android_kernel_samsung_msm8976/drivers/net/ethernet/atheros/atlx/atl2.c

3097 lines
80 KiB
C
Raw Normal View History

/*
* Copyright(c) 2006 - 2007 Atheros Corporation. All rights reserved.
* Copyright(c) 2007 - 2008 Chris Snook <csnook@redhat.com>
*
* Derived from Intel e1000 driver
* Copyright(c) 1999 - 2005 Intel Corporation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the Free
* Software Foundation; either version 2 of the License, or (at your option)
* any later version.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program; if not, write to the Free Software Foundation, Inc., 59
* Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*/
#include <linux/atomic.h>
#include <linux/crc32.h>
#include <linux/dma-mapping.h>
#include <linux/etherdevice.h>
#include <linux/ethtool.h>
#include <linux/hardirq.h>
#include <linux/if_vlan.h>
#include <linux/in.h>
#include <linux/interrupt.h>
#include <linux/ip.h>
#include <linux/irqflags.h>
#include <linux/irqreturn.h>
#include <linux/mii.h>
#include <linux/net.h>
#include <linux/netdevice.h>
#include <linux/pci.h>
#include <linux/pci_ids.h>
#include <linux/pm.h>
#include <linux/skbuff.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 08:04:11 +00:00
#include <linux/slab.h>
#include <linux/spinlock.h>
#include <linux/string.h>
#include <linux/tcp.h>
#include <linux/timer.h>
#include <linux/types.h>
#include <linux/workqueue.h>
#include "atl2.h"
#define ATL2_DRV_VERSION "2.2.3"
static const char atl2_driver_name[] = "atl2";
static const char atl2_driver_string[] = "Atheros(R) L2 Ethernet Driver";
static const char atl2_copyright[] = "Copyright (c) 2007 Atheros Corporation.";
static const char atl2_driver_version[] = ATL2_DRV_VERSION;
MODULE_AUTHOR("Atheros Corporation <xiong.huang@atheros.com>, Chris Snook <csnook@redhat.com>");
MODULE_DESCRIPTION("Atheros Fast Ethernet Network Driver");
MODULE_LICENSE("GPL");
MODULE_VERSION(ATL2_DRV_VERSION);
/*
* atl2_pci_tbl - PCI Device ID Table
*/
static DEFINE_PCI_DEVICE_TABLE(atl2_pci_tbl) = {
{PCI_DEVICE(PCI_VENDOR_ID_ATTANSIC, PCI_DEVICE_ID_ATTANSIC_L2)},
/* required last entry */
{0,}
};
MODULE_DEVICE_TABLE(pci, atl2_pci_tbl);
static void atl2_set_ethtool_ops(struct net_device *netdev);
static void atl2_check_options(struct atl2_adapter *adapter);
/**
* atl2_sw_init - Initialize general software structures (struct atl2_adapter)
* @adapter: board private structure to initialize
*
* atl2_sw_init initializes the Adapter private data structure.
* Fields are initialized based on PCI device information and
* OS network device settings (MTU size).
*/
static int atl2_sw_init(struct atl2_adapter *adapter)
{
struct atl2_hw *hw = &adapter->hw;
struct pci_dev *pdev = adapter->pdev;
/* PCI config space info */
hw->vendor_id = pdev->vendor;
hw->device_id = pdev->device;
hw->subsystem_vendor_id = pdev->subsystem_vendor;
hw->subsystem_id = pdev->subsystem_device;
hw->revision_id = pdev->revision;
pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word);
adapter->wol = 0;
adapter->ict = 50000; /* ~100ms */
adapter->link_speed = SPEED_0; /* hardware init */
adapter->link_duplex = FULL_DUPLEX;
hw->phy_configured = false;
hw->preamble_len = 7;
hw->ipgt = 0x60;
hw->min_ifg = 0x50;
hw->ipgr1 = 0x40;
hw->ipgr2 = 0x60;
hw->retry_buf = 2;
hw->max_retry = 0xf;
hw->lcol = 0x37;
hw->jam_ipg = 7;
hw->fc_rxd_hi = 0;
hw->fc_rxd_lo = 0;
hw->max_frame_size = adapter->netdev->mtu;
spin_lock_init(&adapter->stats_lock);
set_bit(__ATL2_DOWN, &adapter->flags);
return 0;
}
/**
* atl2_set_multi - Multicast and Promiscuous mode set
* @netdev: network interface device structure
*
* The set_multi entry point is called whenever the multicast address
* list or the network interface flags are updated. This routine is
* responsible for configuring the hardware for proper multicast,
* promiscuous mode, and all-multi behavior.
*/
static void atl2_set_multi(struct net_device *netdev)
{
struct atl2_adapter *adapter = netdev_priv(netdev);
struct atl2_hw *hw = &adapter->hw;
struct netdev_hw_addr *ha;
u32 rctl;
u32 hash_value;
/* Check for Promiscuous and All Multicast modes */
rctl = ATL2_READ_REG(hw, REG_MAC_CTRL);
if (netdev->flags & IFF_PROMISC) {
rctl |= MAC_CTRL_PROMIS_EN;
} else if (netdev->flags & IFF_ALLMULTI) {
rctl |= MAC_CTRL_MC_ALL_EN;
rctl &= ~MAC_CTRL_PROMIS_EN;
} else
rctl &= ~(MAC_CTRL_PROMIS_EN | MAC_CTRL_MC_ALL_EN);
ATL2_WRITE_REG(hw, REG_MAC_CTRL, rctl);
/* clear the old settings from the multicast hash table */
ATL2_WRITE_REG(hw, REG_RX_HASH_TABLE, 0);
ATL2_WRITE_REG_ARRAY(hw, REG_RX_HASH_TABLE, 1, 0);
/* comoute mc addresses' hash value ,and put it into hash table */
netdev_for_each_mc_addr(ha, netdev) {
hash_value = atl2_hash_mc_addr(hw, ha->addr);
atl2_hash_set(hw, hash_value);
}
}
static void init_ring_ptrs(struct atl2_adapter *adapter)
{
/* Read / Write Ptr Initialize: */
adapter->txd_write_ptr = 0;
atomic_set(&adapter->txd_read_ptr, 0);
adapter->rxd_read_ptr = 0;
adapter->rxd_write_ptr = 0;
atomic_set(&adapter->txs_write_ptr, 0);
adapter->txs_next_clear = 0;
}
/**
* atl2_configure - Configure Transmit&Receive Unit after Reset
* @adapter: board private structure
*
* Configure the Tx /Rx unit of the MAC after a reset.
*/
static int atl2_configure(struct atl2_adapter *adapter)
{
struct atl2_hw *hw = &adapter->hw;
u32 value;
/* clear interrupt status */
ATL2_WRITE_REG(&adapter->hw, REG_ISR, 0xffffffff);
/* set MAC Address */
value = (((u32)hw->mac_addr[2]) << 24) |
(((u32)hw->mac_addr[3]) << 16) |
(((u32)hw->mac_addr[4]) << 8) |
(((u32)hw->mac_addr[5]));
ATL2_WRITE_REG(hw, REG_MAC_STA_ADDR, value);
value = (((u32)hw->mac_addr[0]) << 8) |
(((u32)hw->mac_addr[1]));
ATL2_WRITE_REG(hw, (REG_MAC_STA_ADDR+4), value);
/* HI base address */
ATL2_WRITE_REG(hw, REG_DESC_BASE_ADDR_HI,
(u32)((adapter->ring_dma & 0xffffffff00000000ULL) >> 32));
/* LO base address */
ATL2_WRITE_REG(hw, REG_TXD_BASE_ADDR_LO,
(u32)(adapter->txd_dma & 0x00000000ffffffffULL));
ATL2_WRITE_REG(hw, REG_TXS_BASE_ADDR_LO,
(u32)(adapter->txs_dma & 0x00000000ffffffffULL));
ATL2_WRITE_REG(hw, REG_RXD_BASE_ADDR_LO,
(u32)(adapter->rxd_dma & 0x00000000ffffffffULL));
/* element count */
ATL2_WRITE_REGW(hw, REG_TXD_MEM_SIZE, (u16)(adapter->txd_ring_size/4));
ATL2_WRITE_REGW(hw, REG_TXS_MEM_SIZE, (u16)adapter->txs_ring_size);
ATL2_WRITE_REGW(hw, REG_RXD_BUF_NUM, (u16)adapter->rxd_ring_size);
/* config Internal SRAM */
/*
ATL2_WRITE_REGW(hw, REG_SRAM_TXRAM_END, sram_tx_end);
ATL2_WRITE_REGW(hw, REG_SRAM_TXRAM_END, sram_rx_end);
*/
/* config IPG/IFG */
value = (((u32)hw->ipgt & MAC_IPG_IFG_IPGT_MASK) <<
MAC_IPG_IFG_IPGT_SHIFT) |
(((u32)hw->min_ifg & MAC_IPG_IFG_MIFG_MASK) <<
MAC_IPG_IFG_MIFG_SHIFT) |
(((u32)hw->ipgr1 & MAC_IPG_IFG_IPGR1_MASK) <<
MAC_IPG_IFG_IPGR1_SHIFT)|
(((u32)hw->ipgr2 & MAC_IPG_IFG_IPGR2_MASK) <<
MAC_IPG_IFG_IPGR2_SHIFT);
ATL2_WRITE_REG(hw, REG_MAC_IPG_IFG, value);
/* config Half-Duplex Control */
value = ((u32)hw->lcol & MAC_HALF_DUPLX_CTRL_LCOL_MASK) |
(((u32)hw->max_retry & MAC_HALF_DUPLX_CTRL_RETRY_MASK) <<
MAC_HALF_DUPLX_CTRL_RETRY_SHIFT) |
MAC_HALF_DUPLX_CTRL_EXC_DEF_EN |
(0xa << MAC_HALF_DUPLX_CTRL_ABEBT_SHIFT) |
(((u32)hw->jam_ipg & MAC_HALF_DUPLX_CTRL_JAMIPG_MASK) <<
MAC_HALF_DUPLX_CTRL_JAMIPG_SHIFT);
ATL2_WRITE_REG(hw, REG_MAC_HALF_DUPLX_CTRL, value);
/* set Interrupt Moderator Timer */
ATL2_WRITE_REGW(hw, REG_IRQ_MODU_TIMER_INIT, adapter->imt);
ATL2_WRITE_REG(hw, REG_MASTER_CTRL, MASTER_CTRL_ITIMER_EN);
/* set Interrupt Clear Timer */
ATL2_WRITE_REGW(hw, REG_CMBDISDMA_TIMER, adapter->ict);
/* set MTU */
ATL2_WRITE_REG(hw, REG_MTU, adapter->netdev->mtu +
ENET_HEADER_SIZE + VLAN_SIZE + ETHERNET_FCS_SIZE);
/* 1590 */
ATL2_WRITE_REG(hw, REG_TX_CUT_THRESH, 0x177);
/* flow control */
ATL2_WRITE_REGW(hw, REG_PAUSE_ON_TH, hw->fc_rxd_hi);
ATL2_WRITE_REGW(hw, REG_PAUSE_OFF_TH, hw->fc_rxd_lo);
/* Init mailbox */
ATL2_WRITE_REGW(hw, REG_MB_TXD_WR_IDX, (u16)adapter->txd_write_ptr);
ATL2_WRITE_REGW(hw, REG_MB_RXD_RD_IDX, (u16)adapter->rxd_read_ptr);
/* enable DMA read/write */
ATL2_WRITE_REGB(hw, REG_DMAR, DMAR_EN);
ATL2_WRITE_REGB(hw, REG_DMAW, DMAW_EN);
value = ATL2_READ_REG(&adapter->hw, REG_ISR);
if ((value & ISR_PHY_LINKDOWN) != 0)
value = 1; /* config failed */
else
value = 0;
/* clear all interrupt status */
ATL2_WRITE_REG(&adapter->hw, REG_ISR, 0x3fffffff);
ATL2_WRITE_REG(&adapter->hw, REG_ISR, 0);
return value;
}
/**
* atl2_setup_ring_resources - allocate Tx / RX descriptor resources
* @adapter: board private structure
*
* Return 0 on success, negative on failure
*/
static s32 atl2_setup_ring_resources(struct atl2_adapter *adapter)
{
struct pci_dev *pdev = adapter->pdev;
int size;
u8 offset = 0;
/* real ring DMA buffer */
adapter->ring_size = size =
adapter->txd_ring_size * 1 + 7 + /* dword align */
adapter->txs_ring_size * 4 + 7 + /* dword align */
adapter->rxd_ring_size * 1536 + 127; /* 128bytes align */
adapter->ring_vir_addr = pci_alloc_consistent(pdev, size,
&adapter->ring_dma);
if (!adapter->ring_vir_addr)
return -ENOMEM;
memset(adapter->ring_vir_addr, 0, adapter->ring_size);
/* Init TXD Ring */
adapter->txd_dma = adapter->ring_dma ;
offset = (adapter->txd_dma & 0x7) ? (8 - (adapter->txd_dma & 0x7)) : 0;
adapter->txd_dma += offset;
adapter->txd_ring = adapter->ring_vir_addr + offset;
/* Init TXS Ring */
adapter->txs_dma = adapter->txd_dma + adapter->txd_ring_size;
offset = (adapter->txs_dma & 0x7) ? (8 - (adapter->txs_dma & 0x7)) : 0;
adapter->txs_dma += offset;
adapter->txs_ring = (struct tx_pkt_status *)
(((u8 *)adapter->txd_ring) + (adapter->txd_ring_size + offset));
/* Init RXD Ring */
adapter->rxd_dma = adapter->txs_dma + adapter->txs_ring_size * 4;
offset = (adapter->rxd_dma & 127) ?
(128 - (adapter->rxd_dma & 127)) : 0;
if (offset > 7)
offset -= 8;
else
offset += (128 - 8);
adapter->rxd_dma += offset;
adapter->rxd_ring = (struct rx_desc *) (((u8 *)adapter->txs_ring) +
(adapter->txs_ring_size * 4 + offset));
/*
* Read / Write Ptr Initialize:
* init_ring_ptrs(adapter);
*/
return 0;
}
/**
* atl2_irq_enable - Enable default interrupt generation settings
* @adapter: board private structure
*/
static inline void atl2_irq_enable(struct atl2_adapter *adapter)
{
ATL2_WRITE_REG(&adapter->hw, REG_IMR, IMR_NORMAL_MASK);
ATL2_WRITE_FLUSH(&adapter->hw);
}
/**
* atl2_irq_disable - Mask off interrupt generation on the NIC
* @adapter: board private structure
*/
static inline void atl2_irq_disable(struct atl2_adapter *adapter)
{
ATL2_WRITE_REG(&adapter->hw, REG_IMR, 0);
ATL2_WRITE_FLUSH(&adapter->hw);
synchronize_irq(adapter->pdev->irq);
}
static void __atl2_vlan_mode(netdev_features_t features, u32 *ctrl)
{
if (features & NETIF_F_HW_VLAN_CTAG_RX) {
/* enable VLAN tag insert/strip */
*ctrl |= MAC_CTRL_RMV_VLAN;
} else {
/* disable VLAN tag insert/strip */
*ctrl &= ~MAC_CTRL_RMV_VLAN;
}
}
static void atl2_vlan_mode(struct net_device *netdev,
netdev_features_t features)
{
struct atl2_adapter *adapter = netdev_priv(netdev);
u32 ctrl;
atl2_irq_disable(adapter);
ctrl = ATL2_READ_REG(&adapter->hw, REG_MAC_CTRL);
__atl2_vlan_mode(features, &ctrl);
ATL2_WRITE_REG(&adapter->hw, REG_MAC_CTRL, ctrl);
atl2_irq_enable(adapter);
}
static void atl2_restore_vlan(struct atl2_adapter *adapter)
{
atl2_vlan_mode(adapter->netdev, adapter->netdev->features);
}
static netdev_features_t atl2_fix_features(struct net_device *netdev,
netdev_features_t features)
{
/*
* Since there is no support for separate rx/tx vlan accel
* enable/disable make sure tx flag is always in same state as rx.
*/
if (features & NETIF_F_HW_VLAN_CTAG_RX)
features |= NETIF_F_HW_VLAN_CTAG_TX;
else
features &= ~NETIF_F_HW_VLAN_CTAG_TX;
return features;
}
static int atl2_set_features(struct net_device *netdev,
netdev_features_t features)
{
netdev_features_t changed = netdev->features ^ features;
if (changed & NETIF_F_HW_VLAN_CTAG_RX)
atl2_vlan_mode(netdev, features);
return 0;
}
static void atl2_intr_rx(struct atl2_adapter *adapter)
{
struct net_device *netdev = adapter->netdev;
struct rx_desc *rxd;
struct sk_buff *skb;
do {
rxd = adapter->rxd_ring+adapter->rxd_write_ptr;
if (!rxd->status.update)
break; /* end of tx */
/* clear this flag at once */
rxd->status.update = 0;
if (rxd->status.ok && rxd->status.pkt_size >= 60) {
int rx_size = (int)(rxd->status.pkt_size - 4);
/* alloc new buffer */
skb = netdev_alloc_skb_ip_align(netdev, rx_size);
if (NULL == skb) {
/*
* Check that some rx space is free. If not,
* free one and mark stats->rx_dropped++.
*/
netdev->stats.rx_dropped++;
break;
}
memcpy(skb->data, rxd->packet, rx_size);
skb_put(skb, rx_size);
skb->protocol = eth_type_trans(skb, netdev);
if (rxd->status.vlan) {
u16 vlan_tag = (rxd->status.vtag>>4) |
((rxd->status.vtag&7) << 13) |
((rxd->status.vtag&8) << 9);
__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tag);
}
netif_rx(skb);
netdev->stats.rx_bytes += rx_size;
netdev->stats.rx_packets++;
} else {
netdev->stats.rx_errors++;
if (rxd->status.ok && rxd->status.pkt_size <= 60)
netdev->stats.rx_length_errors++;
if (rxd->status.mcast)
netdev->stats.multicast++;
if (rxd->status.crc)
netdev->stats.rx_crc_errors++;
if (rxd->status.align)
netdev->stats.rx_frame_errors++;
}
/* advance write ptr */
if (++adapter->rxd_write_ptr == adapter->rxd_ring_size)
adapter->rxd_write_ptr = 0;
} while (1);
/* update mailbox? */
adapter->rxd_read_ptr = adapter->rxd_write_ptr;
ATL2_WRITE_REGW(&adapter->hw, REG_MB_RXD_RD_IDX, adapter->rxd_read_ptr);
}
static void atl2_intr_tx(struct atl2_adapter *adapter)
{
struct net_device *netdev = adapter->netdev;
u32 txd_read_ptr;
u32 txs_write_ptr;
struct tx_pkt_status *txs;
struct tx_pkt_header *txph;
int free_hole = 0;
do {
txs_write_ptr = (u32) atomic_read(&adapter->txs_write_ptr);
txs = adapter->txs_ring + txs_write_ptr;
if (!txs->update)
break; /* tx stop here */
free_hole = 1;
txs->update = 0;
if (++txs_write_ptr == adapter->txs_ring_size)
txs_write_ptr = 0;
atomic_set(&adapter->txs_write_ptr, (int)txs_write_ptr);
txd_read_ptr = (u32) atomic_read(&adapter->txd_read_ptr);
txph = (struct tx_pkt_header *)
(((u8 *)adapter->txd_ring) + txd_read_ptr);
if (txph->pkt_size != txs->pkt_size) {
struct tx_pkt_status *old_txs = txs;
printk(KERN_WARNING
"%s: txs packet size not consistent with txd"
" txd_:0x%08x, txs_:0x%08x!\n",
adapter->netdev->name,
*(u32 *)txph, *(u32 *)txs);
printk(KERN_WARNING
"txd read ptr: 0x%x\n",
txd_read_ptr);
txs = adapter->txs_ring + txs_write_ptr;
printk(KERN_WARNING
"txs-behind:0x%08x\n",
*(u32 *)txs);
if (txs_write_ptr < 2) {
txs = adapter->txs_ring +
(adapter->txs_ring_size +
txs_write_ptr - 2);
} else {
txs = adapter->txs_ring + (txs_write_ptr - 2);
}
printk(KERN_WARNING
"txs-before:0x%08x\n",
*(u32 *)txs);
txs = old_txs;
}
/* 4for TPH */
txd_read_ptr += (((u32)(txph->pkt_size) + 7) & ~3);
if (txd_read_ptr >= adapter->txd_ring_size)
txd_read_ptr -= adapter->txd_ring_size;
atomic_set(&adapter->txd_read_ptr, (int)txd_read_ptr);
/* tx statistics: */
if (txs->ok) {
netdev->stats.tx_bytes += txs->pkt_size;
netdev->stats.tx_packets++;
}
else
netdev->stats.tx_errors++;
if (txs->defer)
netdev->stats.collisions++;
if (txs->abort_col)
netdev->stats.tx_aborted_errors++;
if (txs->late_col)
netdev->stats.tx_window_errors++;
if (txs->underun)
netdev->stats.tx_fifo_errors++;
} while (1);
if (free_hole) {
if (netif_queue_stopped(adapter->netdev) &&
netif_carrier_ok(adapter->netdev))
netif_wake_queue(adapter->netdev);
}
}
static void atl2_check_for_link(struct atl2_adapter *adapter)
{
struct net_device *netdev = adapter->netdev;
u16 phy_data = 0;
spin_lock(&adapter->stats_lock);
atl2_read_phy_reg(&adapter->hw, MII_BMSR, &phy_data);
atl2_read_phy_reg(&adapter->hw, MII_BMSR, &phy_data);
spin_unlock(&adapter->stats_lock);
/* notify upper layer link down ASAP */
if (!(phy_data & BMSR_LSTATUS)) { /* Link Down */
if (netif_carrier_ok(netdev)) { /* old link state: Up */
printk(KERN_INFO "%s: %s NIC Link is Down\n",
atl2_driver_name, netdev->name);
adapter->link_speed = SPEED_0;
netif_carrier_off(netdev);
netif_stop_queue(netdev);
}
}
schedule_work(&adapter->link_chg_task);
}
static inline void atl2_clear_phy_int(struct atl2_adapter *adapter)
{
u16 phy_data;
spin_lock(&adapter->stats_lock);
atl2_read_phy_reg(&adapter->hw, 19, &phy_data);
spin_unlock(&adapter->stats_lock);
}
/**
* atl2_intr - Interrupt Handler
* @irq: interrupt number
* @data: pointer to a network interface device structure
*/
static irqreturn_t atl2_intr(int irq, void *data)
{
struct atl2_adapter *adapter = netdev_priv(data);
struct atl2_hw *hw = &adapter->hw;
u32 status;
status = ATL2_READ_REG(hw, REG_ISR);
if (0 == status)
return IRQ_NONE;
/* link event */
if (status & ISR_PHY)
atl2_clear_phy_int(adapter);
/* clear ISR status, and Enable CMB DMA/Disable Interrupt */
ATL2_WRITE_REG(hw, REG_ISR, status | ISR_DIS_INT);
/* check if PCIE PHY Link down */
if (status & ISR_PHY_LINKDOWN) {
if (netif_running(adapter->netdev)) { /* reset MAC */
ATL2_WRITE_REG(hw, REG_ISR, 0);
ATL2_WRITE_REG(hw, REG_IMR, 0);
ATL2_WRITE_FLUSH(hw);
schedule_work(&adapter->reset_task);
return IRQ_HANDLED;
}
}
/* check if DMA read/write error? */
if (status & (ISR_DMAR_TO_RST | ISR_DMAW_TO_RST)) {
ATL2_WRITE_REG(hw, REG_ISR, 0);
ATL2_WRITE_REG(hw, REG_IMR, 0);
ATL2_WRITE_FLUSH(hw);
schedule_work(&adapter->reset_task);
return IRQ_HANDLED;
}
/* link event */
if (status & (ISR_PHY | ISR_MANUAL)) {
adapter->netdev->stats.tx_carrier_errors++;
atl2_check_for_link(adapter);
}
/* transmit event */
if (status & ISR_TX_EVENT)
atl2_intr_tx(adapter);
/* rx exception */
if (status & ISR_RX_EVENT)
atl2_intr_rx(adapter);
/* re-enable Interrupt */
ATL2_WRITE_REG(&adapter->hw, REG_ISR, 0);
return IRQ_HANDLED;
}
static int atl2_request_irq(struct atl2_adapter *adapter)
{
struct net_device *netdev = adapter->netdev;
int flags, err = 0;
flags = IRQF_SHARED;
adapter->have_msi = true;
err = pci_enable_msi(adapter->pdev);
if (err)
adapter->have_msi = false;
if (adapter->have_msi)
flags &= ~IRQF_SHARED;
return request_irq(adapter->pdev->irq, atl2_intr, flags, netdev->name,
netdev);
}
/**
* atl2_free_ring_resources - Free Tx / RX descriptor Resources
* @adapter: board private structure
*
* Free all transmit software resources
*/
static void atl2_free_ring_resources(struct atl2_adapter *adapter)
{
struct pci_dev *pdev = adapter->pdev;
pci_free_consistent(pdev, adapter->ring_size, adapter->ring_vir_addr,
adapter->ring_dma);
}
/**
* atl2_open - Called when a network interface is made active
* @netdev: network interface device structure
*
* Returns 0 on success, negative value on failure
*
* The open entry point is called when a network interface is made
* active by the system (IFF_UP). At this point all resources needed
* for transmit and receive operations are allocated, the interrupt
* handler is registered with the OS, the watchdog timer is started,
* and the stack is notified that the interface is ready.
*/
static int atl2_open(struct net_device *netdev)
{
struct atl2_adapter *adapter = netdev_priv(netdev);
int err;
u32 val;
/* disallow open during test */
if (test_bit(__ATL2_TESTING, &adapter->flags))
return -EBUSY;
/* allocate transmit descriptors */
err = atl2_setup_ring_resources(adapter);
if (err)
return err;
err = atl2_init_hw(&adapter->hw);
if (err) {
err = -EIO;
goto err_init_hw;
}
/* hardware has been reset, we need to reload some things */
atl2_set_multi(netdev);
init_ring_ptrs(adapter);
atl2_restore_vlan(adapter);
if (atl2_configure(adapter)) {
err = -EIO;
goto err_config;
}
err = atl2_request_irq(adapter);
if (err)
goto err_req_irq;
clear_bit(__ATL2_DOWN, &adapter->flags);
mod_timer(&adapter->watchdog_timer, round_jiffies(jiffies + 4*HZ));
val = ATL2_READ_REG(&adapter->hw, REG_MASTER_CTRL);
ATL2_WRITE_REG(&adapter->hw, REG_MASTER_CTRL,
val | MASTER_CTRL_MANUAL_INT);
atl2_irq_enable(adapter);
return 0;
err_init_hw:
err_req_irq:
err_config:
atl2_free_ring_resources(adapter);
atl2_reset_hw(&adapter->hw);
return err;
}
static void atl2_down(struct atl2_adapter *adapter)
{
struct net_device *netdev = adapter->netdev;
/* signal that we're down so the interrupt handler does not
* reschedule our watchdog timer */
set_bit(__ATL2_DOWN, &adapter->flags);
netif_tx_disable(netdev);
/* reset MAC to disable all RX/TX */
atl2_reset_hw(&adapter->hw);
msleep(1);
atl2_irq_disable(adapter);
del_timer_sync(&adapter->watchdog_timer);
del_timer_sync(&adapter->phy_config_timer);
clear_bit(0, &adapter->cfg_phy);
netif_carrier_off(netdev);
adapter->link_speed = SPEED_0;
adapter->link_duplex = -1;
}
static void atl2_free_irq(struct atl2_adapter *adapter)
{
struct net_device *netdev = adapter->netdev;
free_irq(adapter->pdev->irq, netdev);
#ifdef CONFIG_PCI_MSI
if (adapter->have_msi)
pci_disable_msi(adapter->pdev);
#endif
}
/**
* atl2_close - Disables a network interface
* @netdev: network interface device structure
*
* Returns 0, this is not allowed to fail
*
* The close entry point is called when an interface is de-activated
* by the OS. The hardware is still under the drivers control, but
* needs to be disabled. A global MAC reset is issued to stop the
* hardware, and all transmit and receive resources are freed.
*/
static int atl2_close(struct net_device *netdev)
{
struct atl2_adapter *adapter = netdev_priv(netdev);
WARN_ON(test_bit(__ATL2_RESETTING, &adapter->flags));
atl2_down(adapter);
atl2_free_irq(adapter);
atl2_free_ring_resources(adapter);
return 0;
}
static inline int TxsFreeUnit(struct atl2_adapter *adapter)
{
u32 txs_write_ptr = (u32) atomic_read(&adapter->txs_write_ptr);
return (adapter->txs_next_clear >= txs_write_ptr) ?
(int) (adapter->txs_ring_size - adapter->txs_next_clear +
txs_write_ptr - 1) :
(int) (txs_write_ptr - adapter->txs_next_clear - 1);
}
static inline int TxdFreeBytes(struct atl2_adapter *adapter)
{
u32 txd_read_ptr = (u32)atomic_read(&adapter->txd_read_ptr);
return (adapter->txd_write_ptr >= txd_read_ptr) ?
(int) (adapter->txd_ring_size - adapter->txd_write_ptr +
txd_read_ptr - 1) :
(int) (txd_read_ptr - adapter->txd_write_ptr - 1);
}
static netdev_tx_t atl2_xmit_frame(struct sk_buff *skb,
struct net_device *netdev)
{
struct atl2_adapter *adapter = netdev_priv(netdev);
struct tx_pkt_header *txph;
u32 offset, copy_len;
int txs_unused;
int txbuf_unused;
if (test_bit(__ATL2_DOWN, &adapter->flags)) {
dev_kfree_skb_any(skb);
return NETDEV_TX_OK;
}
if (unlikely(skb->len <= 0)) {
dev_kfree_skb_any(skb);
return NETDEV_TX_OK;
}
txs_unused = TxsFreeUnit(adapter);
txbuf_unused = TxdFreeBytes(adapter);
if (skb->len + sizeof(struct tx_pkt_header) + 4 > txbuf_unused ||
txs_unused < 1) {
/* not enough resources */
netif_stop_queue(netdev);
return NETDEV_TX_BUSY;
}
offset = adapter->txd_write_ptr;
txph = (struct tx_pkt_header *) (((u8 *)adapter->txd_ring) + offset);
*(u32 *)txph = 0;
txph->pkt_size = skb->len;
offset += 4;
if (offset >= adapter->txd_ring_size)
offset -= adapter->txd_ring_size;
copy_len = adapter->txd_ring_size - offset;
if (copy_len >= skb->len) {
memcpy(((u8 *)adapter->txd_ring) + offset, skb->data, skb->len);
offset += ((u32)(skb->len + 3) & ~3);
} else {
memcpy(((u8 *)adapter->txd_ring)+offset, skb->data, copy_len);
memcpy((u8 *)adapter->txd_ring, skb->data+copy_len,
skb->len-copy_len);
offset = ((u32)(skb->len-copy_len + 3) & ~3);
}
#ifdef NETIF_F_HW_VLAN_CTAG_TX
if (vlan_tx_tag_present(skb)) {
u16 vlan_tag = vlan_tx_tag_get(skb);
vlan_tag = (vlan_tag << 4) |
(vlan_tag >> 13) |
((vlan_tag >> 9) & 0x8);
txph->ins_vlan = 1;
txph->vlan = vlan_tag;
}
#endif
if (offset >= adapter->txd_ring_size)
offset -= adapter->txd_ring_size;
adapter->txd_write_ptr = offset;
/* clear txs before send */
adapter->txs_ring[adapter->txs_next_clear].update = 0;
if (++adapter->txs_next_clear == adapter->txs_ring_size)
adapter->txs_next_clear = 0;
ATL2_WRITE_REGW(&adapter->hw, REG_MB_TXD_WR_IDX,
(adapter->txd_write_ptr >> 2));
mmiowb();
dev_kfree_skb_any(skb);
return NETDEV_TX_OK;
}
/**
* atl2_change_mtu - Change the Maximum Transfer Unit
* @netdev: network interface device structure
* @new_mtu: new value for maximum frame size
*
* Returns 0 on success, negative on failure
*/
static int atl2_change_mtu(struct net_device *netdev, int new_mtu)
{
struct atl2_adapter *adapter = netdev_priv(netdev);
struct atl2_hw *hw = &adapter->hw;
if ((new_mtu < 40) || (new_mtu > (ETH_DATA_LEN + VLAN_SIZE)))
return -EINVAL;
/* set MTU */
if (hw->max_frame_size != new_mtu) {
netdev->mtu = new_mtu;
ATL2_WRITE_REG(hw, REG_MTU, new_mtu + ENET_HEADER_SIZE +
VLAN_SIZE + ETHERNET_FCS_SIZE);
}
return 0;
}
/**
* atl2_set_mac - Change the Ethernet Address of the NIC
* @netdev: network interface device structure
* @p: pointer to an address structure
*
* Returns 0 on success, negative on failure
*/
static int atl2_set_mac(struct net_device *netdev, void *p)
{
struct atl2_adapter *adapter = netdev_priv(netdev);
struct sockaddr *addr = p;
if (!is_valid_ether_addr(addr->sa_data))
return -EADDRNOTAVAIL;
if (netif_running(netdev))
return -EBUSY;
memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
memcpy(adapter->hw.mac_addr, addr->sa_data, netdev->addr_len);
atl2_set_mac_addr(&adapter->hw);
return 0;
}
static int atl2_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
{
struct atl2_adapter *adapter = netdev_priv(netdev);
struct mii_ioctl_data *data = if_mii(ifr);
unsigned long flags;
switch (cmd) {
case SIOCGMIIPHY:
data->phy_id = 0;
break;
case SIOCGMIIREG:
spin_lock_irqsave(&adapter->stats_lock, flags);
if (atl2_read_phy_reg(&adapter->hw,
data->reg_num & 0x1F, &data->val_out)) {
spin_unlock_irqrestore(&adapter->stats_lock, flags);
return -EIO;
}
spin_unlock_irqrestore(&adapter->stats_lock, flags);
break;
case SIOCSMIIREG:
if (data->reg_num & ~(0x1F))
return -EFAULT;
spin_lock_irqsave(&adapter->stats_lock, flags);
if (atl2_write_phy_reg(&adapter->hw, data->reg_num,
data->val_in)) {
spin_unlock_irqrestore(&adapter->stats_lock, flags);
return -EIO;
}
spin_unlock_irqrestore(&adapter->stats_lock, flags);
break;
default:
return -EOPNOTSUPP;
}
return 0;
}
static int atl2_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
{
switch (cmd) {
case SIOCGMIIPHY:
case SIOCGMIIREG:
case SIOCSMIIREG:
return atl2_mii_ioctl(netdev, ifr, cmd);
#ifdef ETHTOOL_OPS_COMPAT
case SIOCETHTOOL:
return ethtool_ioctl(ifr);
#endif
default:
return -EOPNOTSUPP;
}
}
/**
* atl2_tx_timeout - Respond to a Tx Hang
* @netdev: network interface device structure
*/
static void atl2_tx_timeout(struct net_device *netdev)
{
struct atl2_adapter *adapter = netdev_priv(netdev);
/* Do the reset outside of interrupt context */
schedule_work(&adapter->reset_task);
}
/**
* atl2_watchdog - Timer Call-back
* @data: pointer to netdev cast into an unsigned long
*/
static void atl2_watchdog(unsigned long data)
{
struct atl2_adapter *adapter = (struct atl2_adapter *) data;
if (!test_bit(__ATL2_DOWN, &adapter->flags)) {
u32 drop_rxd, drop_rxs;
unsigned long flags;
spin_lock_irqsave(&adapter->stats_lock, flags);
drop_rxd = ATL2_READ_REG(&adapter->hw, REG_STS_RXD_OV);
drop_rxs = ATL2_READ_REG(&adapter->hw, REG_STS_RXS_OV);
spin_unlock_irqrestore(&adapter->stats_lock, flags);
adapter->netdev->stats.rx_over_errors += drop_rxd + drop_rxs;
/* Reset the timer */
mod_timer(&adapter->watchdog_timer,
round_jiffies(jiffies + 4 * HZ));
}
}
/**
* atl2_phy_config - Timer Call-back
* @data: pointer to netdev cast into an unsigned long
*/
static void atl2_phy_config(unsigned long data)
{
struct atl2_adapter *adapter = (struct atl2_adapter *) data;
struct atl2_hw *hw = &adapter->hw;
unsigned long flags;
spin_lock_irqsave(&adapter->stats_lock, flags);
atl2_write_phy_reg(hw, MII_ADVERTISE, hw->mii_autoneg_adv_reg);
atl2_write_phy_reg(hw, MII_BMCR, MII_CR_RESET | MII_CR_AUTO_NEG_EN |
MII_CR_RESTART_AUTO_NEG);
spin_unlock_irqrestore(&adapter->stats_lock, flags);
clear_bit(0, &adapter->cfg_phy);
}
static int atl2_up(struct atl2_adapter *adapter)
{
struct net_device *netdev = adapter->netdev;
int err = 0;
u32 val;
/* hardware has been reset, we need to reload some things */
err = atl2_init_hw(&adapter->hw);
if (err) {
err = -EIO;
return err;
}
atl2_set_multi(netdev);
init_ring_ptrs(adapter);
atl2_restore_vlan(adapter);
if (atl2_configure(adapter)) {
err = -EIO;
goto err_up;
}
clear_bit(__ATL2_DOWN, &adapter->flags);
val = ATL2_READ_REG(&adapter->hw, REG_MASTER_CTRL);
ATL2_WRITE_REG(&adapter->hw, REG_MASTER_CTRL, val |
MASTER_CTRL_MANUAL_INT);
atl2_irq_enable(adapter);
err_up:
return err;
}
static void atl2_reinit_locked(struct atl2_adapter *adapter)
{
WARN_ON(in_interrupt());
while (test_and_set_bit(__ATL2_RESETTING, &adapter->flags))
msleep(1);
atl2_down(adapter);
atl2_up(adapter);
clear_bit(__ATL2_RESETTING, &adapter->flags);
}
static void atl2_reset_task(struct work_struct *work)
{
struct atl2_adapter *adapter;
adapter = container_of(work, struct atl2_adapter, reset_task);
atl2_reinit_locked(adapter);
}
static void atl2_setup_mac_ctrl(struct atl2_adapter *adapter)
{
u32 value;
struct atl2_hw *hw = &adapter->hw;
struct net_device *netdev = adapter->netdev;
/* Config MAC CTRL Register */
value = MAC_CTRL_TX_EN | MAC_CTRL_RX_EN | MAC_CTRL_MACLP_CLK_PHY;
/* duplex */
if (FULL_DUPLEX == adapter->link_duplex)
value |= MAC_CTRL_DUPLX;
/* flow control */
value |= (MAC_CTRL_TX_FLOW | MAC_CTRL_RX_FLOW);
/* PAD & CRC */
value |= (MAC_CTRL_ADD_CRC | MAC_CTRL_PAD);
/* preamble length */
value |= (((u32)adapter->hw.preamble_len & MAC_CTRL_PRMLEN_MASK) <<
MAC_CTRL_PRMLEN_SHIFT);
/* vlan */
__atl2_vlan_mode(netdev->features, &value);
/* filter mode */
value |= MAC_CTRL_BC_EN;
if (netdev->flags & IFF_PROMISC)
value |= MAC_CTRL_PROMIS_EN;
else if (netdev->flags & IFF_ALLMULTI)
value |= MAC_CTRL_MC_ALL_EN;
/* half retry buffer */
value |= (((u32)(adapter->hw.retry_buf &
MAC_CTRL_HALF_LEFT_BUF_MASK)) << MAC_CTRL_HALF_LEFT_BUF_SHIFT);
ATL2_WRITE_REG(hw, REG_MAC_CTRL, value);
}
static int atl2_check_link(struct atl2_adapter *adapter)
{
struct atl2_hw *hw = &adapter->hw;
struct net_device *netdev = adapter->netdev;
int ret_val;
u16 speed, duplex, phy_data;
int reconfig = 0;
/* MII_BMSR must read twise */
atl2_read_phy_reg(hw, MII_BMSR, &phy_data);
atl2_read_phy_reg(hw, MII_BMSR, &phy_data);
if (!(phy_data&BMSR_LSTATUS)) { /* link down */
if (netif_carrier_ok(netdev)) { /* old link state: Up */
u32 value;
/* disable rx */
value = ATL2_READ_REG(hw, REG_MAC_CTRL);
value &= ~MAC_CTRL_RX_EN;
ATL2_WRITE_REG(hw, REG_MAC_CTRL, value);
adapter->link_speed = SPEED_0;
netif_carrier_off(netdev);
netif_stop_queue(netdev);
}
return 0;
}
/* Link Up */
ret_val = atl2_get_speed_and_duplex(hw, &speed, &duplex);
if (ret_val)
return ret_val;
switch (hw->MediaType) {
case MEDIA_TYPE_100M_FULL:
if (speed != SPEED_100 || duplex != FULL_DUPLEX)
reconfig = 1;
break;
case MEDIA_TYPE_100M_HALF:
if (speed != SPEED_100 || duplex != HALF_DUPLEX)
reconfig = 1;
break;
case MEDIA_TYPE_10M_FULL:
if (speed != SPEED_10 || duplex != FULL_DUPLEX)
reconfig = 1;
break;
case MEDIA_TYPE_10M_HALF:
if (speed != SPEED_10 || duplex != HALF_DUPLEX)
reconfig = 1;
break;
}
/* link result is our setting */
if (reconfig == 0) {
if (adapter->link_speed != speed ||
adapter->link_duplex != duplex) {
adapter->link_speed = speed;
adapter->link_duplex = duplex;
atl2_setup_mac_ctrl(adapter);
printk(KERN_INFO "%s: %s NIC Link is Up<%d Mbps %s>\n",
atl2_driver_name, netdev->name,
adapter->link_speed,
adapter->link_duplex == FULL_DUPLEX ?
"Full Duplex" : "Half Duplex");
}
if (!netif_carrier_ok(netdev)) { /* Link down -> Up */
netif_carrier_on(netdev);
netif_wake_queue(netdev);
}
return 0;
}
/* change original link status */
if (netif_carrier_ok(netdev)) {
u32 value;
/* disable rx */
value = ATL2_READ_REG(hw, REG_MAC_CTRL);
value &= ~MAC_CTRL_RX_EN;
ATL2_WRITE_REG(hw, REG_MAC_CTRL, value);
adapter->link_speed = SPEED_0;
netif_carrier_off(netdev);
netif_stop_queue(netdev);
}
/* auto-neg, insert timer to re-config phy
* (if interval smaller than 5 seconds, something strange) */
if (!test_bit(__ATL2_DOWN, &adapter->flags)) {
if (!test_and_set_bit(0, &adapter->cfg_phy))
mod_timer(&adapter->phy_config_timer,
round_jiffies(jiffies + 5 * HZ));
}
return 0;
}
/**
* atl2_link_chg_task - deal with link change event Out of interrupt context
*/
static void atl2_link_chg_task(struct work_struct *work)
{
struct atl2_adapter *adapter;
unsigned long flags;
adapter = container_of(work, struct atl2_adapter, link_chg_task);
spin_lock_irqsave(&adapter->stats_lock, flags);
atl2_check_link(adapter);
spin_unlock_irqrestore(&adapter->stats_lock, flags);
}
static void atl2_setup_pcicmd(struct pci_dev *pdev)
{
u16 cmd;
pci_read_config_word(pdev, PCI_COMMAND, &cmd);
if (cmd & PCI_COMMAND_INTX_DISABLE)
cmd &= ~PCI_COMMAND_INTX_DISABLE;
if (cmd & PCI_COMMAND_IO)
cmd &= ~PCI_COMMAND_IO;
if (0 == (cmd & PCI_COMMAND_MEMORY))
cmd |= PCI_COMMAND_MEMORY;
if (0 == (cmd & PCI_COMMAND_MASTER))
cmd |= PCI_COMMAND_MASTER;
pci_write_config_word(pdev, PCI_COMMAND, cmd);
/*
* some motherboards BIOS(PXE/EFI) driver may set PME
* while they transfer control to OS (Windows/Linux)
* so we should clear this bit before NIC work normally
*/
pci_write_config_dword(pdev, REG_PM_CTRLSTAT, 0);
}
#ifdef CONFIG_NET_POLL_CONTROLLER
static void atl2_poll_controller(struct net_device *netdev)
{
disable_irq(netdev->irq);
atl2_intr(netdev->irq, netdev);
enable_irq(netdev->irq);
}
#endif
static const struct net_device_ops atl2_netdev_ops = {
.ndo_open = atl2_open,
.ndo_stop = atl2_close,
.ndo_start_xmit = atl2_xmit_frame,
.ndo_set_rx_mode = atl2_set_multi,
.ndo_validate_addr = eth_validate_addr,
.ndo_set_mac_address = atl2_set_mac,
.ndo_change_mtu = atl2_change_mtu,
.ndo_fix_features = atl2_fix_features,
.ndo_set_features = atl2_set_features,
.ndo_do_ioctl = atl2_ioctl,
.ndo_tx_timeout = atl2_tx_timeout,
#ifdef CONFIG_NET_POLL_CONTROLLER
.ndo_poll_controller = atl2_poll_controller,
#endif
};
/**
* atl2_probe - Device Initialization Routine
* @pdev: PCI device information struct
* @ent: entry in atl2_pci_tbl
*
* Returns 0 on success, negative on failure
*
* atl2_probe initializes an adapter identified by a pci_dev structure.
* The OS initialization, configuring of the adapter private structure,
* and a hardware reset occur.
*/
static int atl2_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
{
struct net_device *netdev;
struct atl2_adapter *adapter;
static int cards_found;
unsigned long mmio_start;
int mmio_len;
int err;
cards_found = 0;
err = pci_enable_device(pdev);
if (err)
return err;
/*
* atl2 is a shared-high-32-bit device, so we're stuck with 32-bit DMA
* until the kernel has the proper infrastructure to support 64-bit DMA
* on these devices.
*/
if (pci_set_dma_mask(pdev, DMA_BIT_MASK(32)) &&
pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32))) {
printk(KERN_ERR "atl2: No usable DMA configuration, aborting\n");
goto err_dma;
}
/* Mark all PCI regions associated with PCI device
* pdev as being reserved by owner atl2_driver_name */
err = pci_request_regions(pdev, atl2_driver_name);
if (err)
goto err_pci_reg;
/* Enables bus-mastering on the device and calls
* pcibios_set_master to do the needed arch specific settings */
pci_set_master(pdev);
err = -ENOMEM;
netdev = alloc_etherdev(sizeof(struct atl2_adapter));
if (!netdev)
goto err_alloc_etherdev;
SET_NETDEV_DEV(netdev, &pdev->dev);
pci_set_drvdata(pdev, netdev);
adapter = netdev_priv(netdev);
adapter->netdev = netdev;
adapter->pdev = pdev;
adapter->hw.back = adapter;
mmio_start = pci_resource_start(pdev, 0x0);
mmio_len = pci_resource_len(pdev, 0x0);
adapter->hw.mem_rang = (u32)mmio_len;
adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
if (!adapter->hw.hw_addr) {
err = -EIO;
goto err_ioremap;
}
atl2_setup_pcicmd(pdev);
netdev->netdev_ops = &atl2_netdev_ops;
atl2_set_ethtool_ops(netdev);
netdev->watchdog_timeo = 5 * HZ;
strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
netdev->mem_start = mmio_start;
netdev->mem_end = mmio_start + mmio_len;
adapter->bd_number = cards_found;
adapter->pci_using_64 = false;
/* setup the private structure */
err = atl2_sw_init(adapter);
if (err)
goto err_sw_init;
err = -EIO;
netdev->hw_features = NETIF_F_HW_VLAN_CTAG_RX;
netdev->features |= (NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX);
/* Init PHY as early as possible due to power saving issue */
atl2_phy_init(&adapter->hw);
/* reset the controller to
* put the device in a known good starting state */
if (atl2_reset_hw(&adapter->hw)) {
err = -EIO;
goto err_reset;
}
/* copy the MAC address out of the EEPROM */
atl2_read_mac_addr(&adapter->hw);
memcpy(netdev->dev_addr, adapter->hw.mac_addr, netdev->addr_len);
if (!is_valid_ether_addr(netdev->dev_addr)) {
err = -EIO;
goto err_eeprom;
}
atl2_check_options(adapter);
init_timer(&adapter->watchdog_timer);
adapter->watchdog_timer.function = atl2_watchdog;
adapter->watchdog_timer.data = (unsigned long) adapter;
init_timer(&adapter->phy_config_timer);
adapter->phy_config_timer.function = atl2_phy_config;
adapter->phy_config_timer.data = (unsigned long) adapter;
INIT_WORK(&adapter->reset_task, atl2_reset_task);
INIT_WORK(&adapter->link_chg_task, atl2_link_chg_task);
strcpy(netdev->name, "eth%d"); /* ?? */
err = register_netdev(netdev);
if (err)
goto err_register;
/* assume we have no link for now */
netif_carrier_off(netdev);
netif_stop_queue(netdev);
cards_found++;
return 0;
err_reset:
err_register:
err_sw_init:
err_eeprom:
iounmap(adapter->hw.hw_addr);
err_ioremap:
free_netdev(netdev);
err_alloc_etherdev:
pci_release_regions(pdev);
err_pci_reg:
err_dma:
pci_disable_device(pdev);
return err;
}
/**
* atl2_remove - Device Removal Routine
* @pdev: PCI device information struct
*
* atl2_remove is called by the PCI subsystem to alert the driver
* that it should release a PCI device. The could be caused by a
* Hot-Plug event, or because the driver is going to be removed from
* memory.
*/
/* FIXME: write the original MAC address back in case it was changed from a
* BIOS-set value, as in atl1 -- CHS */
static void atl2_remove(struct pci_dev *pdev)
{
struct net_device *netdev = pci_get_drvdata(pdev);
struct atl2_adapter *adapter = netdev_priv(netdev);
/* flush_scheduled work may reschedule our watchdog task, so
* explicitly disable watchdog tasks from being rescheduled */
set_bit(__ATL2_DOWN, &adapter->flags);
del_timer_sync(&adapter->watchdog_timer);
del_timer_sync(&adapter->phy_config_timer);
cancel_work_sync(&adapter->reset_task);
cancel_work_sync(&adapter->link_chg_task);
unregister_netdev(netdev);
atl2_force_ps(&adapter->hw);
iounmap(adapter->hw.hw_addr);
pci_release_regions(pdev);
free_netdev(netdev);
pci_disable_device(pdev);
}
static int atl2_suspend(struct pci_dev *pdev, pm_message_t state)
{
struct net_device *netdev = pci_get_drvdata(pdev);
struct atl2_adapter *adapter = netdev_priv(netdev);
struct atl2_hw *hw = &adapter->hw;
u16 speed, duplex;
u32 ctrl = 0;
u32 wufc = adapter->wol;
#ifdef CONFIG_PM
int retval = 0;
#endif
netif_device_detach(netdev);
if (netif_running(netdev)) {
WARN_ON(test_bit(__ATL2_RESETTING, &adapter->flags));
atl2_down(adapter);
}
#ifdef CONFIG_PM
retval = pci_save_state(pdev);
if (retval)
return retval;
#endif
atl2_read_phy_reg(hw, MII_BMSR, (u16 *)&ctrl);
atl2_read_phy_reg(hw, MII_BMSR, (u16 *)&ctrl);
if (ctrl & BMSR_LSTATUS)
wufc &= ~ATLX_WUFC_LNKC;
if (0 != (ctrl & BMSR_LSTATUS) && 0 != wufc) {
u32 ret_val;
/* get current link speed & duplex */
ret_val = atl2_get_speed_and_duplex(hw, &speed, &duplex);
if (ret_val) {
printk(KERN_DEBUG
"%s: get speed&duplex error while suspend\n",
atl2_driver_name);
goto wol_dis;
}
ctrl = 0;
/* turn on magic packet wol */
if (wufc & ATLX_WUFC_MAG)
ctrl |= (WOL_MAGIC_EN | WOL_MAGIC_PME_EN);
/* ignore Link Chg event when Link is up */
ATL2_WRITE_REG(hw, REG_WOL_CTRL, ctrl);
/* Config MAC CTRL Register */
ctrl = MAC_CTRL_RX_EN | MAC_CTRL_MACLP_CLK_PHY;
if (FULL_DUPLEX == adapter->link_duplex)
ctrl |= MAC_CTRL_DUPLX;
ctrl |= (MAC_CTRL_ADD_CRC | MAC_CTRL_PAD);
ctrl |= (((u32)adapter->hw.preamble_len &
MAC_CTRL_PRMLEN_MASK) << MAC_CTRL_PRMLEN_SHIFT);
ctrl |= (((u32)(adapter->hw.retry_buf &
MAC_CTRL_HALF_LEFT_BUF_MASK)) <<
MAC_CTRL_HALF_LEFT_BUF_SHIFT);
if (wufc & ATLX_WUFC_MAG) {
/* magic packet maybe Broadcast&multicast&Unicast */
ctrl |= MAC_CTRL_BC_EN;
}
ATL2_WRITE_REG(hw, REG_MAC_CTRL, ctrl);
/* pcie patch */
ctrl = ATL2_READ_REG(hw, REG_PCIE_PHYMISC);
ctrl |= PCIE_PHYMISC_FORCE_RCV_DET;
ATL2_WRITE_REG(hw, REG_PCIE_PHYMISC, ctrl);
ctrl = ATL2_READ_REG(hw, REG_PCIE_DLL_TX_CTRL1);
ctrl |= PCIE_DLL_TX_CTRL1_SEL_NOR_CLK;
ATL2_WRITE_REG(hw, REG_PCIE_DLL_TX_CTRL1, ctrl);
pci_enable_wake(pdev, pci_choose_state(pdev, state), 1);
goto suspend_exit;
}
if (0 == (ctrl&BMSR_LSTATUS) && 0 != (wufc&ATLX_WUFC_LNKC)) {
/* link is down, so only LINK CHG WOL event enable */
ctrl |= (WOL_LINK_CHG_EN | WOL_LINK_CHG_PME_EN);
ATL2_WRITE_REG(hw, REG_WOL_CTRL, ctrl);
ATL2_WRITE_REG(hw, REG_MAC_CTRL, 0);
/* pcie patch */
ctrl = ATL2_READ_REG(hw, REG_PCIE_PHYMISC);
ctrl |= PCIE_PHYMISC_FORCE_RCV_DET;
ATL2_WRITE_REG(hw, REG_PCIE_PHYMISC, ctrl);
ctrl = ATL2_READ_REG(hw, REG_PCIE_DLL_TX_CTRL1);
ctrl |= PCIE_DLL_TX_CTRL1_SEL_NOR_CLK;
ATL2_WRITE_REG(hw, REG_PCIE_DLL_TX_CTRL1, ctrl);
hw->phy_configured = false; /* re-init PHY when resume */
pci_enable_wake(pdev, pci_choose_state(pdev, state), 1);
goto suspend_exit;
}
wol_dis:
/* WOL disabled */
ATL2_WRITE_REG(hw, REG_WOL_CTRL, 0);
/* pcie patch */
ctrl = ATL2_READ_REG(hw, REG_PCIE_PHYMISC);
ctrl |= PCIE_PHYMISC_FORCE_RCV_DET;
ATL2_WRITE_REG(hw, REG_PCIE_PHYMISC, ctrl);
ctrl = ATL2_READ_REG(hw, REG_PCIE_DLL_TX_CTRL1);
ctrl |= PCIE_DLL_TX_CTRL1_SEL_NOR_CLK;
ATL2_WRITE_REG(hw, REG_PCIE_DLL_TX_CTRL1, ctrl);
atl2_force_ps(hw);
hw->phy_configured = false; /* re-init PHY when resume */
pci_enable_wake(pdev, pci_choose_state(pdev, state), 0);
suspend_exit:
if (netif_running(netdev))
atl2_free_irq(adapter);
pci_disable_device(pdev);
pci_set_power_state(pdev, pci_choose_state(pdev, state));
return 0;
}
#ifdef CONFIG_PM
static int atl2_resume(struct pci_dev *pdev)
{
struct net_device *netdev = pci_get_drvdata(pdev);
struct atl2_adapter *adapter = netdev_priv(netdev);
u32 err;
pci_set_power_state(pdev, PCI_D0);
pci_restore_state(pdev);
err = pci_enable_device(pdev);
if (err) {
printk(KERN_ERR
"atl2: Cannot enable PCI device from suspend\n");
return err;
}
pci_set_master(pdev);
ATL2_READ_REG(&adapter->hw, REG_WOL_CTRL); /* clear WOL status */
pci_enable_wake(pdev, PCI_D3hot, 0);
pci_enable_wake(pdev, PCI_D3cold, 0);
ATL2_WRITE_REG(&adapter->hw, REG_WOL_CTRL, 0);
atl2: don't request irq on resume if netif running If the device is suspended with the cable disconnected, then resumed with the cable connected, dev->open is called before resume. During resume, we request an IRQ, but the IRQ was already assigned during dev->open, resulting in the warning shown below. Don't request an IRQ if the device is running. Call Trace: [<c011b89a>] warn_on_slowpath+0x40/0x59 [<c023df15>] raw_pci_read+0x4d/0x55 [<c023dff3>] pci_read+0x1c/0x21 [<c01bcd81>] __pci_find_next_cap_ttl+0x44/0x70 [<c01bce86>] __pci_find_next_cap+0x1a/0x1f [<c01bcef9>] pci_find_capability+0x28/0x2c [<c01c4144>] pci_msi_check_device+0x53/0x62 [<c01c49c2>] pci_enable_msi+0x3a/0x1cd [<e019f17b>] atl2_write_phy_reg+0x40/0x5f [atl2] [<c01061b1>] dma_generic_alloc_coherent+0x0/0xd7 [<e019f107>] atl2_request_irq+0x15/0x49 [atl2] [<e01a1481>] atl2_open+0x20b/0x297 [atl2] [<c024a35c>] dev_open+0x62/0x91 [<c0248b9a>] dev_change_flags+0x93/0x141 [<c024f308>] do_setlink+0x238/0x2d5 [<c02501b2>] rtnl_setlink+0xa9/0xbf [<c0297f0c>] mutex_lock+0xb/0x19 [<c024ffa7>] rtnl_dump_ifinfo+0x0/0x69 [<c0250109>] rtnl_setlink+0x0/0xbf [<c024fe42>] rtnetlink_rcv_msg+0x185/0x19f [<c0240fd1>] sock_rmalloc+0x23/0x57 [<c024fcbd>] rtnetlink_rcv_msg+0x0/0x19f [<c0259457>] netlink_rcv_skb+0x2d/0x71 [<c024fcb7>] rtnetlink_rcv+0x14/0x1a [<c025929e>] netlink_unicast+0x184/0x1e4 [<c025992a>] netlink_sendmsg+0x233/0x240 [<c023f405>] sock_sendmsg+0xb7/0xd0 [<c0129131>] autoremove_wake_function+0x0/0x2b [<c0129131>] autoremove_wake_function+0x0/0x2b [<c0147796>] mempool_alloc+0x2d/0x9e [<c020c923>] scsi_pool_alloc_command+0x35/0x4f [<c0297f0c>] mutex_lock+0xb/0x19 [<c028e867>] unix_stream_recvmsg+0x357/0x3e2 [<c01b81c9>] copy_from_user+0x23/0x4f [<c02452ea>] verify_iovec+0x3e/0x6c [<c023f5ab>] sys_sendmsg+0x18d/0x1f0 [<c023ffa8>] sys_recvmsg+0x146/0x1c8 [<c0240016>] sys_recvmsg+0x1b4/0x1c8 [<c0118f48>] __wake_up+0xf/0x15 [<c02586cd>] netlink_table_ungrab+0x17/0x19 [<c01b83ba>] copy_to_user+0x25/0x3b [<c023fe4a>] move_addr_to_user+0x50/0x68 [<c0240266>] sys_getsockname+0x6f/0x9a [<c0240280>] sys_getsockname+0x89/0x9a [<c015046a>] do_wp_page+0x3ae/0x41a [<c0151525>] handle_mm_fault+0x4c5/0x540 [<c02405d0>] sys_socketcall+0x176/0x1b0 [<c010376d>] sysenter_do_call+0x12/0x21 Signed-off-by: Alan Jenkins <alan-jenkins@tuffmail.co.uk> Signed-off-by: Jay Cliburn <jcliburn@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2008-11-20 12:18:25 +00:00
if (netif_running(netdev)) {
err = atl2_request_irq(adapter);
if (err)
return err;
}
atl2_reset_hw(&adapter->hw);
if (netif_running(netdev))
atl2_up(adapter);
netif_device_attach(netdev);
return 0;
}
#endif
static void atl2_shutdown(struct pci_dev *pdev)
{
atl2_suspend(pdev, PMSG_SUSPEND);
}
static struct pci_driver atl2_driver = {
.name = atl2_driver_name,
.id_table = atl2_pci_tbl,
.probe = atl2_probe,
.remove = atl2_remove,
/* Power Management Hooks */
.suspend = atl2_suspend,
#ifdef CONFIG_PM
.resume = atl2_resume,
#endif
.shutdown = atl2_shutdown,
};
/**
* atl2_init_module - Driver Registration Routine
*
* atl2_init_module is the first routine called when the driver is
* loaded. All it does is register with the PCI subsystem.
*/
static int __init atl2_init_module(void)
{
printk(KERN_INFO "%s - version %s\n", atl2_driver_string,
atl2_driver_version);
printk(KERN_INFO "%s\n", atl2_copyright);
return pci_register_driver(&atl2_driver);
}
module_init(atl2_init_module);
/**
* atl2_exit_module - Driver Exit Cleanup Routine
*
* atl2_exit_module is called just before the driver is removed
* from memory.
*/
static void __exit atl2_exit_module(void)
{
pci_unregister_driver(&atl2_driver);
}
module_exit(atl2_exit_module);
static void atl2_read_pci_cfg(struct atl2_hw *hw, u32 reg, u16 *value)
{
struct atl2_adapter *adapter = hw->back;
pci_read_config_word(adapter->pdev, reg, value);
}
static void atl2_write_pci_cfg(struct atl2_hw *hw, u32 reg, u16 *value)
{
struct atl2_adapter *adapter = hw->back;
pci_write_config_word(adapter->pdev, reg, *value);
}
static int atl2_get_settings(struct net_device *netdev,
struct ethtool_cmd *ecmd)
{
struct atl2_adapter *adapter = netdev_priv(netdev);
struct atl2_hw *hw = &adapter->hw;
ecmd->supported = (SUPPORTED_10baseT_Half |
SUPPORTED_10baseT_Full |
SUPPORTED_100baseT_Half |
SUPPORTED_100baseT_Full |
SUPPORTED_Autoneg |
SUPPORTED_TP);
ecmd->advertising = ADVERTISED_TP;
ecmd->advertising |= ADVERTISED_Autoneg;
ecmd->advertising |= hw->autoneg_advertised;
ecmd->port = PORT_TP;
ecmd->phy_address = 0;
ecmd->transceiver = XCVR_INTERNAL;
if (adapter->link_speed != SPEED_0) {
ethtool_cmd_speed_set(ecmd, adapter->link_speed);
if (adapter->link_duplex == FULL_DUPLEX)
ecmd->duplex = DUPLEX_FULL;
else
ecmd->duplex = DUPLEX_HALF;
} else {
ethtool_cmd_speed_set(ecmd, -1);
ecmd->duplex = -1;
}
ecmd->autoneg = AUTONEG_ENABLE;
return 0;
}
static int atl2_set_settings(struct net_device *netdev,
struct ethtool_cmd *ecmd)
{
struct atl2_adapter *adapter = netdev_priv(netdev);
struct atl2_hw *hw = &adapter->hw;
while (test_and_set_bit(__ATL2_RESETTING, &adapter->flags))
msleep(1);
if (ecmd->autoneg == AUTONEG_ENABLE) {
#define MY_ADV_MASK (ADVERTISE_10_HALF | \
ADVERTISE_10_FULL | \
ADVERTISE_100_HALF| \
ADVERTISE_100_FULL)
if ((ecmd->advertising & MY_ADV_MASK) == MY_ADV_MASK) {
hw->MediaType = MEDIA_TYPE_AUTO_SENSOR;
hw->autoneg_advertised = MY_ADV_MASK;
} else if ((ecmd->advertising & MY_ADV_MASK) ==
ADVERTISE_100_FULL) {
hw->MediaType = MEDIA_TYPE_100M_FULL;
hw->autoneg_advertised = ADVERTISE_100_FULL;
} else if ((ecmd->advertising & MY_ADV_MASK) ==
ADVERTISE_100_HALF) {
hw->MediaType = MEDIA_TYPE_100M_HALF;
hw->autoneg_advertised = ADVERTISE_100_HALF;
} else if ((ecmd->advertising & MY_ADV_MASK) ==
ADVERTISE_10_FULL) {
hw->MediaType = MEDIA_TYPE_10M_FULL;
hw->autoneg_advertised = ADVERTISE_10_FULL;
} else if ((ecmd->advertising & MY_ADV_MASK) ==
ADVERTISE_10_HALF) {
hw->MediaType = MEDIA_TYPE_10M_HALF;
hw->autoneg_advertised = ADVERTISE_10_HALF;
} else {
clear_bit(__ATL2_RESETTING, &adapter->flags);
return -EINVAL;
}
ecmd->advertising = hw->autoneg_advertised |
ADVERTISED_TP | ADVERTISED_Autoneg;
} else {
clear_bit(__ATL2_RESETTING, &adapter->flags);
return -EINVAL;
}
/* reset the link */
if (netif_running(adapter->netdev)) {
atl2_down(adapter);
atl2_up(adapter);
} else
atl2_reset_hw(&adapter->hw);
clear_bit(__ATL2_RESETTING, &adapter->flags);
return 0;
}
static u32 atl2_get_msglevel(struct net_device *netdev)
{
return 0;
}
/*
* It's sane for this to be empty, but we might want to take advantage of this.
*/
static void atl2_set_msglevel(struct net_device *netdev, u32 data)
{
}
static int atl2_get_regs_len(struct net_device *netdev)
{
#define ATL2_REGS_LEN 42
return sizeof(u32) * ATL2_REGS_LEN;
}
static void atl2_get_regs(struct net_device *netdev,
struct ethtool_regs *regs, void *p)
{
struct atl2_adapter *adapter = netdev_priv(netdev);
struct atl2_hw *hw = &adapter->hw;
u32 *regs_buff = p;
u16 phy_data;
memset(p, 0, sizeof(u32) * ATL2_REGS_LEN);
regs->version = (1 << 24) | (hw->revision_id << 16) | hw->device_id;
regs_buff[0] = ATL2_READ_REG(hw, REG_VPD_CAP);
regs_buff[1] = ATL2_READ_REG(hw, REG_SPI_FLASH_CTRL);
regs_buff[2] = ATL2_READ_REG(hw, REG_SPI_FLASH_CONFIG);
regs_buff[3] = ATL2_READ_REG(hw, REG_TWSI_CTRL);
regs_buff[4] = ATL2_READ_REG(hw, REG_PCIE_DEV_MISC_CTRL);
regs_buff[5] = ATL2_READ_REG(hw, REG_MASTER_CTRL);
regs_buff[6] = ATL2_READ_REG(hw, REG_MANUAL_TIMER_INIT);
regs_buff[7] = ATL2_READ_REG(hw, REG_IRQ_MODU_TIMER_INIT);
regs_buff[8] = ATL2_READ_REG(hw, REG_PHY_ENABLE);
regs_buff[9] = ATL2_READ_REG(hw, REG_CMBDISDMA_TIMER);
regs_buff[10] = ATL2_READ_REG(hw, REG_IDLE_STATUS);
regs_buff[11] = ATL2_READ_REG(hw, REG_MDIO_CTRL);
regs_buff[12] = ATL2_READ_REG(hw, REG_SERDES_LOCK);
regs_buff[13] = ATL2_READ_REG(hw, REG_MAC_CTRL);
regs_buff[14] = ATL2_READ_REG(hw, REG_MAC_IPG_IFG);
regs_buff[15] = ATL2_READ_REG(hw, REG_MAC_STA_ADDR);
regs_buff[16] = ATL2_READ_REG(hw, REG_MAC_STA_ADDR+4);
regs_buff[17] = ATL2_READ_REG(hw, REG_RX_HASH_TABLE);
regs_buff[18] = ATL2_READ_REG(hw, REG_RX_HASH_TABLE+4);
regs_buff[19] = ATL2_READ_REG(hw, REG_MAC_HALF_DUPLX_CTRL);
regs_buff[20] = ATL2_READ_REG(hw, REG_MTU);
regs_buff[21] = ATL2_READ_REG(hw, REG_WOL_CTRL);
regs_buff[22] = ATL2_READ_REG(hw, REG_SRAM_TXRAM_END);
regs_buff[23] = ATL2_READ_REG(hw, REG_DESC_BASE_ADDR_HI);
regs_buff[24] = ATL2_READ_REG(hw, REG_TXD_BASE_ADDR_LO);
regs_buff[25] = ATL2_READ_REG(hw, REG_TXD_MEM_SIZE);
regs_buff[26] = ATL2_READ_REG(hw, REG_TXS_BASE_ADDR_LO);
regs_buff[27] = ATL2_READ_REG(hw, REG_TXS_MEM_SIZE);
regs_buff[28] = ATL2_READ_REG(hw, REG_RXD_BASE_ADDR_LO);
regs_buff[29] = ATL2_READ_REG(hw, REG_RXD_BUF_NUM);
regs_buff[30] = ATL2_READ_REG(hw, REG_DMAR);
regs_buff[31] = ATL2_READ_REG(hw, REG_TX_CUT_THRESH);
regs_buff[32] = ATL2_READ_REG(hw, REG_DMAW);
regs_buff[33] = ATL2_READ_REG(hw, REG_PAUSE_ON_TH);
regs_buff[34] = ATL2_READ_REG(hw, REG_PAUSE_OFF_TH);
regs_buff[35] = ATL2_READ_REG(hw, REG_MB_TXD_WR_IDX);
regs_buff[36] = ATL2_READ_REG(hw, REG_MB_RXD_RD_IDX);
regs_buff[38] = ATL2_READ_REG(hw, REG_ISR);
regs_buff[39] = ATL2_READ_REG(hw, REG_IMR);
atl2_read_phy_reg(hw, MII_BMCR, &phy_data);
regs_buff[40] = (u32)phy_data;
atl2_read_phy_reg(hw, MII_BMSR, &phy_data);
regs_buff[41] = (u32)phy_data;
}
static int atl2_get_eeprom_len(struct net_device *netdev)
{
struct atl2_adapter *adapter = netdev_priv(netdev);
if (!atl2_check_eeprom_exist(&adapter->hw))
return 512;
else
return 0;
}
static int atl2_get_eeprom(struct net_device *netdev,
struct ethtool_eeprom *eeprom, u8 *bytes)
{
struct atl2_adapter *adapter = netdev_priv(netdev);
struct atl2_hw *hw = &adapter->hw;
u32 *eeprom_buff;
int first_dword, last_dword;
int ret_val = 0;
int i;
if (eeprom->len == 0)
return -EINVAL;
if (atl2_check_eeprom_exist(hw))
return -EINVAL;
eeprom->magic = hw->vendor_id | (hw->device_id << 16);
first_dword = eeprom->offset >> 2;
last_dword = (eeprom->offset + eeprom->len - 1) >> 2;
eeprom_buff = kmalloc(sizeof(u32) * (last_dword - first_dword + 1),
GFP_KERNEL);
if (!eeprom_buff)
return -ENOMEM;
for (i = first_dword; i < last_dword; i++) {
if (!atl2_read_eeprom(hw, i*4, &(eeprom_buff[i-first_dword]))) {
ret_val = -EIO;
goto free;
}
}
memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 3),
eeprom->len);
free:
kfree(eeprom_buff);
return ret_val;
}
static int atl2_set_eeprom(struct net_device *netdev,
struct ethtool_eeprom *eeprom, u8 *bytes)
{
struct atl2_adapter *adapter = netdev_priv(netdev);
struct atl2_hw *hw = &adapter->hw;
u32 *eeprom_buff;
u32 *ptr;
int max_len, first_dword, last_dword, ret_val = 0;
int i;
if (eeprom->len == 0)
return -EOPNOTSUPP;
if (eeprom->magic != (hw->vendor_id | (hw->device_id << 16)))
return -EFAULT;
max_len = 512;
first_dword = eeprom->offset >> 2;
last_dword = (eeprom->offset + eeprom->len - 1) >> 2;
eeprom_buff = kmalloc(max_len, GFP_KERNEL);
if (!eeprom_buff)
return -ENOMEM;
ptr = eeprom_buff;
if (eeprom->offset & 3) {
/* need read/modify/write of first changed EEPROM word */
/* only the second byte of the word is being modified */
if (!atl2_read_eeprom(hw, first_dword*4, &(eeprom_buff[0]))) {
ret_val = -EIO;
goto out;
}
ptr++;
}
if (((eeprom->offset + eeprom->len) & 3)) {
/*
* need read/modify/write of last changed EEPROM word
* only the first byte of the word is being modified
*/
if (!atl2_read_eeprom(hw, last_dword * 4,
&(eeprom_buff[last_dword - first_dword]))) {
ret_val = -EIO;
goto out;
}
}
/* Device's eeprom is always little-endian, word addressable */
memcpy(ptr, bytes, eeprom->len);
for (i = 0; i < last_dword - first_dword + 1; i++) {
if (!atl2_write_eeprom(hw, ((first_dword+i)*4), eeprom_buff[i])) {
ret_val = -EIO;
goto out;
}
}
out:
kfree(eeprom_buff);
return ret_val;
}
static void atl2_get_drvinfo(struct net_device *netdev,
struct ethtool_drvinfo *drvinfo)
{
struct atl2_adapter *adapter = netdev_priv(netdev);
strlcpy(drvinfo->driver, atl2_driver_name, sizeof(drvinfo->driver));
strlcpy(drvinfo->version, atl2_driver_version,
sizeof(drvinfo->version));
strlcpy(drvinfo->fw_version, "L2", sizeof(drvinfo->fw_version));
strlcpy(drvinfo->bus_info, pci_name(adapter->pdev),
sizeof(drvinfo->bus_info));
drvinfo->n_stats = 0;
drvinfo->testinfo_len = 0;
drvinfo->regdump_len = atl2_get_regs_len(netdev);
drvinfo->eedump_len = atl2_get_eeprom_len(netdev);
}
static void atl2_get_wol(struct net_device *netdev,
struct ethtool_wolinfo *wol)
{
struct atl2_adapter *adapter = netdev_priv(netdev);
wol->supported = WAKE_MAGIC;
wol->wolopts = 0;
if (adapter->wol & ATLX_WUFC_EX)
wol->wolopts |= WAKE_UCAST;
if (adapter->wol & ATLX_WUFC_MC)
wol->wolopts |= WAKE_MCAST;
if (adapter->wol & ATLX_WUFC_BC)
wol->wolopts |= WAKE_BCAST;
if (adapter->wol & ATLX_WUFC_MAG)
wol->wolopts |= WAKE_MAGIC;
if (adapter->wol & ATLX_WUFC_LNKC)
wol->wolopts |= WAKE_PHY;
}
static int atl2_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
{
struct atl2_adapter *adapter = netdev_priv(netdev);
if (wol->wolopts & (WAKE_ARP | WAKE_MAGICSECURE))
return -EOPNOTSUPP;
if (wol->wolopts & (WAKE_UCAST | WAKE_BCAST | WAKE_MCAST))
return -EOPNOTSUPP;
/* these settings will always override what we currently have */
adapter->wol = 0;
if (wol->wolopts & WAKE_MAGIC)
adapter->wol |= ATLX_WUFC_MAG;
if (wol->wolopts & WAKE_PHY)
adapter->wol |= ATLX_WUFC_LNKC;
return 0;
}
static int atl2_nway_reset(struct net_device *netdev)
{
struct atl2_adapter *adapter = netdev_priv(netdev);
if (netif_running(netdev))
atl2_reinit_locked(adapter);
return 0;
}
static const struct ethtool_ops atl2_ethtool_ops = {
.get_settings = atl2_get_settings,
.set_settings = atl2_set_settings,
.get_drvinfo = atl2_get_drvinfo,
.get_regs_len = atl2_get_regs_len,
.get_regs = atl2_get_regs,
.get_wol = atl2_get_wol,
.set_wol = atl2_set_wol,
.get_msglevel = atl2_get_msglevel,
.set_msglevel = atl2_set_msglevel,
.nway_reset = atl2_nway_reset,
.get_link = ethtool_op_get_link,
.get_eeprom_len = atl2_get_eeprom_len,
.get_eeprom = atl2_get_eeprom,
.set_eeprom = atl2_set_eeprom,
};
static void atl2_set_ethtool_ops(struct net_device *netdev)
{
SET_ETHTOOL_OPS(netdev, &atl2_ethtool_ops);
}
#define LBYTESWAP(a) ((((a) & 0x00ff00ff) << 8) | \
(((a) & 0xff00ff00) >> 8))
#define LONGSWAP(a) ((LBYTESWAP(a) << 16) | (LBYTESWAP(a) >> 16))
#define SHORTSWAP(a) (((a) << 8) | ((a) >> 8))
/*
* Reset the transmit and receive units; mask and clear all interrupts.
*
* hw - Struct containing variables accessed by shared code
* return : 0 or idle status (if error)
*/
static s32 atl2_reset_hw(struct atl2_hw *hw)
{
u32 icr;
u16 pci_cfg_cmd_word;
int i;
/* Workaround for PCI problem when BIOS sets MMRBC incorrectly. */
atl2_read_pci_cfg(hw, PCI_REG_COMMAND, &pci_cfg_cmd_word);
if ((pci_cfg_cmd_word &
(CMD_IO_SPACE|CMD_MEMORY_SPACE|CMD_BUS_MASTER)) !=
(CMD_IO_SPACE|CMD_MEMORY_SPACE|CMD_BUS_MASTER)) {
pci_cfg_cmd_word |=
(CMD_IO_SPACE|CMD_MEMORY_SPACE|CMD_BUS_MASTER);
atl2_write_pci_cfg(hw, PCI_REG_COMMAND, &pci_cfg_cmd_word);
}
/* Clear Interrupt mask to stop board from generating
* interrupts & Clear any pending interrupt events
*/
/* FIXME */
/* ATL2_WRITE_REG(hw, REG_IMR, 0); */
/* ATL2_WRITE_REG(hw, REG_ISR, 0xffffffff); */
/* Issue Soft Reset to the MAC. This will reset the chip's
* transmit, receive, DMA. It will not effect
* the current PCI configuration. The global reset bit is self-
* clearing, and should clear within a microsecond.
*/
ATL2_WRITE_REG(hw, REG_MASTER_CTRL, MASTER_CTRL_SOFT_RST);
wmb();
msleep(1); /* delay about 1ms */
/* Wait at least 10ms for All module to be Idle */
for (i = 0; i < 10; i++) {
icr = ATL2_READ_REG(hw, REG_IDLE_STATUS);
if (!icr)
break;
msleep(1); /* delay 1 ms */
cpu_relax();
}
if (icr)
return icr;
return 0;
}
#define CUSTOM_SPI_CS_SETUP 2
#define CUSTOM_SPI_CLK_HI 2
#define CUSTOM_SPI_CLK_LO 2
#define CUSTOM_SPI_CS_HOLD 2
#define CUSTOM_SPI_CS_HI 3
static struct atl2_spi_flash_dev flash_table[] =
{
/* MFR WRSR READ PROGRAM WREN WRDI RDSR RDID SECTOR_ERASE CHIP_ERASE */
{"Atmel", 0x0, 0x03, 0x02, 0x06, 0x04, 0x05, 0x15, 0x52, 0x62 },
{"SST", 0x01, 0x03, 0x02, 0x06, 0x04, 0x05, 0x90, 0x20, 0x60 },
{"ST", 0x01, 0x03, 0x02, 0x06, 0x04, 0x05, 0xAB, 0xD8, 0xC7 },
};
static bool atl2_spi_read(struct atl2_hw *hw, u32 addr, u32 *buf)
{
int i;
u32 value;
ATL2_WRITE_REG(hw, REG_SPI_DATA, 0);
ATL2_WRITE_REG(hw, REG_SPI_ADDR, addr);
value = SPI_FLASH_CTRL_WAIT_READY |
(CUSTOM_SPI_CS_SETUP & SPI_FLASH_CTRL_CS_SETUP_MASK) <<
SPI_FLASH_CTRL_CS_SETUP_SHIFT |
(CUSTOM_SPI_CLK_HI & SPI_FLASH_CTRL_CLK_HI_MASK) <<
SPI_FLASH_CTRL_CLK_HI_SHIFT |
(CUSTOM_SPI_CLK_LO & SPI_FLASH_CTRL_CLK_LO_MASK) <<
SPI_FLASH_CTRL_CLK_LO_SHIFT |
(CUSTOM_SPI_CS_HOLD & SPI_FLASH_CTRL_CS_HOLD_MASK) <<
SPI_FLASH_CTRL_CS_HOLD_SHIFT |
(CUSTOM_SPI_CS_HI & SPI_FLASH_CTRL_CS_HI_MASK) <<
SPI_FLASH_CTRL_CS_HI_SHIFT |
(0x1 & SPI_FLASH_CTRL_INS_MASK) << SPI_FLASH_CTRL_INS_SHIFT;
ATL2_WRITE_REG(hw, REG_SPI_FLASH_CTRL, value);
value |= SPI_FLASH_CTRL_START;
ATL2_WRITE_REG(hw, REG_SPI_FLASH_CTRL, value);
for (i = 0; i < 10; i++) {
msleep(1);
value = ATL2_READ_REG(hw, REG_SPI_FLASH_CTRL);
if (!(value & SPI_FLASH_CTRL_START))
break;
}
if (value & SPI_FLASH_CTRL_START)
return false;
*buf = ATL2_READ_REG(hw, REG_SPI_DATA);
return true;
}
/*
* get_permanent_address
* return 0 if get valid mac address,
*/
static int get_permanent_address(struct atl2_hw *hw)
{
u32 Addr[2];
u32 i, Control;
u16 Register;
u8 EthAddr[ETH_ALEN];
bool KeyValid;
if (is_valid_ether_addr(hw->perm_mac_addr))
return 0;
Addr[0] = 0;
Addr[1] = 0;
if (!atl2_check_eeprom_exist(hw)) { /* eeprom exists */
Register = 0;
KeyValid = false;
/* Read out all EEPROM content */
i = 0;
while (1) {
if (atl2_read_eeprom(hw, i + 0x100, &Control)) {
if (KeyValid) {
if (Register == REG_MAC_STA_ADDR)
Addr[0] = Control;
else if (Register ==
(REG_MAC_STA_ADDR + 4))
Addr[1] = Control;
KeyValid = false;
} else if ((Control & 0xff) == 0x5A) {
KeyValid = true;
Register = (u16) (Control >> 16);
} else {
/* assume data end while encount an invalid KEYWORD */
break;
}
} else {
break; /* read error */
}
i += 4;
}
*(u32 *) &EthAddr[2] = LONGSWAP(Addr[0]);
*(u16 *) &EthAddr[0] = SHORTSWAP(*(u16 *) &Addr[1]);
if (is_valid_ether_addr(EthAddr)) {
memcpy(hw->perm_mac_addr, EthAddr, ETH_ALEN);
return 0;
}
return 1;
}
/* see if SPI flash exists? */
Addr[0] = 0;
Addr[1] = 0;
Register = 0;
KeyValid = false;
i = 0;
while (1) {
if (atl2_spi_read(hw, i + 0x1f000, &Control)) {
if (KeyValid) {
if (Register == REG_MAC_STA_ADDR)
Addr[0] = Control;
else if (Register == (REG_MAC_STA_ADDR + 4))
Addr[1] = Control;
KeyValid = false;
} else if ((Control & 0xff) == 0x5A) {
KeyValid = true;
Register = (u16) (Control >> 16);
} else {
break; /* data end */
}
} else {
break; /* read error */
}
i += 4;
}
*(u32 *) &EthAddr[2] = LONGSWAP(Addr[0]);
*(u16 *) &EthAddr[0] = SHORTSWAP(*(u16 *)&Addr[1]);
if (is_valid_ether_addr(EthAddr)) {
memcpy(hw->perm_mac_addr, EthAddr, ETH_ALEN);
return 0;
}
/* maybe MAC-address is from BIOS */
Addr[0] = ATL2_READ_REG(hw, REG_MAC_STA_ADDR);
Addr[1] = ATL2_READ_REG(hw, REG_MAC_STA_ADDR + 4);
*(u32 *) &EthAddr[2] = LONGSWAP(Addr[0]);
*(u16 *) &EthAddr[0] = SHORTSWAP(*(u16 *) &Addr[1]);
if (is_valid_ether_addr(EthAddr)) {
memcpy(hw->perm_mac_addr, EthAddr, ETH_ALEN);
return 0;
}
return 1;
}
/*
* Reads the adapter's MAC address from the EEPROM
*
* hw - Struct containing variables accessed by shared code
*/
static s32 atl2_read_mac_addr(struct atl2_hw *hw)
{
if (get_permanent_address(hw)) {
/* for test */
/* FIXME: shouldn't we use eth_random_addr() here? */
hw->perm_mac_addr[0] = 0x00;
hw->perm_mac_addr[1] = 0x13;
hw->perm_mac_addr[2] = 0x74;
hw->perm_mac_addr[3] = 0x00;
hw->perm_mac_addr[4] = 0x5c;
hw->perm_mac_addr[5] = 0x38;
}
memcpy(hw->mac_addr, hw->perm_mac_addr, ETH_ALEN);
return 0;
}
/*
* Hashes an address to determine its location in the multicast table
*
* hw - Struct containing variables accessed by shared code
* mc_addr - the multicast address to hash
*
* atl2_hash_mc_addr
* purpose
* set hash value for a multicast address
* hash calcu processing :
* 1. calcu 32bit CRC for multicast address
* 2. reverse crc with MSB to LSB
*/
static u32 atl2_hash_mc_addr(struct atl2_hw *hw, u8 *mc_addr)
{
u32 crc32, value;
int i;
value = 0;
crc32 = ether_crc_le(6, mc_addr);
for (i = 0; i < 32; i++)
value |= (((crc32 >> i) & 1) << (31 - i));
return value;
}
/*
* Sets the bit in the multicast table corresponding to the hash value.
*
* hw - Struct containing variables accessed by shared code
* hash_value - Multicast address hash value
*/
static void atl2_hash_set(struct atl2_hw *hw, u32 hash_value)
{
u32 hash_bit, hash_reg;
u32 mta;
/* The HASH Table is a register array of 2 32-bit registers.
* It is treated like an array of 64 bits. We want to set
* bit BitArray[hash_value]. So we figure out what register
* the bit is in, read it, OR in the new bit, then write
* back the new value. The register is determined by the
* upper 7 bits of the hash value and the bit within that
* register are determined by the lower 5 bits of the value.
*/
hash_reg = (hash_value >> 31) & 0x1;
hash_bit = (hash_value >> 26) & 0x1F;
mta = ATL2_READ_REG_ARRAY(hw, REG_RX_HASH_TABLE, hash_reg);
mta |= (1 << hash_bit);
ATL2_WRITE_REG_ARRAY(hw, REG_RX_HASH_TABLE, hash_reg, mta);
}
/*
* atl2_init_pcie - init PCIE module
*/
static void atl2_init_pcie(struct atl2_hw *hw)
{
u32 value;
value = LTSSM_TEST_MODE_DEF;
ATL2_WRITE_REG(hw, REG_LTSSM_TEST_MODE, value);
value = PCIE_DLL_TX_CTRL1_DEF;
ATL2_WRITE_REG(hw, REG_PCIE_DLL_TX_CTRL1, value);
}
static void atl2_init_flash_opcode(struct atl2_hw *hw)
{
if (hw->flash_vendor >= ARRAY_SIZE(flash_table))
hw->flash_vendor = 0; /* ATMEL */
/* Init OP table */
ATL2_WRITE_REGB(hw, REG_SPI_FLASH_OP_PROGRAM,
flash_table[hw->flash_vendor].cmdPROGRAM);
ATL2_WRITE_REGB(hw, REG_SPI_FLASH_OP_SC_ERASE,
flash_table[hw->flash_vendor].cmdSECTOR_ERASE);
ATL2_WRITE_REGB(hw, REG_SPI_FLASH_OP_CHIP_ERASE,
flash_table[hw->flash_vendor].cmdCHIP_ERASE);
ATL2_WRITE_REGB(hw, REG_SPI_FLASH_OP_RDID,
flash_table[hw->flash_vendor].cmdRDID);
ATL2_WRITE_REGB(hw, REG_SPI_FLASH_OP_WREN,
flash_table[hw->flash_vendor].cmdWREN);
ATL2_WRITE_REGB(hw, REG_SPI_FLASH_OP_RDSR,
flash_table[hw->flash_vendor].cmdRDSR);
ATL2_WRITE_REGB(hw, REG_SPI_FLASH_OP_WRSR,
flash_table[hw->flash_vendor].cmdWRSR);
ATL2_WRITE_REGB(hw, REG_SPI_FLASH_OP_READ,
flash_table[hw->flash_vendor].cmdREAD);
}
/********************************************************************
* Performs basic configuration of the adapter.
*
* hw - Struct containing variables accessed by shared code
* Assumes that the controller has previously been reset and is in a
* post-reset uninitialized state. Initializes multicast table,
* and Calls routines to setup link
* Leaves the transmit and receive units disabled and uninitialized.
********************************************************************/
static s32 atl2_init_hw(struct atl2_hw *hw)
{
u32 ret_val = 0;
atl2_init_pcie(hw);
/* Zero out the Multicast HASH table */
/* clear the old settings from the multicast hash table */
ATL2_WRITE_REG(hw, REG_RX_HASH_TABLE, 0);
ATL2_WRITE_REG_ARRAY(hw, REG_RX_HASH_TABLE, 1, 0);
atl2_init_flash_opcode(hw);
ret_val = atl2_phy_init(hw);
return ret_val;
}
/*
* Detects the current speed and duplex settings of the hardware.
*
* hw - Struct containing variables accessed by shared code
* speed - Speed of the connection
* duplex - Duplex setting of the connection
*/
static s32 atl2_get_speed_and_duplex(struct atl2_hw *hw, u16 *speed,
u16 *duplex)
{
s32 ret_val;
u16 phy_data;
/* Read PHY Specific Status Register (17) */
ret_val = atl2_read_phy_reg(hw, MII_ATLX_PSSR, &phy_data);
if (ret_val)
return ret_val;
if (!(phy_data & MII_ATLX_PSSR_SPD_DPLX_RESOLVED))
return ATLX_ERR_PHY_RES;
switch (phy_data & MII_ATLX_PSSR_SPEED) {
case MII_ATLX_PSSR_100MBS:
*speed = SPEED_100;
break;
case MII_ATLX_PSSR_10MBS:
*speed = SPEED_10;
break;
default:
return ATLX_ERR_PHY_SPEED;
break;
}
if (phy_data & MII_ATLX_PSSR_DPLX)
*duplex = FULL_DUPLEX;
else
*duplex = HALF_DUPLEX;
return 0;
}
/*
* Reads the value from a PHY register
* hw - Struct containing variables accessed by shared code
* reg_addr - address of the PHY register to read
*/
static s32 atl2_read_phy_reg(struct atl2_hw *hw, u16 reg_addr, u16 *phy_data)
{
u32 val;
int i;
val = ((u32)(reg_addr & MDIO_REG_ADDR_MASK)) << MDIO_REG_ADDR_SHIFT |
MDIO_START |
MDIO_SUP_PREAMBLE |
MDIO_RW |
MDIO_CLK_25_4 << MDIO_CLK_SEL_SHIFT;
ATL2_WRITE_REG(hw, REG_MDIO_CTRL, val);
wmb();
for (i = 0; i < MDIO_WAIT_TIMES; i++) {
udelay(2);
val = ATL2_READ_REG(hw, REG_MDIO_CTRL);
if (!(val & (MDIO_START | MDIO_BUSY)))
break;
wmb();
}
if (!(val & (MDIO_START | MDIO_BUSY))) {
*phy_data = (u16)val;
return 0;
}
return ATLX_ERR_PHY;
}
/*
* Writes a value to a PHY register
* hw - Struct containing variables accessed by shared code
* reg_addr - address of the PHY register to write
* data - data to write to the PHY
*/
static s32 atl2_write_phy_reg(struct atl2_hw *hw, u32 reg_addr, u16 phy_data)
{
int i;
u32 val;
val = ((u32)(phy_data & MDIO_DATA_MASK)) << MDIO_DATA_SHIFT |
(reg_addr & MDIO_REG_ADDR_MASK) << MDIO_REG_ADDR_SHIFT |
MDIO_SUP_PREAMBLE |
MDIO_START |
MDIO_CLK_25_4 << MDIO_CLK_SEL_SHIFT;
ATL2_WRITE_REG(hw, REG_MDIO_CTRL, val);
wmb();
for (i = 0; i < MDIO_WAIT_TIMES; i++) {
udelay(2);
val = ATL2_READ_REG(hw, REG_MDIO_CTRL);
if (!(val & (MDIO_START | MDIO_BUSY)))
break;
wmb();
}
if (!(val & (MDIO_START | MDIO_BUSY)))
return 0;
return ATLX_ERR_PHY;
}
/*
* Configures PHY autoneg and flow control advertisement settings
*
* hw - Struct containing variables accessed by shared code
*/
static s32 atl2_phy_setup_autoneg_adv(struct atl2_hw *hw)
{
s32 ret_val;
s16 mii_autoneg_adv_reg;
/* Read the MII Auto-Neg Advertisement Register (Address 4). */
mii_autoneg_adv_reg = MII_AR_DEFAULT_CAP_MASK;
/* Need to parse autoneg_advertised and set up
* the appropriate PHY registers. First we will parse for
* autoneg_advertised software override. Since we can advertise
* a plethora of combinations, we need to check each bit
* individually.
*/
/* First we clear all the 10/100 mb speed bits in the Auto-Neg
* Advertisement Register (Address 4) and the 1000 mb speed bits in
* the 1000Base-T Control Register (Address 9). */
mii_autoneg_adv_reg &= ~MII_AR_SPEED_MASK;
/* Need to parse MediaType and setup the
* appropriate PHY registers. */
switch (hw->MediaType) {
case MEDIA_TYPE_AUTO_SENSOR:
mii_autoneg_adv_reg |=
(MII_AR_10T_HD_CAPS |
MII_AR_10T_FD_CAPS |
MII_AR_100TX_HD_CAPS|
MII_AR_100TX_FD_CAPS);
hw->autoneg_advertised =
ADVERTISE_10_HALF |
ADVERTISE_10_FULL |
ADVERTISE_100_HALF|
ADVERTISE_100_FULL;
break;
case MEDIA_TYPE_100M_FULL:
mii_autoneg_adv_reg |= MII_AR_100TX_FD_CAPS;
hw->autoneg_advertised = ADVERTISE_100_FULL;
break;
case MEDIA_TYPE_100M_HALF:
mii_autoneg_adv_reg |= MII_AR_100TX_HD_CAPS;
hw->autoneg_advertised = ADVERTISE_100_HALF;
break;
case MEDIA_TYPE_10M_FULL:
mii_autoneg_adv_reg |= MII_AR_10T_FD_CAPS;
hw->autoneg_advertised = ADVERTISE_10_FULL;
break;
default:
mii_autoneg_adv_reg |= MII_AR_10T_HD_CAPS;
hw->autoneg_advertised = ADVERTISE_10_HALF;
break;
}
/* flow control fixed to enable all */
mii_autoneg_adv_reg |= (MII_AR_ASM_DIR | MII_AR_PAUSE);
hw->mii_autoneg_adv_reg = mii_autoneg_adv_reg;
ret_val = atl2_write_phy_reg(hw, MII_ADVERTISE, mii_autoneg_adv_reg);
if (ret_val)
return ret_val;
return 0;
}
/*
* Resets the PHY and make all config validate
*
* hw - Struct containing variables accessed by shared code
*
* Sets bit 15 and 12 of the MII Control regiser (for F001 bug)
*/
static s32 atl2_phy_commit(struct atl2_hw *hw)
{
s32 ret_val;
u16 phy_data;
phy_data = MII_CR_RESET | MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG;
ret_val = atl2_write_phy_reg(hw, MII_BMCR, phy_data);
if (ret_val) {
u32 val;
int i;
/* pcie serdes link may be down ! */
for (i = 0; i < 25; i++) {
msleep(1);
val = ATL2_READ_REG(hw, REG_MDIO_CTRL);
if (!(val & (MDIO_START | MDIO_BUSY)))
break;
}
if (0 != (val & (MDIO_START | MDIO_BUSY))) {
printk(KERN_ERR "atl2: PCIe link down for at least 25ms !\n");
return ret_val;
}
}
return 0;
}
static s32 atl2_phy_init(struct atl2_hw *hw)
{
s32 ret_val;
u16 phy_val;
if (hw->phy_configured)
return 0;
/* Enable PHY */
ATL2_WRITE_REGW(hw, REG_PHY_ENABLE, 1);
ATL2_WRITE_FLUSH(hw);
msleep(1);
/* check if the PHY is in powersaving mode */
atl2_write_phy_reg(hw, MII_DBG_ADDR, 0);
atl2_read_phy_reg(hw, MII_DBG_DATA, &phy_val);
/* 024E / 124E 0r 0274 / 1274 ? */
if (phy_val & 0x1000) {
phy_val &= ~0x1000;
atl2_write_phy_reg(hw, MII_DBG_DATA, phy_val);
}
msleep(1);
/*Enable PHY LinkChange Interrupt */
ret_val = atl2_write_phy_reg(hw, 18, 0xC00);
if (ret_val)
return ret_val;
/* setup AutoNeg parameters */
ret_val = atl2_phy_setup_autoneg_adv(hw);
if (ret_val)
return ret_val;
/* SW.Reset & En-Auto-Neg to restart Auto-Neg */
ret_val = atl2_phy_commit(hw);
if (ret_val)
return ret_val;
hw->phy_configured = true;
return ret_val;
}
static void atl2_set_mac_addr(struct atl2_hw *hw)
{
u32 value;
/* 00-0B-6A-F6-00-DC
* 0: 6AF600DC 1: 000B
* low dword */
value = (((u32)hw->mac_addr[2]) << 24) |
(((u32)hw->mac_addr[3]) << 16) |
(((u32)hw->mac_addr[4]) << 8) |
(((u32)hw->mac_addr[5]));
ATL2_WRITE_REG_ARRAY(hw, REG_MAC_STA_ADDR, 0, value);
/* hight dword */
value = (((u32)hw->mac_addr[0]) << 8) |
(((u32)hw->mac_addr[1]));
ATL2_WRITE_REG_ARRAY(hw, REG_MAC_STA_ADDR, 1, value);
}
/*
* check_eeprom_exist
* return 0 if eeprom exist
*/
static int atl2_check_eeprom_exist(struct atl2_hw *hw)
{
u32 value;
value = ATL2_READ_REG(hw, REG_SPI_FLASH_CTRL);
if (value & SPI_FLASH_CTRL_EN_VPD) {
value &= ~SPI_FLASH_CTRL_EN_VPD;
ATL2_WRITE_REG(hw, REG_SPI_FLASH_CTRL, value);
}
value = ATL2_READ_REGW(hw, REG_PCIE_CAP_LIST);
return ((value & 0xFF00) == 0x6C00) ? 0 : 1;
}
/* FIXME: This doesn't look right. -- CHS */
static bool atl2_write_eeprom(struct atl2_hw *hw, u32 offset, u32 value)
{
return true;
}
static bool atl2_read_eeprom(struct atl2_hw *hw, u32 Offset, u32 *pValue)
{
int i;
u32 Control;
if (Offset & 0x3)
return false; /* address do not align */
ATL2_WRITE_REG(hw, REG_VPD_DATA, 0);
Control = (Offset & VPD_CAP_VPD_ADDR_MASK) << VPD_CAP_VPD_ADDR_SHIFT;
ATL2_WRITE_REG(hw, REG_VPD_CAP, Control);
for (i = 0; i < 10; i++) {
msleep(2);
Control = ATL2_READ_REG(hw, REG_VPD_CAP);
if (Control & VPD_CAP_VPD_FLAG)
break;
}
if (Control & VPD_CAP_VPD_FLAG) {
*pValue = ATL2_READ_REG(hw, REG_VPD_DATA);
return true;
}
return false; /* timeout */
}
static void atl2_force_ps(struct atl2_hw *hw)
{
u16 phy_val;
atl2_write_phy_reg(hw, MII_DBG_ADDR, 0);
atl2_read_phy_reg(hw, MII_DBG_DATA, &phy_val);
atl2_write_phy_reg(hw, MII_DBG_DATA, phy_val | 0x1000);
atl2_write_phy_reg(hw, MII_DBG_ADDR, 2);
atl2_write_phy_reg(hw, MII_DBG_DATA, 0x3000);
atl2_write_phy_reg(hw, MII_DBG_ADDR, 3);
atl2_write_phy_reg(hw, MII_DBG_DATA, 0);
}
/* This is the only thing that needs to be changed to adjust the
* maximum number of ports that the driver can manage.
*/
#define ATL2_MAX_NIC 4
#define OPTION_UNSET -1
#define OPTION_DISABLED 0
#define OPTION_ENABLED 1
/* All parameters are treated the same, as an integer array of values.
* This macro just reduces the need to repeat the same declaration code
* over and over (plus this helps to avoid typo bugs).
*/
#define ATL2_PARAM_INIT {[0 ... ATL2_MAX_NIC] = OPTION_UNSET}
#ifndef module_param_array
/* Module Parameters are always initialized to -1, so that the driver
* can tell the difference between no user specified value or the
* user asking for the default value.
* The true default values are loaded in when atl2_check_options is called.
*
* This is a GCC extension to ANSI C.
* See the item "Labeled Elements in Initializers" in the section
* "Extensions to the C Language Family" of the GCC documentation.
*/
#define ATL2_PARAM(X, desc) \
static const int X[ATL2_MAX_NIC + 1] = ATL2_PARAM_INIT; \
MODULE_PARM(X, "1-" __MODULE_STRING(ATL2_MAX_NIC) "i"); \
MODULE_PARM_DESC(X, desc);
#else
#define ATL2_PARAM(X, desc) \
static int X[ATL2_MAX_NIC+1] = ATL2_PARAM_INIT; \
static unsigned int num_##X; \
module_param_array_named(X, X, int, &num_##X, 0); \
MODULE_PARM_DESC(X, desc);
#endif
/*
* Transmit Memory Size
* Valid Range: 64-2048
* Default Value: 128
*/
#define ATL2_MIN_TX_MEMSIZE 4 /* 4KB */
#define ATL2_MAX_TX_MEMSIZE 64 /* 64KB */
#define ATL2_DEFAULT_TX_MEMSIZE 8 /* 8KB */
ATL2_PARAM(TxMemSize, "Bytes of Transmit Memory");
/*
* Receive Memory Block Count
* Valid Range: 16-512
* Default Value: 128
*/
#define ATL2_MIN_RXD_COUNT 16
#define ATL2_MAX_RXD_COUNT 512
#define ATL2_DEFAULT_RXD_COUNT 64
ATL2_PARAM(RxMemBlock, "Number of receive memory block");
/*
* User Specified MediaType Override
*
* Valid Range: 0-5
* - 0 - auto-negotiate at all supported speeds
* - 1 - only link at 1000Mbps Full Duplex
* - 2 - only link at 100Mbps Full Duplex
* - 3 - only link at 100Mbps Half Duplex
* - 4 - only link at 10Mbps Full Duplex
* - 5 - only link at 10Mbps Half Duplex
* Default Value: 0
*/
ATL2_PARAM(MediaType, "MediaType Select");
/*
* Interrupt Moderate Timer in units of 2048 ns (~2 us)
* Valid Range: 10-65535
* Default Value: 45000(90ms)
*/
#define INT_MOD_DEFAULT_CNT 100 /* 200us */
#define INT_MOD_MAX_CNT 65000
#define INT_MOD_MIN_CNT 50
ATL2_PARAM(IntModTimer, "Interrupt Moderator Timer");
/*
* FlashVendor
* Valid Range: 0-2
* 0 - Atmel
* 1 - SST
* 2 - ST
*/
ATL2_PARAM(FlashVendor, "SPI Flash Vendor");
#define AUTONEG_ADV_DEFAULT 0x2F
#define AUTONEG_ADV_MASK 0x2F
#define FLOW_CONTROL_DEFAULT FLOW_CONTROL_FULL
#define FLASH_VENDOR_DEFAULT 0
#define FLASH_VENDOR_MIN 0
#define FLASH_VENDOR_MAX 2
struct atl2_option {
enum { enable_option, range_option, list_option } type;
char *name;
char *err;
int def;
union {
struct { /* range_option info */
int min;
int max;
} r;
struct { /* list_option info */
int nr;
struct atl2_opt_list { int i; char *str; } *p;
} l;
} arg;
};
static int atl2_validate_option(int *value, struct atl2_option *opt)
{
int i;
struct atl2_opt_list *ent;
if (*value == OPTION_UNSET) {
*value = opt->def;
return 0;
}
switch (opt->type) {
case enable_option:
switch (*value) {
case OPTION_ENABLED:
printk(KERN_INFO "%s Enabled\n", opt->name);
return 0;
break;
case OPTION_DISABLED:
printk(KERN_INFO "%s Disabled\n", opt->name);
return 0;
break;
}
break;
case range_option:
if (*value >= opt->arg.r.min && *value <= opt->arg.r.max) {
printk(KERN_INFO "%s set to %i\n", opt->name, *value);
return 0;
}
break;
case list_option:
for (i = 0; i < opt->arg.l.nr; i++) {
ent = &opt->arg.l.p[i];
if (*value == ent->i) {
if (ent->str[0] != '\0')
printk(KERN_INFO "%s\n", ent->str);
return 0;
}
}
break;
default:
BUG();
}
printk(KERN_INFO "Invalid %s specified (%i) %s\n",
opt->name, *value, opt->err);
*value = opt->def;
return -1;
}
/**
* atl2_check_options - Range Checking for Command Line Parameters
* @adapter: board private structure
*
* This routine checks all command line parameters for valid user
* input. If an invalid value is given, or if no user specified
* value exists, a default value is used. The final value is stored
* in a variable in the adapter structure.
*/
static void atl2_check_options(struct atl2_adapter *adapter)
{
int val;
struct atl2_option opt;
int bd = adapter->bd_number;
if (bd >= ATL2_MAX_NIC) {
printk(KERN_NOTICE "Warning: no configuration for board #%i\n",
bd);
printk(KERN_NOTICE "Using defaults for all values\n");
#ifndef module_param_array
bd = ATL2_MAX_NIC;
#endif
}
/* Bytes of Transmit Memory */
opt.type = range_option;
opt.name = "Bytes of Transmit Memory";
opt.err = "using default of " __MODULE_STRING(ATL2_DEFAULT_TX_MEMSIZE);
opt.def = ATL2_DEFAULT_TX_MEMSIZE;
opt.arg.r.min = ATL2_MIN_TX_MEMSIZE;
opt.arg.r.max = ATL2_MAX_TX_MEMSIZE;
#ifdef module_param_array
if (num_TxMemSize > bd) {
#endif
val = TxMemSize[bd];
atl2_validate_option(&val, &opt);
adapter->txd_ring_size = ((u32) val) * 1024;
#ifdef module_param_array
} else
adapter->txd_ring_size = ((u32)opt.def) * 1024;
#endif
/* txs ring size: */
adapter->txs_ring_size = adapter->txd_ring_size / 128;
if (adapter->txs_ring_size > 160)
adapter->txs_ring_size = 160;
/* Receive Memory Block Count */
opt.type = range_option;
opt.name = "Number of receive memory block";
opt.err = "using default of " __MODULE_STRING(ATL2_DEFAULT_RXD_COUNT);
opt.def = ATL2_DEFAULT_RXD_COUNT;
opt.arg.r.min = ATL2_MIN_RXD_COUNT;
opt.arg.r.max = ATL2_MAX_RXD_COUNT;
#ifdef module_param_array
if (num_RxMemBlock > bd) {
#endif
val = RxMemBlock[bd];
atl2_validate_option(&val, &opt);
adapter->rxd_ring_size = (u32)val;
/* FIXME */
/* ((u16)val)&~1; */ /* even number */
#ifdef module_param_array
} else
adapter->rxd_ring_size = (u32)opt.def;
#endif
/* init RXD Flow control value */
adapter->hw.fc_rxd_hi = (adapter->rxd_ring_size / 8) * 7;
adapter->hw.fc_rxd_lo = (ATL2_MIN_RXD_COUNT / 8) >
(adapter->rxd_ring_size / 12) ? (ATL2_MIN_RXD_COUNT / 8) :
(adapter->rxd_ring_size / 12);
/* Interrupt Moderate Timer */
opt.type = range_option;
opt.name = "Interrupt Moderate Timer";
opt.err = "using default of " __MODULE_STRING(INT_MOD_DEFAULT_CNT);
opt.def = INT_MOD_DEFAULT_CNT;
opt.arg.r.min = INT_MOD_MIN_CNT;
opt.arg.r.max = INT_MOD_MAX_CNT;
#ifdef module_param_array
if (num_IntModTimer > bd) {
#endif
val = IntModTimer[bd];
atl2_validate_option(&val, &opt);
adapter->imt = (u16) val;
#ifdef module_param_array
} else
adapter->imt = (u16)(opt.def);
#endif
/* Flash Vendor */
opt.type = range_option;
opt.name = "SPI Flash Vendor";
opt.err = "using default of " __MODULE_STRING(FLASH_VENDOR_DEFAULT);
opt.def = FLASH_VENDOR_DEFAULT;
opt.arg.r.min = FLASH_VENDOR_MIN;
opt.arg.r.max = FLASH_VENDOR_MAX;
#ifdef module_param_array
if (num_FlashVendor > bd) {
#endif
val = FlashVendor[bd];
atl2_validate_option(&val, &opt);
adapter->hw.flash_vendor = (u8) val;
#ifdef module_param_array
} else
adapter->hw.flash_vendor = (u8)(opt.def);
#endif
/* MediaType */
opt.type = range_option;
opt.name = "Speed/Duplex Selection";
opt.err = "using default of " __MODULE_STRING(MEDIA_TYPE_AUTO_SENSOR);
opt.def = MEDIA_TYPE_AUTO_SENSOR;
opt.arg.r.min = MEDIA_TYPE_AUTO_SENSOR;
opt.arg.r.max = MEDIA_TYPE_10M_HALF;
#ifdef module_param_array
if (num_MediaType > bd) {
#endif
val = MediaType[bd];
atl2_validate_option(&val, &opt);
adapter->hw.MediaType = (u16) val;
#ifdef module_param_array
} else
adapter->hw.MediaType = (u16)(opt.def);
#endif
}