}
/*
* Allocate memory to hold a kernel copy of the user buffer. The
* buffer contents are either copied in or out (or both) of user
* space depending on the flags encoded in the requested operation.
*/
if (a.ptr) {
p = vmalloc(a.sz);
if (!p) {
r = -ENOMEM;
goto error;
}
}
if (op & SN_HWPERF_OP_MEM_COPYIN) {
r = copy_from_user(p, (const void __user *)a.ptr, a.sz);
if (r != 0) {
r = -EFAULT;
goto error;
}
}
switch (op) {
case SN_HWPERF_GET_CPU_INFO:
if (a.sz == sizeof(u64)) {
/* special case to get size needed */
*(u64 *) p = (u64) num_online_cpus() *
sizeof(struct sn_hwperf_object_info);
} else
if (a.sz < num_online_cpus() * sizeof(struct sn_hwperf_object_info)) {
r = -ENOMEM;
goto error;
} else
if ((r = sn_hwperf_enum_objects(&nobj, &objs)) == 0) {
int cpuobj_index = 0;
memset(p, 0, a.sz);
for (i = 0; i < nobj; i++) {
if (!SN_HWPERF_IS_NODE(objs + i))
continue;
node = sn_hwperf_obj_to_cnode(objs + i);
for_each_online_cpu(j) {
if (node != cpu_to_node(j))
continue;
cpuobj = (struct sn_hwperf_object_info *) p + cpuobj_index++;
slice = 'a' + cpuid_to_slice(j);
cdata = cpu_data(j);
cpuobj->id = j;
snprintf(cpuobj->name,
sizeof(cpuobj->name),
"CPU %luMHz %s",
cdata->proc_freq / 1000000,
cdata->vendor);
snprintf(cpuobj->location,
sizeof(cpuobj->location),
"%s%c", objs[i].location,
slice);
}
}
vfree(objs);
}
break;
case SN_HWPERF_GET_NODE_NASID:
if (a.sz != sizeof(u64) ||
(node = a.arg) < 0 || !cnode_possible(node)) {
r = -EINVAL;
goto error;
}
*(u64 *)p = (u64)cnodeid_to_nasid(node);
break;
case SN_HWPERF_GET_OBJ_NODE:
i = a.arg;
if (a.sz != sizeof(u64) || i < 0) {
r = -EINVAL;
goto error;
}
if ((r = sn_hwperf_enum_objects(&nobj, &objs)) == 0) {
if (i >= nobj) {
r = -EINVAL;
vfree(objs);
goto error;
}
if (objs[i].id != a.arg) {
for (i = 0; i < nobj; i++) {
if (objs[i].id == a.arg)
break;
}
}
if (i == nobj) {
r = -EINVAL;
vfree(objs);
goto error;
}
if (!SN_HWPERF_IS_NODE(objs + i) &&
!SN_HWPERF_IS_IONODE(objs + i)) {
r = -ENOENT;
vfree(objs);
goto error;
}
*(u64 *)p = (u64)sn_hwperf_obj_to_cnode(objs + i);
vfree(objs);
}
break;
case SN_HWPERF_GET_MMRS:
case SN_HWPERF_SET_MMRS:
case SN_HWPERF_OBJECT_DISTANCE:
op_info.p = p;
op_info.a = &a;
op_info.v0 = &v0;
op_info.op = op;
r = sn_hwperf_op_cpu(&op_info);
if (r) {
r = sn_hwperf_map_err(r);
a.v0 = v0;
goto error;
}
break;
default:
/* all other ops are a direct SAL call */
r = ia64_sn_hwperf_op(sn_hwperf_master_nasid, op,
a.arg, a.sz, (u64) p, 0, 0, &v0);
if (r) {
r = sn_hwperf_map_err(r);
goto error;
}
a.v0 = v0;
break;
}
if (op & SN_HWPERF_OP_MEM_COPYOUT) {
r = copy_to_user((void __user *)a.ptr, p, a.sz);
if (r != 0) {
r = -EFAULT;
goto error;
}
}
error:
vfree(p);
return r;
}
static const struct file_operations sn_hwperf_fops = {
.unlocked_ioctl = sn_hwperf_ioctl,
llseek: automatically add .llseek fop All file_operations should get a .llseek operation so we can make nonseekable_open the default for future file operations without a .llseek pointer. The three cases that we can automatically detect are no_llseek, seq_lseek and default_llseek. For cases where we can we can automatically prove that the file offset is always ignored, we use noop_llseek, which maintains the current behavior of not returning an error from a seek. New drivers should normally not use noop_llseek but instead use no_llseek and call nonseekable_open at open time. Existing drivers can be converted to do the same when the maintainer knows for certain that no user code relies on calling seek on the device file. The generated code is often incorrectly indented and right now contains comments that clarify for each added line why a specific variant was chosen. In the version that gets submitted upstream, the comments will be gone and I will manually fix the indentation, because there does not seem to be a way to do that using coccinelle. Some amount of new code is currently sitting in linux-next that should get the same modifications, which I will do at the end of the merge window. Many thanks to Julia Lawall for helping me learn to write a semantic patch that does all this. ===== begin semantic patch ===== // This adds an llseek= method to all file operations, // as a preparation for making no_llseek the default. // // The rules are // - use no_llseek explicitly if we do nonseekable_open // - use seq_lseek for sequential files // - use default_llseek if we know we access f_pos // - use noop_llseek if we know we don't access f_pos, // but we still want to allow users to call lseek // @ open1 exists @ identifier nested_open; @@ nested_open(...) { <+... nonseekable_open(...) ...+> } @ open exists@ identifier open_f; identifier i, f; identifier open1.nested_open; @@ int open_f(struct inode *i, struct file *f) { <+... ( nonseekable_open(...) | nested_open(...) ) ...+> } @ read disable optional_qualifier exists @ identifier read_f; identifier f, p, s, off; type ssize_t, size_t, loff_t; expression E; identifier func; @@ ssize_t read_f(struct file *f, char *p, size_t s, loff_t *off) { <+... ( *off = E | *off += E | func(..., off, ...) | E = *off ) ...+> } @ read_no_fpos disable optional_qualifier exists @ identifier read_f; identifier f, p, s, off; type ssize_t, size_t, loff_t; @@ ssize_t read_f(struct file *f, char *p, size_t s, loff_t *off) { ... when != off } @ write @ identifier write_f; identifier f, p, s, off; type ssize_t, size_t, loff_t; expression E; identifier func; @@ ssize_t write_f(struct file *f, const char *p, size_t s, loff_t *off) { <+... ( *off = E | *off += E | func(..., off, ...) | E = *off ) ...+> } @ write_no_fpos @ identifier write_f; identifier f, p, s, off; type ssize_t, size_t, loff_t; @@ ssize_t write_f(struct file *f, const char *p, size_t s, loff_t *off) { ... when != off } @ fops0 @ identifier fops; @@ struct file_operations fops = { ... }; @ has_llseek depends on fops0 @ identifier fops0.fops; identifier llseek_f; @@ struct file_operations fops = { ... .llseek = llseek_f, ... }; @ has_read depends on fops0 @ identifier fops0.fops; identifier read_f; @@ struct file_operations fops = { ... .read = read_f, ... }; @ has_write depends on fops0 @ identifier fops0.fops; identifier write_f; @@ struct file_operations fops = { ... .write = write_f, ... }; @ has_open depends on fops0 @ identifier fops0.fops; identifier open_f; @@ struct file_operations fops = { ... .open = open_f, ... }; // use no_llseek if we call nonseekable_open //////////////////////////////////////////// @ nonseekable1 depends on !has_llseek && has_open @ identifier fops0.fops; identifier nso ~= "nonseekable_open"; @@ struct file_operations fops = { ... .open = nso, ... +.llseek = no_llseek, /* nonseekable */ }; @ nonseekable2 depends on !has_llseek @ identifier fops0.fops; identifier open.open_f; @@ struct file_operations fops = { ... .open = open_f, ... +.llseek = no_llseek, /* open uses nonseekable */ }; // use seq_lseek for sequential files ///////////////////////////////////// @ seq depends on !has_llseek @ identifier fops0.fops; identifier sr ~= "seq_read"; @@ struct file_operations fops = { ... .read = sr, ... +.llseek = seq_lseek, /* we have seq_read */ }; // use default_llseek if there is a readdir /////////////////////////////////////////// @ fops1 depends on !has_llseek && !nonseekable1 && !nonseekable2 && !seq @ identifier fops0.fops; identifier readdir_e; @@ // any other fop is used that changes pos struct file_operations fops = { ... .readdir = readdir_e, ... +.llseek = default_llseek, /* readdir is present */ }; // use default_llseek if at least one of read/write touches f_pos ///////////////////////////////////////////////////////////////// @ fops2 depends on !fops1 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @ identifier fops0.fops; identifier read.read_f; @@ // read fops use offset struct file_operations fops = { ... .read = read_f, ... +.llseek = default_llseek, /* read accesses f_pos */ }; @ fops3 depends on !fops1 && !fops2 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @ identifier fops0.fops; identifier write.write_f; @@ // write fops use offset struct file_operations fops = { ... .write = write_f, ... + .llseek = default_llseek, /* write accesses f_pos */ }; // Use noop_llseek if neither read nor write accesses f_pos /////////////////////////////////////////////////////////// @ fops4 depends on !fops1 && !fops2 && !fops3 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @ identifier fops0.fops; identifier read_no_fpos.read_f; identifier write_no_fpos.write_f; @@ // write fops use offset struct file_operations fops = { ... .write = write_f, .read = read_f, ... +.llseek = noop_llseek, /* read and write both use no f_pos */ }; @ depends on has_write && !has_read && !fops1 && !fops2 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @ identifier fops0.fops; identifier write_no_fpos.write_f; @@ struct file_operations fops = { ... .write = write_f, ... +.llseek = noop_llseek, /* write uses no f_pos */ }; @ depends on has_read && !has_write && !fops1 && !fops2 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @ identifier fops0.fops; identifier read_no_fpos.read_f; @@ struct file_operations fops = { ... .read = read_f, ... +.llseek = noop_llseek, /* read uses no f_pos */ }; @ depends on !has_read && !has_write && !fops1 && !fops2 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @ identifier fops0.fops; @@ struct file_operations fops = { ... +.llseek = noop_llseek, /* no read or write fn */ }; ===== End semantic patch ===== Signed-off-by: Arnd Bergmann <arnd@arndb.de> Cc: Julia Lawall <julia@diku.dk> Cc: Christoph Hellwig <hch@infradead.org>
2010-08-15 16:52:59 +00:00
.llseek = noop_llseek,
};
static struct miscdevice sn_hwperf_dev = {
MISC_DYNAMIC_MINOR,
"sn_hwperf",
&sn_hwperf_fops
};
static int sn_hwperf_init(void)
{
u64 v;
int salr;
int e = 0;
/* single threaded, once-only initialization */
mutex_lock(&sn_hwperf_init_mutex);
if (sn_hwperf_salheap) {
mutex_unlock(&sn_hwperf_init_mutex);
return e;
}
/*
* The PROM code needs a fixed reference node. For convenience the
* same node as the console I/O is used.
*/
sn_hwperf_master_nasid = (nasid_t) ia64_sn_get_console_nasid();
/*
* Request the needed size and install the PROM scratch area.
* The PROM keeps various tracking bits in this memory area.
*/
salr = ia64_sn_hwperf_op(sn_hwperf_master_nasid,
(u64) SN_HWPERF_GET_HEAPSIZE, 0,
(u64) sizeof(u64), (u64) &v, 0, 0, NULL);
if (salr != SN_HWPERF_OP_OK) {
e = -EINVAL;
goto out;
}
if ((sn_hwperf_salheap = vmalloc(v)) == NULL) {
e = -ENOMEM;
goto out;
}
salr = ia64_sn_hwperf_op(sn_hwperf_master_nasid,
SN_HWPERF_INSTALL_HEAP, 0, v,
(u64) sn_hwperf_salheap, 0, 0, NULL);
if (salr != SN_HWPERF_OP_OK) {
e = -EINVAL;
goto out;
}
salr = ia64_sn_hwperf_op(sn_hwperf_master_nasid,
SN_HWPERF_OBJECT_COUNT, 0,
sizeof(u64), (u64) &v, 0, 0, NULL);
if (salr != SN_HWPERF_OP_OK) {
e = -EINVAL;
goto out;
}
sn_hwperf_obj_cnt = (int)v;
out:
if (e < 0 && sn_hwperf_salheap) {
vfree(sn_hwperf_salheap);
sn_hwperf_salheap = NULL;
sn_hwperf_obj_cnt = 0;
}
mutex_unlock(&sn_hwperf_init_mutex);
return e;
}
int sn_topology_open(struct inode *inode, struct file *file)
{
int e;
struct seq_file *seq;
struct sn_hwperf_object_info *objbuf;
int nobj;
if ((e = sn_hwperf_enum_objects(&nobj, &objbuf)) == 0) {
e = seq_open(file, &sn_topology_seq_ops);
seq = file->private_data;
seq->private = objbuf;
}
return e;
}
int sn_topology_release(struct inode *inode, struct file *file)
{
struct seq_file *seq = file->private_data;
vfree(seq->private);
return seq_release(inode, file);
}
int sn_hwperf_get_nearest_node(cnodeid_t node,
cnodeid_t *near_mem_node, cnodeid_t *near_cpu_node)
{
int e;
int nobj;
struct sn_hwperf_object_info *objbuf;
if ((e = sn_hwperf_enum_objects(&nobj, &objbuf)) == 0) {
e = sn_hwperf_get_nearest_node_objdata(objbuf, nobj,
node, near_mem_node, near_cpu_node);
vfree(objbuf);
}
return e;
}
static int __devinit sn_hwperf_misc_register_init(void)
{
int e;
if (!ia64_platform_is("sn2"))
return 0;
sn_hwperf_init();
/*
* Register a dynamic misc device for hwperf ioctls. Platforms
* supporting hotplug will create /dev/sn_hwperf, else user
* can to look up the minor number in /proc/misc.
*/
if ((e = misc_register(&sn_hwperf_dev)) != 0) {
printk(KERN_ERR "sn_hwperf_misc_register_init: failed to "
"register misc device for \"%s\"\n", sn_hwperf_dev.name);
}
return e;
}
device_initcall(sn_hwperf_misc_register_init); /* after misc_init() */
EXPORT_SYMBOL(sn_hwperf_get_nearest_node);