android_kernel_samsung_msm8976/drivers/video/da8xx-fb.c

1027 lines
24 KiB
C
Raw Normal View History

/*
* Copyright (C) 2008-2009 MontaVista Software Inc.
* Copyright (C) 2008-2009 Texas Instruments Inc
*
* Based on the LCD driver for TI Avalanche processors written by
* Ajay Singh and Shalom Hai.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option)any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/fb.h>
#include <linux/dma-mapping.h>
#include <linux/device.h>
#include <linux/platform_device.h>
#include <linux/uaccess.h>
#include <linux/interrupt.h>
#include <linux/clk.h>
#include <linux/cpufreq.h>
#include <linux/console.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 08:04:11 +00:00
#include <linux/slab.h>
#include <video/da8xx-fb.h>
#define DRIVER_NAME "da8xx_lcdc"
/* LCD Status Register */
#define LCD_END_OF_FRAME0 BIT(8)
#define LCD_FIFO_UNDERFLOW BIT(5)
#define LCD_SYNC_LOST BIT(2)
/* LCD DMA Control Register */
#define LCD_DMA_BURST_SIZE(x) ((x) << 4)
#define LCD_DMA_BURST_1 0x0
#define LCD_DMA_BURST_2 0x1
#define LCD_DMA_BURST_4 0x2
#define LCD_DMA_BURST_8 0x3
#define LCD_DMA_BURST_16 0x4
#define LCD_END_OF_FRAME_INT_ENA BIT(2)
#define LCD_DUAL_FRAME_BUFFER_ENABLE BIT(0)
/* LCD Control Register */
#define LCD_CLK_DIVISOR(x) ((x) << 8)
#define LCD_RASTER_MODE 0x01
/* LCD Raster Control Register */
#define LCD_PALETTE_LOAD_MODE(x) ((x) << 20)
#define PALETTE_AND_DATA 0x00
#define PALETTE_ONLY 0x01
#define LCD_MONO_8BIT_MODE BIT(9)
#define LCD_RASTER_ORDER BIT(8)
#define LCD_TFT_MODE BIT(7)
#define LCD_UNDERFLOW_INT_ENA BIT(6)
#define LCD_MONOCHROME_MODE BIT(1)
#define LCD_RASTER_ENABLE BIT(0)
#define LCD_TFT_ALT_ENABLE BIT(23)
#define LCD_STN_565_ENABLE BIT(24)
/* LCD Raster Timing 2 Register */
#define LCD_AC_BIAS_TRANSITIONS_PER_INT(x) ((x) << 16)
#define LCD_AC_BIAS_FREQUENCY(x) ((x) << 8)
#define LCD_SYNC_CTRL BIT(25)
#define LCD_SYNC_EDGE BIT(24)
#define LCD_INVERT_PIXEL_CLOCK BIT(22)
#define LCD_INVERT_LINE_CLOCK BIT(21)
#define LCD_INVERT_FRAME_CLOCK BIT(20)
/* LCD Block */
#define LCD_CTRL_REG 0x4
#define LCD_STAT_REG 0x8
#define LCD_RASTER_CTRL_REG 0x28
#define LCD_RASTER_TIMING_0_REG 0x2C
#define LCD_RASTER_TIMING_1_REG 0x30
#define LCD_RASTER_TIMING_2_REG 0x34
#define LCD_DMA_CTRL_REG 0x40
#define LCD_DMA_FRM_BUF_BASE_ADDR_0_REG 0x44
#define LCD_DMA_FRM_BUF_CEILING_ADDR_0_REG 0x48
#define WSI_TIMEOUT 50
#define PALETTE_SIZE 256
#define LEFT_MARGIN 64
#define RIGHT_MARGIN 64
#define UPPER_MARGIN 32
#define LOWER_MARGIN 32
static resource_size_t da8xx_fb_reg_base;
static struct resource *lcdc_regs;
static inline unsigned int lcdc_read(unsigned int addr)
{
return (unsigned int)__raw_readl(da8xx_fb_reg_base + (addr));
}
static inline void lcdc_write(unsigned int val, unsigned int addr)
{
__raw_writel(val, da8xx_fb_reg_base + (addr));
}
struct da8xx_fb_par {
resource_size_t p_palette_base;
unsigned char *v_palette_base;
struct clk *lcdc_clk;
int irq;
unsigned short pseudo_palette[16];
unsigned int databuf_sz;
unsigned int palette_sz;
unsigned int pxl_clk;
int blank;
#ifdef CONFIG_CPU_FREQ
struct notifier_block freq_transition;
#endif
void (*panel_power_ctrl)(int);
};
/* Variable Screen Information */
static struct fb_var_screeninfo da8xx_fb_var __devinitdata = {
.xoffset = 0,
.yoffset = 0,
.transp = {0, 0, 0},
.nonstd = 0,
.activate = 0,
.height = -1,
.width = -1,
.pixclock = 46666, /* 46us - AUO display */
.accel_flags = 0,
.left_margin = LEFT_MARGIN,
.right_margin = RIGHT_MARGIN,
.upper_margin = UPPER_MARGIN,
.lower_margin = LOWER_MARGIN,
.sync = 0,
.vmode = FB_VMODE_NONINTERLACED
};
static struct fb_fix_screeninfo da8xx_fb_fix __devinitdata = {
.id = "DA8xx FB Drv",
.type = FB_TYPE_PACKED_PIXELS,
.type_aux = 0,
.visual = FB_VISUAL_PSEUDOCOLOR,
.xpanstep = 1,
.ypanstep = 1,
.ywrapstep = 1,
.accel = FB_ACCEL_NONE
};
struct da8xx_panel {
const char name[25]; /* Full name <vendor>_<model> */
unsigned short width;
unsigned short height;
int hfp; /* Horizontal front porch */
int hbp; /* Horizontal back porch */
int hsw; /* Horizontal Sync Pulse Width */
int vfp; /* Vertical front porch */
int vbp; /* Vertical back porch */
int vsw; /* Vertical Sync Pulse Width */
unsigned int pxl_clk; /* Pixel clock */
unsigned char invert_pxl_clk; /* Invert Pixel clock */
};
static struct da8xx_panel known_lcd_panels[] = {
/* Sharp LCD035Q3DG01 */
[0] = {
.name = "Sharp_LCD035Q3DG01",
.width = 320,
.height = 240,
.hfp = 8,
.hbp = 6,
.hsw = 0,
.vfp = 2,
.vbp = 2,
.vsw = 0,
.pxl_clk = 4608000,
.invert_pxl_clk = 1,
},
/* Sharp LK043T1DG01 */
[1] = {
.name = "Sharp_LK043T1DG01",
.width = 480,
.height = 272,
.hfp = 2,
.hbp = 2,
.hsw = 41,
.vfp = 2,
.vbp = 2,
.vsw = 10,
.pxl_clk = 7833600,
.invert_pxl_clk = 0,
},
};
/* Enable the Raster Engine of the LCD Controller */
static inline void lcd_enable_raster(void)
{
u32 reg;
reg = lcdc_read(LCD_RASTER_CTRL_REG);
if (!(reg & LCD_RASTER_ENABLE))
lcdc_write(reg | LCD_RASTER_ENABLE, LCD_RASTER_CTRL_REG);
}
/* Disable the Raster Engine of the LCD Controller */
static inline void lcd_disable_raster(void)
{
u32 reg;
reg = lcdc_read(LCD_RASTER_CTRL_REG);
if (reg & LCD_RASTER_ENABLE)
lcdc_write(reg & ~LCD_RASTER_ENABLE, LCD_RASTER_CTRL_REG);
}
static void lcd_blit(int load_mode, struct da8xx_fb_par *par)
{
u32 tmp = par->p_palette_base + par->databuf_sz - 4;
u32 reg;
/* Update the databuf in the hw. */
lcdc_write(par->p_palette_base, LCD_DMA_FRM_BUF_BASE_ADDR_0_REG);
lcdc_write(tmp, LCD_DMA_FRM_BUF_CEILING_ADDR_0_REG);
/* Start the DMA. */
reg = lcdc_read(LCD_RASTER_CTRL_REG);
reg &= ~(3 << 20);
if (load_mode == LOAD_DATA)
reg |= LCD_PALETTE_LOAD_MODE(PALETTE_AND_DATA);
else if (load_mode == LOAD_PALETTE)
reg |= LCD_PALETTE_LOAD_MODE(PALETTE_ONLY);
lcdc_write(reg, LCD_RASTER_CTRL_REG);
}
/* Configure the Burst Size of DMA */
static int lcd_cfg_dma(int burst_size)
{
u32 reg;
reg = lcdc_read(LCD_DMA_CTRL_REG) & 0x00000001;
switch (burst_size) {
case 1:
reg |= LCD_DMA_BURST_SIZE(LCD_DMA_BURST_1);
break;
case 2:
reg |= LCD_DMA_BURST_SIZE(LCD_DMA_BURST_2);
break;
case 4:
reg |= LCD_DMA_BURST_SIZE(LCD_DMA_BURST_4);
break;
case 8:
reg |= LCD_DMA_BURST_SIZE(LCD_DMA_BURST_8);
break;
case 16:
reg |= LCD_DMA_BURST_SIZE(LCD_DMA_BURST_16);
break;
default:
return -EINVAL;
}
lcdc_write(reg, LCD_DMA_CTRL_REG);
return 0;
}
static void lcd_cfg_ac_bias(int period, int transitions_per_int)
{
u32 reg;
/* Set the AC Bias Period and Number of Transisitons per Interrupt */
reg = lcdc_read(LCD_RASTER_TIMING_2_REG) & 0xFFF00000;
reg |= LCD_AC_BIAS_FREQUENCY(period) |
LCD_AC_BIAS_TRANSITIONS_PER_INT(transitions_per_int);
lcdc_write(reg, LCD_RASTER_TIMING_2_REG);
}
static void lcd_cfg_horizontal_sync(int back_porch, int pulse_width,
int front_porch)
{
u32 reg;
reg = lcdc_read(LCD_RASTER_TIMING_0_REG) & 0xf;
reg |= ((back_porch & 0xff) << 24)
| ((front_porch & 0xff) << 16)
| ((pulse_width & 0x3f) << 10);
lcdc_write(reg, LCD_RASTER_TIMING_0_REG);
}
static void lcd_cfg_vertical_sync(int back_porch, int pulse_width,
int front_porch)
{
u32 reg;
reg = lcdc_read(LCD_RASTER_TIMING_1_REG) & 0x3ff;
reg |= ((back_porch & 0xff) << 24)
| ((front_porch & 0xff) << 16)
| ((pulse_width & 0x3f) << 10);
lcdc_write(reg, LCD_RASTER_TIMING_1_REG);
}
static int lcd_cfg_display(const struct lcd_ctrl_config *cfg)
{
u32 reg;
reg = lcdc_read(LCD_RASTER_CTRL_REG) & ~(LCD_TFT_MODE |
LCD_MONO_8BIT_MODE |
LCD_MONOCHROME_MODE);
switch (cfg->p_disp_panel->panel_shade) {
case MONOCHROME:
reg |= LCD_MONOCHROME_MODE;
if (cfg->mono_8bit_mode)
reg |= LCD_MONO_8BIT_MODE;
break;
case COLOR_ACTIVE:
reg |= LCD_TFT_MODE;
if (cfg->tft_alt_mode)
reg |= LCD_TFT_ALT_ENABLE;
break;
case COLOR_PASSIVE:
if (cfg->stn_565_mode)
reg |= LCD_STN_565_ENABLE;
break;
default:
return -EINVAL;
}
/* enable additional interrupts here */
reg |= LCD_UNDERFLOW_INT_ENA;
lcdc_write(reg, LCD_RASTER_CTRL_REG);
reg = lcdc_read(LCD_RASTER_TIMING_2_REG);
if (cfg->sync_ctrl)
reg |= LCD_SYNC_CTRL;
else
reg &= ~LCD_SYNC_CTRL;
if (cfg->sync_edge)
reg |= LCD_SYNC_EDGE;
else
reg &= ~LCD_SYNC_EDGE;
if (cfg->invert_line_clock)
reg |= LCD_INVERT_LINE_CLOCK;
else
reg &= ~LCD_INVERT_LINE_CLOCK;
if (cfg->invert_frm_clock)
reg |= LCD_INVERT_FRAME_CLOCK;
else
reg &= ~LCD_INVERT_FRAME_CLOCK;
lcdc_write(reg, LCD_RASTER_TIMING_2_REG);
return 0;
}
static int lcd_cfg_frame_buffer(struct da8xx_fb_par *par, u32 width, u32 height,
u32 bpp, u32 raster_order)
{
u32 bpl, reg;
/* Disable Dual Frame Buffer. */
reg = lcdc_read(LCD_DMA_CTRL_REG);
lcdc_write(reg & ~LCD_DUAL_FRAME_BUFFER_ENABLE,
LCD_DMA_CTRL_REG);
/* Set the Panel Width */
/* Pixels per line = (PPL + 1)*16 */
/*0x3F in bits 4..9 gives max horisontal resolution = 1024 pixels*/
width &= 0x3f0;
reg = lcdc_read(LCD_RASTER_TIMING_0_REG);
reg &= 0xfffffc00;
reg |= ((width >> 4) - 1) << 4;
lcdc_write(reg, LCD_RASTER_TIMING_0_REG);
/* Set the Panel Height */
reg = lcdc_read(LCD_RASTER_TIMING_1_REG);
reg = ((height - 1) & 0x3ff) | (reg & 0xfffffc00);
lcdc_write(reg, LCD_RASTER_TIMING_1_REG);
/* Set the Raster Order of the Frame Buffer */
reg = lcdc_read(LCD_RASTER_CTRL_REG) & ~(1 << 8);
if (raster_order)
reg |= LCD_RASTER_ORDER;
lcdc_write(reg, LCD_RASTER_CTRL_REG);
switch (bpp) {
case 1:
case 2:
case 4:
case 16:
par->palette_sz = 16 * 2;
break;
case 8:
par->palette_sz = 256 * 2;
break;
default:
return -EINVAL;
}
bpl = width * bpp / 8;
par->databuf_sz = height * bpl + par->palette_sz;
return 0;
}
static int fb_setcolreg(unsigned regno, unsigned red, unsigned green,
unsigned blue, unsigned transp,
struct fb_info *info)
{
struct da8xx_fb_par *par = info->par;
unsigned short *palette = (unsigned short *)par->v_palette_base;
u_short pal;
if (regno > 255)
return 1;
if (info->fix.visual == FB_VISUAL_DIRECTCOLOR)
return 1;
if (info->var.bits_per_pixel == 8) {
red >>= 4;
green >>= 8;
blue >>= 12;
pal = (red & 0x0f00);
pal |= (green & 0x00f0);
pal |= (blue & 0x000f);
palette[regno] = pal;
} else if ((info->var.bits_per_pixel == 16) && regno < 16) {
red >>= (16 - info->var.red.length);
red <<= info->var.red.offset;
green >>= (16 - info->var.green.length);
green <<= info->var.green.offset;
blue >>= (16 - info->var.blue.length);
blue <<= info->var.blue.offset;
par->pseudo_palette[regno] = red | green | blue;
palette[0] = 0x4000;
}
return 0;
}
static void lcd_reset(struct da8xx_fb_par *par)
{
/* Disable the Raster if previously Enabled */
lcd_disable_raster();
/* DMA has to be disabled */
lcdc_write(0, LCD_DMA_CTRL_REG);
lcdc_write(0, LCD_RASTER_CTRL_REG);
}
static void lcd_calc_clk_divider(struct da8xx_fb_par *par)
{
unsigned int lcd_clk, div;
lcd_clk = clk_get_rate(par->lcdc_clk);
div = lcd_clk / par->pxl_clk;
/* Configure the LCD clock divisor. */
lcdc_write(LCD_CLK_DIVISOR(div) |
(LCD_RASTER_MODE & 0x1), LCD_CTRL_REG);
}
static int lcd_init(struct da8xx_fb_par *par, const struct lcd_ctrl_config *cfg,
struct da8xx_panel *panel)
{
u32 bpp;
int ret = 0;
lcd_reset(par);
/* Calculate the divider */
lcd_calc_clk_divider(par);
if (panel->invert_pxl_clk)
lcdc_write((lcdc_read(LCD_RASTER_TIMING_2_REG) |
LCD_INVERT_PIXEL_CLOCK), LCD_RASTER_TIMING_2_REG);
else
lcdc_write((lcdc_read(LCD_RASTER_TIMING_2_REG) &
~LCD_INVERT_PIXEL_CLOCK), LCD_RASTER_TIMING_2_REG);
/* Configure the DMA burst size. */
ret = lcd_cfg_dma(cfg->dma_burst_sz);
if (ret < 0)
return ret;
/* Configure the AC bias properties. */
lcd_cfg_ac_bias(cfg->ac_bias, cfg->ac_bias_intrpt);
/* Configure the vertical and horizontal sync properties. */
lcd_cfg_vertical_sync(panel->vbp, panel->vsw, panel->vfp);
lcd_cfg_horizontal_sync(panel->hbp, panel->hsw, panel->hfp);
/* Configure for disply */
ret = lcd_cfg_display(cfg);
if (ret < 0)
return ret;
if (QVGA != cfg->p_disp_panel->panel_type)
return -EINVAL;
if (cfg->bpp <= cfg->p_disp_panel->max_bpp &&
cfg->bpp >= cfg->p_disp_panel->min_bpp)
bpp = cfg->bpp;
else
bpp = cfg->p_disp_panel->max_bpp;
if (bpp == 12)
bpp = 16;
ret = lcd_cfg_frame_buffer(par, (unsigned int)panel->width,
(unsigned int)panel->height, bpp,
cfg->raster_order);
if (ret < 0)
return ret;
/* Configure FDD */
lcdc_write((lcdc_read(LCD_RASTER_CTRL_REG) & 0xfff00fff) |
(cfg->fdd << 12), LCD_RASTER_CTRL_REG);
return 0;
}
static irqreturn_t lcdc_irq_handler(int irq, void *arg)
{
u32 stat = lcdc_read(LCD_STAT_REG);
if ((stat & LCD_SYNC_LOST) && (stat & LCD_FIFO_UNDERFLOW)) {
lcd_disable_raster();
lcdc_write(stat, LCD_STAT_REG);
lcd_enable_raster();
} else
lcdc_write(stat, LCD_STAT_REG);
return IRQ_HANDLED;
}
static int fb_check_var(struct fb_var_screeninfo *var,
struct fb_info *info)
{
int err = 0;
switch (var->bits_per_pixel) {
case 1:
case 8:
var->red.offset = 0;
var->red.length = 8;
var->green.offset = 0;
var->green.length = 8;
var->blue.offset = 0;
var->blue.length = 8;
var->transp.offset = 0;
var->transp.length = 0;
break;
case 4:
var->red.offset = 0;
var->red.length = 4;
var->green.offset = 0;
var->green.length = 4;
var->blue.offset = 0;
var->blue.length = 4;
var->transp.offset = 0;
var->transp.length = 0;
break;
case 16: /* RGB 565 */
var->red.offset = 11;
var->red.length = 5;
var->green.offset = 5;
var->green.length = 6;
var->blue.offset = 0;
var->blue.length = 5;
var->transp.offset = 0;
var->transp.length = 0;
break;
default:
err = -EINVAL;
}
var->red.msb_right = 0;
var->green.msb_right = 0;
var->blue.msb_right = 0;
var->transp.msb_right = 0;
return err;
}
#ifdef CONFIG_CPU_FREQ
static int lcd_da8xx_cpufreq_transition(struct notifier_block *nb,
unsigned long val, void *data)
{
struct da8xx_fb_par *par;
par = container_of(nb, struct da8xx_fb_par, freq_transition);
if (val == CPUFREQ_PRECHANGE) {
lcd_disable_raster();
} else if (val == CPUFREQ_POSTCHANGE) {
lcd_calc_clk_divider(par);
lcd_enable_raster();
}
return 0;
}
static inline int lcd_da8xx_cpufreq_register(struct da8xx_fb_par *par)
{
par->freq_transition.notifier_call = lcd_da8xx_cpufreq_transition;
return cpufreq_register_notifier(&par->freq_transition,
CPUFREQ_TRANSITION_NOTIFIER);
}
static inline void lcd_da8xx_cpufreq_deregister(struct da8xx_fb_par *par)
{
cpufreq_unregister_notifier(&par->freq_transition,
CPUFREQ_TRANSITION_NOTIFIER);
}
#endif
static int __devexit fb_remove(struct platform_device *dev)
{
struct fb_info *info = dev_get_drvdata(&dev->dev);
if (info) {
struct da8xx_fb_par *par = info->par;
#ifdef CONFIG_CPU_FREQ
lcd_da8xx_cpufreq_deregister(par);
#endif
if (par->panel_power_ctrl)
par->panel_power_ctrl(0);
lcd_disable_raster();
lcdc_write(0, LCD_RASTER_CTRL_REG);
/* disable DMA */
lcdc_write(0, LCD_DMA_CTRL_REG);
unregister_framebuffer(info);
fb_dealloc_cmap(&info->cmap);
dma_free_coherent(NULL, par->databuf_sz + PAGE_SIZE,
info->screen_base - PAGE_SIZE,
info->fix.smem_start);
free_irq(par->irq, par);
clk_disable(par->lcdc_clk);
clk_put(par->lcdc_clk);
framebuffer_release(info);
iounmap((void __iomem *)da8xx_fb_reg_base);
release_mem_region(lcdc_regs->start, resource_size(lcdc_regs));
}
return 0;
}
static int fb_ioctl(struct fb_info *info, unsigned int cmd,
unsigned long arg)
{
struct lcd_sync_arg sync_arg;
switch (cmd) {
case FBIOGET_CONTRAST:
case FBIOPUT_CONTRAST:
case FBIGET_BRIGHTNESS:
case FBIPUT_BRIGHTNESS:
case FBIGET_COLOR:
case FBIPUT_COLOR:
return -ENOTTY;
case FBIPUT_HSYNC:
if (copy_from_user(&sync_arg, (char *)arg,
sizeof(struct lcd_sync_arg)))
return -EFAULT;
lcd_cfg_horizontal_sync(sync_arg.back_porch,
sync_arg.pulse_width,
sync_arg.front_porch);
break;
case FBIPUT_VSYNC:
if (copy_from_user(&sync_arg, (char *)arg,
sizeof(struct lcd_sync_arg)))
return -EFAULT;
lcd_cfg_vertical_sync(sync_arg.back_porch,
sync_arg.pulse_width,
sync_arg.front_porch);
break;
default:
return -EINVAL;
}
return 0;
}
static int cfb_blank(int blank, struct fb_info *info)
{
struct da8xx_fb_par *par = info->par;
int ret = 0;
if (par->blank == blank)
return 0;
par->blank = blank;
switch (blank) {
case FB_BLANK_UNBLANK:
if (par->panel_power_ctrl)
par->panel_power_ctrl(1);
lcd_enable_raster();
break;
case FB_BLANK_POWERDOWN:
if (par->panel_power_ctrl)
par->panel_power_ctrl(0);
lcd_disable_raster();
break;
default:
ret = -EINVAL;
}
return ret;
}
static struct fb_ops da8xx_fb_ops = {
.owner = THIS_MODULE,
.fb_check_var = fb_check_var,
.fb_setcolreg = fb_setcolreg,
.fb_ioctl = fb_ioctl,
.fb_fillrect = cfb_fillrect,
.fb_copyarea = cfb_copyarea,
.fb_imageblit = cfb_imageblit,
.fb_blank = cfb_blank,
};
static int __init fb_probe(struct platform_device *device)
{
struct da8xx_lcdc_platform_data *fb_pdata =
device->dev.platform_data;
struct lcd_ctrl_config *lcd_cfg;
struct da8xx_panel *lcdc_info;
struct fb_info *da8xx_fb_info;
struct clk *fb_clk = NULL;
struct da8xx_fb_par *par;
resource_size_t len;
int ret, i;
if (fb_pdata == NULL) {
dev_err(&device->dev, "Can not get platform data\n");
return -ENOENT;
}
lcdc_regs = platform_get_resource(device, IORESOURCE_MEM, 0);
if (!lcdc_regs) {
dev_err(&device->dev,
"Can not get memory resource for LCD controller\n");
return -ENOENT;
}
len = resource_size(lcdc_regs);
lcdc_regs = request_mem_region(lcdc_regs->start, len, lcdc_regs->name);
if (!lcdc_regs)
return -EBUSY;
da8xx_fb_reg_base = (resource_size_t)ioremap(lcdc_regs->start, len);
if (!da8xx_fb_reg_base) {
ret = -EBUSY;
goto err_request_mem;
}
fb_clk = clk_get(&device->dev, NULL);
if (IS_ERR(fb_clk)) {
dev_err(&device->dev, "Can not get device clock\n");
ret = -ENODEV;
goto err_ioremap;
}
ret = clk_enable(fb_clk);
if (ret)
goto err_clk_put;
for (i = 0, lcdc_info = known_lcd_panels;
i < ARRAY_SIZE(known_lcd_panels);
i++, lcdc_info++) {
if (strcmp(fb_pdata->type, lcdc_info->name) == 0)
break;
}
if (i == ARRAY_SIZE(known_lcd_panels)) {
dev_err(&device->dev, "GLCD: No valid panel found\n");
ret = -ENODEV;
goto err_clk_disable;
} else
dev_info(&device->dev, "GLCD: Found %s panel\n",
fb_pdata->type);
lcd_cfg = (struct lcd_ctrl_config *)fb_pdata->controller_data;
da8xx_fb_info = framebuffer_alloc(sizeof(struct da8xx_fb_par),
&device->dev);
if (!da8xx_fb_info) {
dev_dbg(&device->dev, "Memory allocation failed for fb_info\n");
ret = -ENOMEM;
goto err_clk_disable;
}
par = da8xx_fb_info->par;
par->lcdc_clk = fb_clk;
par->pxl_clk = lcdc_info->pxl_clk;
if (fb_pdata->panel_power_ctrl) {
par->panel_power_ctrl = fb_pdata->panel_power_ctrl;
par->panel_power_ctrl(1);
}
if (lcd_init(par, lcd_cfg, lcdc_info) < 0) {
dev_err(&device->dev, "lcd_init failed\n");
ret = -EFAULT;
goto err_release_fb;
}
/* allocate frame buffer */
da8xx_fb_info->screen_base = dma_alloc_coherent(NULL,
par->databuf_sz + PAGE_SIZE,
(resource_size_t *)
&da8xx_fb_info->fix.smem_start,
GFP_KERNEL | GFP_DMA);
if (!da8xx_fb_info->screen_base) {
dev_err(&device->dev,
"GLCD: kmalloc for frame buffer failed\n");
ret = -EINVAL;
goto err_release_fb;
}
/* move palette base pointer by (PAGE_SIZE - palette_sz) bytes */
par->v_palette_base = da8xx_fb_info->screen_base +
(PAGE_SIZE - par->palette_sz);
par->p_palette_base = da8xx_fb_info->fix.smem_start +
(PAGE_SIZE - par->palette_sz);
/* the rest of the frame buffer is pixel data */
da8xx_fb_info->screen_base = par->v_palette_base + par->palette_sz;
da8xx_fb_fix.smem_start = par->p_palette_base + par->palette_sz;
da8xx_fb_fix.smem_len = par->databuf_sz - par->palette_sz;
da8xx_fb_fix.line_length = (lcdc_info->width * lcd_cfg->bpp) / 8;
par->irq = platform_get_irq(device, 0);
if (par->irq < 0) {
ret = -ENOENT;
goto err_release_fb_mem;
}
ret = request_irq(par->irq, lcdc_irq_handler, 0, DRIVER_NAME, par);
if (ret)
goto err_release_fb_mem;
/* Initialize par */
da8xx_fb_info->var.bits_per_pixel = lcd_cfg->bpp;
da8xx_fb_var.xres = lcdc_info->width;
da8xx_fb_var.xres_virtual = lcdc_info->width;
da8xx_fb_var.yres = lcdc_info->height;
da8xx_fb_var.yres_virtual = lcdc_info->height;
da8xx_fb_var.grayscale =
lcd_cfg->p_disp_panel->panel_shade == MONOCHROME ? 1 : 0;
da8xx_fb_var.bits_per_pixel = lcd_cfg->bpp;
da8xx_fb_var.hsync_len = lcdc_info->hsw;
da8xx_fb_var.vsync_len = lcdc_info->vsw;
/* Initialize fbinfo */
da8xx_fb_info->flags = FBINFO_FLAG_DEFAULT;
da8xx_fb_info->fix = da8xx_fb_fix;
da8xx_fb_info->var = da8xx_fb_var;
da8xx_fb_info->fbops = &da8xx_fb_ops;
da8xx_fb_info->pseudo_palette = par->pseudo_palette;
da8xx_fb_info->fix.visual = (da8xx_fb_info->var.bits_per_pixel <= 8) ?
FB_VISUAL_PSEUDOCOLOR : FB_VISUAL_TRUECOLOR;
ret = fb_alloc_cmap(&da8xx_fb_info->cmap, PALETTE_SIZE, 0);
if (ret)
goto err_free_irq;
/* First palette_sz byte of the frame buffer is the palette */
da8xx_fb_info->cmap.len = par->palette_sz;
/* Flush the buffer to the screen. */
lcd_blit(LOAD_DATA, par);
/* initialize var_screeninfo */
da8xx_fb_var.activate = FB_ACTIVATE_FORCE;
fb_set_var(da8xx_fb_info, &da8xx_fb_var);
dev_set_drvdata(&device->dev, da8xx_fb_info);
/* Register the Frame Buffer */
if (register_framebuffer(da8xx_fb_info) < 0) {
dev_err(&device->dev,
"GLCD: Frame Buffer Registration Failed!\n");
ret = -EINVAL;
goto err_dealloc_cmap;
}
#ifdef CONFIG_CPU_FREQ
ret = lcd_da8xx_cpufreq_register(par);
if (ret) {
dev_err(&device->dev, "failed to register cpufreq\n");
goto err_cpu_freq;
}
#endif
/* enable raster engine */
lcd_enable_raster();
return 0;
#ifdef CONFIG_CPU_FREQ
err_cpu_freq:
unregister_framebuffer(da8xx_fb_info);
#endif
err_dealloc_cmap:
fb_dealloc_cmap(&da8xx_fb_info->cmap);
err_free_irq:
free_irq(par->irq, par);
err_release_fb_mem:
dma_free_coherent(NULL, par->databuf_sz + PAGE_SIZE,
da8xx_fb_info->screen_base - PAGE_SIZE,
da8xx_fb_info->fix.smem_start);
err_release_fb:
framebuffer_release(da8xx_fb_info);
err_clk_disable:
clk_disable(fb_clk);
err_clk_put:
clk_put(fb_clk);
err_ioremap:
iounmap((void __iomem *)da8xx_fb_reg_base);
err_request_mem:
release_mem_region(lcdc_regs->start, len);
return ret;
}
#ifdef CONFIG_PM
static int fb_suspend(struct platform_device *dev, pm_message_t state)
{
struct fb_info *info = platform_get_drvdata(dev);
struct da8xx_fb_par *par = info->par;
acquire_console_sem();
if (par->panel_power_ctrl)
par->panel_power_ctrl(0);
fb_set_suspend(info, 1);
lcd_disable_raster();
clk_disable(par->lcdc_clk);
release_console_sem();
return 0;
}
static int fb_resume(struct platform_device *dev)
{
struct fb_info *info = platform_get_drvdata(dev);
struct da8xx_fb_par *par = info->par;
acquire_console_sem();
if (par->panel_power_ctrl)
par->panel_power_ctrl(1);
clk_enable(par->lcdc_clk);
lcd_enable_raster();
fb_set_suspend(info, 0);
release_console_sem();
return 0;
}
#else
#define fb_suspend NULL
#define fb_resume NULL
#endif
static struct platform_driver da8xx_fb_driver = {
.probe = fb_probe,
.remove = fb_remove,
.suspend = fb_suspend,
.resume = fb_resume,
.driver = {
.name = DRIVER_NAME,
.owner = THIS_MODULE,
},
};
static int __init da8xx_fb_init(void)
{
return platform_driver_register(&da8xx_fb_driver);
}
static void __exit da8xx_fb_cleanup(void)
{
platform_driver_unregister(&da8xx_fb_driver);
}
module_init(da8xx_fb_init);
module_exit(da8xx_fb_cleanup);
MODULE_DESCRIPTION("Framebuffer driver for TI da8xx/omap-l1xx");
MODULE_AUTHOR("Texas Instruments");
MODULE_LICENSE("GPL");