android_kernel_samsung_msm8976/include/linux/binfmts.h

128 lines
4.1 KiB
C
Raw Normal View History

#ifndef _LINUX_BINFMTS_H
#define _LINUX_BINFMTS_H
#include <linux/capability.h>
struct pt_regs;
/*
* These are the maximum length and maximum number of strings passed to the
* execve() system call. MAX_ARG_STRLEN is essentially random but serves to
* prevent the kernel from being unduly impacted by misaddressed pointers.
* MAX_ARG_STRINGS is chosen to fit in a signed 32-bit integer.
*/
#define MAX_ARG_STRLEN (PAGE_SIZE * 32)
#define MAX_ARG_STRINGS 0x7FFFFFFF
/* sizeof(linux_binprm->buf) */
#define BINPRM_BUF_SIZE 128
#ifdef __KERNEL__
#include <linux/list.h>
#define CORENAME_MAX_SIZE 128
/*
* This structure is used to hold the arguments that are used when loading binaries.
*/
struct linux_binprm{
char buf[BINPRM_BUF_SIZE];
#ifdef CONFIG_MMU
struct vm_area_struct *vma;
#else
# define MAX_ARG_PAGES 32
struct page *page[MAX_ARG_PAGES];
#endif
struct mm_struct *mm;
unsigned long p; /* current top of mem */
unsigned int
CRED: Make execve() take advantage of copy-on-write credentials Make execve() take advantage of copy-on-write credentials, allowing it to set up the credentials in advance, and then commit the whole lot after the point of no return. This patch and the preceding patches have been tested with the LTP SELinux testsuite. This patch makes several logical sets of alteration: (1) execve(). The credential bits from struct linux_binprm are, for the most part, replaced with a single credentials pointer (bprm->cred). This means that all the creds can be calculated in advance and then applied at the point of no return with no possibility of failure. I would like to replace bprm->cap_effective with: cap_isclear(bprm->cap_effective) but this seems impossible due to special behaviour for processes of pid 1 (they always retain their parent's capability masks where normally they'd be changed - see cap_bprm_set_creds()). The following sequence of events now happens: (a) At the start of do_execve, the current task's cred_exec_mutex is locked to prevent PTRACE_ATTACH from obsoleting the calculation of creds that we make. (a) prepare_exec_creds() is then called to make a copy of the current task's credentials and prepare it. This copy is then assigned to bprm->cred. This renders security_bprm_alloc() and security_bprm_free() unnecessary, and so they've been removed. (b) The determination of unsafe execution is now performed immediately after (a) rather than later on in the code. The result is stored in bprm->unsafe for future reference. (c) prepare_binprm() is called, possibly multiple times. (i) This applies the result of set[ug]id binaries to the new creds attached to bprm->cred. Personality bit clearance is recorded, but now deferred on the basis that the exec procedure may yet fail. (ii) This then calls the new security_bprm_set_creds(). This should calculate the new LSM and capability credentials into *bprm->cred. This folds together security_bprm_set() and parts of security_bprm_apply_creds() (these two have been removed). Anything that might fail must be done at this point. (iii) bprm->cred_prepared is set to 1. bprm->cred_prepared is 0 on the first pass of the security calculations, and 1 on all subsequent passes. This allows SELinux in (ii) to base its calculations only on the initial script and not on the interpreter. (d) flush_old_exec() is called to commit the task to execution. This performs the following steps with regard to credentials: (i) Clear pdeath_signal and set dumpable on certain circumstances that may not be covered by commit_creds(). (ii) Clear any bits in current->personality that were deferred from (c.i). (e) install_exec_creds() [compute_creds() as was] is called to install the new credentials. This performs the following steps with regard to credentials: (i) Calls security_bprm_committing_creds() to apply any security requirements, such as flushing unauthorised files in SELinux, that must be done before the credentials are changed. This is made up of bits of security_bprm_apply_creds() and security_bprm_post_apply_creds(), both of which have been removed. This function is not allowed to fail; anything that might fail must have been done in (c.ii). (ii) Calls commit_creds() to apply the new credentials in a single assignment (more or less). Possibly pdeath_signal and dumpable should be part of struct creds. (iii) Unlocks the task's cred_replace_mutex, thus allowing PTRACE_ATTACH to take place. (iv) Clears The bprm->cred pointer as the credentials it was holding are now immutable. (v) Calls security_bprm_committed_creds() to apply any security alterations that must be done after the creds have been changed. SELinux uses this to flush signals and signal handlers. (f) If an error occurs before (d.i), bprm_free() will call abort_creds() to destroy the proposed new credentials and will then unlock cred_replace_mutex. No changes to the credentials will have been made. (2) LSM interface. A number of functions have been changed, added or removed: (*) security_bprm_alloc(), ->bprm_alloc_security() (*) security_bprm_free(), ->bprm_free_security() Removed in favour of preparing new credentials and modifying those. (*) security_bprm_apply_creds(), ->bprm_apply_creds() (*) security_bprm_post_apply_creds(), ->bprm_post_apply_creds() Removed; split between security_bprm_set_creds(), security_bprm_committing_creds() and security_bprm_committed_creds(). (*) security_bprm_set(), ->bprm_set_security() Removed; folded into security_bprm_set_creds(). (*) security_bprm_set_creds(), ->bprm_set_creds() New. The new credentials in bprm->creds should be checked and set up as appropriate. bprm->cred_prepared is 0 on the first call, 1 on the second and subsequent calls. (*) security_bprm_committing_creds(), ->bprm_committing_creds() (*) security_bprm_committed_creds(), ->bprm_committed_creds() New. Apply the security effects of the new credentials. This includes closing unauthorised files in SELinux. This function may not fail. When the former is called, the creds haven't yet been applied to the process; when the latter is called, they have. The former may access bprm->cred, the latter may not. (3) SELinux. SELinux has a number of changes, in addition to those to support the LSM interface changes mentioned above: (a) The bprm_security_struct struct has been removed in favour of using the credentials-under-construction approach. (c) flush_unauthorized_files() now takes a cred pointer and passes it on to inode_has_perm(), file_has_perm() and dentry_open(). Signed-off-by: David Howells <dhowells@redhat.com> Acked-by: James Morris <jmorris@namei.org> Acked-by: Serge Hallyn <serue@us.ibm.com> Signed-off-by: James Morris <jmorris@namei.org>
2008-11-13 23:39:24 +00:00
cred_prepared:1,/* true if creds already prepared (multiple
* preps happen for interpreters) */
cap_effective:1;/* true if has elevated effective capabilities,
* false if not; except for init which inherits
* its parent's caps anyway */
#ifdef __alpha__
unsigned int taso:1;
#endif
unsigned int recursion_depth;
struct file * file;
CRED: Make execve() take advantage of copy-on-write credentials Make execve() take advantage of copy-on-write credentials, allowing it to set up the credentials in advance, and then commit the whole lot after the point of no return. This patch and the preceding patches have been tested with the LTP SELinux testsuite. This patch makes several logical sets of alteration: (1) execve(). The credential bits from struct linux_binprm are, for the most part, replaced with a single credentials pointer (bprm->cred). This means that all the creds can be calculated in advance and then applied at the point of no return with no possibility of failure. I would like to replace bprm->cap_effective with: cap_isclear(bprm->cap_effective) but this seems impossible due to special behaviour for processes of pid 1 (they always retain their parent's capability masks where normally they'd be changed - see cap_bprm_set_creds()). The following sequence of events now happens: (a) At the start of do_execve, the current task's cred_exec_mutex is locked to prevent PTRACE_ATTACH from obsoleting the calculation of creds that we make. (a) prepare_exec_creds() is then called to make a copy of the current task's credentials and prepare it. This copy is then assigned to bprm->cred. This renders security_bprm_alloc() and security_bprm_free() unnecessary, and so they've been removed. (b) The determination of unsafe execution is now performed immediately after (a) rather than later on in the code. The result is stored in bprm->unsafe for future reference. (c) prepare_binprm() is called, possibly multiple times. (i) This applies the result of set[ug]id binaries to the new creds attached to bprm->cred. Personality bit clearance is recorded, but now deferred on the basis that the exec procedure may yet fail. (ii) This then calls the new security_bprm_set_creds(). This should calculate the new LSM and capability credentials into *bprm->cred. This folds together security_bprm_set() and parts of security_bprm_apply_creds() (these two have been removed). Anything that might fail must be done at this point. (iii) bprm->cred_prepared is set to 1. bprm->cred_prepared is 0 on the first pass of the security calculations, and 1 on all subsequent passes. This allows SELinux in (ii) to base its calculations only on the initial script and not on the interpreter. (d) flush_old_exec() is called to commit the task to execution. This performs the following steps with regard to credentials: (i) Clear pdeath_signal and set dumpable on certain circumstances that may not be covered by commit_creds(). (ii) Clear any bits in current->personality that were deferred from (c.i). (e) install_exec_creds() [compute_creds() as was] is called to install the new credentials. This performs the following steps with regard to credentials: (i) Calls security_bprm_committing_creds() to apply any security requirements, such as flushing unauthorised files in SELinux, that must be done before the credentials are changed. This is made up of bits of security_bprm_apply_creds() and security_bprm_post_apply_creds(), both of which have been removed. This function is not allowed to fail; anything that might fail must have been done in (c.ii). (ii) Calls commit_creds() to apply the new credentials in a single assignment (more or less). Possibly pdeath_signal and dumpable should be part of struct creds. (iii) Unlocks the task's cred_replace_mutex, thus allowing PTRACE_ATTACH to take place. (iv) Clears The bprm->cred pointer as the credentials it was holding are now immutable. (v) Calls security_bprm_committed_creds() to apply any security alterations that must be done after the creds have been changed. SELinux uses this to flush signals and signal handlers. (f) If an error occurs before (d.i), bprm_free() will call abort_creds() to destroy the proposed new credentials and will then unlock cred_replace_mutex. No changes to the credentials will have been made. (2) LSM interface. A number of functions have been changed, added or removed: (*) security_bprm_alloc(), ->bprm_alloc_security() (*) security_bprm_free(), ->bprm_free_security() Removed in favour of preparing new credentials and modifying those. (*) security_bprm_apply_creds(), ->bprm_apply_creds() (*) security_bprm_post_apply_creds(), ->bprm_post_apply_creds() Removed; split between security_bprm_set_creds(), security_bprm_committing_creds() and security_bprm_committed_creds(). (*) security_bprm_set(), ->bprm_set_security() Removed; folded into security_bprm_set_creds(). (*) security_bprm_set_creds(), ->bprm_set_creds() New. The new credentials in bprm->creds should be checked and set up as appropriate. bprm->cred_prepared is 0 on the first call, 1 on the second and subsequent calls. (*) security_bprm_committing_creds(), ->bprm_committing_creds() (*) security_bprm_committed_creds(), ->bprm_committed_creds() New. Apply the security effects of the new credentials. This includes closing unauthorised files in SELinux. This function may not fail. When the former is called, the creds haven't yet been applied to the process; when the latter is called, they have. The former may access bprm->cred, the latter may not. (3) SELinux. SELinux has a number of changes, in addition to those to support the LSM interface changes mentioned above: (a) The bprm_security_struct struct has been removed in favour of using the credentials-under-construction approach. (c) flush_unauthorized_files() now takes a cred pointer and passes it on to inode_has_perm(), file_has_perm() and dentry_open(). Signed-off-by: David Howells <dhowells@redhat.com> Acked-by: James Morris <jmorris@namei.org> Acked-by: Serge Hallyn <serue@us.ibm.com> Signed-off-by: James Morris <jmorris@namei.org>
2008-11-13 23:39:24 +00:00
struct cred *cred; /* new credentials */
int unsafe; /* how unsafe this exec is (mask of LSM_UNSAFE_*) */
unsigned int per_clear; /* bits to clear in current->personality */
int argc, envc;
char * filename; /* Name of binary as seen by procps */
char * interp; /* Name of the binary really executed. Most
of the time same as filename, but could be
different for binfmt_{misc,script} */
unsigned interp_flags;
unsigned interp_data;
unsigned long loader, exec;
};
#define BINPRM_FLAGS_ENFORCE_NONDUMP_BIT 0
#define BINPRM_FLAGS_ENFORCE_NONDUMP (1 << BINPRM_FLAGS_ENFORCE_NONDUMP_BIT)
/* fd of the binary should be passed to the interpreter */
#define BINPRM_FLAGS_EXECFD_BIT 1
#define BINPRM_FLAGS_EXECFD (1 << BINPRM_FLAGS_EXECFD_BIT)
#define BINPRM_MAX_RECURSION 4
/*
* This structure defines the functions that are used to load the binary formats that
* linux accepts.
*/
struct linux_binfmt {
struct list_head lh;
struct module *module;
int (*load_binary)(struct linux_binprm *, struct pt_regs * regs);
int (*load_shlib)(struct file *);
core_pattern: ignore RLIMIT_CORE if core_pattern is a pipe For some time /proc/sys/kernel/core_pattern has been able to set its output destination as a pipe, allowing a user space helper to receive and intellegently process a core. This infrastructure however has some shortcommings which can be enhanced. Specifically: 1) The coredump code in the kernel should ignore RLIMIT_CORE limitation when core_pattern is a pipe, since file system resources are not being consumed in this case, unless the user application wishes to save the core, at which point the app is restricted by usual file system limits and restrictions. 2) The core_pattern code should be able to parse and pass options to the user space helper as an argv array. The real core limit of the uid of the crashing proces should also be passable to the user space helper (since it is overridden to zero when called). 3) Some miscellaneous bugs need to be cleaned up (specifically the recognition of a recursive core dump, should the user mode helper itself crash. Also, the core dump code in the kernel should not wait for the user mode helper to exit, since the same context is responsible for writing to the pipe, and a read of the pipe by the user mode helper will result in a deadlock. This patch: Remove the check of RLIMIT_CORE if core_pattern is a pipe. In the event that core_pattern is a pipe, the entire core will be fed to the user mode helper. Signed-off-by: Neil Horman <nhorman@tuxdriver.com> Cc: <martin.pitt@ubuntu.com> Cc: <wwoods@redhat.com> Cc: Jeremy Fitzhardinge <jeremy@goop.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-17 06:26:34 +00:00
int (*core_dump)(long signr, struct pt_regs *regs, struct file *file, unsigned long limit);
unsigned long min_coredump; /* minimal dump size */
int hasvdso;
};
extern int __register_binfmt(struct linux_binfmt *fmt, int insert);
/* Registration of default binfmt handlers */
static inline int register_binfmt(struct linux_binfmt *fmt)
{
return __register_binfmt(fmt, 0);
}
/* Same as above, but adds a new binfmt at the top of the list */
static inline int insert_binfmt(struct linux_binfmt *fmt)
{
return __register_binfmt(fmt, 1);
}
extern void unregister_binfmt(struct linux_binfmt *);
extern int prepare_binprm(struct linux_binprm *);
extern int __must_check remove_arg_zero(struct linux_binprm *);
extern int search_binary_handler(struct linux_binprm *,struct pt_regs *);
extern int flush_old_exec(struct linux_binprm * bprm);
[PATCH] setuid core dump Add a new `suid_dumpable' sysctl: This value can be used to query and set the core dump mode for setuid or otherwise protected/tainted binaries. The modes are 0 - (default) - traditional behaviour. Any process which has changed privilege levels or is execute only will not be dumped 1 - (debug) - all processes dump core when possible. The core dump is owned by the current user and no security is applied. This is intended for system debugging situations only. Ptrace is unchecked. 2 - (suidsafe) - any binary which normally would not be dumped is dumped readable by root only. This allows the end user to remove such a dump but not access it directly. For security reasons core dumps in this mode will not overwrite one another or other files. This mode is appropriate when adminstrators are attempting to debug problems in a normal environment. (akpm: > > +EXPORT_SYMBOL(suid_dumpable); > > EXPORT_SYMBOL_GPL? No problem to me. > > if (current->euid == current->uid && current->egid == current->gid) > > current->mm->dumpable = 1; > > Should this be SUID_DUMP_USER? Actually the feedback I had from last time was that the SUID_ defines should go because its clearer to follow the numbers. They can go everywhere (and there are lots of places where dumpable is tested/used as a bool in untouched code) > Maybe this should be renamed to `dump_policy' or something. Doing that > would help us catch any code which isn't using the #defines, too. Fair comment. The patch was designed to be easy to maintain for Red Hat rather than for merging. Changing that field would create a gigantic diff because it is used all over the place. ) Signed-off-by: Alan Cox <alan@redhat.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-23 07:09:43 +00:00
extern int suid_dumpable;
#define SUID_DUMP_DISABLE 0 /* No setuid dumping */
#define SUID_DUMP_USER 1 /* Dump as user of process */
#define SUID_DUMP_ROOT 2 /* Dump as root */
/* Stack area protections */
#define EXSTACK_DEFAULT 0 /* Whatever the arch defaults to */
#define EXSTACK_DISABLE_X 1 /* Disable executable stacks */
#define EXSTACK_ENABLE_X 2 /* Enable executable stacks */
extern int setup_arg_pages(struct linux_binprm * bprm,
unsigned long stack_top,
int executable_stack);
extern int bprm_mm_init(struct linux_binprm *bprm);
extern int copy_strings_kernel(int argc,char ** argv,struct linux_binprm *bprm);
2009-09-05 18:17:13 +00:00
extern int prepare_bprm_creds(struct linux_binprm *bprm);
CRED: Make execve() take advantage of copy-on-write credentials Make execve() take advantage of copy-on-write credentials, allowing it to set up the credentials in advance, and then commit the whole lot after the point of no return. This patch and the preceding patches have been tested with the LTP SELinux testsuite. This patch makes several logical sets of alteration: (1) execve(). The credential bits from struct linux_binprm are, for the most part, replaced with a single credentials pointer (bprm->cred). This means that all the creds can be calculated in advance and then applied at the point of no return with no possibility of failure. I would like to replace bprm->cap_effective with: cap_isclear(bprm->cap_effective) but this seems impossible due to special behaviour for processes of pid 1 (they always retain their parent's capability masks where normally they'd be changed - see cap_bprm_set_creds()). The following sequence of events now happens: (a) At the start of do_execve, the current task's cred_exec_mutex is locked to prevent PTRACE_ATTACH from obsoleting the calculation of creds that we make. (a) prepare_exec_creds() is then called to make a copy of the current task's credentials and prepare it. This copy is then assigned to bprm->cred. This renders security_bprm_alloc() and security_bprm_free() unnecessary, and so they've been removed. (b) The determination of unsafe execution is now performed immediately after (a) rather than later on in the code. The result is stored in bprm->unsafe for future reference. (c) prepare_binprm() is called, possibly multiple times. (i) This applies the result of set[ug]id binaries to the new creds attached to bprm->cred. Personality bit clearance is recorded, but now deferred on the basis that the exec procedure may yet fail. (ii) This then calls the new security_bprm_set_creds(). This should calculate the new LSM and capability credentials into *bprm->cred. This folds together security_bprm_set() and parts of security_bprm_apply_creds() (these two have been removed). Anything that might fail must be done at this point. (iii) bprm->cred_prepared is set to 1. bprm->cred_prepared is 0 on the first pass of the security calculations, and 1 on all subsequent passes. This allows SELinux in (ii) to base its calculations only on the initial script and not on the interpreter. (d) flush_old_exec() is called to commit the task to execution. This performs the following steps with regard to credentials: (i) Clear pdeath_signal and set dumpable on certain circumstances that may not be covered by commit_creds(). (ii) Clear any bits in current->personality that were deferred from (c.i). (e) install_exec_creds() [compute_creds() as was] is called to install the new credentials. This performs the following steps with regard to credentials: (i) Calls security_bprm_committing_creds() to apply any security requirements, such as flushing unauthorised files in SELinux, that must be done before the credentials are changed. This is made up of bits of security_bprm_apply_creds() and security_bprm_post_apply_creds(), both of which have been removed. This function is not allowed to fail; anything that might fail must have been done in (c.ii). (ii) Calls commit_creds() to apply the new credentials in a single assignment (more or less). Possibly pdeath_signal and dumpable should be part of struct creds. (iii) Unlocks the task's cred_replace_mutex, thus allowing PTRACE_ATTACH to take place. (iv) Clears The bprm->cred pointer as the credentials it was holding are now immutable. (v) Calls security_bprm_committed_creds() to apply any security alterations that must be done after the creds have been changed. SELinux uses this to flush signals and signal handlers. (f) If an error occurs before (d.i), bprm_free() will call abort_creds() to destroy the proposed new credentials and will then unlock cred_replace_mutex. No changes to the credentials will have been made. (2) LSM interface. A number of functions have been changed, added or removed: (*) security_bprm_alloc(), ->bprm_alloc_security() (*) security_bprm_free(), ->bprm_free_security() Removed in favour of preparing new credentials and modifying those. (*) security_bprm_apply_creds(), ->bprm_apply_creds() (*) security_bprm_post_apply_creds(), ->bprm_post_apply_creds() Removed; split between security_bprm_set_creds(), security_bprm_committing_creds() and security_bprm_committed_creds(). (*) security_bprm_set(), ->bprm_set_security() Removed; folded into security_bprm_set_creds(). (*) security_bprm_set_creds(), ->bprm_set_creds() New. The new credentials in bprm->creds should be checked and set up as appropriate. bprm->cred_prepared is 0 on the first call, 1 on the second and subsequent calls. (*) security_bprm_committing_creds(), ->bprm_committing_creds() (*) security_bprm_committed_creds(), ->bprm_committed_creds() New. Apply the security effects of the new credentials. This includes closing unauthorised files in SELinux. This function may not fail. When the former is called, the creds haven't yet been applied to the process; when the latter is called, they have. The former may access bprm->cred, the latter may not. (3) SELinux. SELinux has a number of changes, in addition to those to support the LSM interface changes mentioned above: (a) The bprm_security_struct struct has been removed in favour of using the credentials-under-construction approach. (c) flush_unauthorized_files() now takes a cred pointer and passes it on to inode_has_perm(), file_has_perm() and dentry_open(). Signed-off-by: David Howells <dhowells@redhat.com> Acked-by: James Morris <jmorris@namei.org> Acked-by: Serge Hallyn <serue@us.ibm.com> Signed-off-by: James Morris <jmorris@namei.org>
2008-11-13 23:39:24 +00:00
extern void install_exec_creds(struct linux_binprm *bprm);
extern void do_coredump(long signr, int exit_code, struct pt_regs *regs);
extern void set_binfmt(struct linux_binfmt *new);
extern void free_bprm(struct linux_binprm *);
#endif /* __KERNEL__ */
#endif /* _LINUX_BINFMTS_H */