android_kernel_samsung_msm8976/net/sctp/protocol.c

1576 lines
42 KiB
C
Raw Normal View History

/* SCTP kernel implementation
* (C) Copyright IBM Corp. 2001, 2004
* Copyright (c) 1999-2000 Cisco, Inc.
* Copyright (c) 1999-2001 Motorola, Inc.
* Copyright (c) 2001 Intel Corp.
* Copyright (c) 2001 Nokia, Inc.
* Copyright (c) 2001 La Monte H.P. Yarroll
*
* This file is part of the SCTP kernel implementation
*
* Initialization/cleanup for SCTP protocol support.
*
* This SCTP implementation is free software;
* you can redistribute it and/or modify it under the terms of
* the GNU General Public License as published by
* the Free Software Foundation; either version 2, or (at your option)
* any later version.
*
* This SCTP implementation is distributed in the hope that it
* will be useful, but WITHOUT ANY WARRANTY; without even the implied
* ************************
* warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
* See the GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNU CC; see the file COPYING. If not, write to
* the Free Software Foundation, 59 Temple Place - Suite 330,
* Boston, MA 02111-1307, USA.
*
* Please send any bug reports or fixes you make to the
* email address(es):
* lksctp developers <lksctp-developers@lists.sourceforge.net>
*
* Or submit a bug report through the following website:
* http://www.sf.net/projects/lksctp
*
* Written or modified by:
* La Monte H.P. Yarroll <piggy@acm.org>
* Karl Knutson <karl@athena.chicago.il.us>
* Jon Grimm <jgrimm@us.ibm.com>
* Sridhar Samudrala <sri@us.ibm.com>
* Daisy Chang <daisyc@us.ibm.com>
* Ardelle Fan <ardelle.fan@intel.com>
*
* Any bugs reported given to us we will try to fix... any fixes shared will
* be incorporated into the next SCTP release.
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/module.h>
#include <linux/init.h>
#include <linux/netdevice.h>
#include <linux/inetdevice.h>
#include <linux/seq_file.h>
#include <linux/bootmem.h>
#include <linux/highmem.h>
#include <linux/swap.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 08:04:11 +00:00
#include <linux/slab.h>
#include <net/net_namespace.h>
#include <net/protocol.h>
#include <net/ip.h>
#include <net/ipv6.h>
#include <net/route.h>
#include <net/sctp/sctp.h>
#include <net/addrconf.h>
#include <net/inet_common.h>
#include <net/inet_ecn.h>
/* Global data structures. */
struct sctp_globals sctp_globals __read_mostly;
struct idr sctp_assocs_id;
DEFINE_SPINLOCK(sctp_assocs_id_lock);
static struct sctp_pf *sctp_pf_inet6_specific;
static struct sctp_pf *sctp_pf_inet_specific;
static struct sctp_af *sctp_af_v4_specific;
static struct sctp_af *sctp_af_v6_specific;
struct kmem_cache *sctp_chunk_cachep __read_mostly;
struct kmem_cache *sctp_bucket_cachep __read_mostly;
long sysctl_sctp_mem[3];
int sysctl_sctp_rmem[3];
int sysctl_sctp_wmem[3];
/* Set up the proc fs entry for the SCTP protocol. */
static int __net_init sctp_proc_init(struct net *net)
{
#ifdef CONFIG_PROC_FS
net->sctp.proc_net_sctp = proc_net_mkdir(net, "sctp", net->proc_net);
if (!net->sctp.proc_net_sctp)
goto out_proc_net_sctp;
if (sctp_snmp_proc_init(net))
goto out_snmp_proc_init;
if (sctp_eps_proc_init(net))
goto out_eps_proc_init;
if (sctp_assocs_proc_init(net))
goto out_assocs_proc_init;
if (sctp_remaddr_proc_init(net))
goto out_remaddr_proc_init;
return 0;
out_remaddr_proc_init:
sctp_assocs_proc_exit(net);
out_assocs_proc_init:
sctp_eps_proc_exit(net);
out_eps_proc_init:
sctp_snmp_proc_exit(net);
out_snmp_proc_init:
remove_proc_entry("sctp", net->proc_net);
net->sctp.proc_net_sctp = NULL;
out_proc_net_sctp:
return -ENOMEM;
#endif /* CONFIG_PROC_FS */
return 0;
}
/* Clean up the proc fs entry for the SCTP protocol.
* Note: Do not make this __exit as it is used in the init error
* path.
*/
static void sctp_proc_exit(struct net *net)
{
#ifdef CONFIG_PROC_FS
sctp_snmp_proc_exit(net);
sctp_eps_proc_exit(net);
sctp_assocs_proc_exit(net);
sctp_remaddr_proc_exit(net);
remove_proc_entry("sctp", net->proc_net);
net->sctp.proc_net_sctp = NULL;
#endif
}
/* Private helper to extract ipv4 address and stash them in
* the protocol structure.
*/
static void sctp_v4_copy_addrlist(struct list_head *addrlist,
struct net_device *dev)
{
struct in_device *in_dev;
struct in_ifaddr *ifa;
struct sctp_sockaddr_entry *addr;
rcu_read_lock();
if ((in_dev = __in_dev_get_rcu(dev)) == NULL) {
rcu_read_unlock();
return;
}
for (ifa = in_dev->ifa_list; ifa; ifa = ifa->ifa_next) {
/* Add the address to the local list. */
addr = t_new(struct sctp_sockaddr_entry, GFP_ATOMIC);
if (addr) {
addr->a.v4.sin_family = AF_INET;
addr->a.v4.sin_port = 0;
addr->a.v4.sin_addr.s_addr = ifa->ifa_local;
addr->valid = 1;
INIT_LIST_HEAD(&addr->list);
list_add_tail(&addr->list, addrlist);
}
}
rcu_read_unlock();
}
/* Extract our IP addresses from the system and stash them in the
* protocol structure.
*/
static void sctp_get_local_addr_list(struct net *net)
{
struct net_device *dev;
struct list_head *pos;
struct sctp_af *af;
rcu_read_lock();
for_each_netdev_rcu(net, dev) {
__list_for_each(pos, &sctp_address_families) {
af = list_entry(pos, struct sctp_af, list);
af->copy_addrlist(&net->sctp.local_addr_list, dev);
}
}
rcu_read_unlock();
}
/* Free the existing local addresses. */
static void sctp_free_local_addr_list(struct net *net)
{
struct sctp_sockaddr_entry *addr;
struct list_head *pos, *temp;
list_for_each_safe(pos, temp, &net->sctp.local_addr_list) {
addr = list_entry(pos, struct sctp_sockaddr_entry, list);
list_del(pos);
kfree(addr);
}
}
/* Copy the local addresses which are valid for 'scope' into 'bp'. */
int sctp_copy_local_addr_list(struct net *net, struct sctp_bind_addr *bp,
sctp_scope_t scope, gfp_t gfp, int copy_flags)
{
struct sctp_sockaddr_entry *addr;
int error = 0;
rcu_read_lock();
list_for_each_entry_rcu(addr, &net->sctp.local_addr_list, list) {
if (!addr->valid)
continue;
if (sctp_in_scope(net, &addr->a, scope)) {
/* Now that the address is in scope, check to see if
* the address type is really supported by the local
* sock as well as the remote peer.
*/
if ((((AF_INET == addr->a.sa.sa_family) &&
(copy_flags & SCTP_ADDR4_PEERSUPP))) ||
(((AF_INET6 == addr->a.sa.sa_family) &&
(copy_flags & SCTP_ADDR6_ALLOWED) &&
(copy_flags & SCTP_ADDR6_PEERSUPP)))) {
error = sctp_add_bind_addr(bp, &addr->a,
SCTP_ADDR_SRC, GFP_ATOMIC);
if (error)
goto end_copy;
}
}
}
end_copy:
rcu_read_unlock();
return error;
}
/* Initialize a sctp_addr from in incoming skb. */
static void sctp_v4_from_skb(union sctp_addr *addr, struct sk_buff *skb,
int is_saddr)
{
void *from;
__be16 *port;
struct sctphdr *sh;
port = &addr->v4.sin_port;
addr->v4.sin_family = AF_INET;
sh = sctp_hdr(skb);
if (is_saddr) {
*port = sh->source;
from = &ip_hdr(skb)->saddr;
} else {
*port = sh->dest;
from = &ip_hdr(skb)->daddr;
}
memcpy(&addr->v4.sin_addr.s_addr, from, sizeof(struct in_addr));
}
/* Initialize an sctp_addr from a socket. */
static void sctp_v4_from_sk(union sctp_addr *addr, struct sock *sk)
{
addr->v4.sin_family = AF_INET;
addr->v4.sin_port = 0;
addr->v4.sin_addr.s_addr = inet_sk(sk)->inet_rcv_saddr;
}
/* Initialize sk->sk_rcv_saddr from sctp_addr. */
static void sctp_v4_to_sk_saddr(union sctp_addr *addr, struct sock *sk)
{
inet_sk(sk)->inet_rcv_saddr = addr->v4.sin_addr.s_addr;
}
/* Initialize sk->sk_daddr from sctp_addr. */
static void sctp_v4_to_sk_daddr(union sctp_addr *addr, struct sock *sk)
{
inet_sk(sk)->inet_daddr = addr->v4.sin_addr.s_addr;
}
/* Initialize a sctp_addr from an address parameter. */
static void sctp_v4_from_addr_param(union sctp_addr *addr,
union sctp_addr_param *param,
__be16 port, int iif)
{
addr->v4.sin_family = AF_INET;
addr->v4.sin_port = port;
addr->v4.sin_addr.s_addr = param->v4.addr.s_addr;
}
/* Initialize an address parameter from a sctp_addr and return the length
* of the address parameter.
*/
static int sctp_v4_to_addr_param(const union sctp_addr *addr,
union sctp_addr_param *param)
{
int length = sizeof(sctp_ipv4addr_param_t);
param->v4.param_hdr.type = SCTP_PARAM_IPV4_ADDRESS;
param->v4.param_hdr.length = htons(length);
param->v4.addr.s_addr = addr->v4.sin_addr.s_addr;
return length;
}
/* Initialize a sctp_addr from a dst_entry. */
static void sctp_v4_dst_saddr(union sctp_addr *saddr, struct flowi4 *fl4,
__be16 port)
{
saddr->v4.sin_family = AF_INET;
saddr->v4.sin_port = port;
saddr->v4.sin_addr.s_addr = fl4->saddr;
}
/* Compare two addresses exactly. */
static int sctp_v4_cmp_addr(const union sctp_addr *addr1,
const union sctp_addr *addr2)
{
if (addr1->sa.sa_family != addr2->sa.sa_family)
return 0;
if (addr1->v4.sin_port != addr2->v4.sin_port)
return 0;
if (addr1->v4.sin_addr.s_addr != addr2->v4.sin_addr.s_addr)
return 0;
return 1;
}
/* Initialize addr struct to INADDR_ANY. */
static void sctp_v4_inaddr_any(union sctp_addr *addr, __be16 port)
{
addr->v4.sin_family = AF_INET;
addr->v4.sin_addr.s_addr = htonl(INADDR_ANY);
addr->v4.sin_port = port;
}
/* Is this a wildcard address? */
static int sctp_v4_is_any(const union sctp_addr *addr)
{
return htonl(INADDR_ANY) == addr->v4.sin_addr.s_addr;
}
/* This function checks if the address is a valid address to be used for
* SCTP binding.
*
* Output:
* Return 0 - If the address is a non-unicast or an illegal address.
* Return 1 - If the address is a unicast.
*/
static int sctp_v4_addr_valid(union sctp_addr *addr,
struct sctp_sock *sp,
const struct sk_buff *skb)
{
/* IPv4 addresses not allowed */
if (sp && ipv6_only_sock(sctp_opt2sk(sp)))
return 0;
/* Is this a non-unicast address or a unusable SCTP address? */
if (IS_IPV4_UNUSABLE_ADDRESS(addr->v4.sin_addr.s_addr))
return 0;
/* Is this a broadcast address? */
if (skb && skb_rtable(skb)->rt_flags & RTCF_BROADCAST)
return 0;
return 1;
}
/* Should this be available for binding? */
static int sctp_v4_available(union sctp_addr *addr, struct sctp_sock *sp)
{
struct net *net = sock_net(&sp->inet.sk);
int ret = inet_addr_type(net, addr->v4.sin_addr.s_addr);
if (addr->v4.sin_addr.s_addr != htonl(INADDR_ANY) &&
ret != RTN_LOCAL &&
!sp->inet.freebind &&
!sysctl_ip_nonlocal_bind)
return 0;
if (ipv6_only_sock(sctp_opt2sk(sp)))
return 0;
return 1;
}
/* Checking the loopback, private and other address scopes as defined in
* RFC 1918. The IPv4 scoping is based on the draft for SCTP IPv4
* scoping <draft-stewart-tsvwg-sctp-ipv4-00.txt>.
*
* Level 0 - unusable SCTP addresses
* Level 1 - loopback address
* Level 2 - link-local addresses
* Level 3 - private addresses.
* Level 4 - global addresses
* For INIT and INIT-ACK address list, let L be the level of
* of requested destination address, sender and receiver
* SHOULD include all of its addresses with level greater
* than or equal to L.
*
* IPv4 scoping can be controlled through sysctl option
* net.sctp.addr_scope_policy
*/
static sctp_scope_t sctp_v4_scope(union sctp_addr *addr)
{
sctp_scope_t retval;
/* Check for unusable SCTP addresses. */
if (IS_IPV4_UNUSABLE_ADDRESS(addr->v4.sin_addr.s_addr)) {
retval = SCTP_SCOPE_UNUSABLE;
} else if (ipv4_is_loopback(addr->v4.sin_addr.s_addr)) {
retval = SCTP_SCOPE_LOOPBACK;
} else if (ipv4_is_linklocal_169(addr->v4.sin_addr.s_addr)) {
retval = SCTP_SCOPE_LINK;
} else if (ipv4_is_private_10(addr->v4.sin_addr.s_addr) ||
ipv4_is_private_172(addr->v4.sin_addr.s_addr) ||
ipv4_is_private_192(addr->v4.sin_addr.s_addr)) {
retval = SCTP_SCOPE_PRIVATE;
} else {
retval = SCTP_SCOPE_GLOBAL;
}
return retval;
}
/* Returns a valid dst cache entry for the given source and destination ip
* addresses. If an association is passed, trys to get a dst entry with a
* source address that matches an address in the bind address list.
*/
static void sctp_v4_get_dst(struct sctp_transport *t, union sctp_addr *saddr,
struct flowi *fl, struct sock *sk)
{
struct sctp_association *asoc = t->asoc;
struct rtable *rt;
struct flowi4 *fl4 = &fl->u.ip4;
struct sctp_bind_addr *bp;
struct sctp_sockaddr_entry *laddr;
struct dst_entry *dst = NULL;
union sctp_addr *daddr = &t->ipaddr;
union sctp_addr dst_saddr;
memset(fl4, 0x0, sizeof(struct flowi4));
fl4->daddr = daddr->v4.sin_addr.s_addr;
fl4->fl4_dport = daddr->v4.sin_port;
fl4->flowi4_proto = IPPROTO_SCTP;
if (asoc) {
fl4->flowi4_tos = RT_CONN_FLAGS(asoc->base.sk);
fl4->flowi4_oif = asoc->base.sk->sk_bound_dev_if;
fl4->fl4_sport = htons(asoc->base.bind_addr.port);
}
if (saddr) {
fl4->saddr = saddr->v4.sin_addr.s_addr;
fl4->fl4_sport = saddr->v4.sin_port;
}
SCTP_DEBUG_PRINTK("%s: DST:%pI4, SRC:%pI4 - ",
__func__, &fl4->daddr, &fl4->saddr);
rt = ip_route_output_key(sock_net(sk), fl4);
if (!IS_ERR(rt))
dst = &rt->dst;
/* If there is no association or if a source address is passed, no
* more validation is required.
*/
if (!asoc || saddr)
goto out;
bp = &asoc->base.bind_addr;
if (dst) {
/* Walk through the bind address list and look for a bind
* address that matches the source address of the returned dst.
*/
sctp_v4_dst_saddr(&dst_saddr, fl4, htons(bp->port));
rcu_read_lock();
list_for_each_entry_rcu(laddr, &bp->address_list, list) {
if (!laddr->valid || (laddr->state == SCTP_ADDR_DEL) ||
(laddr->state != SCTP_ADDR_SRC &&
!asoc->src_out_of_asoc_ok))
continue;
if (sctp_v4_cmp_addr(&dst_saddr, &laddr->a))
goto out_unlock;
}
rcu_read_unlock();
/* None of the bound addresses match the source address of the
* dst. So release it.
*/
dst_release(dst);
dst = NULL;
}
/* Walk through the bind address list and try to get a dst that
* matches a bind address as the source address.
*/
rcu_read_lock();
list_for_each_entry_rcu(laddr, &bp->address_list, list) {
if (!laddr->valid)
continue;
if ((laddr->state == SCTP_ADDR_SRC) &&
(AF_INET == laddr->a.sa.sa_family)) {
fl4->fl4_sport = laddr->a.v4.sin_port;
sctp: reset flowi4_oif parameter on route lookup [ Upstream commit 85350871317a5adb35519d9dc6fc9e80809d42ad ] commit 813b3b5db83 (ipv4: Use caller's on-stack flowi as-is in output route lookups.) introduces another regression which is very similar to the problem of commit e6b45241c (ipv4: reset flowi parameters on route connect) wants to fix: Before we call ip_route_output_key() in sctp_v4_get_dst() to get a dst that matches a bind address as the source address, we have already called this function previously and the flowi parameters have been initialized including flowi4_oif, so when we call this function again, the process in __ip_route_output_key() will be different because of the setting of flowi4_oif, and we'll get a networking device which corresponds to the inputted flowi4_oif as the output device, this is wrong because we'll never hit this place if the previously returned source address of dst match one of the bound addresses. To reproduce this problem, a vlan setting is enough: # ifconfig eth0 up # route del default # vconfig add eth0 2 # vconfig add eth0 3 # ifconfig eth0.2 10.0.1.14 netmask 255.255.255.0 # route add default gw 10.0.1.254 dev eth0.2 # ifconfig eth0.3 10.0.0.14 netmask 255.255.255.0 # ip rule add from 10.0.0.14 table 4 # ip route add table 4 default via 10.0.0.254 src 10.0.0.14 dev eth0.3 # sctp_darn -H 10.0.0.14 -P 36422 -h 10.1.4.134 -p 36422 -s -I You'll detect that all the flow are routed to eth0.2(10.0.1.254). Signed-off-by: Xufeng Zhang <xufeng.zhang@windriver.com> Signed-off-by: Julian Anastasov <ja@ssi.bg> Acked-by: Vlad Yasevich <vyasevich@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2014-04-25 08:55:41 +00:00
flowi4_update_output(fl4,
asoc->base.sk->sk_bound_dev_if,
RT_CONN_FLAGS(asoc->base.sk),
daddr->v4.sin_addr.s_addr,
laddr->a.v4.sin_addr.s_addr);
rt = ip_route_output_key(sock_net(sk), fl4);
if (!IS_ERR(rt)) {
dst = &rt->dst;
goto out_unlock;
}
}
}
out_unlock:
rcu_read_unlock();
out:
t->dst = dst;
if (dst)
SCTP_DEBUG_PRINTK("rt_dst:%pI4, rt_src:%pI4\n",
&fl4->daddr, &fl4->saddr);
else
SCTP_DEBUG_PRINTK("NO ROUTE\n");
}
/* For v4, the source address is cached in the route entry(dst). So no need
* to cache it separately and hence this is an empty routine.
*/
static void sctp_v4_get_saddr(struct sctp_sock *sk,
struct sctp_transport *t,
struct flowi *fl)
{
union sctp_addr *saddr = &t->saddr;
struct rtable *rt = (struct rtable *)t->dst;
if (rt) {
saddr->v4.sin_family = AF_INET;
saddr->v4.sin_addr.s_addr = fl->u.ip4.saddr;
}
}
/* What interface did this skb arrive on? */
static int sctp_v4_skb_iif(const struct sk_buff *skb)
{
return inet_iif(skb);
}
/* Was this packet marked by Explicit Congestion Notification? */
static int sctp_v4_is_ce(const struct sk_buff *skb)
{
return INET_ECN_is_ce(ip_hdr(skb)->tos);
}
/* Create and initialize a new sk for the socket returned by accept(). */
static struct sock *sctp_v4_create_accept_sk(struct sock *sk,
struct sctp_association *asoc)
{
struct sock *newsk = sk_alloc(sock_net(sk), PF_INET, GFP_KERNEL,
sk->sk_prot);
struct inet_sock *newinet;
if (!newsk)
goto out;
sock_init_data(NULL, newsk);
sctp_copy_sock(newsk, sk, asoc);
sock_reset_flag(newsk, SOCK_ZAPPED);
newinet = inet_sk(newsk);
newinet->inet_daddr = asoc->peer.primary_addr.v4.sin_addr.s_addr;
sk_refcnt_debug_inc(newsk);
if (newsk->sk_prot->init(newsk)) {
sk_common_release(newsk);
newsk = NULL;
}
out:
return newsk;
}
/* Map address, empty for v4 family */
static void sctp_v4_addr_v4map(struct sctp_sock *sp, union sctp_addr *addr)
{
/* Empty */
}
/* Dump the v4 addr to the seq file. */
static void sctp_v4_seq_dump_addr(struct seq_file *seq, union sctp_addr *addr)
{
seq_printf(seq, "%pI4 ", &addr->v4.sin_addr);
}
static void sctp_v4_ecn_capable(struct sock *sk)
{
INET_ECN_xmit(sk);
}
static void sctp_addr_wq_timeout_handler(unsigned long arg)
{
struct net *net = (struct net *)arg;
struct sctp_sockaddr_entry *addrw, *temp;
struct sctp_sock *sp;
spin_lock_bh(&net->sctp.addr_wq_lock);
list_for_each_entry_safe(addrw, temp, &net->sctp.addr_waitq, list) {
SCTP_DEBUG_PRINTK_IPADDR("sctp_addrwq_timo_handler: the first ent in wq %p is ",
" for cmd %d at entry %p\n", &net->sctp.addr_waitq, &addrw->a, addrw->state,
addrw);
#if IS_ENABLED(CONFIG_IPV6)
/* Now we send an ASCONF for each association */
/* Note. we currently don't handle link local IPv6 addressees */
if (addrw->a.sa.sa_family == AF_INET6) {
struct in6_addr *in6;
if (ipv6_addr_type(&addrw->a.v6.sin6_addr) &
IPV6_ADDR_LINKLOCAL)
goto free_next;
in6 = (struct in6_addr *)&addrw->a.v6.sin6_addr;
if (ipv6_chk_addr(net, in6, NULL, 0) == 0 &&
addrw->state == SCTP_ADDR_NEW) {
unsigned long timeo_val;
SCTP_DEBUG_PRINTK("sctp_timo_handler: this is on DAD, trying %d sec later\n",
SCTP_ADDRESS_TICK_DELAY);
timeo_val = jiffies;
timeo_val += msecs_to_jiffies(SCTP_ADDRESS_TICK_DELAY);
mod_timer(&net->sctp.addr_wq_timer, timeo_val);
break;
}
}
#endif
list_for_each_entry(sp, &net->sctp.auto_asconf_splist, auto_asconf_list) {
struct sock *sk;
sk = sctp_opt2sk(sp);
/* ignore bound-specific endpoints */
if (!sctp_is_ep_boundall(sk))
continue;
sctp_bh_lock_sock(sk);
if (sctp_asconf_mgmt(sp, addrw) < 0)
SCTP_DEBUG_PRINTK("sctp_addrwq_timo_handler: sctp_asconf_mgmt failed\n");
sctp_bh_unlock_sock(sk);
}
#if IS_ENABLED(CONFIG_IPV6)
free_next:
#endif
list_del(&addrw->list);
kfree(addrw);
}
spin_unlock_bh(&net->sctp.addr_wq_lock);
}
static void sctp_free_addr_wq(struct net *net)
{
struct sctp_sockaddr_entry *addrw;
struct sctp_sockaddr_entry *temp;
spin_lock_bh(&net->sctp.addr_wq_lock);
del_timer(&net->sctp.addr_wq_timer);
list_for_each_entry_safe(addrw, temp, &net->sctp.addr_waitq, list) {
list_del(&addrw->list);
kfree(addrw);
}
spin_unlock_bh(&net->sctp.addr_wq_lock);
}
/* lookup the entry for the same address in the addr_waitq
* sctp_addr_wq MUST be locked
*/
static struct sctp_sockaddr_entry *sctp_addr_wq_lookup(struct net *net,
struct sctp_sockaddr_entry *addr)
{
struct sctp_sockaddr_entry *addrw;
list_for_each_entry(addrw, &net->sctp.addr_waitq, list) {
if (addrw->a.sa.sa_family != addr->a.sa.sa_family)
continue;
if (addrw->a.sa.sa_family == AF_INET) {
if (addrw->a.v4.sin_addr.s_addr ==
addr->a.v4.sin_addr.s_addr)
return addrw;
} else if (addrw->a.sa.sa_family == AF_INET6) {
if (ipv6_addr_equal(&addrw->a.v6.sin6_addr,
&addr->a.v6.sin6_addr))
return addrw;
}
}
return NULL;
}
void sctp_addr_wq_mgmt(struct net *net, struct sctp_sockaddr_entry *addr, int cmd)
{
struct sctp_sockaddr_entry *addrw;
unsigned long timeo_val;
/* first, we check if an opposite message already exist in the queue.
* If we found such message, it is removed.
* This operation is a bit stupid, but the DHCP client attaches the
* new address after a couple of addition and deletion of that address
*/
spin_lock_bh(&net->sctp.addr_wq_lock);
/* Offsets existing events in addr_wq */
addrw = sctp_addr_wq_lookup(net, addr);
if (addrw) {
if (addrw->state != cmd) {
SCTP_DEBUG_PRINTK_IPADDR("sctp_addr_wq_mgmt offsets existing entry for %d ",
" in wq %p\n", addrw->state, &addrw->a,
&net->sctp.addr_waitq);
list_del(&addrw->list);
kfree(addrw);
}
spin_unlock_bh(&net->sctp.addr_wq_lock);
return;
}
/* OK, we have to add the new address to the wait queue */
addrw = kmemdup(addr, sizeof(struct sctp_sockaddr_entry), GFP_ATOMIC);
if (addrw == NULL) {
spin_unlock_bh(&net->sctp.addr_wq_lock);
return;
}
addrw->state = cmd;
list_add_tail(&addrw->list, &net->sctp.addr_waitq);
SCTP_DEBUG_PRINTK_IPADDR("sctp_addr_wq_mgmt add new entry for cmd:%d ",
" in wq %p\n", addrw->state, &addrw->a, &net->sctp.addr_waitq);
if (!timer_pending(&net->sctp.addr_wq_timer)) {
timeo_val = jiffies;
timeo_val += msecs_to_jiffies(SCTP_ADDRESS_TICK_DELAY);
mod_timer(&net->sctp.addr_wq_timer, timeo_val);
}
spin_unlock_bh(&net->sctp.addr_wq_lock);
}
/* Event handler for inet address addition/deletion events.
* The sctp_local_addr_list needs to be protocted by a spin lock since
* multiple notifiers (say IPv4 and IPv6) may be running at the same
* time and thus corrupt the list.
* The reader side is protected with RCU.
*/
static int sctp_inetaddr_event(struct notifier_block *this, unsigned long ev,
void *ptr)
{
struct in_ifaddr *ifa = (struct in_ifaddr *)ptr;
struct sctp_sockaddr_entry *addr = NULL;
struct sctp_sockaddr_entry *temp;
struct net *net = dev_net(ifa->ifa_dev->dev);
int found = 0;
switch (ev) {
case NETDEV_UP:
addr = kmalloc(sizeof(struct sctp_sockaddr_entry), GFP_ATOMIC);
if (addr) {
addr->a.v4.sin_family = AF_INET;
addr->a.v4.sin_port = 0;
addr->a.v4.sin_addr.s_addr = ifa->ifa_local;
addr->valid = 1;
spin_lock_bh(&net->sctp.local_addr_lock);
list_add_tail_rcu(&addr->list, &net->sctp.local_addr_list);
sctp_addr_wq_mgmt(net, addr, SCTP_ADDR_NEW);
spin_unlock_bh(&net->sctp.local_addr_lock);
}
break;
case NETDEV_DOWN:
spin_lock_bh(&net->sctp.local_addr_lock);
list_for_each_entry_safe(addr, temp,
&net->sctp.local_addr_list, list) {
if (addr->a.sa.sa_family == AF_INET &&
addr->a.v4.sin_addr.s_addr ==
ifa->ifa_local) {
sctp_addr_wq_mgmt(net, addr, SCTP_ADDR_DEL);
found = 1;
addr->valid = 0;
list_del_rcu(&addr->list);
break;
}
}
spin_unlock_bh(&net->sctp.local_addr_lock);
if (found)
kfree_rcu(addr, rcu);
break;
}
return NOTIFY_DONE;
}
/*
* Initialize the control inode/socket with a control endpoint data
* structure. This endpoint is reserved exclusively for the OOTB processing.
*/
static int sctp_ctl_sock_init(struct net *net)
{
int err;
sa_family_t family = PF_INET;
if (sctp_get_pf_specific(PF_INET6))
family = PF_INET6;
err = inet_ctl_sock_create(&net->sctp.ctl_sock, family,
SOCK_SEQPACKET, IPPROTO_SCTP, net);
/* If IPv6 socket could not be created, try the IPv4 socket */
if (err < 0 && family == PF_INET6)
err = inet_ctl_sock_create(&net->sctp.ctl_sock, AF_INET,
SOCK_SEQPACKET, IPPROTO_SCTP,
net);
if (err < 0) {
pr_err("Failed to create the SCTP control socket\n");
return err;
}
return 0;
}
/* Register address family specific functions. */
int sctp_register_af(struct sctp_af *af)
{
switch (af->sa_family) {
case AF_INET:
if (sctp_af_v4_specific)
return 0;
sctp_af_v4_specific = af;
break;
case AF_INET6:
if (sctp_af_v6_specific)
return 0;
sctp_af_v6_specific = af;
break;
default:
return 0;
}
INIT_LIST_HEAD(&af->list);
list_add_tail(&af->list, &sctp_address_families);
return 1;
}
/* Get the table of functions for manipulating a particular address
* family.
*/
struct sctp_af *sctp_get_af_specific(sa_family_t family)
{
switch (family) {
case AF_INET:
return sctp_af_v4_specific;
case AF_INET6:
return sctp_af_v6_specific;
default:
return NULL;
}
}
/* Common code to initialize a AF_INET msg_name. */
static void sctp_inet_msgname(char *msgname, int *addr_len)
{
struct sockaddr_in *sin;
sin = (struct sockaddr_in *)msgname;
*addr_len = sizeof(struct sockaddr_in);
sin->sin_family = AF_INET;
memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
}
/* Copy the primary address of the peer primary address as the msg_name. */
static void sctp_inet_event_msgname(struct sctp_ulpevent *event, char *msgname,
int *addr_len)
{
struct sockaddr_in *sin, *sinfrom;
if (msgname) {
struct sctp_association *asoc;
asoc = event->asoc;
sctp_inet_msgname(msgname, addr_len);
sin = (struct sockaddr_in *)msgname;
sinfrom = &asoc->peer.primary_addr.v4;
sin->sin_port = htons(asoc->peer.port);
sin->sin_addr.s_addr = sinfrom->sin_addr.s_addr;
}
}
/* Initialize and copy out a msgname from an inbound skb. */
static void sctp_inet_skb_msgname(struct sk_buff *skb, char *msgname, int *len)
{
if (msgname) {
struct sctphdr *sh = sctp_hdr(skb);
struct sockaddr_in *sin = (struct sockaddr_in *)msgname;
sctp_inet_msgname(msgname, len);
sin->sin_port = sh->source;
sin->sin_addr.s_addr = ip_hdr(skb)->saddr;
}
}
/* Do we support this AF? */
static int sctp_inet_af_supported(sa_family_t family, struct sctp_sock *sp)
{
/* PF_INET only supports AF_INET addresses. */
return AF_INET == family;
}
/* Address matching with wildcards allowed. */
static int sctp_inet_cmp_addr(const union sctp_addr *addr1,
const union sctp_addr *addr2,
struct sctp_sock *opt)
{
/* PF_INET only supports AF_INET addresses. */
if (addr1->sa.sa_family != addr2->sa.sa_family)
return 0;
if (htonl(INADDR_ANY) == addr1->v4.sin_addr.s_addr ||
htonl(INADDR_ANY) == addr2->v4.sin_addr.s_addr)
return 1;
if (addr1->v4.sin_addr.s_addr == addr2->v4.sin_addr.s_addr)
return 1;
return 0;
}
/* Verify that provided sockaddr looks bindable. Common verification has
* already been taken care of.
*/
static int sctp_inet_bind_verify(struct sctp_sock *opt, union sctp_addr *addr)
{
return sctp_v4_available(addr, opt);
}
/* Verify that sockaddr looks sendable. Common verification has already
* been taken care of.
*/
static int sctp_inet_send_verify(struct sctp_sock *opt, union sctp_addr *addr)
{
return 1;
}
/* Fill in Supported Address Type information for INIT and INIT-ACK
* chunks. Returns number of addresses supported.
*/
static int sctp_inet_supported_addrs(const struct sctp_sock *opt,
__be16 *types)
{
types[0] = SCTP_PARAM_IPV4_ADDRESS;
return 1;
}
/* Wrapper routine that calls the ip transmit routine. */
static inline int sctp_v4_xmit(struct sk_buff *skb,
struct sctp_transport *transport)
{
struct inet_sock *inet = inet_sk(skb->sk);
SCTP_DEBUG_PRINTK("%s: skb:%p, len:%d, src:%pI4, dst:%pI4\n",
__func__, skb, skb->len,
&transport->fl.u.ip4.saddr,
&transport->fl.u.ip4.daddr);
inet->pmtudisc = transport->param_flags & SPP_PMTUD_ENABLE ?
IP_PMTUDISC_DO : IP_PMTUDISC_DONT;
SCTP_INC_STATS(sock_net(&inet->sk), SCTP_MIB_OUTSCTPPACKS);
return ip_queue_xmit(skb, &transport->fl);
}
static struct sctp_af sctp_af_inet;
static struct sctp_pf sctp_pf_inet = {
.event_msgname = sctp_inet_event_msgname,
.skb_msgname = sctp_inet_skb_msgname,
.af_supported = sctp_inet_af_supported,
.cmp_addr = sctp_inet_cmp_addr,
.bind_verify = sctp_inet_bind_verify,
.send_verify = sctp_inet_send_verify,
.supported_addrs = sctp_inet_supported_addrs,
.create_accept_sk = sctp_v4_create_accept_sk,
.addr_v4map = sctp_v4_addr_v4map,
.af = &sctp_af_inet
};
/* Notifier for inetaddr addition/deletion events. */
static struct notifier_block sctp_inetaddr_notifier = {
.notifier_call = sctp_inetaddr_event,
};
/* Socket operations. */
static const struct proto_ops inet_seqpacket_ops = {
.family = PF_INET,
.owner = THIS_MODULE,
.release = inet_release, /* Needs to be wrapped... */
.bind = inet_bind,
.connect = inet_dgram_connect,
.socketpair = sock_no_socketpair,
.accept = inet_accept,
.getname = inet_getname, /* Semantics are different. */
.poll = sctp_poll,
.ioctl = inet_ioctl,
.listen = sctp_inet_listen,
.shutdown = inet_shutdown, /* Looks harmless. */
.setsockopt = sock_common_setsockopt, /* IP_SOL IP_OPTION is a problem */
.getsockopt = sock_common_getsockopt,
.sendmsg = inet_sendmsg,
.recvmsg = sock_common_recvmsg,
.mmap = sock_no_mmap,
.sendpage = sock_no_sendpage,
#ifdef CONFIG_COMPAT
.compat_setsockopt = compat_sock_common_setsockopt,
.compat_getsockopt = compat_sock_common_getsockopt,
#endif
};
/* Registration with AF_INET family. */
static struct inet_protosw sctp_seqpacket_protosw = {
.type = SOCK_SEQPACKET,
.protocol = IPPROTO_SCTP,
.prot = &sctp_prot,
.ops = &inet_seqpacket_ops,
.no_check = 0,
.flags = SCTP_PROTOSW_FLAG
};
static struct inet_protosw sctp_stream_protosw = {
.type = SOCK_STREAM,
.protocol = IPPROTO_SCTP,
.prot = &sctp_prot,
.ops = &inet_seqpacket_ops,
.no_check = 0,
.flags = SCTP_PROTOSW_FLAG
};
/* Register with IP layer. */
static const struct net_protocol sctp_protocol = {
.handler = sctp_rcv,
.err_handler = sctp_v4_err,
.no_policy = 1,
.netns_ok = 1,
};
/* IPv4 address related functions. */
static struct sctp_af sctp_af_inet = {
.sa_family = AF_INET,
.sctp_xmit = sctp_v4_xmit,
.setsockopt = ip_setsockopt,
.getsockopt = ip_getsockopt,
.get_dst = sctp_v4_get_dst,
.get_saddr = sctp_v4_get_saddr,
.copy_addrlist = sctp_v4_copy_addrlist,
.from_skb = sctp_v4_from_skb,
.from_sk = sctp_v4_from_sk,
.to_sk_saddr = sctp_v4_to_sk_saddr,
.to_sk_daddr = sctp_v4_to_sk_daddr,
.from_addr_param = sctp_v4_from_addr_param,
.to_addr_param = sctp_v4_to_addr_param,
.cmp_addr = sctp_v4_cmp_addr,
.addr_valid = sctp_v4_addr_valid,
.inaddr_any = sctp_v4_inaddr_any,
.is_any = sctp_v4_is_any,
.available = sctp_v4_available,
.scope = sctp_v4_scope,
.skb_iif = sctp_v4_skb_iif,
.is_ce = sctp_v4_is_ce,
.seq_dump_addr = sctp_v4_seq_dump_addr,
.ecn_capable = sctp_v4_ecn_capable,
.net_header_len = sizeof(struct iphdr),
.sockaddr_len = sizeof(struct sockaddr_in),
#ifdef CONFIG_COMPAT
.compat_setsockopt = compat_ip_setsockopt,
.compat_getsockopt = compat_ip_getsockopt,
#endif
};
struct sctp_pf *sctp_get_pf_specific(sa_family_t family) {
switch (family) {
case PF_INET:
return sctp_pf_inet_specific;
case PF_INET6:
return sctp_pf_inet6_specific;
default:
return NULL;
}
}
/* Register the PF specific function table. */
int sctp_register_pf(struct sctp_pf *pf, sa_family_t family)
{
switch (family) {
case PF_INET:
if (sctp_pf_inet_specific)
return 0;
sctp_pf_inet_specific = pf;
break;
case PF_INET6:
if (sctp_pf_inet6_specific)
return 0;
sctp_pf_inet6_specific = pf;
break;
default:
return 0;
}
return 1;
}
static inline int init_sctp_mibs(struct net *net)
{
return snmp_mib_init((void __percpu **)net->sctp.sctp_statistics,
sizeof(struct sctp_mib),
__alignof__(struct sctp_mib));
}
static inline void cleanup_sctp_mibs(struct net *net)
{
snmp_mib_free((void __percpu **)net->sctp.sctp_statistics);
}
static void sctp_v4_pf_init(void)
{
/* Initialize the SCTP specific PF functions. */
sctp_register_pf(&sctp_pf_inet, PF_INET);
sctp_register_af(&sctp_af_inet);
}
static void sctp_v4_pf_exit(void)
{
list_del(&sctp_af_inet.list);
}
static int sctp_v4_protosw_init(void)
{
int rc;
rc = proto_register(&sctp_prot, 1);
if (rc)
return rc;
/* Register SCTP(UDP and TCP style) with socket layer. */
inet_register_protosw(&sctp_seqpacket_protosw);
inet_register_protosw(&sctp_stream_protosw);
return 0;
}
static void sctp_v4_protosw_exit(void)
{
inet_unregister_protosw(&sctp_stream_protosw);
inet_unregister_protosw(&sctp_seqpacket_protosw);
proto_unregister(&sctp_prot);
}
static int sctp_v4_add_protocol(void)
{
/* Register notifier for inet address additions/deletions. */
register_inetaddr_notifier(&sctp_inetaddr_notifier);
/* Register SCTP with inet layer. */
if (inet_add_protocol(&sctp_protocol, IPPROTO_SCTP) < 0)
return -EAGAIN;
return 0;
}
static void sctp_v4_del_protocol(void)
{
inet_del_protocol(&sctp_protocol, IPPROTO_SCTP);
unregister_inetaddr_notifier(&sctp_inetaddr_notifier);
}
sctp: fix race on protocol/netns initialization [ Upstream commit 8e2d61e0aed2b7c4ecb35844fe07e0b2b762dee4 ] Consider sctp module is unloaded and is being requested because an user is creating a sctp socket. During initialization, sctp will add the new protocol type and then initialize pernet subsys: status = sctp_v4_protosw_init(); if (status) goto err_protosw_init; status = sctp_v6_protosw_init(); if (status) goto err_v6_protosw_init; status = register_pernet_subsys(&sctp_net_ops); The problem is that after those calls to sctp_v{4,6}_protosw_init(), it is possible for userspace to create SCTP sockets like if the module is already fully loaded. If that happens, one of the possible effects is that we will have readers for net->sctp.local_addr_list list earlier than expected and sctp_net_init() does not take precautions while dealing with that list, leading to a potential panic but not limited to that, as sctp_sock_init() will copy a bunch of blank/partially initialized values from net->sctp. The race happens like this: CPU 0 | CPU 1 socket() | __sock_create | socket() inet_create | __sock_create list_for_each_entry_rcu( | answer, &inetsw[sock->type], | list) { | inet_create /* no hits */ | if (unlikely(err)) { | ... | request_module() | /* socket creation is blocked | * the module is fully loaded | */ | sctp_init | sctp_v4_protosw_init | inet_register_protosw | list_add_rcu(&p->list, | last_perm); | | list_for_each_entry_rcu( | answer, &inetsw[sock->type], sctp_v6_protosw_init | list) { | /* hit, so assumes protocol | * is already loaded | */ | /* socket creation continues | * before netns is initialized | */ register_pernet_subsys | Simply inverting the initialization order between register_pernet_subsys() and sctp_v4_protosw_init() is not possible because register_pernet_subsys() will create a control sctp socket, so the protocol must be already visible by then. Deferring the socket creation to a work-queue is not good specially because we loose the ability to handle its errors. So, as suggested by Vlad, the fix is to split netns initialization in two moments: defaults and control socket, so that the defaults are already loaded by when we register the protocol, while control socket initialization is kept at the same moment it is today. Fixes: 4db67e808640 ("sctp: Make the address lists per network namespace") Signed-off-by: Vlad Yasevich <vyasevich@gmail.com> Signed-off-by: Marcelo Ricardo Leitner <marcelo.leitner@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2015-09-10 20:31:15 +00:00
static int __net_init sctp_defaults_init(struct net *net)
{
int status;
/*
* 14. Suggested SCTP Protocol Parameter Values
*/
/* The following protocol parameters are RECOMMENDED: */
/* RTO.Initial - 3 seconds */
net->sctp.rto_initial = SCTP_RTO_INITIAL;
/* RTO.Min - 1 second */
net->sctp.rto_min = SCTP_RTO_MIN;
/* RTO.Max - 60 seconds */
net->sctp.rto_max = SCTP_RTO_MAX;
/* RTO.Alpha - 1/8 */
net->sctp.rto_alpha = SCTP_RTO_ALPHA;
/* RTO.Beta - 1/4 */
net->sctp.rto_beta = SCTP_RTO_BETA;
/* Valid.Cookie.Life - 60 seconds */
net->sctp.valid_cookie_life = SCTP_DEFAULT_COOKIE_LIFE;
/* Whether Cookie Preservative is enabled(1) or not(0) */
net->sctp.cookie_preserve_enable = 1;
/* Default sctp sockets to use md5 as their hmac alg */
#if defined (CONFIG_SCTP_DEFAULT_COOKIE_HMAC_MD5)
net->sctp.sctp_hmac_alg = "md5";
#elif defined (CONFIG_SCTP_DEFAULT_COOKIE_HMAC_SHA1)
net->sctp.sctp_hmac_alg = "sha1";
#else
net->sctp.sctp_hmac_alg = NULL;
#endif
/* Max.Burst - 4 */
net->sctp.max_burst = SCTP_DEFAULT_MAX_BURST;
/* Association.Max.Retrans - 10 attempts
* Path.Max.Retrans - 5 attempts (per destination address)
* Max.Init.Retransmits - 8 attempts
*/
net->sctp.max_retrans_association = 10;
net->sctp.max_retrans_path = 5;
net->sctp.max_retrans_init = 8;
/* Sendbuffer growth - do per-socket accounting */
net->sctp.sndbuf_policy = 0;
/* Rcvbuffer growth - do per-socket accounting */
net->sctp.rcvbuf_policy = 0;
/* HB.interval - 30 seconds */
net->sctp.hb_interval = SCTP_DEFAULT_TIMEOUT_HEARTBEAT;
/* delayed SACK timeout */
net->sctp.sack_timeout = SCTP_DEFAULT_TIMEOUT_SACK;
/* Disable ADDIP by default. */
net->sctp.addip_enable = 0;
net->sctp.addip_noauth = 0;
net->sctp.default_auto_asconf = 0;
/* Enable PR-SCTP by default. */
net->sctp.prsctp_enable = 1;
/* Disable AUTH by default. */
net->sctp.auth_enable = 0;
/* Set SCOPE policy to enabled */
net->sctp.scope_policy = SCTP_SCOPE_POLICY_ENABLE;
/* Set the default rwnd update threshold */
net->sctp.rwnd_upd_shift = SCTP_DEFAULT_RWND_SHIFT;
/* Initialize maximum autoclose timeout. */
net->sctp.max_autoclose = INT_MAX / HZ;
status = sctp_sysctl_net_register(net);
if (status)
goto err_sysctl_register;
/* Allocate and initialise sctp mibs. */
status = init_sctp_mibs(net);
if (status)
goto err_init_mibs;
/* Initialize proc fs directory. */
status = sctp_proc_init(net);
if (status)
goto err_init_proc;
sctp_dbg_objcnt_init(net);
/* Initialize the local address list. */
INIT_LIST_HEAD(&net->sctp.local_addr_list);
spin_lock_init(&net->sctp.local_addr_lock);
sctp_get_local_addr_list(net);
/* Initialize the address event list */
INIT_LIST_HEAD(&net->sctp.addr_waitq);
INIT_LIST_HEAD(&net->sctp.auto_asconf_splist);
spin_lock_init(&net->sctp.addr_wq_lock);
net->sctp.addr_wq_timer.expires = 0;
setup_timer(&net->sctp.addr_wq_timer, sctp_addr_wq_timeout_handler,
(unsigned long)net);
return 0;
err_init_proc:
cleanup_sctp_mibs(net);
err_init_mibs:
sctp_sysctl_net_unregister(net);
err_sysctl_register:
return status;
}
sctp: fix race on protocol/netns initialization [ Upstream commit 8e2d61e0aed2b7c4ecb35844fe07e0b2b762dee4 ] Consider sctp module is unloaded and is being requested because an user is creating a sctp socket. During initialization, sctp will add the new protocol type and then initialize pernet subsys: status = sctp_v4_protosw_init(); if (status) goto err_protosw_init; status = sctp_v6_protosw_init(); if (status) goto err_v6_protosw_init; status = register_pernet_subsys(&sctp_net_ops); The problem is that after those calls to sctp_v{4,6}_protosw_init(), it is possible for userspace to create SCTP sockets like if the module is already fully loaded. If that happens, one of the possible effects is that we will have readers for net->sctp.local_addr_list list earlier than expected and sctp_net_init() does not take precautions while dealing with that list, leading to a potential panic but not limited to that, as sctp_sock_init() will copy a bunch of blank/partially initialized values from net->sctp. The race happens like this: CPU 0 | CPU 1 socket() | __sock_create | socket() inet_create | __sock_create list_for_each_entry_rcu( | answer, &inetsw[sock->type], | list) { | inet_create /* no hits */ | if (unlikely(err)) { | ... | request_module() | /* socket creation is blocked | * the module is fully loaded | */ | sctp_init | sctp_v4_protosw_init | inet_register_protosw | list_add_rcu(&p->list, | last_perm); | | list_for_each_entry_rcu( | answer, &inetsw[sock->type], sctp_v6_protosw_init | list) { | /* hit, so assumes protocol | * is already loaded | */ | /* socket creation continues | * before netns is initialized | */ register_pernet_subsys | Simply inverting the initialization order between register_pernet_subsys() and sctp_v4_protosw_init() is not possible because register_pernet_subsys() will create a control sctp socket, so the protocol must be already visible by then. Deferring the socket creation to a work-queue is not good specially because we loose the ability to handle its errors. So, as suggested by Vlad, the fix is to split netns initialization in two moments: defaults and control socket, so that the defaults are already loaded by when we register the protocol, while control socket initialization is kept at the same moment it is today. Fixes: 4db67e808640 ("sctp: Make the address lists per network namespace") Signed-off-by: Vlad Yasevich <vyasevich@gmail.com> Signed-off-by: Marcelo Ricardo Leitner <marcelo.leitner@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2015-09-10 20:31:15 +00:00
static void __net_exit sctp_defaults_exit(struct net *net)
{
/* Free the local address list */
sctp_free_addr_wq(net);
sctp_free_local_addr_list(net);
sctp_dbg_objcnt_exit(net);
sctp_proc_exit(net);
cleanup_sctp_mibs(net);
sctp_sysctl_net_unregister(net);
}
sctp: fix race on protocol/netns initialization [ Upstream commit 8e2d61e0aed2b7c4ecb35844fe07e0b2b762dee4 ] Consider sctp module is unloaded and is being requested because an user is creating a sctp socket. During initialization, sctp will add the new protocol type and then initialize pernet subsys: status = sctp_v4_protosw_init(); if (status) goto err_protosw_init; status = sctp_v6_protosw_init(); if (status) goto err_v6_protosw_init; status = register_pernet_subsys(&sctp_net_ops); The problem is that after those calls to sctp_v{4,6}_protosw_init(), it is possible for userspace to create SCTP sockets like if the module is already fully loaded. If that happens, one of the possible effects is that we will have readers for net->sctp.local_addr_list list earlier than expected and sctp_net_init() does not take precautions while dealing with that list, leading to a potential panic but not limited to that, as sctp_sock_init() will copy a bunch of blank/partially initialized values from net->sctp. The race happens like this: CPU 0 | CPU 1 socket() | __sock_create | socket() inet_create | __sock_create list_for_each_entry_rcu( | answer, &inetsw[sock->type], | list) { | inet_create /* no hits */ | if (unlikely(err)) { | ... | request_module() | /* socket creation is blocked | * the module is fully loaded | */ | sctp_init | sctp_v4_protosw_init | inet_register_protosw | list_add_rcu(&p->list, | last_perm); | | list_for_each_entry_rcu( | answer, &inetsw[sock->type], sctp_v6_protosw_init | list) { | /* hit, so assumes protocol | * is already loaded | */ | /* socket creation continues | * before netns is initialized | */ register_pernet_subsys | Simply inverting the initialization order between register_pernet_subsys() and sctp_v4_protosw_init() is not possible because register_pernet_subsys() will create a control sctp socket, so the protocol must be already visible by then. Deferring the socket creation to a work-queue is not good specially because we loose the ability to handle its errors. So, as suggested by Vlad, the fix is to split netns initialization in two moments: defaults and control socket, so that the defaults are already loaded by when we register the protocol, while control socket initialization is kept at the same moment it is today. Fixes: 4db67e808640 ("sctp: Make the address lists per network namespace") Signed-off-by: Vlad Yasevich <vyasevich@gmail.com> Signed-off-by: Marcelo Ricardo Leitner <marcelo.leitner@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2015-09-10 20:31:15 +00:00
static struct pernet_operations sctp_defaults_ops = {
.init = sctp_defaults_init,
.exit = sctp_defaults_exit,
};
static int __net_init sctp_ctrlsock_init(struct net *net)
{
int status;
/* Initialize the control inode/socket for handling OOTB packets. */
status = sctp_ctl_sock_init(net);
if (status)
pr_err("Failed to initialize the SCTP control sock\n");
return status;
}
static void __net_init sctp_ctrlsock_exit(struct net *net)
{
/* Free the control endpoint. */
inet_ctl_sock_destroy(net->sctp.ctl_sock);
}
static struct pernet_operations sctp_ctrlsock_ops = {
.init = sctp_ctrlsock_init,
.exit = sctp_ctrlsock_exit,
};
/* Initialize the universe into something sensible. */
SCTP_STATIC __init int sctp_init(void)
{
int i;
int status = -EINVAL;
unsigned long goal;
unsigned long limit;
int max_share;
int order;
/* SCTP_DEBUG sanity check. */
if (!sctp_sanity_check())
goto out;
/* Allocate bind_bucket and chunk caches. */
status = -ENOBUFS;
sctp_bucket_cachep = kmem_cache_create("sctp_bind_bucket",
sizeof(struct sctp_bind_bucket),
0, SLAB_HWCACHE_ALIGN,
NULL);
if (!sctp_bucket_cachep)
goto out;
sctp_chunk_cachep = kmem_cache_create("sctp_chunk",
sizeof(struct sctp_chunk),
0, SLAB_HWCACHE_ALIGN,
NULL);
if (!sctp_chunk_cachep)
goto err_chunk_cachep;
status = percpu_counter_init(&sctp_sockets_allocated, 0);
if (status)
goto err_percpu_counter_init;
/* Implementation specific variables. */
/* Initialize default stream count setup information. */
sctp_max_instreams = SCTP_DEFAULT_INSTREAMS;
sctp_max_outstreams = SCTP_DEFAULT_OUTSTREAMS;
/* Initialize handle used for association ids. */
idr_init(&sctp_assocs_id);
limit = nr_free_buffer_pages() / 8;
limit = max(limit, 128UL);
sysctl_sctp_mem[0] = limit / 4 * 3;
sysctl_sctp_mem[1] = limit;
sysctl_sctp_mem[2] = sysctl_sctp_mem[0] * 2;
/* Set per-socket limits to no more than 1/128 the pressure threshold*/
limit = (sysctl_sctp_mem[1]) << (PAGE_SHIFT - 7);
max_share = min(4UL*1024*1024, limit);
sysctl_sctp_rmem[0] = SK_MEM_QUANTUM; /* give each asoc 1 page min */
sysctl_sctp_rmem[1] = 1500 * SKB_TRUESIZE(1);
sysctl_sctp_rmem[2] = max(sysctl_sctp_rmem[1], max_share);
[NET] CORE: Introducing new memory accounting interface. This patch introduces new memory accounting functions for each network protocol. Most of them are renamed from memory accounting functions for stream protocols. At the same time, some stream memory accounting functions are removed since other functions do same thing. Renaming: sk_stream_free_skb() -> sk_wmem_free_skb() __sk_stream_mem_reclaim() -> __sk_mem_reclaim() sk_stream_mem_reclaim() -> sk_mem_reclaim() sk_stream_mem_schedule -> __sk_mem_schedule() sk_stream_pages() -> sk_mem_pages() sk_stream_rmem_schedule() -> sk_rmem_schedule() sk_stream_wmem_schedule() -> sk_wmem_schedule() sk_charge_skb() -> sk_mem_charge() Removeing sk_stream_rfree(): consolidates into sock_rfree() sk_stream_set_owner_r(): consolidates into skb_set_owner_r() sk_stream_mem_schedule() The following functions are added. sk_has_account(): check if the protocol supports accounting sk_mem_uncharge(): do the opposite of sk_mem_charge() In addition, to achieve consolidation, updating sk_wmem_queued is removed from sk_mem_charge(). Next, to consolidate memory accounting functions, this patch adds memory accounting calls to network core functions. Moreover, present memory accounting call is renamed to new accounting call. Finally we replace present memory accounting calls with new interface in TCP and SCTP. Signed-off-by: Takahiro Yasui <tyasui@redhat.com> Signed-off-by: Hideo Aoki <haoki@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2007-12-31 08:11:19 +00:00
sysctl_sctp_wmem[0] = SK_MEM_QUANTUM;
sysctl_sctp_wmem[1] = 16*1024;
sysctl_sctp_wmem[2] = max(64*1024, max_share);
/* Size and allocate the association hash table.
* The methodology is similar to that of the tcp hash tables.
*/
if (totalram_pages >= (128 * 1024))
goal = totalram_pages >> (22 - PAGE_SHIFT);
else
goal = totalram_pages >> (24 - PAGE_SHIFT);
for (order = 0; (1UL << order) < goal; order++)
;
do {
sctp_assoc_hashsize = (1UL << order) * PAGE_SIZE /
sizeof(struct sctp_hashbucket);
if ((sctp_assoc_hashsize > (64 * 1024)) && order > 0)
continue;
sctp_assoc_hashtable = (struct sctp_hashbucket *)
__get_free_pages(GFP_ATOMIC|__GFP_NOWARN, order);
} while (!sctp_assoc_hashtable && --order > 0);
if (!sctp_assoc_hashtable) {
pr_err("Failed association hash alloc\n");
status = -ENOMEM;
goto err_ahash_alloc;
}
for (i = 0; i < sctp_assoc_hashsize; i++) {
rwlock_init(&sctp_assoc_hashtable[i].lock);
INIT_HLIST_HEAD(&sctp_assoc_hashtable[i].chain);
}
/* Allocate and initialize the endpoint hash table. */
sctp_ep_hashsize = 64;
sctp_ep_hashtable =
kmalloc(64 * sizeof(struct sctp_hashbucket), GFP_KERNEL);
if (!sctp_ep_hashtable) {
pr_err("Failed endpoint_hash alloc\n");
status = -ENOMEM;
goto err_ehash_alloc;
}
for (i = 0; i < sctp_ep_hashsize; i++) {
rwlock_init(&sctp_ep_hashtable[i].lock);
INIT_HLIST_HEAD(&sctp_ep_hashtable[i].chain);
}
/* Allocate and initialize the SCTP port hash table. */
do {
sctp_port_hashsize = (1UL << order) * PAGE_SIZE /
sizeof(struct sctp_bind_hashbucket);
if ((sctp_port_hashsize > (64 * 1024)) && order > 0)
continue;
sctp_port_hashtable = (struct sctp_bind_hashbucket *)
__get_free_pages(GFP_ATOMIC|__GFP_NOWARN, order);
} while (!sctp_port_hashtable && --order > 0);
if (!sctp_port_hashtable) {
pr_err("Failed bind hash alloc\n");
status = -ENOMEM;
goto err_bhash_alloc;
}
for (i = 0; i < sctp_port_hashsize; i++) {
spin_lock_init(&sctp_port_hashtable[i].lock);
INIT_HLIST_HEAD(&sctp_port_hashtable[i].chain);
}
pr_info("Hash tables configured (established %d bind %d)\n",
sctp_assoc_hashsize, sctp_port_hashsize);
sctp_sysctl_register();
INIT_LIST_HEAD(&sctp_address_families);
sctp_v4_pf_init();
sctp_v6_pf_init();
sctp: fix race on protocol/netns initialization [ Upstream commit 8e2d61e0aed2b7c4ecb35844fe07e0b2b762dee4 ] Consider sctp module is unloaded and is being requested because an user is creating a sctp socket. During initialization, sctp will add the new protocol type and then initialize pernet subsys: status = sctp_v4_protosw_init(); if (status) goto err_protosw_init; status = sctp_v6_protosw_init(); if (status) goto err_v6_protosw_init; status = register_pernet_subsys(&sctp_net_ops); The problem is that after those calls to sctp_v{4,6}_protosw_init(), it is possible for userspace to create SCTP sockets like if the module is already fully loaded. If that happens, one of the possible effects is that we will have readers for net->sctp.local_addr_list list earlier than expected and sctp_net_init() does not take precautions while dealing with that list, leading to a potential panic but not limited to that, as sctp_sock_init() will copy a bunch of blank/partially initialized values from net->sctp. The race happens like this: CPU 0 | CPU 1 socket() | __sock_create | socket() inet_create | __sock_create list_for_each_entry_rcu( | answer, &inetsw[sock->type], | list) { | inet_create /* no hits */ | if (unlikely(err)) { | ... | request_module() | /* socket creation is blocked | * the module is fully loaded | */ | sctp_init | sctp_v4_protosw_init | inet_register_protosw | list_add_rcu(&p->list, | last_perm); | | list_for_each_entry_rcu( | answer, &inetsw[sock->type], sctp_v6_protosw_init | list) { | /* hit, so assumes protocol | * is already loaded | */ | /* socket creation continues | * before netns is initialized | */ register_pernet_subsys | Simply inverting the initialization order between register_pernet_subsys() and sctp_v4_protosw_init() is not possible because register_pernet_subsys() will create a control sctp socket, so the protocol must be already visible by then. Deferring the socket creation to a work-queue is not good specially because we loose the ability to handle its errors. So, as suggested by Vlad, the fix is to split netns initialization in two moments: defaults and control socket, so that the defaults are already loaded by when we register the protocol, while control socket initialization is kept at the same moment it is today. Fixes: 4db67e808640 ("sctp: Make the address lists per network namespace") Signed-off-by: Vlad Yasevich <vyasevich@gmail.com> Signed-off-by: Marcelo Ricardo Leitner <marcelo.leitner@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2015-09-10 20:31:15 +00:00
status = register_pernet_subsys(&sctp_defaults_ops);
if (status)
goto err_register_defaults;
sctp: fix race on protocol/netns initialization [ Upstream commit 8e2d61e0aed2b7c4ecb35844fe07e0b2b762dee4 ] Consider sctp module is unloaded and is being requested because an user is creating a sctp socket. During initialization, sctp will add the new protocol type and then initialize pernet subsys: status = sctp_v4_protosw_init(); if (status) goto err_protosw_init; status = sctp_v6_protosw_init(); if (status) goto err_v6_protosw_init; status = register_pernet_subsys(&sctp_net_ops); The problem is that after those calls to sctp_v{4,6}_protosw_init(), it is possible for userspace to create SCTP sockets like if the module is already fully loaded. If that happens, one of the possible effects is that we will have readers for net->sctp.local_addr_list list earlier than expected and sctp_net_init() does not take precautions while dealing with that list, leading to a potential panic but not limited to that, as sctp_sock_init() will copy a bunch of blank/partially initialized values from net->sctp. The race happens like this: CPU 0 | CPU 1 socket() | __sock_create | socket() inet_create | __sock_create list_for_each_entry_rcu( | answer, &inetsw[sock->type], | list) { | inet_create /* no hits */ | if (unlikely(err)) { | ... | request_module() | /* socket creation is blocked | * the module is fully loaded | */ | sctp_init | sctp_v4_protosw_init | inet_register_protosw | list_add_rcu(&p->list, | last_perm); | | list_for_each_entry_rcu( | answer, &inetsw[sock->type], sctp_v6_protosw_init | list) { | /* hit, so assumes protocol | * is already loaded | */ | /* socket creation continues | * before netns is initialized | */ register_pernet_subsys | Simply inverting the initialization order between register_pernet_subsys() and sctp_v4_protosw_init() is not possible because register_pernet_subsys() will create a control sctp socket, so the protocol must be already visible by then. Deferring the socket creation to a work-queue is not good specially because we loose the ability to handle its errors. So, as suggested by Vlad, the fix is to split netns initialization in two moments: defaults and control socket, so that the defaults are already loaded by when we register the protocol, while control socket initialization is kept at the same moment it is today. Fixes: 4db67e808640 ("sctp: Make the address lists per network namespace") Signed-off-by: Vlad Yasevich <vyasevich@gmail.com> Signed-off-by: Marcelo Ricardo Leitner <marcelo.leitner@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2015-09-10 20:31:15 +00:00
status = sctp_v4_protosw_init();
if (status)
goto err_protosw_init;
status = sctp_v6_protosw_init();
if (status)
goto err_v6_protosw_init;
sctp: fix race on protocol/netns initialization [ Upstream commit 8e2d61e0aed2b7c4ecb35844fe07e0b2b762dee4 ] Consider sctp module is unloaded and is being requested because an user is creating a sctp socket. During initialization, sctp will add the new protocol type and then initialize pernet subsys: status = sctp_v4_protosw_init(); if (status) goto err_protosw_init; status = sctp_v6_protosw_init(); if (status) goto err_v6_protosw_init; status = register_pernet_subsys(&sctp_net_ops); The problem is that after those calls to sctp_v{4,6}_protosw_init(), it is possible for userspace to create SCTP sockets like if the module is already fully loaded. If that happens, one of the possible effects is that we will have readers for net->sctp.local_addr_list list earlier than expected and sctp_net_init() does not take precautions while dealing with that list, leading to a potential panic but not limited to that, as sctp_sock_init() will copy a bunch of blank/partially initialized values from net->sctp. The race happens like this: CPU 0 | CPU 1 socket() | __sock_create | socket() inet_create | __sock_create list_for_each_entry_rcu( | answer, &inetsw[sock->type], | list) { | inet_create /* no hits */ | if (unlikely(err)) { | ... | request_module() | /* socket creation is blocked | * the module is fully loaded | */ | sctp_init | sctp_v4_protosw_init | inet_register_protosw | list_add_rcu(&p->list, | last_perm); | | list_for_each_entry_rcu( | answer, &inetsw[sock->type], sctp_v6_protosw_init | list) { | /* hit, so assumes protocol | * is already loaded | */ | /* socket creation continues | * before netns is initialized | */ register_pernet_subsys | Simply inverting the initialization order between register_pernet_subsys() and sctp_v4_protosw_init() is not possible because register_pernet_subsys() will create a control sctp socket, so the protocol must be already visible by then. Deferring the socket creation to a work-queue is not good specially because we loose the ability to handle its errors. So, as suggested by Vlad, the fix is to split netns initialization in two moments: defaults and control socket, so that the defaults are already loaded by when we register the protocol, while control socket initialization is kept at the same moment it is today. Fixes: 4db67e808640 ("sctp: Make the address lists per network namespace") Signed-off-by: Vlad Yasevich <vyasevich@gmail.com> Signed-off-by: Marcelo Ricardo Leitner <marcelo.leitner@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2015-09-10 20:31:15 +00:00
status = register_pernet_subsys(&sctp_ctrlsock_ops);
if (status)
sctp: fix race on protocol/netns initialization [ Upstream commit 8e2d61e0aed2b7c4ecb35844fe07e0b2b762dee4 ] Consider sctp module is unloaded and is being requested because an user is creating a sctp socket. During initialization, sctp will add the new protocol type and then initialize pernet subsys: status = sctp_v4_protosw_init(); if (status) goto err_protosw_init; status = sctp_v6_protosw_init(); if (status) goto err_v6_protosw_init; status = register_pernet_subsys(&sctp_net_ops); The problem is that after those calls to sctp_v{4,6}_protosw_init(), it is possible for userspace to create SCTP sockets like if the module is already fully loaded. If that happens, one of the possible effects is that we will have readers for net->sctp.local_addr_list list earlier than expected and sctp_net_init() does not take precautions while dealing with that list, leading to a potential panic but not limited to that, as sctp_sock_init() will copy a bunch of blank/partially initialized values from net->sctp. The race happens like this: CPU 0 | CPU 1 socket() | __sock_create | socket() inet_create | __sock_create list_for_each_entry_rcu( | answer, &inetsw[sock->type], | list) { | inet_create /* no hits */ | if (unlikely(err)) { | ... | request_module() | /* socket creation is blocked | * the module is fully loaded | */ | sctp_init | sctp_v4_protosw_init | inet_register_protosw | list_add_rcu(&p->list, | last_perm); | | list_for_each_entry_rcu( | answer, &inetsw[sock->type], sctp_v6_protosw_init | list) { | /* hit, so assumes protocol | * is already loaded | */ | /* socket creation continues | * before netns is initialized | */ register_pernet_subsys | Simply inverting the initialization order between register_pernet_subsys() and sctp_v4_protosw_init() is not possible because register_pernet_subsys() will create a control sctp socket, so the protocol must be already visible by then. Deferring the socket creation to a work-queue is not good specially because we loose the ability to handle its errors. So, as suggested by Vlad, the fix is to split netns initialization in two moments: defaults and control socket, so that the defaults are already loaded by when we register the protocol, while control socket initialization is kept at the same moment it is today. Fixes: 4db67e808640 ("sctp: Make the address lists per network namespace") Signed-off-by: Vlad Yasevich <vyasevich@gmail.com> Signed-off-by: Marcelo Ricardo Leitner <marcelo.leitner@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2015-09-10 20:31:15 +00:00
goto err_register_ctrlsock;
status = sctp_v4_add_protocol();
if (status)
goto err_add_protocol;
/* Register SCTP with inet6 layer. */
status = sctp_v6_add_protocol();
if (status)
goto err_v6_add_protocol;
status = 0;
out:
return status;
err_v6_add_protocol:
sctp_v4_del_protocol();
err_add_protocol:
sctp: fix race on protocol/netns initialization [ Upstream commit 8e2d61e0aed2b7c4ecb35844fe07e0b2b762dee4 ] Consider sctp module is unloaded and is being requested because an user is creating a sctp socket. During initialization, sctp will add the new protocol type and then initialize pernet subsys: status = sctp_v4_protosw_init(); if (status) goto err_protosw_init; status = sctp_v6_protosw_init(); if (status) goto err_v6_protosw_init; status = register_pernet_subsys(&sctp_net_ops); The problem is that after those calls to sctp_v{4,6}_protosw_init(), it is possible for userspace to create SCTP sockets like if the module is already fully loaded. If that happens, one of the possible effects is that we will have readers for net->sctp.local_addr_list list earlier than expected and sctp_net_init() does not take precautions while dealing with that list, leading to a potential panic but not limited to that, as sctp_sock_init() will copy a bunch of blank/partially initialized values from net->sctp. The race happens like this: CPU 0 | CPU 1 socket() | __sock_create | socket() inet_create | __sock_create list_for_each_entry_rcu( | answer, &inetsw[sock->type], | list) { | inet_create /* no hits */ | if (unlikely(err)) { | ... | request_module() | /* socket creation is blocked | * the module is fully loaded | */ | sctp_init | sctp_v4_protosw_init | inet_register_protosw | list_add_rcu(&p->list, | last_perm); | | list_for_each_entry_rcu( | answer, &inetsw[sock->type], sctp_v6_protosw_init | list) { | /* hit, so assumes protocol | * is already loaded | */ | /* socket creation continues | * before netns is initialized | */ register_pernet_subsys | Simply inverting the initialization order between register_pernet_subsys() and sctp_v4_protosw_init() is not possible because register_pernet_subsys() will create a control sctp socket, so the protocol must be already visible by then. Deferring the socket creation to a work-queue is not good specially because we loose the ability to handle its errors. So, as suggested by Vlad, the fix is to split netns initialization in two moments: defaults and control socket, so that the defaults are already loaded by when we register the protocol, while control socket initialization is kept at the same moment it is today. Fixes: 4db67e808640 ("sctp: Make the address lists per network namespace") Signed-off-by: Vlad Yasevich <vyasevich@gmail.com> Signed-off-by: Marcelo Ricardo Leitner <marcelo.leitner@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2015-09-10 20:31:15 +00:00
unregister_pernet_subsys(&sctp_ctrlsock_ops);
err_register_ctrlsock:
sctp_v6_protosw_exit();
err_v6_protosw_init:
sctp_v4_protosw_exit();
err_protosw_init:
sctp: fix race on protocol/netns initialization [ Upstream commit 8e2d61e0aed2b7c4ecb35844fe07e0b2b762dee4 ] Consider sctp module is unloaded and is being requested because an user is creating a sctp socket. During initialization, sctp will add the new protocol type and then initialize pernet subsys: status = sctp_v4_protosw_init(); if (status) goto err_protosw_init; status = sctp_v6_protosw_init(); if (status) goto err_v6_protosw_init; status = register_pernet_subsys(&sctp_net_ops); The problem is that after those calls to sctp_v{4,6}_protosw_init(), it is possible for userspace to create SCTP sockets like if the module is already fully loaded. If that happens, one of the possible effects is that we will have readers for net->sctp.local_addr_list list earlier than expected and sctp_net_init() does not take precautions while dealing with that list, leading to a potential panic but not limited to that, as sctp_sock_init() will copy a bunch of blank/partially initialized values from net->sctp. The race happens like this: CPU 0 | CPU 1 socket() | __sock_create | socket() inet_create | __sock_create list_for_each_entry_rcu( | answer, &inetsw[sock->type], | list) { | inet_create /* no hits */ | if (unlikely(err)) { | ... | request_module() | /* socket creation is blocked | * the module is fully loaded | */ | sctp_init | sctp_v4_protosw_init | inet_register_protosw | list_add_rcu(&p->list, | last_perm); | | list_for_each_entry_rcu( | answer, &inetsw[sock->type], sctp_v6_protosw_init | list) { | /* hit, so assumes protocol | * is already loaded | */ | /* socket creation continues | * before netns is initialized | */ register_pernet_subsys | Simply inverting the initialization order between register_pernet_subsys() and sctp_v4_protosw_init() is not possible because register_pernet_subsys() will create a control sctp socket, so the protocol must be already visible by then. Deferring the socket creation to a work-queue is not good specially because we loose the ability to handle its errors. So, as suggested by Vlad, the fix is to split netns initialization in two moments: defaults and control socket, so that the defaults are already loaded by when we register the protocol, while control socket initialization is kept at the same moment it is today. Fixes: 4db67e808640 ("sctp: Make the address lists per network namespace") Signed-off-by: Vlad Yasevich <vyasevich@gmail.com> Signed-off-by: Marcelo Ricardo Leitner <marcelo.leitner@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2015-09-10 20:31:15 +00:00
unregister_pernet_subsys(&sctp_defaults_ops);
err_register_defaults:
sctp_v4_pf_exit();
sctp_v6_pf_exit();
sctp_sysctl_unregister();
free_pages((unsigned long)sctp_port_hashtable,
get_order(sctp_port_hashsize *
sizeof(struct sctp_bind_hashbucket)));
err_bhash_alloc:
kfree(sctp_ep_hashtable);
err_ehash_alloc:
free_pages((unsigned long)sctp_assoc_hashtable,
get_order(sctp_assoc_hashsize *
sizeof(struct sctp_hashbucket)));
err_ahash_alloc:
percpu_counter_destroy(&sctp_sockets_allocated);
err_percpu_counter_init:
kmem_cache_destroy(sctp_chunk_cachep);
err_chunk_cachep:
kmem_cache_destroy(sctp_bucket_cachep);
goto out;
}
/* Exit handler for the SCTP protocol. */
SCTP_STATIC __exit void sctp_exit(void)
{
/* BUG. This should probably do something useful like clean
* up all the remaining associations and all that memory.
*/
/* Unregister with inet6/inet layers. */
sctp_v6_del_protocol();
sctp_v4_del_protocol();
sctp: fix race on protocol/netns initialization [ Upstream commit 8e2d61e0aed2b7c4ecb35844fe07e0b2b762dee4 ] Consider sctp module is unloaded and is being requested because an user is creating a sctp socket. During initialization, sctp will add the new protocol type and then initialize pernet subsys: status = sctp_v4_protosw_init(); if (status) goto err_protosw_init; status = sctp_v6_protosw_init(); if (status) goto err_v6_protosw_init; status = register_pernet_subsys(&sctp_net_ops); The problem is that after those calls to sctp_v{4,6}_protosw_init(), it is possible for userspace to create SCTP sockets like if the module is already fully loaded. If that happens, one of the possible effects is that we will have readers for net->sctp.local_addr_list list earlier than expected and sctp_net_init() does not take precautions while dealing with that list, leading to a potential panic but not limited to that, as sctp_sock_init() will copy a bunch of blank/partially initialized values from net->sctp. The race happens like this: CPU 0 | CPU 1 socket() | __sock_create | socket() inet_create | __sock_create list_for_each_entry_rcu( | answer, &inetsw[sock->type], | list) { | inet_create /* no hits */ | if (unlikely(err)) { | ... | request_module() | /* socket creation is blocked | * the module is fully loaded | */ | sctp_init | sctp_v4_protosw_init | inet_register_protosw | list_add_rcu(&p->list, | last_perm); | | list_for_each_entry_rcu( | answer, &inetsw[sock->type], sctp_v6_protosw_init | list) { | /* hit, so assumes protocol | * is already loaded | */ | /* socket creation continues | * before netns is initialized | */ register_pernet_subsys | Simply inverting the initialization order between register_pernet_subsys() and sctp_v4_protosw_init() is not possible because register_pernet_subsys() will create a control sctp socket, so the protocol must be already visible by then. Deferring the socket creation to a work-queue is not good specially because we loose the ability to handle its errors. So, as suggested by Vlad, the fix is to split netns initialization in two moments: defaults and control socket, so that the defaults are already loaded by when we register the protocol, while control socket initialization is kept at the same moment it is today. Fixes: 4db67e808640 ("sctp: Make the address lists per network namespace") Signed-off-by: Vlad Yasevich <vyasevich@gmail.com> Signed-off-by: Marcelo Ricardo Leitner <marcelo.leitner@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2015-09-10 20:31:15 +00:00
unregister_pernet_subsys(&sctp_ctrlsock_ops);
/* Free protosw registrations */
sctp_v6_protosw_exit();
sctp_v4_protosw_exit();
sctp: fix race on protocol/netns initialization [ Upstream commit 8e2d61e0aed2b7c4ecb35844fe07e0b2b762dee4 ] Consider sctp module is unloaded and is being requested because an user is creating a sctp socket. During initialization, sctp will add the new protocol type and then initialize pernet subsys: status = sctp_v4_protosw_init(); if (status) goto err_protosw_init; status = sctp_v6_protosw_init(); if (status) goto err_v6_protosw_init; status = register_pernet_subsys(&sctp_net_ops); The problem is that after those calls to sctp_v{4,6}_protosw_init(), it is possible for userspace to create SCTP sockets like if the module is already fully loaded. If that happens, one of the possible effects is that we will have readers for net->sctp.local_addr_list list earlier than expected and sctp_net_init() does not take precautions while dealing with that list, leading to a potential panic but not limited to that, as sctp_sock_init() will copy a bunch of blank/partially initialized values from net->sctp. The race happens like this: CPU 0 | CPU 1 socket() | __sock_create | socket() inet_create | __sock_create list_for_each_entry_rcu( | answer, &inetsw[sock->type], | list) { | inet_create /* no hits */ | if (unlikely(err)) { | ... | request_module() | /* socket creation is blocked | * the module is fully loaded | */ | sctp_init | sctp_v4_protosw_init | inet_register_protosw | list_add_rcu(&p->list, | last_perm); | | list_for_each_entry_rcu( | answer, &inetsw[sock->type], sctp_v6_protosw_init | list) { | /* hit, so assumes protocol | * is already loaded | */ | /* socket creation continues | * before netns is initialized | */ register_pernet_subsys | Simply inverting the initialization order between register_pernet_subsys() and sctp_v4_protosw_init() is not possible because register_pernet_subsys() will create a control sctp socket, so the protocol must be already visible by then. Deferring the socket creation to a work-queue is not good specially because we loose the ability to handle its errors. So, as suggested by Vlad, the fix is to split netns initialization in two moments: defaults and control socket, so that the defaults are already loaded by when we register the protocol, while control socket initialization is kept at the same moment it is today. Fixes: 4db67e808640 ("sctp: Make the address lists per network namespace") Signed-off-by: Vlad Yasevich <vyasevich@gmail.com> Signed-off-by: Marcelo Ricardo Leitner <marcelo.leitner@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2015-09-10 20:31:15 +00:00
unregister_pernet_subsys(&sctp_defaults_ops);
/* Unregister with socket layer. */
sctp_v6_pf_exit();
sctp_v4_pf_exit();
sctp_sysctl_unregister();
free_pages((unsigned long)sctp_assoc_hashtable,
get_order(sctp_assoc_hashsize *
sizeof(struct sctp_hashbucket)));
kfree(sctp_ep_hashtable);
free_pages((unsigned long)sctp_port_hashtable,
get_order(sctp_port_hashsize *
sizeof(struct sctp_bind_hashbucket)));
percpu_counter_destroy(&sctp_sockets_allocated);
rcu_barrier(); /* Wait for completion of call_rcu()'s */
kmem_cache_destroy(sctp_chunk_cachep);
kmem_cache_destroy(sctp_bucket_cachep);
}
module_init(sctp_init);
module_exit(sctp_exit);
/*
* __stringify doesn't likes enums, so use IPPROTO_SCTP value (132) directly.
*/
MODULE_ALIAS("net-pf-" __stringify(PF_INET) "-proto-132");
MODULE_ALIAS("net-pf-" __stringify(PF_INET6) "-proto-132");
MODULE_AUTHOR("Linux Kernel SCTP developers <lksctp-developers@lists.sourceforge.net>");
MODULE_DESCRIPTION("Support for the SCTP protocol (RFC2960)");
module_param_named(no_checksums, sctp_checksum_disable, bool, 0644);
MODULE_PARM_DESC(no_checksums, "Disable checksums computing and verification");
MODULE_LICENSE("GPL");