android_kernel_samsung_msm8976/net/dccp/feat.c

1282 lines
35 KiB
C
Raw Normal View History

/*
* net/dccp/feat.c
*
* An implementation of the DCCP protocol
* Andrea Bittau <a.bittau@cs.ucl.ac.uk>
*
* ASSUMPTIONS
* -----------
* o Feature negotiation is coordinated with connection setup (as in TCP), wild
* changes of parameters of an established connection are not supported.
* o All currently known SP features have 1-byte quantities. If in the future
* extensions of RFCs 4340..42 define features with item lengths larger than
* one byte, a feature-specific extension of the code will be required.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*/
#include <linux/module.h>
#include "ccid.h"
#include "feat.h"
#define DCCP_FEAT_SP_NOAGREE (-123)
static const struct {
u8 feat_num; /* DCCPF_xxx */
enum dccp_feat_type rxtx; /* RX or TX */
enum dccp_feat_type reconciliation; /* SP or NN */
u8 default_value; /* as in 6.4 */
/*
* Lookup table for location and type of features (from RFC 4340/4342)
* +--------------------------+----+-----+----+----+---------+-----------+
* | Feature | Location | Reconc. | Initial | Section |
* | | RX | TX | SP | NN | Value | Reference |
* +--------------------------+----+-----+----+----+---------+-----------+
* | DCCPF_CCID | | X | X | | 2 | 10 |
* | DCCPF_SHORT_SEQNOS | | X | X | | 0 | 7.6.1 |
* | DCCPF_SEQUENCE_WINDOW | | X | | X | 100 | 7.5.2 |
* | DCCPF_ECN_INCAPABLE | X | | X | | 0 | 12.1 |
* | DCCPF_ACK_RATIO | | X | | X | 2 | 11.3 |
* | DCCPF_SEND_ACK_VECTOR | X | | X | | 0 | 11.5 |
* | DCCPF_SEND_NDP_COUNT | | X | X | | 0 | 7.7.2 |
* | DCCPF_MIN_CSUM_COVER | X | | X | | 0 | 9.2.1 |
* | DCCPF_DATA_CHECKSUM | X | | X | | 0 | 9.3.1 |
* | DCCPF_SEND_LEV_RATE | X | | X | | 0 | 4342/8.4 |
* +--------------------------+----+-----+----+----+---------+-----------+
*/
} dccp_feat_table[] = {
{ DCCPF_CCID, FEAT_AT_TX, FEAT_SP, 2 },
{ DCCPF_SHORT_SEQNOS, FEAT_AT_TX, FEAT_SP, 0 },
{ DCCPF_SEQUENCE_WINDOW, FEAT_AT_TX, FEAT_NN, 100 },
{ DCCPF_ECN_INCAPABLE, FEAT_AT_RX, FEAT_SP, 0 },
{ DCCPF_ACK_RATIO, FEAT_AT_TX, FEAT_NN, 2 },
{ DCCPF_SEND_ACK_VECTOR, FEAT_AT_RX, FEAT_SP, 0 },
{ DCCPF_SEND_NDP_COUNT, FEAT_AT_TX, FEAT_SP, 0 },
{ DCCPF_MIN_CSUM_COVER, FEAT_AT_RX, FEAT_SP, 0 },
{ DCCPF_DATA_CHECKSUM, FEAT_AT_RX, FEAT_SP, 0 },
{ DCCPF_SEND_LEV_RATE, FEAT_AT_RX, FEAT_SP, 0 },
};
#define DCCP_FEAT_SUPPORTED_MAX ARRAY_SIZE(dccp_feat_table)
/**
* dccp_feat_index - Hash function to map feature number into array position
* Returns consecutive array index or -1 if the feature is not understood.
*/
static int dccp_feat_index(u8 feat_num)
{
/* The first 9 entries are occupied by the types from RFC 4340, 6.4 */
if (feat_num > DCCPF_RESERVED && feat_num <= DCCPF_DATA_CHECKSUM)
return feat_num - 1;
/*
* Other features: add cases for new feature types here after adding
* them to the above table.
*/
switch (feat_num) {
case DCCPF_SEND_LEV_RATE:
return DCCP_FEAT_SUPPORTED_MAX - 1;
}
return -1;
}
static u8 dccp_feat_type(u8 feat_num)
{
int idx = dccp_feat_index(feat_num);
if (idx < 0)
return FEAT_UNKNOWN;
return dccp_feat_table[idx].reconciliation;
}
static int dccp_feat_default_value(u8 feat_num)
{
int idx = dccp_feat_index(feat_num);
/*
* There are no default values for unknown features, so encountering a
* negative index here indicates a serious problem somewhere else.
*/
DCCP_BUG_ON(idx < 0);
return idx < 0 ? 0 : dccp_feat_table[idx].default_value;
}
/* copy constructor, fval must not already contain allocated memory */
static int dccp_feat_clone_sp_val(dccp_feat_val *fval, u8 const *val, u8 len)
{
fval->sp.len = len;
if (fval->sp.len > 0) {
fval->sp.vec = kmemdup(val, len, gfp_any());
if (fval->sp.vec == NULL) {
fval->sp.len = 0;
return -ENOBUFS;
}
}
return 0;
}
static void dccp_feat_val_destructor(u8 feat_num, dccp_feat_val *val)
{
if (unlikely(val == NULL))
return;
if (dccp_feat_type(feat_num) == FEAT_SP)
kfree(val->sp.vec);
memset(val, 0, sizeof(*val));
}
static struct dccp_feat_entry *
dccp_feat_clone_entry(struct dccp_feat_entry const *original)
{
struct dccp_feat_entry *new;
u8 type = dccp_feat_type(original->feat_num);
if (type == FEAT_UNKNOWN)
return NULL;
new = kmemdup(original, sizeof(struct dccp_feat_entry), gfp_any());
if (new == NULL)
return NULL;
if (type == FEAT_SP && dccp_feat_clone_sp_val(&new->val,
original->val.sp.vec,
original->val.sp.len)) {
kfree(new);
return NULL;
}
return new;
}
static void dccp_feat_entry_destructor(struct dccp_feat_entry *entry)
{
if (entry != NULL) {
dccp_feat_val_destructor(entry->feat_num, &entry->val);
kfree(entry);
}
}
/*
* List management functions
*
* Feature negotiation lists rely on and maintain the following invariants:
* - each feat_num in the list is known, i.e. we know its type and default value
* - each feat_num/is_local combination is unique (old entries are overwritten)
* - SP values are always freshly allocated
* - list is sorted in increasing order of feature number (faster lookup)
*/
static struct dccp_feat_entry *dccp_feat_list_lookup(struct list_head *fn_list,
u8 feat_num, bool is_local)
{
struct dccp_feat_entry *entry;
list_for_each_entry(entry, fn_list, node) {
if (entry->feat_num == feat_num && entry->is_local == is_local)
return entry;
else if (entry->feat_num > feat_num)
break;
}
return NULL;
}
/**
* dccp_feat_entry_new - Central list update routine (called by all others)
* @head: list to add to
* @feat: feature number
* @local: whether the local (1) or remote feature with number @feat is meant
* This is the only constructor and serves to ensure the above invariants.
*/
static struct dccp_feat_entry *
dccp_feat_entry_new(struct list_head *head, u8 feat, bool local)
{
struct dccp_feat_entry *entry;
list_for_each_entry(entry, head, node)
if (entry->feat_num == feat && entry->is_local == local) {
dccp_feat_val_destructor(entry->feat_num, &entry->val);
return entry;
} else if (entry->feat_num > feat) {
head = &entry->node;
break;
}
entry = kmalloc(sizeof(*entry), gfp_any());
if (entry != NULL) {
entry->feat_num = feat;
entry->is_local = local;
list_add_tail(&entry->node, head);
}
return entry;
}
/**
* dccp_feat_push_change - Add/overwrite a Change option in the list
* @fn_list: feature-negotiation list to update
* @feat: one of %dccp_feature_numbers
* @local: whether local (1) or remote (0) @feat_num is meant
* @needs_mandatory: whether to use Mandatory feature negotiation options
* @fval: pointer to NN/SP value to be inserted (will be copied)
*/
static int dccp_feat_push_change(struct list_head *fn_list, u8 feat, u8 local,
u8 mandatory, dccp_feat_val *fval)
{
struct dccp_feat_entry *new = dccp_feat_entry_new(fn_list, feat, local);
if (new == NULL)
return -ENOMEM;
new->feat_num = feat;
new->is_local = local;
new->state = FEAT_INITIALISING;
new->needs_confirm = 0;
new->empty_confirm = 0;
new->val = *fval;
new->needs_mandatory = mandatory;
return 0;
}
static inline void dccp_feat_list_pop(struct dccp_feat_entry *entry)
{
list_del(&entry->node);
dccp_feat_entry_destructor(entry);
}
void dccp_feat_list_purge(struct list_head *fn_list)
{
struct dccp_feat_entry *entry, *next;
list_for_each_entry_safe(entry, next, fn_list, node)
dccp_feat_entry_destructor(entry);
INIT_LIST_HEAD(fn_list);
}
EXPORT_SYMBOL_GPL(dccp_feat_list_purge);
/* generate @to as full clone of @from - @to must not contain any nodes */
int dccp_feat_clone_list(struct list_head const *from, struct list_head *to)
{
struct dccp_feat_entry *entry, *new;
INIT_LIST_HEAD(to);
list_for_each_entry(entry, from, node) {
new = dccp_feat_clone_entry(entry);
if (new == NULL)
goto cloning_failed;
list_add_tail(&new->node, to);
}
return 0;
cloning_failed:
dccp_feat_list_purge(to);
return -ENOMEM;
}
/**
* dccp_feat_valid_nn_length - Enforce length constraints on NN options
* Length is between 0 and %DCCP_OPTVAL_MAXLEN. Used for outgoing packets only,
* incoming options are accepted as long as their values are valid.
*/
static u8 dccp_feat_valid_nn_length(u8 feat_num)
{
if (feat_num == DCCPF_ACK_RATIO) /* RFC 4340, 11.3 and 6.6.8 */
return 2;
if (feat_num == DCCPF_SEQUENCE_WINDOW) /* RFC 4340, 7.5.2 and 6.5 */
return 6;
return 0;
}
static u8 dccp_feat_is_valid_nn_val(u8 feat_num, u64 val)
{
switch (feat_num) {
case DCCPF_ACK_RATIO:
return val <= DCCPF_ACK_RATIO_MAX;
case DCCPF_SEQUENCE_WINDOW:
return val >= DCCPF_SEQ_WMIN && val <= DCCPF_SEQ_WMAX;
}
return 0; /* feature unknown - so we can't tell */
}
/* check that SP values are within the ranges defined in RFC 4340 */
static u8 dccp_feat_is_valid_sp_val(u8 feat_num, u8 val)
{
switch (feat_num) {
case DCCPF_CCID:
return val == DCCPC_CCID2 || val == DCCPC_CCID3;
/* Type-check Boolean feature values: */
case DCCPF_SHORT_SEQNOS:
case DCCPF_ECN_INCAPABLE:
case DCCPF_SEND_ACK_VECTOR:
case DCCPF_SEND_NDP_COUNT:
case DCCPF_DATA_CHECKSUM:
case DCCPF_SEND_LEV_RATE:
return val < 2;
case DCCPF_MIN_CSUM_COVER:
return val < 16;
}
return 0; /* feature unknown */
}
static u8 dccp_feat_sp_list_ok(u8 feat_num, u8 const *sp_list, u8 sp_len)
{
if (sp_list == NULL || sp_len < 1)
return 0;
while (sp_len--)
if (!dccp_feat_is_valid_sp_val(feat_num, *sp_list++))
return 0;
return 1;
}
/**
* dccp_feat_insert_opts - Generate FN options from current list state
* @skb: next sk_buff to be sent to the peer
* @dp: for client during handshake and general negotiation
* @dreq: used by the server only (all Changes/Confirms in LISTEN/RESPOND)
*/
int dccp_feat_insert_opts(struct dccp_sock *dp, struct dccp_request_sock *dreq,
struct sk_buff *skb)
{
struct list_head *fn = dreq ? &dreq->dreq_featneg : &dp->dccps_featneg;
struct dccp_feat_entry *pos, *next;
u8 opt, type, len, *ptr, nn_in_nbo[DCCP_OPTVAL_MAXLEN];
bool rpt;
/* put entries into @skb in the order they appear in the list */
list_for_each_entry_safe_reverse(pos, next, fn, node) {
opt = dccp_feat_genopt(pos);
type = dccp_feat_type(pos->feat_num);
rpt = false;
if (pos->empty_confirm) {
len = 0;
ptr = NULL;
} else {
if (type == FEAT_SP) {
len = pos->val.sp.len;
ptr = pos->val.sp.vec;
rpt = pos->needs_confirm;
} else if (type == FEAT_NN) {
len = dccp_feat_valid_nn_length(pos->feat_num);
ptr = nn_in_nbo;
dccp_encode_value_var(pos->val.nn, ptr, len);
} else {
DCCP_BUG("unknown feature %u", pos->feat_num);
return -1;
}
}
if (dccp_insert_fn_opt(skb, opt, pos->feat_num, ptr, len, rpt))
return -1;
if (pos->needs_mandatory && dccp_insert_option_mandatory(skb))
return -1;
/*
* Enter CHANGING after transmitting the Change option (6.6.2).
*/
if (pos->state == FEAT_INITIALISING)
pos->state = FEAT_CHANGING;
}
return 0;
}
/**
* __feat_register_nn - Register new NN value on socket
* @fn: feature-negotiation list to register with
* @feat: an NN feature from %dccp_feature_numbers
* @mandatory: use Mandatory option if 1
* @nn_val: value to register (restricted to 4 bytes)
* Note that NN features are local by definition (RFC 4340, 6.3.2).
*/
static int __feat_register_nn(struct list_head *fn, u8 feat,
u8 mandatory, u64 nn_val)
{
dccp_feat_val fval = { .nn = nn_val };
if (dccp_feat_type(feat) != FEAT_NN ||
!dccp_feat_is_valid_nn_val(feat, nn_val))
return -EINVAL;
/* Don't bother with default values, they will be activated anyway. */
if (nn_val - (u64)dccp_feat_default_value(feat) == 0)
return 0;
return dccp_feat_push_change(fn, feat, 1, mandatory, &fval);
}
/**
* __feat_register_sp - Register new SP value/list on socket
* @fn: feature-negotiation list to register with
* @feat: an SP feature from %dccp_feature_numbers
* @is_local: whether the local (1) or the remote (0) @feat is meant
* @mandatory: use Mandatory option if 1
* @sp_val: SP value followed by optional preference list
* @sp_len: length of @sp_val in bytes
*/
static int __feat_register_sp(struct list_head *fn, u8 feat, u8 is_local,
u8 mandatory, u8 const *sp_val, u8 sp_len)
{
dccp_feat_val fval;
if (dccp_feat_type(feat) != FEAT_SP ||
!dccp_feat_sp_list_ok(feat, sp_val, sp_len))
return -EINVAL;
/* Avoid negotiating alien CCIDs by only advertising supported ones */
if (feat == DCCPF_CCID && !ccid_support_check(sp_val, sp_len))
return -EOPNOTSUPP;
if (dccp_feat_clone_sp_val(&fval, sp_val, sp_len))
return -ENOMEM;
return dccp_feat_push_change(fn, feat, is_local, mandatory, &fval);
}
/**
* dccp_feat_register_sp - Register requests to change SP feature values
* @sk: client or listening socket
* @feat: one of %dccp_feature_numbers
* @is_local: whether the local (1) or remote (0) @feat is meant
* @list: array of preferred values, in descending order of preference
* @len: length of @list in bytes
*/
int dccp_feat_register_sp(struct sock *sk, u8 feat, u8 is_local,
u8 const *list, u8 len)
{ /* any changes must be registered before establishing the connection */
if (sk->sk_state != DCCP_CLOSED)
return -EISCONN;
if (dccp_feat_type(feat) != FEAT_SP)
return -EINVAL;
return __feat_register_sp(&dccp_sk(sk)->dccps_featneg, feat, is_local,
0, list, len);
}
/* Analogous to dccp_feat_register_sp(), but for non-negotiable values */
int dccp_feat_register_nn(struct sock *sk, u8 feat, u64 val)
{
/* any changes must be registered before establishing the connection */
if (sk->sk_state != DCCP_CLOSED)
return -EISCONN;
if (dccp_feat_type(feat) != FEAT_NN)
return -EINVAL;
return __feat_register_nn(&dccp_sk(sk)->dccps_featneg, feat, 0, val);
}
dccp: Resolve dependencies of features on choice of CCID This provides a missing link in the code chain, as several features implicitly depend and/or rely on the choice of CCID. Most notably, this is the Send Ack Vector feature, but also Ack Ratio and Send Loss Event Rate (also taken care of). For Send Ack Vector, the situation is as follows: * since CCID2 mandates the use of Ack Vectors, there is no point in allowing endpoints which use CCID2 to disable Ack Vector features such a connection; * a peer with a TX CCID of CCID2 will always expect Ack Vectors, and a peer with a RX CCID of CCID2 must always send Ack Vectors (RFC 4341, sec. 4); * for all other CCIDs, the use of (Send) Ack Vector is optional and thus negotiable. However, this implies that the code negotiating the use of Ack Vectors also supports it (i.e. is able to supply and to either parse or ignore received Ack Vectors). Since this is not the case (CCID-3 has no Ack Vector support), the use of Ack Vectors is here disabled, with a comment in the source code. An analogous consideration arises for the Send Loss Event Rate feature, since the CCID-3 implementation does not support the loss interval options of RFC 4342. To make such use explicit, corresponding feature-negotiation options are inserted which signal the use of the loss event rate option, as it is used by the CCID3 code. Lastly, the values of the Ack Ratio feature are matched to the choice of CCID. The patch implements this as a function which is called after the user has made all other registrations for changing default values of features. The table is variable-length, the reserved (and hence for feature-negotiation invalid, confirmed by considering section 19.4 of RFC 4340) feature number `0' is used to mark the end of the table. Signed-off-by: Gerrit Renker <gerrit@erg.abdn.ac.uk> Acked-by: Ian McDonald <ian.mcdonald@jandi.co.nz> Signed-off-by: David S. Miller <davem@davemloft.net>
2008-11-12 08:48:44 +00:00
/*
* Tracking features whose value depend on the choice of CCID
*
* This is designed with an extension in mind so that a list walk could be done
* before activating any features. However, the existing framework was found to
* work satisfactorily up until now, the automatic verification is left open.
* When adding new CCIDs, add a corresponding dependency table here.
*/
static const struct ccid_dependency *dccp_feat_ccid_deps(u8 ccid, bool is_local)
{
static const struct ccid_dependency ccid2_dependencies[2][2] = {
/*
* CCID2 mandates Ack Vectors (RFC 4341, 4.): as CCID is a TX
* feature and Send Ack Vector is an RX feature, `is_local'
* needs to be reversed.
*/
{ /* Dependencies of the receiver-side (remote) CCID2 */
{
.dependent_feat = DCCPF_SEND_ACK_VECTOR,
.is_local = true,
.is_mandatory = true,
.val = 1
},
{ 0, 0, 0, 0 }
},
{ /* Dependencies of the sender-side (local) CCID2 */
{
.dependent_feat = DCCPF_SEND_ACK_VECTOR,
.is_local = false,
.is_mandatory = true,
.val = 1
},
{ 0, 0, 0, 0 }
}
};
static const struct ccid_dependency ccid3_dependencies[2][5] = {
{ /*
* Dependencies of the receiver-side CCID3
*/
{ /* locally disable Ack Vectors */
.dependent_feat = DCCPF_SEND_ACK_VECTOR,
.is_local = true,
.is_mandatory = false,
.val = 0
},
{ /* see below why Send Loss Event Rate is on */
.dependent_feat = DCCPF_SEND_LEV_RATE,
.is_local = true,
.is_mandatory = true,
.val = 1
},
{ /* NDP Count is needed as per RFC 4342, 6.1.1 */
.dependent_feat = DCCPF_SEND_NDP_COUNT,
.is_local = false,
.is_mandatory = true,
.val = 1
},
{ 0, 0, 0, 0 },
},
{ /*
* CCID3 at the TX side: we request that the HC-receiver
* will not send Ack Vectors (they will be ignored, so
* Mandatory is not set); we enable Send Loss Event Rate
* (Mandatory since the implementation does not support
* the Loss Intervals option of RFC 4342, 8.6).
* The last two options are for peer's information only.
*/
{
.dependent_feat = DCCPF_SEND_ACK_VECTOR,
.is_local = false,
.is_mandatory = false,
.val = 0
},
{
.dependent_feat = DCCPF_SEND_LEV_RATE,
.is_local = false,
.is_mandatory = true,
.val = 1
},
{ /* this CCID does not support Ack Ratio */
.dependent_feat = DCCPF_ACK_RATIO,
.is_local = true,
.is_mandatory = false,
.val = 0
},
{ /* tell receiver we are sending NDP counts */
.dependent_feat = DCCPF_SEND_NDP_COUNT,
.is_local = true,
.is_mandatory = false,
.val = 1
},
{ 0, 0, 0, 0 }
}
};
switch (ccid) {
case DCCPC_CCID2:
return ccid2_dependencies[is_local];
case DCCPC_CCID3:
return ccid3_dependencies[is_local];
default:
return NULL;
}
}
/**
* dccp_feat_propagate_ccid - Resolve dependencies of features on choice of CCID
* @fn: feature-negotiation list to update
* @id: CCID number to track
* @is_local: whether TX CCID (1) or RX CCID (0) is meant
* This function needs to be called after registering all other features.
*/
static int dccp_feat_propagate_ccid(struct list_head *fn, u8 id, bool is_local)
{
const struct ccid_dependency *table = dccp_feat_ccid_deps(id, is_local);
int i, rc = (table == NULL);
for (i = 0; rc == 0 && table[i].dependent_feat != DCCPF_RESERVED; i++)
if (dccp_feat_type(table[i].dependent_feat) == FEAT_SP)
rc = __feat_register_sp(fn, table[i].dependent_feat,
table[i].is_local,
table[i].is_mandatory,
&table[i].val, 1);
else
rc = __feat_register_nn(fn, table[i].dependent_feat,
table[i].is_mandatory,
table[i].val);
return rc;
}
/**
* dccp_feat_finalise_settings - Finalise settings before starting negotiation
* @dp: client or listening socket (settings will be inherited)
* This is called after all registrations (socket initialisation, sysctls, and
* sockopt calls), and before sending the first packet containing Change options
* (ie. client-Request or server-Response), to ensure internal consistency.
*/
int dccp_feat_finalise_settings(struct dccp_sock *dp)
{
struct list_head *fn = &dp->dccps_featneg;
struct dccp_feat_entry *entry;
int i = 2, ccids[2] = { -1, -1 };
/*
* Propagating CCIDs:
* 1) not useful to propagate CCID settings if this host advertises more
* than one CCID: the choice of CCID may still change - if this is
* the client, or if this is the server and the client sends
* singleton CCID values.
* 2) since is that propagate_ccid changes the list, we defer changing
* the sorted list until after the traversal.
*/
list_for_each_entry(entry, fn, node)
if (entry->feat_num == DCCPF_CCID && entry->val.sp.len == 1)
ccids[entry->is_local] = entry->val.sp.vec[0];
while (i--)
if (ccids[i] > 0 && dccp_feat_propagate_ccid(fn, ccids[i], i))
return -1;
return 0;
}
/**
* dccp_feat_server_ccid_dependencies - Resolve CCID-dependent features
* It is the server which resolves the dependencies once the CCID has been
* fully negotiated. If no CCID has been negotiated, it uses the default CCID.
*/
int dccp_feat_server_ccid_dependencies(struct dccp_request_sock *dreq)
{
struct list_head *fn = &dreq->dreq_featneg;
struct dccp_feat_entry *entry;
u8 is_local, ccid;
for (is_local = 0; is_local <= 1; is_local++) {
entry = dccp_feat_list_lookup(fn, DCCPF_CCID, is_local);
if (entry != NULL && !entry->empty_confirm)
ccid = entry->val.sp.vec[0];
else
ccid = dccp_feat_default_value(DCCPF_CCID);
if (dccp_feat_propagate_ccid(fn, ccid, is_local))
return -1;
}
return 0;
}
static int dccp_feat_update_ccid(struct sock *sk, u8 type, u8 new_ccid_nr)
{
struct dccp_sock *dp = dccp_sk(sk);
struct dccp_minisock *dmsk = dccp_msk(sk);
/* figure out if we are changing our CCID or the peer's */
const int rx = type == DCCPO_CHANGE_R;
const u8 ccid_nr = rx ? dmsk->dccpms_rx_ccid : dmsk->dccpms_tx_ccid;
struct ccid *new_ccid;
/* Check if nothing is being changed. */
if (ccid_nr == new_ccid_nr)
return 0;
new_ccid = ccid_new(new_ccid_nr, sk, rx, GFP_ATOMIC);
if (new_ccid == NULL)
return -ENOMEM;
if (rx) {
ccid_hc_rx_delete(dp->dccps_hc_rx_ccid, sk);
dp->dccps_hc_rx_ccid = new_ccid;
dmsk->dccpms_rx_ccid = new_ccid_nr;
} else {
ccid_hc_tx_delete(dp->dccps_hc_tx_ccid, sk);
dp->dccps_hc_tx_ccid = new_ccid;
dmsk->dccpms_tx_ccid = new_ccid_nr;
}
return 0;
}
static int dccp_feat_update(struct sock *sk, u8 type, u8 feat, u8 val)
{
dccp_feat_debug(type, feat, val);
switch (feat) {
case DCCPF_CCID:
return dccp_feat_update_ccid(sk, type, val);
default:
dccp_pr_debug("UNIMPLEMENTED: %s(%d, ...)\n",
dccp_feat_typename(type), feat);
break;
}
return 0;
}
/* Select the first entry in @servlist that also occurs in @clilist (6.3.1) */
static int dccp_feat_preflist_match(u8 *servlist, u8 slen, u8 *clilist, u8 clen)
{
u8 c, s;
for (s = 0; s < slen; s++)
for (c = 0; c < clen; c++)
if (servlist[s] == clilist[c])
return servlist[s];
return -1;
}
/**
* dccp_feat_prefer - Move preferred entry to the start of array
* Reorder the @array_len elements in @array so that @preferred_value comes
* first. Returns >0 to indicate that @preferred_value does occur in @array.
*/
static u8 dccp_feat_prefer(u8 preferred_value, u8 *array, u8 array_len)
{
u8 i, does_occur = 0;
if (array != NULL) {
for (i = 0; i < array_len; i++)
if (array[i] == preferred_value) {
array[i] = array[0];
does_occur++;
}
if (does_occur)
array[0] = preferred_value;
}
return does_occur;
}
/**
* dccp_feat_reconcile - Reconcile SP preference lists
* @fval: SP list to reconcile into
* @arr: received SP preference list
* @len: length of @arr in bytes
* @is_server: whether this side is the server (and @fv is the server's list)
* @reorder: whether to reorder the list in @fv after reconciling with @arr
* When successful, > 0 is returned and the reconciled list is in @fval.
* A value of 0 means that negotiation failed (no shared entry).
*/
static int dccp_feat_reconcile(dccp_feat_val *fv, u8 *arr, u8 len,
bool is_server, bool reorder)
{
int rc;
if (!fv->sp.vec || !arr) {
DCCP_CRIT("NULL feature value or array");
return 0;
}
if (is_server)
rc = dccp_feat_preflist_match(fv->sp.vec, fv->sp.len, arr, len);
else
rc = dccp_feat_preflist_match(arr, len, fv->sp.vec, fv->sp.len);
if (!reorder)
return rc;
if (rc < 0)
return 0;
/*
* Reorder list: used for activating features and in dccp_insert_fn_opt.
*/
return dccp_feat_prefer(rc, fv->sp.vec, fv->sp.len);
}
#ifdef __this_is_the_old_framework_and_will_be_removed_later_in_a_subsequent_patch
static int dccp_feat_reconcile(struct sock *sk, struct dccp_opt_pend *opt,
u8 *rpref, u8 rlen)
{
struct dccp_sock *dp = dccp_sk(sk);
u8 *spref, slen, *res = NULL;
int i, j, rc, agree = 1;
BUG_ON(rpref == NULL);
/* check if we are the black sheep */
if (dp->dccps_role == DCCP_ROLE_CLIENT) {
spref = rpref;
slen = rlen;
rpref = opt->dccpop_val;
rlen = opt->dccpop_len;
} else {
spref = opt->dccpop_val;
slen = opt->dccpop_len;
}
/*
* Now we have server preference list in spref and client preference in
* rpref
*/
BUG_ON(spref == NULL);
BUG_ON(rpref == NULL);
/* FIXME sanity check vals */
/* Are values in any order? XXX Lame "algorithm" here */
for (i = 0; i < slen; i++) {
for (j = 0; j < rlen; j++) {
if (spref[i] == rpref[j]) {
res = &spref[i];
break;
}
}
if (res)
break;
}
/* we didn't agree on anything */
if (res == NULL) {
/* confirm previous value */
switch (opt->dccpop_feat) {
case DCCPF_CCID:
/* XXX did i get this right? =P */
if (opt->dccpop_type == DCCPO_CHANGE_L)
res = &dccp_msk(sk)->dccpms_tx_ccid;
else
res = &dccp_msk(sk)->dccpms_rx_ccid;
break;
default:
DCCP_BUG("Fell through, feat=%d", opt->dccpop_feat);
/* XXX implement res */
return -EFAULT;
}
dccp_pr_debug("Don't agree... reconfirming %d\n", *res);
agree = 0; /* this is used for mandatory options... */
}
/* need to put result and our preference list */
rlen = 1 + opt->dccpop_len;
rpref = kmalloc(rlen, GFP_ATOMIC);
if (rpref == NULL)
return -ENOMEM;
*rpref = *res;
memcpy(&rpref[1], opt->dccpop_val, opt->dccpop_len);
/* put it in the "confirm queue" */
if (opt->dccpop_sc == NULL) {
opt->dccpop_sc = kmalloc(sizeof(*opt->dccpop_sc), GFP_ATOMIC);
if (opt->dccpop_sc == NULL) {
kfree(rpref);
return -ENOMEM;
}
} else {
/* recycle the confirm slot */
BUG_ON(opt->dccpop_sc->dccpoc_val == NULL);
kfree(opt->dccpop_sc->dccpoc_val);
dccp_pr_debug("recycling confirm slot\n");
}
memset(opt->dccpop_sc, 0, sizeof(*opt->dccpop_sc));
opt->dccpop_sc->dccpoc_val = rpref;
opt->dccpop_sc->dccpoc_len = rlen;
/* update the option on our side [we are about to send the confirm] */
rc = dccp_feat_update(sk, opt->dccpop_type, opt->dccpop_feat, *res);
if (rc) {
kfree(opt->dccpop_sc->dccpoc_val);
kfree(opt->dccpop_sc);
opt->dccpop_sc = NULL;
return rc;
}
dccp_pr_debug("Will confirm %d\n", *rpref);
/* say we want to change to X but we just got a confirm X, suppress our
* change
*/
if (!opt->dccpop_conf) {
if (*opt->dccpop_val == *res)
opt->dccpop_conf = 1;
dccp_pr_debug("won't ask for change of same feature\n");
}
return agree ? 0 : DCCP_FEAT_SP_NOAGREE; /* used for mandatory opts */
}
static int dccp_feat_sp(struct sock *sk, u8 type, u8 feature, u8 *val, u8 len)
{
struct dccp_minisock *dmsk = dccp_msk(sk);
struct dccp_opt_pend *opt;
int rc = 1;
u8 t;
/*
* We received a CHANGE. We gotta match it against our own preference
* list. If we got a CHANGE_R it means it's a change for us, so we need
* to compare our CHANGE_L list.
*/
if (type == DCCPO_CHANGE_L)
t = DCCPO_CHANGE_R;
else
t = DCCPO_CHANGE_L;
/* find our preference list for this feature */
list_for_each_entry(opt, &dmsk->dccpms_pending, dccpop_node) {
if (opt->dccpop_type != t || opt->dccpop_feat != feature)
continue;
/* find the winner from the two preference lists */
rc = dccp_feat_reconcile(sk, opt, val, len);
break;
}
/* We didn't deal with the change. This can happen if we have no
* preference list for the feature. In fact, it just shouldn't
* happen---if we understand a feature, we should have a preference list
* with at least the default value.
*/
BUG_ON(rc == 1);
return rc;
}
static int dccp_feat_nn(struct sock *sk, u8 type, u8 feature, u8 *val, u8 len)
{
struct dccp_opt_pend *opt;
struct dccp_minisock *dmsk = dccp_msk(sk);
u8 *copy;
int rc;
/* NN features must be Change L (sec. 6.3.2) */
if (type != DCCPO_CHANGE_L) {
dccp_pr_debug("received %s for NN feature %d\n",
dccp_feat_typename(type), feature);
return -EFAULT;
}
/* XXX sanity check opt val */
/* copy option so we can confirm it */
opt = kzalloc(sizeof(*opt), GFP_ATOMIC);
if (opt == NULL)
return -ENOMEM;
copy = kmemdup(val, len, GFP_ATOMIC);
if (copy == NULL) {
kfree(opt);
return -ENOMEM;
}
opt->dccpop_type = DCCPO_CONFIRM_R; /* NN can only confirm R */
opt->dccpop_feat = feature;
opt->dccpop_val = copy;
opt->dccpop_len = len;
/* change feature */
rc = dccp_feat_update(sk, type, feature, *val);
if (rc) {
kfree(opt->dccpop_val);
kfree(opt);
return rc;
}
dccp_feat_debug(type, feature, *copy);
list_add_tail(&opt->dccpop_node, &dmsk->dccpms_conf);
return 0;
}
#endif /* (later) */
static void dccp_feat_empty_confirm(struct dccp_minisock *dmsk,
u8 type, u8 feature)
{
/* XXX check if other confirms for that are queued and recycle slot */
struct dccp_opt_pend *opt = kzalloc(sizeof(*opt), GFP_ATOMIC);
if (opt == NULL) {
/* XXX what do we do? Ignoring should be fine. It's a change
* after all =P
*/
return;
}
switch (type) {
case DCCPO_CHANGE_L:
opt->dccpop_type = DCCPO_CONFIRM_R;
break;
case DCCPO_CHANGE_R:
opt->dccpop_type = DCCPO_CONFIRM_L;
break;
default:
DCCP_WARN("invalid type %d\n", type);
kfree(opt);
return;
}
opt->dccpop_feat = feature;
opt->dccpop_val = NULL;
opt->dccpop_len = 0;
/* change feature */
dccp_pr_debug("Empty %s(%d)\n", dccp_feat_typename(type), feature);
list_add_tail(&opt->dccpop_node, &dmsk->dccpms_conf);
}
static void dccp_feat_flush_confirm(struct sock *sk)
{
struct dccp_minisock *dmsk = dccp_msk(sk);
/* Check if there is anything to confirm in the first place */
int yes = !list_empty(&dmsk->dccpms_conf);
if (!yes) {
struct dccp_opt_pend *opt;
list_for_each_entry(opt, &dmsk->dccpms_pending, dccpop_node) {
if (opt->dccpop_conf) {
yes = 1;
break;
}
}
}
if (!yes)
return;
/* OK there is something to confirm... */
/* XXX check if packet is in flight? Send delayed ack?? */
if (sk->sk_state == DCCP_OPEN)
dccp_send_ack(sk);
}
int dccp_feat_change_recv(struct sock *sk, u8 type, u8 feature, u8 *val, u8 len)
{
int rc;
/* Ignore Change requests other than during connection setup */
if (sk->sk_state != DCCP_LISTEN && sk->sk_state != DCCP_REQUESTING)
return 0;
dccp_feat_debug(type, feature, *val);
/* figure out if it's SP or NN feature */
switch (feature) {
/* deal with SP features */
case DCCPF_CCID:
/* XXX Obsoleted by next patch
rc = dccp_feat_sp(sk, type, feature, val, len); */
break;
/* deal with NN features */
case DCCPF_ACK_RATIO:
/* XXX Obsoleted by next patch
rc = dccp_feat_nn(sk, type, feature, val, len); */
break;
/* XXX implement other features */
default:
dccp_pr_debug("UNIMPLEMENTED: not handling %s(%d, ...)\n",
dccp_feat_typename(type), feature);
rc = -EFAULT;
break;
}
/* check if there were problems changing features */
if (rc) {
/* If we don't agree on SP, we sent a confirm for old value.
* However we propagate rc to caller in case option was
* mandatory
*/
if (rc != DCCP_FEAT_SP_NOAGREE)
dccp_feat_empty_confirm(dccp_msk(sk), type, feature);
}
/* generate the confirm [if required] */
dccp_feat_flush_confirm(sk);
return rc;
}
EXPORT_SYMBOL_GPL(dccp_feat_change_recv);
int dccp_feat_confirm_recv(struct sock *sk, u8 type, u8 feature,
u8 *val, u8 len)
{
u8 t;
struct dccp_opt_pend *opt;
struct dccp_minisock *dmsk = dccp_msk(sk);
int found = 0;
int all_confirmed = 1;
/* Ignore Confirm options other than during connection setup */
if (sk->sk_state != DCCP_LISTEN && sk->sk_state != DCCP_REQUESTING)
return 0;
dccp_feat_debug(type, feature, *val);
/* locate our change request */
switch (type) {
case DCCPO_CONFIRM_L: t = DCCPO_CHANGE_R; break;
case DCCPO_CONFIRM_R: t = DCCPO_CHANGE_L; break;
default: DCCP_WARN("invalid type %d\n", type);
return 1;
}
/* XXX sanity check feature value */
list_for_each_entry(opt, &dmsk->dccpms_pending, dccpop_node) {
if (!opt->dccpop_conf && opt->dccpop_type == t &&
opt->dccpop_feat == feature) {
found = 1;
dccp_pr_debug("feature %d found\n", opt->dccpop_feat);
/* XXX do sanity check */
opt->dccpop_conf = 1;
/* We got a confirmation---change the option */
dccp_feat_update(sk, opt->dccpop_type,
opt->dccpop_feat, *val);
/* XXX check the return value of dccp_feat_update */
break;
}
if (!opt->dccpop_conf)
all_confirmed = 0;
}
if (!found)
dccp_pr_debug("%s(%d, ...) never requested\n",
dccp_feat_typename(type), feature);
return 0;
}
EXPORT_SYMBOL_GPL(dccp_feat_confirm_recv);
void dccp_feat_clean(struct dccp_minisock *dmsk)
{
struct dccp_opt_pend *opt, *next;
list_for_each_entry_safe(opt, next, &dmsk->dccpms_pending,
dccpop_node) {
BUG_ON(opt->dccpop_val == NULL);
kfree(opt->dccpop_val);
if (opt->dccpop_sc != NULL) {
BUG_ON(opt->dccpop_sc->dccpoc_val == NULL);
kfree(opt->dccpop_sc->dccpoc_val);
kfree(opt->dccpop_sc);
}
kfree(opt);
}
INIT_LIST_HEAD(&dmsk->dccpms_pending);
list_for_each_entry_safe(opt, next, &dmsk->dccpms_conf, dccpop_node) {
BUG_ON(opt == NULL);
if (opt->dccpop_val != NULL)
kfree(opt->dccpop_val);
kfree(opt);
}
INIT_LIST_HEAD(&dmsk->dccpms_conf);
}
EXPORT_SYMBOL_GPL(dccp_feat_clean);
/* this is to be called only when a listening sock creates its child. It is
* assumed by the function---the confirm is not duplicated, but rather it is
* "passed on".
*/
int dccp_feat_clone(struct sock *oldsk, struct sock *newsk)
{
struct dccp_minisock *olddmsk = dccp_msk(oldsk);
struct dccp_minisock *newdmsk = dccp_msk(newsk);
struct dccp_opt_pend *opt;
int rc = 0;
INIT_LIST_HEAD(&newdmsk->dccpms_pending);
INIT_LIST_HEAD(&newdmsk->dccpms_conf);
list_for_each_entry(opt, &olddmsk->dccpms_pending, dccpop_node) {
struct dccp_opt_pend *newopt;
/* copy the value of the option */
u8 *val = kmemdup(opt->dccpop_val, opt->dccpop_len, GFP_ATOMIC);
if (val == NULL)
goto out_clean;
newopt = kmemdup(opt, sizeof(*newopt), GFP_ATOMIC);
if (newopt == NULL) {
kfree(val);
goto out_clean;
}
/* insert the option */
newopt->dccpop_val = val;
list_add_tail(&newopt->dccpop_node, &newdmsk->dccpms_pending);
/* XXX what happens with backlogs and multiple connections at
* once...
*/
/* the master socket no longer needs to worry about confirms */
opt->dccpop_sc = NULL; /* it's not a memleak---new socket has it */
/* reset state for a new socket */
opt->dccpop_conf = 0;
}
/* XXX not doing anything about the conf queue */
out:
return rc;
out_clean:
dccp_feat_clean(newdmsk);
rc = -ENOMEM;
goto out;
}
EXPORT_SYMBOL_GPL(dccp_feat_clone);
int dccp_feat_init(struct sock *sk)
{
struct dccp_sock *dp = dccp_sk(sk);
struct dccp_minisock *dmsk = dccp_msk(sk);
int rc;
INIT_LIST_HEAD(&dmsk->dccpms_pending); /* XXX no longer used */
INIT_LIST_HEAD(&dmsk->dccpms_conf); /* XXX no longer used */
/* CCID L */
rc = __feat_register_sp(&dp->dccps_featneg, DCCPF_CCID, 1, 0,
&dmsk->dccpms_tx_ccid, 1);
if (rc)
goto out;
/* CCID R */
rc = __feat_register_sp(&dp->dccps_featneg, DCCPF_CCID, 0, 0,
&dmsk->dccpms_rx_ccid, 1);
if (rc)
goto out;
/* Ack ratio */
rc = __feat_register_nn(&dp->dccps_featneg, DCCPF_ACK_RATIO, 0,
dp->dccps_l_ack_ratio);
out:
return rc;
}
EXPORT_SYMBOL_GPL(dccp_feat_init);
#ifdef CONFIG_IP_DCCP_DEBUG
const char *dccp_feat_typename(const u8 type)
{
switch(type) {
case DCCPO_CHANGE_L: return("ChangeL");
case DCCPO_CONFIRM_L: return("ConfirmL");
case DCCPO_CHANGE_R: return("ChangeR");
case DCCPO_CONFIRM_R: return("ConfirmR");
/* the following case must not appear in feature negotation */
default: dccp_pr_debug("unknown type %d [BUG!]\n", type);
}
return NULL;
}
EXPORT_SYMBOL_GPL(dccp_feat_typename);
const char *dccp_feat_name(const u8 feat)
{
static const char *feature_names[] = {
[DCCPF_RESERVED] = "Reserved",
[DCCPF_CCID] = "CCID",
[DCCPF_SHORT_SEQNOS] = "Allow Short Seqnos",
[DCCPF_SEQUENCE_WINDOW] = "Sequence Window",
[DCCPF_ECN_INCAPABLE] = "ECN Incapable",
[DCCPF_ACK_RATIO] = "Ack Ratio",
[DCCPF_SEND_ACK_VECTOR] = "Send ACK Vector",
[DCCPF_SEND_NDP_COUNT] = "Send NDP Count",
[DCCPF_MIN_CSUM_COVER] = "Min. Csum Coverage",
[DCCPF_DATA_CHECKSUM] = "Send Data Checksum",
};
if (feat > DCCPF_DATA_CHECKSUM && feat < DCCPF_MIN_CCID_SPECIFIC)
return feature_names[DCCPF_RESERVED];
if (feat == DCCPF_SEND_LEV_RATE)
return "Send Loss Event Rate";
if (feat >= DCCPF_MIN_CCID_SPECIFIC)
return "CCID-specific";
return feature_names[feat];
}
EXPORT_SYMBOL_GPL(dccp_feat_name);
#endif /* CONFIG_IP_DCCP_DEBUG */