android_kernel_samsung_msm8976/net/ipv4/Makefile

53 lines
2.0 KiB
Makefile
Raw Normal View History

#
# Makefile for the Linux TCP/IP (INET) layer.
#
obj-y := route.o inetpeer.o protocol.o \
ip_input.o ip_fragment.o ip_forward.o ip_options.o \
ip_output.o ip_sockglue.o inet_hashtables.o \
inet_timewait_sock.o inet_connection_sock.o \
tcp.o tcp_input.o tcp_output.o tcp_timer.o tcp_ipv4.o \
tcp_minisocks.o tcp_cong.o \
[NET]: Supporting UDP-Lite (RFC 3828) in Linux This is a revision of the previously submitted patch, which alters the way files are organized and compiled in the following manner: * UDP and UDP-Lite now use separate object files * source file dependencies resolved via header files net/ipv{4,6}/udp_impl.h * order of inclusion files in udp.c/udplite.c adapted accordingly [NET/IPv4]: Support for the UDP-Lite protocol (RFC 3828) This patch adds support for UDP-Lite to the IPv4 stack, provided as an extension to the existing UDPv4 code: * generic routines are all located in net/ipv4/udp.c * UDP-Lite specific routines are in net/ipv4/udplite.c * MIB/statistics support in /proc/net/snmp and /proc/net/udplite * shared API with extensions for partial checksum coverage [NET/IPv6]: Extension for UDP-Lite over IPv6 It extends the existing UDPv6 code base with support for UDP-Lite in the same manner as per UDPv4. In particular, * UDPv6 generic and shared code is in net/ipv6/udp.c * UDP-Litev6 specific extensions are in net/ipv6/udplite.c * MIB/statistics support in /proc/net/snmp6 and /proc/net/udplite6 * support for IPV6_ADDRFORM * aligned the coding style of protocol initialisation with af_inet6.c * made the error handling in udpv6_queue_rcv_skb consistent; to return `-1' on error on all error cases * consolidation of shared code [NET]: UDP-Lite Documentation and basic XFRM/Netfilter support The UDP-Lite patch further provides * API documentation for UDP-Lite * basic xfrm support * basic netfilter support for IPv4 and IPv6 (LOG target) Signed-off-by: Gerrit Renker <gerrit@erg.abdn.ac.uk> Signed-off-by: David S. Miller <davem@davemloft.net>
2006-11-27 19:10:57 +00:00
datagram.o raw.o udp.o udplite.o \
arp.o icmp.o devinet.o af_inet.o igmp.o \
sysctl_net_ipv4.o fib_frontend.o fib_semantics.o
obj-$(CONFIG_IP_FIB_HASH) += fib_hash.o
obj-$(CONFIG_IP_FIB_TRIE) += fib_trie.o
obj-$(CONFIG_PROC_FS) += proc.o
obj-$(CONFIG_IP_MULTIPLE_TABLES) += fib_rules.o
obj-$(CONFIG_IP_MROUTE) += ipmr.o
obj-$(CONFIG_NET_IPIP) += ipip.o
obj-$(CONFIG_NET_IPGRE) += ip_gre.o
obj-$(CONFIG_SYN_COOKIES) += syncookies.o
obj-$(CONFIG_INET_AH) += ah4.o
obj-$(CONFIG_INET_ESP) += esp4.o
obj-$(CONFIG_INET_IPCOMP) += ipcomp.o
[INET]: Introduce tunnel4/tunnel6 Basically this patch moves the generic tunnel protocol stuff out of xfrm4_tunnel/xfrm6_tunnel and moves it into the new files of tunnel4.c and tunnel6 respectively. The reason for this is that the problem that Hugo uncovered is only the tip of the iceberg. The real problem is that when we removed the dependency of ipip on xfrm4_tunnel we didn't really consider the module case at all. For instance, as it is it's possible to build both ipip and xfrm4_tunnel as modules and if the latter is loaded then ipip simply won't load. After considering the alternatives I've decided that the best way out of this is to restore the dependency of ipip on the non-xfrm-specific part of xfrm4_tunnel. This is acceptable IMHO because the intention of the removal was really to be able to use ipip without the xfrm subsystem. This is still preserved by this patch. So now both ipip/xfrm4_tunnel depend on the new tunnel4.c which handles the arbitration between the two. The order of processing is determined by a simple integer which ensures that ipip gets processed before xfrm4_tunnel. The situation for ICMP handling is a little bit more complicated since we may not have enough information to determine who it's for. It's not a big deal at the moment since the xfrm ICMP handlers are basically no-ops. In future we can deal with this when we look at ICMP caching in general. The user-visible change to this is the removal of the TUNNEL Kconfig prompts. This makes sense because it can only be used through IPCOMP as it stands. The addition of the new modules shouldn't introduce any problems since module dependency will cause them to be loaded. Oh and I also turned some unnecessary pskb's in IPv6 related to this patch to skb's. Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au> Signed-off-by: David S. Miller <davem@davemloft.net>
2006-03-28 09:12:13 +00:00
obj-$(CONFIG_INET_XFRM_TUNNEL) += xfrm4_tunnel.o
obj-$(CONFIG_INET_XFRM_MODE_BEET) += xfrm4_mode_beet.o
[INET]: Introduce tunnel4/tunnel6 Basically this patch moves the generic tunnel protocol stuff out of xfrm4_tunnel/xfrm6_tunnel and moves it into the new files of tunnel4.c and tunnel6 respectively. The reason for this is that the problem that Hugo uncovered is only the tip of the iceberg. The real problem is that when we removed the dependency of ipip on xfrm4_tunnel we didn't really consider the module case at all. For instance, as it is it's possible to build both ipip and xfrm4_tunnel as modules and if the latter is loaded then ipip simply won't load. After considering the alternatives I've decided that the best way out of this is to restore the dependency of ipip on the non-xfrm-specific part of xfrm4_tunnel. This is acceptable IMHO because the intention of the removal was really to be able to use ipip without the xfrm subsystem. This is still preserved by this patch. So now both ipip/xfrm4_tunnel depend on the new tunnel4.c which handles the arbitration between the two. The order of processing is determined by a simple integer which ensures that ipip gets processed before xfrm4_tunnel. The situation for ICMP handling is a little bit more complicated since we may not have enough information to determine who it's for. It's not a big deal at the moment since the xfrm ICMP handlers are basically no-ops. In future we can deal with this when we look at ICMP caching in general. The user-visible change to this is the removal of the TUNNEL Kconfig prompts. This makes sense because it can only be used through IPCOMP as it stands. The addition of the new modules shouldn't introduce any problems since module dependency will cause them to be loaded. Oh and I also turned some unnecessary pskb's in IPv6 related to this patch to skb's. Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au> Signed-off-by: David S. Miller <davem@davemloft.net>
2006-03-28 09:12:13 +00:00
obj-$(CONFIG_INET_TUNNEL) += tunnel4.o
obj-$(CONFIG_INET_XFRM_MODE_TRANSPORT) += xfrm4_mode_transport.o
obj-$(CONFIG_INET_XFRM_MODE_TUNNEL) += xfrm4_mode_tunnel.o
obj-$(CONFIG_IP_PNP) += ipconfig.o
obj-$(CONFIG_NETFILTER) += netfilter.o netfilter/
obj-$(CONFIG_IP_VS) += ipvs/
obj-$(CONFIG_INET_DIAG) += inet_diag.o
obj-$(CONFIG_INET_TCP_DIAG) += tcp_diag.o
obj-$(CONFIG_NET_TCPPROBE) += tcp_probe.o
obj-$(CONFIG_TCP_CONG_BIC) += tcp_bic.o
obj-$(CONFIG_TCP_CONG_CUBIC) += tcp_cubic.o
obj-$(CONFIG_TCP_CONG_WESTWOOD) += tcp_westwood.o
obj-$(CONFIG_TCP_CONG_HSTCP) += tcp_highspeed.o
obj-$(CONFIG_TCP_CONG_HYBLA) += tcp_hybla.o
obj-$(CONFIG_TCP_CONG_HTCP) += tcp_htcp.o
obj-$(CONFIG_TCP_CONG_VEGAS) += tcp_vegas.o
obj-$(CONFIG_TCP_CONG_VENO) += tcp_veno.o
obj-$(CONFIG_TCP_CONG_SCALABLE) += tcp_scalable.o
obj-$(CONFIG_TCP_CONG_LP) += tcp_lp.o
obj-$(CONFIG_TCP_CONG_YEAH) += tcp_yeah.o
obj-$(CONFIG_TCP_CONG_ILLINOIS) += tcp_illinois.o
obj-$(CONFIG_NETLABEL) += cipso_ipv4.o
obj-$(CONFIG_XFRM) += xfrm4_policy.o xfrm4_state.o xfrm4_input.o \
xfrm4_output.o