android_kernel_samsung_msm8976/drivers/net/ethernet/qlogic/qlge/qlge_main.c

4972 lines
133 KiB
C
Raw Normal View History

/*
* QLogic qlge NIC HBA Driver
* Copyright (c) 2003-2008 QLogic Corporation
* See LICENSE.qlge for copyright and licensing details.
* Author: Linux qlge network device driver by
* Ron Mercer <ron.mercer@qlogic.com>
*/
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/bitops.h>
#include <linux/types.h>
#include <linux/module.h>
#include <linux/list.h>
#include <linux/pci.h>
#include <linux/dma-mapping.h>
#include <linux/pagemap.h>
#include <linux/sched.h>
#include <linux/slab.h>
#include <linux/dmapool.h>
#include <linux/mempool.h>
#include <linux/spinlock.h>
#include <linux/kthread.h>
#include <linux/interrupt.h>
#include <linux/errno.h>
#include <linux/ioport.h>
#include <linux/in.h>
#include <linux/ip.h>
#include <linux/ipv6.h>
#include <net/ipv6.h>
#include <linux/tcp.h>
#include <linux/udp.h>
#include <linux/if_arp.h>
#include <linux/if_ether.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/ethtool.h>
#include <linux/if_vlan.h>
#include <linux/skbuff.h>
#include <linux/delay.h>
#include <linux/mm.h>
#include <linux/vmalloc.h>
#include <linux/prefetch.h>
#include <net/ip6_checksum.h>
#include "qlge.h"
char qlge_driver_name[] = DRV_NAME;
const char qlge_driver_version[] = DRV_VERSION;
MODULE_AUTHOR("Ron Mercer <ron.mercer@qlogic.com>");
MODULE_DESCRIPTION(DRV_STRING " ");
MODULE_LICENSE("GPL");
MODULE_VERSION(DRV_VERSION);
static const u32 default_msg =
NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK |
/* NETIF_MSG_TIMER | */
NETIF_MSG_IFDOWN |
NETIF_MSG_IFUP |
NETIF_MSG_RX_ERR |
NETIF_MSG_TX_ERR |
/* NETIF_MSG_TX_QUEUED | */
/* NETIF_MSG_INTR | NETIF_MSG_TX_DONE | NETIF_MSG_RX_STATUS | */
/* NETIF_MSG_PKTDATA | */
NETIF_MSG_HW | NETIF_MSG_WOL | 0;
static int debug = -1; /* defaults above */
module_param(debug, int, 0664);
MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
#define MSIX_IRQ 0
#define MSI_IRQ 1
#define LEG_IRQ 2
static int qlge_irq_type = MSIX_IRQ;
module_param(qlge_irq_type, int, 0664);
MODULE_PARM_DESC(qlge_irq_type, "0 = MSI-X, 1 = MSI, 2 = Legacy.");
static int qlge_mpi_coredump;
module_param(qlge_mpi_coredump, int, 0);
MODULE_PARM_DESC(qlge_mpi_coredump,
"Option to enable MPI firmware dump. "
"Default is OFF - Do Not allocate memory. ");
static int qlge_force_coredump;
module_param(qlge_force_coredump, int, 0);
MODULE_PARM_DESC(qlge_force_coredump,
"Option to allow force of firmware core dump. "
"Default is OFF - Do not allow.");
static DEFINE_PCI_DEVICE_TABLE(qlge_pci_tbl) = {
{PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QLGE_DEVICE_ID_8012)},
{PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QLGE_DEVICE_ID_8000)},
/* required last entry */
{0,}
};
MODULE_DEVICE_TABLE(pci, qlge_pci_tbl);
static int ql_wol(struct ql_adapter *qdev);
static void qlge_set_multicast_list(struct net_device *ndev);
/* This hardware semaphore causes exclusive access to
* resources shared between the NIC driver, MPI firmware,
* FCOE firmware and the FC driver.
*/
static int ql_sem_trylock(struct ql_adapter *qdev, u32 sem_mask)
{
u32 sem_bits = 0;
switch (sem_mask) {
case SEM_XGMAC0_MASK:
sem_bits = SEM_SET << SEM_XGMAC0_SHIFT;
break;
case SEM_XGMAC1_MASK:
sem_bits = SEM_SET << SEM_XGMAC1_SHIFT;
break;
case SEM_ICB_MASK:
sem_bits = SEM_SET << SEM_ICB_SHIFT;
break;
case SEM_MAC_ADDR_MASK:
sem_bits = SEM_SET << SEM_MAC_ADDR_SHIFT;
break;
case SEM_FLASH_MASK:
sem_bits = SEM_SET << SEM_FLASH_SHIFT;
break;
case SEM_PROBE_MASK:
sem_bits = SEM_SET << SEM_PROBE_SHIFT;
break;
case SEM_RT_IDX_MASK:
sem_bits = SEM_SET << SEM_RT_IDX_SHIFT;
break;
case SEM_PROC_REG_MASK:
sem_bits = SEM_SET << SEM_PROC_REG_SHIFT;
break;
default:
netif_alert(qdev, probe, qdev->ndev, "bad Semaphore mask!.\n");
return -EINVAL;
}
ql_write32(qdev, SEM, sem_bits | sem_mask);
return !(ql_read32(qdev, SEM) & sem_bits);
}
int ql_sem_spinlock(struct ql_adapter *qdev, u32 sem_mask)
{
unsigned int wait_count = 30;
do {
if (!ql_sem_trylock(qdev, sem_mask))
return 0;
udelay(100);
} while (--wait_count);
return -ETIMEDOUT;
}
void ql_sem_unlock(struct ql_adapter *qdev, u32 sem_mask)
{
ql_write32(qdev, SEM, sem_mask);
ql_read32(qdev, SEM); /* flush */
}
/* This function waits for a specific bit to come ready
* in a given register. It is used mostly by the initialize
* process, but is also used in kernel thread API such as
* netdev->set_multi, netdev->set_mac_address, netdev->vlan_rx_add_vid.
*/
int ql_wait_reg_rdy(struct ql_adapter *qdev, u32 reg, u32 bit, u32 err_bit)
{
u32 temp;
int count = UDELAY_COUNT;
while (count) {
temp = ql_read32(qdev, reg);
/* check for errors */
if (temp & err_bit) {
netif_alert(qdev, probe, qdev->ndev,
"register 0x%.08x access error, value = 0x%.08x!.\n",
reg, temp);
return -EIO;
} else if (temp & bit)
return 0;
udelay(UDELAY_DELAY);
count--;
}
netif_alert(qdev, probe, qdev->ndev,
"Timed out waiting for reg %x to come ready.\n", reg);
return -ETIMEDOUT;
}
/* The CFG register is used to download TX and RX control blocks
* to the chip. This function waits for an operation to complete.
*/
static int ql_wait_cfg(struct ql_adapter *qdev, u32 bit)
{
int count = UDELAY_COUNT;
u32 temp;
while (count) {
temp = ql_read32(qdev, CFG);
if (temp & CFG_LE)
return -EIO;
if (!(temp & bit))
return 0;
udelay(UDELAY_DELAY);
count--;
}
return -ETIMEDOUT;
}
/* Used to issue init control blocks to hw. Maps control block,
* sets address, triggers download, waits for completion.
*/
int ql_write_cfg(struct ql_adapter *qdev, void *ptr, int size, u32 bit,
u16 q_id)
{
u64 map;
int status = 0;
int direction;
u32 mask;
u32 value;
direction =
(bit & (CFG_LRQ | CFG_LR | CFG_LCQ)) ? PCI_DMA_TODEVICE :
PCI_DMA_FROMDEVICE;
map = pci_map_single(qdev->pdev, ptr, size, direction);
if (pci_dma_mapping_error(qdev->pdev, map)) {
netif_err(qdev, ifup, qdev->ndev, "Couldn't map DMA area.\n");
return -ENOMEM;
}
status = ql_sem_spinlock(qdev, SEM_ICB_MASK);
if (status)
return status;
status = ql_wait_cfg(qdev, bit);
if (status) {
netif_err(qdev, ifup, qdev->ndev,
"Timed out waiting for CFG to come ready.\n");
goto exit;
}
ql_write32(qdev, ICB_L, (u32) map);
ql_write32(qdev, ICB_H, (u32) (map >> 32));
mask = CFG_Q_MASK | (bit << 16);
value = bit | (q_id << CFG_Q_SHIFT);
ql_write32(qdev, CFG, (mask | value));
/*
* Wait for the bit to clear after signaling hw.
*/
status = ql_wait_cfg(qdev, bit);
exit:
ql_sem_unlock(qdev, SEM_ICB_MASK); /* does flush too */
pci_unmap_single(qdev->pdev, map, size, direction);
return status;
}
/* Get a specific MAC address from the CAM. Used for debug and reg dump. */
int ql_get_mac_addr_reg(struct ql_adapter *qdev, u32 type, u16 index,
u32 *value)
{
u32 offset = 0;
int status;
switch (type) {
case MAC_ADDR_TYPE_MULTI_MAC:
case MAC_ADDR_TYPE_CAM_MAC:
{
status =
ql_wait_reg_rdy(qdev,
MAC_ADDR_IDX, MAC_ADDR_MW, 0);
if (status)
goto exit;
ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
(index << MAC_ADDR_IDX_SHIFT) | /* index */
MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
status =
ql_wait_reg_rdy(qdev,
MAC_ADDR_IDX, MAC_ADDR_MR, 0);
if (status)
goto exit;
*value++ = ql_read32(qdev, MAC_ADDR_DATA);
status =
ql_wait_reg_rdy(qdev,
MAC_ADDR_IDX, MAC_ADDR_MW, 0);
if (status)
goto exit;
ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
(index << MAC_ADDR_IDX_SHIFT) | /* index */
MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
status =
ql_wait_reg_rdy(qdev,
MAC_ADDR_IDX, MAC_ADDR_MR, 0);
if (status)
goto exit;
*value++ = ql_read32(qdev, MAC_ADDR_DATA);
if (type == MAC_ADDR_TYPE_CAM_MAC) {
status =
ql_wait_reg_rdy(qdev,
MAC_ADDR_IDX, MAC_ADDR_MW, 0);
if (status)
goto exit;
ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
(index << MAC_ADDR_IDX_SHIFT) | /* index */
MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
status =
ql_wait_reg_rdy(qdev, MAC_ADDR_IDX,
MAC_ADDR_MR, 0);
if (status)
goto exit;
*value++ = ql_read32(qdev, MAC_ADDR_DATA);
}
break;
}
case MAC_ADDR_TYPE_VLAN:
case MAC_ADDR_TYPE_MULTI_FLTR:
default:
netif_crit(qdev, ifup, qdev->ndev,
"Address type %d not yet supported.\n", type);
status = -EPERM;
}
exit:
return status;
}
/* Set up a MAC, multicast or VLAN address for the
* inbound frame matching.
*/
static int ql_set_mac_addr_reg(struct ql_adapter *qdev, u8 *addr, u32 type,
u16 index)
{
u32 offset = 0;
int status = 0;
switch (type) {
case MAC_ADDR_TYPE_MULTI_MAC:
{
u32 upper = (addr[0] << 8) | addr[1];
u32 lower = (addr[2] << 24) | (addr[3] << 16) |
(addr[4] << 8) | (addr[5]);
status =
ql_wait_reg_rdy(qdev,
MAC_ADDR_IDX, MAC_ADDR_MW, 0);
if (status)
goto exit;
ql_write32(qdev, MAC_ADDR_IDX, (offset++) |
(index << MAC_ADDR_IDX_SHIFT) |
type | MAC_ADDR_E);
ql_write32(qdev, MAC_ADDR_DATA, lower);
status =
ql_wait_reg_rdy(qdev,
MAC_ADDR_IDX, MAC_ADDR_MW, 0);
if (status)
goto exit;
ql_write32(qdev, MAC_ADDR_IDX, (offset++) |
(index << MAC_ADDR_IDX_SHIFT) |
type | MAC_ADDR_E);
ql_write32(qdev, MAC_ADDR_DATA, upper);
status =
ql_wait_reg_rdy(qdev,
MAC_ADDR_IDX, MAC_ADDR_MW, 0);
if (status)
goto exit;
break;
}
case MAC_ADDR_TYPE_CAM_MAC:
{
u32 cam_output;
u32 upper = (addr[0] << 8) | addr[1];
u32 lower =
(addr[2] << 24) | (addr[3] << 16) | (addr[4] << 8) |
(addr[5]);
status =
ql_wait_reg_rdy(qdev,
MAC_ADDR_IDX, MAC_ADDR_MW, 0);
if (status)
goto exit;
ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
(index << MAC_ADDR_IDX_SHIFT) | /* index */
type); /* type */
ql_write32(qdev, MAC_ADDR_DATA, lower);
status =
ql_wait_reg_rdy(qdev,
MAC_ADDR_IDX, MAC_ADDR_MW, 0);
if (status)
goto exit;
ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
(index << MAC_ADDR_IDX_SHIFT) | /* index */
type); /* type */
ql_write32(qdev, MAC_ADDR_DATA, upper);
status =
ql_wait_reg_rdy(qdev,
MAC_ADDR_IDX, MAC_ADDR_MW, 0);
if (status)
goto exit;
ql_write32(qdev, MAC_ADDR_IDX, (offset) | /* offset */
(index << MAC_ADDR_IDX_SHIFT) | /* index */
type); /* type */
/* This field should also include the queue id
and possibly the function id. Right now we hardcode
the route field to NIC core.
*/
cam_output = (CAM_OUT_ROUTE_NIC |
(qdev->
func << CAM_OUT_FUNC_SHIFT) |
(0 << CAM_OUT_CQ_ID_SHIFT));
if (qdev->ndev->features & NETIF_F_HW_VLAN_CTAG_RX)
cam_output |= CAM_OUT_RV;
/* route to NIC core */
ql_write32(qdev, MAC_ADDR_DATA, cam_output);
break;
}
case MAC_ADDR_TYPE_VLAN:
{
u32 enable_bit = *((u32 *) &addr[0]);
/* For VLAN, the addr actually holds a bit that
* either enables or disables the vlan id we are
* addressing. It's either MAC_ADDR_E on or off.
* That's bit-27 we're talking about.
*/
status =
ql_wait_reg_rdy(qdev,
MAC_ADDR_IDX, MAC_ADDR_MW, 0);
if (status)
goto exit;
ql_write32(qdev, MAC_ADDR_IDX, offset | /* offset */
(index << MAC_ADDR_IDX_SHIFT) | /* index */
type | /* type */
enable_bit); /* enable/disable */
break;
}
case MAC_ADDR_TYPE_MULTI_FLTR:
default:
netif_crit(qdev, ifup, qdev->ndev,
"Address type %d not yet supported.\n", type);
status = -EPERM;
}
exit:
return status;
}
/* Set or clear MAC address in hardware. We sometimes
* have to clear it to prevent wrong frame routing
* especially in a bonding environment.
*/
static int ql_set_mac_addr(struct ql_adapter *qdev, int set)
{
int status;
char zero_mac_addr[ETH_ALEN];
char *addr;
if (set) {
addr = &qdev->current_mac_addr[0];
netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
"Set Mac addr %pM\n", addr);
} else {
memset(zero_mac_addr, 0, ETH_ALEN);
addr = &zero_mac_addr[0];
netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
"Clearing MAC address\n");
}
status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
if (status)
return status;
status = ql_set_mac_addr_reg(qdev, (u8 *) addr,
MAC_ADDR_TYPE_CAM_MAC, qdev->func * MAX_CQ);
ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
if (status)
netif_err(qdev, ifup, qdev->ndev,
"Failed to init mac address.\n");
return status;
}
void ql_link_on(struct ql_adapter *qdev)
{
netif_err(qdev, link, qdev->ndev, "Link is up.\n");
netif_carrier_on(qdev->ndev);
ql_set_mac_addr(qdev, 1);
}
void ql_link_off(struct ql_adapter *qdev)
{
netif_err(qdev, link, qdev->ndev, "Link is down.\n");
netif_carrier_off(qdev->ndev);
ql_set_mac_addr(qdev, 0);
}
/* Get a specific frame routing value from the CAM.
* Used for debug and reg dump.
*/
int ql_get_routing_reg(struct ql_adapter *qdev, u32 index, u32 *value)
{
int status = 0;
status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MW, 0);
if (status)
goto exit;
ql_write32(qdev, RT_IDX,
RT_IDX_TYPE_NICQ | RT_IDX_RS | (index << RT_IDX_IDX_SHIFT));
status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MR, 0);
if (status)
goto exit;
*value = ql_read32(qdev, RT_DATA);
exit:
return status;
}
/* The NIC function for this chip has 16 routing indexes. Each one can be used
* to route different frame types to various inbound queues. We send broadcast/
* multicast/error frames to the default queue for slow handling,
* and CAM hit/RSS frames to the fast handling queues.
*/
static int ql_set_routing_reg(struct ql_adapter *qdev, u32 index, u32 mask,
int enable)
{
int status = -EINVAL; /* Return error if no mask match. */
u32 value = 0;
switch (mask) {
case RT_IDX_CAM_HIT:
{
value = RT_IDX_DST_CAM_Q | /* dest */
RT_IDX_TYPE_NICQ | /* type */
(RT_IDX_CAM_HIT_SLOT << RT_IDX_IDX_SHIFT);/* index */
break;
}
case RT_IDX_VALID: /* Promiscuous Mode frames. */
{
value = RT_IDX_DST_DFLT_Q | /* dest */
RT_IDX_TYPE_NICQ | /* type */
(RT_IDX_PROMISCUOUS_SLOT << RT_IDX_IDX_SHIFT);/* index */
break;
}
case RT_IDX_ERR: /* Pass up MAC,IP,TCP/UDP error frames. */
{
value = RT_IDX_DST_DFLT_Q | /* dest */
RT_IDX_TYPE_NICQ | /* type */
(RT_IDX_ALL_ERR_SLOT << RT_IDX_IDX_SHIFT);/* index */
break;
}
case RT_IDX_IP_CSUM_ERR: /* Pass up IP CSUM error frames. */
{
value = RT_IDX_DST_DFLT_Q | /* dest */
RT_IDX_TYPE_NICQ | /* type */
(RT_IDX_IP_CSUM_ERR_SLOT <<
RT_IDX_IDX_SHIFT); /* index */
break;
}
case RT_IDX_TU_CSUM_ERR: /* Pass up TCP/UDP CSUM error frames. */
{
value = RT_IDX_DST_DFLT_Q | /* dest */
RT_IDX_TYPE_NICQ | /* type */
(RT_IDX_TCP_UDP_CSUM_ERR_SLOT <<
RT_IDX_IDX_SHIFT); /* index */
break;
}
case RT_IDX_BCAST: /* Pass up Broadcast frames to default Q. */
{
value = RT_IDX_DST_DFLT_Q | /* dest */
RT_IDX_TYPE_NICQ | /* type */
(RT_IDX_BCAST_SLOT << RT_IDX_IDX_SHIFT);/* index */
break;
}
case RT_IDX_MCAST: /* Pass up All Multicast frames. */
{
value = RT_IDX_DST_DFLT_Q | /* dest */
RT_IDX_TYPE_NICQ | /* type */
(RT_IDX_ALLMULTI_SLOT << RT_IDX_IDX_SHIFT);/* index */
break;
}
case RT_IDX_MCAST_MATCH: /* Pass up matched Multicast frames. */
{
value = RT_IDX_DST_DFLT_Q | /* dest */
RT_IDX_TYPE_NICQ | /* type */
(RT_IDX_MCAST_MATCH_SLOT << RT_IDX_IDX_SHIFT);/* index */
break;
}
case RT_IDX_RSS_MATCH: /* Pass up matched RSS frames. */
{
value = RT_IDX_DST_RSS | /* dest */
RT_IDX_TYPE_NICQ | /* type */
(RT_IDX_RSS_MATCH_SLOT << RT_IDX_IDX_SHIFT);/* index */
break;
}
case 0: /* Clear the E-bit on an entry. */
{
value = RT_IDX_DST_DFLT_Q | /* dest */
RT_IDX_TYPE_NICQ | /* type */
(index << RT_IDX_IDX_SHIFT);/* index */
break;
}
default:
netif_err(qdev, ifup, qdev->ndev,
"Mask type %d not yet supported.\n", mask);
status = -EPERM;
goto exit;
}
if (value) {
status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MW, 0);
if (status)
goto exit;
value |= (enable ? RT_IDX_E : 0);
ql_write32(qdev, RT_IDX, value);
ql_write32(qdev, RT_DATA, enable ? mask : 0);
}
exit:
return status;
}
static void ql_enable_interrupts(struct ql_adapter *qdev)
{
ql_write32(qdev, INTR_EN, (INTR_EN_EI << 16) | INTR_EN_EI);
}
static void ql_disable_interrupts(struct ql_adapter *qdev)
{
ql_write32(qdev, INTR_EN, (INTR_EN_EI << 16));
}
/* If we're running with multiple MSI-X vectors then we enable on the fly.
* Otherwise, we may have multiple outstanding workers and don't want to
* enable until the last one finishes. In this case, the irq_cnt gets
* incremented every time we queue a worker and decremented every time
* a worker finishes. Once it hits zero we enable the interrupt.
*/
u32 ql_enable_completion_interrupt(struct ql_adapter *qdev, u32 intr)
{
u32 var = 0;
unsigned long hw_flags = 0;
struct intr_context *ctx = qdev->intr_context + intr;
if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags) && intr)) {
/* Always enable if we're MSIX multi interrupts and
* it's not the default (zeroeth) interrupt.
*/
ql_write32(qdev, INTR_EN,
ctx->intr_en_mask);
var = ql_read32(qdev, STS);
return var;
}
spin_lock_irqsave(&qdev->hw_lock, hw_flags);
if (atomic_dec_and_test(&ctx->irq_cnt)) {
ql_write32(qdev, INTR_EN,
ctx->intr_en_mask);
var = ql_read32(qdev, STS);
}
spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
return var;
}
static u32 ql_disable_completion_interrupt(struct ql_adapter *qdev, u32 intr)
{
u32 var = 0;
struct intr_context *ctx;
/* HW disables for us if we're MSIX multi interrupts and
* it's not the default (zeroeth) interrupt.
*/
if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags) && intr))
return 0;
ctx = qdev->intr_context + intr;
spin_lock(&qdev->hw_lock);
if (!atomic_read(&ctx->irq_cnt)) {
ql_write32(qdev, INTR_EN,
ctx->intr_dis_mask);
var = ql_read32(qdev, STS);
}
atomic_inc(&ctx->irq_cnt);
spin_unlock(&qdev->hw_lock);
return var;
}
static void ql_enable_all_completion_interrupts(struct ql_adapter *qdev)
{
int i;
for (i = 0; i < qdev->intr_count; i++) {
/* The enable call does a atomic_dec_and_test
* and enables only if the result is zero.
* So we precharge it here.
*/
if (unlikely(!test_bit(QL_MSIX_ENABLED, &qdev->flags) ||
i == 0))
atomic_set(&qdev->intr_context[i].irq_cnt, 1);
ql_enable_completion_interrupt(qdev, i);
}
}
static int ql_validate_flash(struct ql_adapter *qdev, u32 size, const char *str)
{
int status, i;
u16 csum = 0;
__le16 *flash = (__le16 *)&qdev->flash;
status = strncmp((char *)&qdev->flash, str, 4);
if (status) {
netif_err(qdev, ifup, qdev->ndev, "Invalid flash signature.\n");
return status;
}
for (i = 0; i < size; i++)
csum += le16_to_cpu(*flash++);
if (csum)
netif_err(qdev, ifup, qdev->ndev,
"Invalid flash checksum, csum = 0x%.04x.\n", csum);
return csum;
}
static int ql_read_flash_word(struct ql_adapter *qdev, int offset, __le32 *data)
{
int status = 0;
/* wait for reg to come ready */
status = ql_wait_reg_rdy(qdev,
FLASH_ADDR, FLASH_ADDR_RDY, FLASH_ADDR_ERR);
if (status)
goto exit;
/* set up for reg read */
ql_write32(qdev, FLASH_ADDR, FLASH_ADDR_R | offset);
/* wait for reg to come ready */
status = ql_wait_reg_rdy(qdev,
FLASH_ADDR, FLASH_ADDR_RDY, FLASH_ADDR_ERR);
if (status)
goto exit;
/* This data is stored on flash as an array of
* __le32. Since ql_read32() returns cpu endian
* we need to swap it back.
*/
*data = cpu_to_le32(ql_read32(qdev, FLASH_DATA));
exit:
return status;
}
static int ql_get_8000_flash_params(struct ql_adapter *qdev)
{
u32 i, size;
int status;
__le32 *p = (__le32 *)&qdev->flash;
u32 offset;
u8 mac_addr[6];
/* Get flash offset for function and adjust
* for dword access.
*/
if (!qdev->port)
offset = FUNC0_FLASH_OFFSET / sizeof(u32);
else
offset = FUNC1_FLASH_OFFSET / sizeof(u32);
if (ql_sem_spinlock(qdev, SEM_FLASH_MASK))
return -ETIMEDOUT;
size = sizeof(struct flash_params_8000) / sizeof(u32);
for (i = 0; i < size; i++, p++) {
status = ql_read_flash_word(qdev, i+offset, p);
if (status) {
netif_err(qdev, ifup, qdev->ndev,
"Error reading flash.\n");
goto exit;
}
}
status = ql_validate_flash(qdev,
sizeof(struct flash_params_8000) / sizeof(u16),
"8000");
if (status) {
netif_err(qdev, ifup, qdev->ndev, "Invalid flash.\n");
status = -EINVAL;
goto exit;
}
/* Extract either manufacturer or BOFM modified
* MAC address.
*/
if (qdev->flash.flash_params_8000.data_type1 == 2)
memcpy(mac_addr,
qdev->flash.flash_params_8000.mac_addr1,
qdev->ndev->addr_len);
else
memcpy(mac_addr,
qdev->flash.flash_params_8000.mac_addr,
qdev->ndev->addr_len);
if (!is_valid_ether_addr(mac_addr)) {
netif_err(qdev, ifup, qdev->ndev, "Invalid MAC address.\n");
status = -EINVAL;
goto exit;
}
memcpy(qdev->ndev->dev_addr,
mac_addr,
qdev->ndev->addr_len);
exit:
ql_sem_unlock(qdev, SEM_FLASH_MASK);
return status;
}
static int ql_get_8012_flash_params(struct ql_adapter *qdev)
{
int i;
int status;
__le32 *p = (__le32 *)&qdev->flash;
u32 offset = 0;
u32 size = sizeof(struct flash_params_8012) / sizeof(u32);
/* Second function's parameters follow the first
* function's.
*/
if (qdev->port)
offset = size;
if (ql_sem_spinlock(qdev, SEM_FLASH_MASK))
return -ETIMEDOUT;
for (i = 0; i < size; i++, p++) {
status = ql_read_flash_word(qdev, i+offset, p);
if (status) {
netif_err(qdev, ifup, qdev->ndev,
"Error reading flash.\n");
goto exit;
}
}
status = ql_validate_flash(qdev,
sizeof(struct flash_params_8012) / sizeof(u16),
"8012");
if (status) {
netif_err(qdev, ifup, qdev->ndev, "Invalid flash.\n");
status = -EINVAL;
goto exit;
}
if (!is_valid_ether_addr(qdev->flash.flash_params_8012.mac_addr)) {
status = -EINVAL;
goto exit;
}
memcpy(qdev->ndev->dev_addr,
qdev->flash.flash_params_8012.mac_addr,
qdev->ndev->addr_len);
exit:
ql_sem_unlock(qdev, SEM_FLASH_MASK);
return status;
}
/* xgmac register are located behind the xgmac_addr and xgmac_data
* register pair. Each read/write requires us to wait for the ready
* bit before reading/writing the data.
*/
static int ql_write_xgmac_reg(struct ql_adapter *qdev, u32 reg, u32 data)
{
int status;
/* wait for reg to come ready */
status = ql_wait_reg_rdy(qdev,
XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
if (status)
return status;
/* write the data to the data reg */
ql_write32(qdev, XGMAC_DATA, data);
/* trigger the write */
ql_write32(qdev, XGMAC_ADDR, reg);
return status;
}
/* xgmac register are located behind the xgmac_addr and xgmac_data
* register pair. Each read/write requires us to wait for the ready
* bit before reading/writing the data.
*/
int ql_read_xgmac_reg(struct ql_adapter *qdev, u32 reg, u32 *data)
{
int status = 0;
/* wait for reg to come ready */
status = ql_wait_reg_rdy(qdev,
XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
if (status)
goto exit;
/* set up for reg read */
ql_write32(qdev, XGMAC_ADDR, reg | XGMAC_ADDR_R);
/* wait for reg to come ready */
status = ql_wait_reg_rdy(qdev,
XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
if (status)
goto exit;
/* get the data */
*data = ql_read32(qdev, XGMAC_DATA);
exit:
return status;
}
/* This is used for reading the 64-bit statistics regs. */
int ql_read_xgmac_reg64(struct ql_adapter *qdev, u32 reg, u64 *data)
{
int status = 0;
u32 hi = 0;
u32 lo = 0;
status = ql_read_xgmac_reg(qdev, reg, &lo);
if (status)
goto exit;
status = ql_read_xgmac_reg(qdev, reg + 4, &hi);
if (status)
goto exit;
*data = (u64) lo | ((u64) hi << 32);
exit:
return status;
}
static int ql_8000_port_initialize(struct ql_adapter *qdev)
{
int status;
/*
* Get MPI firmware version for driver banner
* and ethool info.
*/
status = ql_mb_about_fw(qdev);
if (status)
goto exit;
status = ql_mb_get_fw_state(qdev);
if (status)
goto exit;
/* Wake up a worker to get/set the TX/RX frame sizes. */
queue_delayed_work(qdev->workqueue, &qdev->mpi_port_cfg_work, 0);
exit:
return status;
}
/* Take the MAC Core out of reset.
* Enable statistics counting.
* Take the transmitter/receiver out of reset.
* This functionality may be done in the MPI firmware at a
* later date.
*/
static int ql_8012_port_initialize(struct ql_adapter *qdev)
{
int status = 0;
u32 data;
if (ql_sem_trylock(qdev, qdev->xg_sem_mask)) {
/* Another function has the semaphore, so
* wait for the port init bit to come ready.
*/
netif_info(qdev, link, qdev->ndev,
"Another function has the semaphore, so wait for the port init bit to come ready.\n");
status = ql_wait_reg_rdy(qdev, STS, qdev->port_init, 0);
if (status) {
netif_crit(qdev, link, qdev->ndev,
"Port initialize timed out.\n");
}
return status;
}
netif_info(qdev, link, qdev->ndev, "Got xgmac semaphore!.\n");
/* Set the core reset. */
status = ql_read_xgmac_reg(qdev, GLOBAL_CFG, &data);
if (status)
goto end;
data |= GLOBAL_CFG_RESET;
status = ql_write_xgmac_reg(qdev, GLOBAL_CFG, data);
if (status)
goto end;
/* Clear the core reset and turn on jumbo for receiver. */
data &= ~GLOBAL_CFG_RESET; /* Clear core reset. */
data |= GLOBAL_CFG_JUMBO; /* Turn on jumbo. */
data |= GLOBAL_CFG_TX_STAT_EN;
data |= GLOBAL_CFG_RX_STAT_EN;
status = ql_write_xgmac_reg(qdev, GLOBAL_CFG, data);
if (status)
goto end;
/* Enable transmitter, and clear it's reset. */
status = ql_read_xgmac_reg(qdev, TX_CFG, &data);
if (status)
goto end;
data &= ~TX_CFG_RESET; /* Clear the TX MAC reset. */
data |= TX_CFG_EN; /* Enable the transmitter. */
status = ql_write_xgmac_reg(qdev, TX_CFG, data);
if (status)
goto end;
/* Enable receiver and clear it's reset. */
status = ql_read_xgmac_reg(qdev, RX_CFG, &data);
if (status)
goto end;
data &= ~RX_CFG_RESET; /* Clear the RX MAC reset. */
data |= RX_CFG_EN; /* Enable the receiver. */
status = ql_write_xgmac_reg(qdev, RX_CFG, data);
if (status)
goto end;
/* Turn on jumbo. */
status =
ql_write_xgmac_reg(qdev, MAC_TX_PARAMS, MAC_TX_PARAMS_JUMBO | (0x2580 << 16));
if (status)
goto end;
status =
ql_write_xgmac_reg(qdev, MAC_RX_PARAMS, 0x2580);
if (status)
goto end;
/* Signal to the world that the port is enabled. */
ql_write32(qdev, STS, ((qdev->port_init << 16) | qdev->port_init));
end:
ql_sem_unlock(qdev, qdev->xg_sem_mask);
return status;
}
static inline unsigned int ql_lbq_block_size(struct ql_adapter *qdev)
{
return PAGE_SIZE << qdev->lbq_buf_order;
}
/* Get the next large buffer. */
static struct bq_desc *ql_get_curr_lbuf(struct rx_ring *rx_ring)
{
struct bq_desc *lbq_desc = &rx_ring->lbq[rx_ring->lbq_curr_idx];
rx_ring->lbq_curr_idx++;
if (rx_ring->lbq_curr_idx == rx_ring->lbq_len)
rx_ring->lbq_curr_idx = 0;
rx_ring->lbq_free_cnt++;
return lbq_desc;
}
static struct bq_desc *ql_get_curr_lchunk(struct ql_adapter *qdev,
struct rx_ring *rx_ring)
{
struct bq_desc *lbq_desc = ql_get_curr_lbuf(rx_ring);
pci_dma_sync_single_for_cpu(qdev->pdev,
dma_unmap_addr(lbq_desc, mapaddr),
rx_ring->lbq_buf_size,
PCI_DMA_FROMDEVICE);
/* If it's the last chunk of our master page then
* we unmap it.
*/
if ((lbq_desc->p.pg_chunk.offset + rx_ring->lbq_buf_size)
== ql_lbq_block_size(qdev))
pci_unmap_page(qdev->pdev,
lbq_desc->p.pg_chunk.map,
ql_lbq_block_size(qdev),
PCI_DMA_FROMDEVICE);
return lbq_desc;
}
/* Get the next small buffer. */
static struct bq_desc *ql_get_curr_sbuf(struct rx_ring *rx_ring)
{
struct bq_desc *sbq_desc = &rx_ring->sbq[rx_ring->sbq_curr_idx];
rx_ring->sbq_curr_idx++;
if (rx_ring->sbq_curr_idx == rx_ring->sbq_len)
rx_ring->sbq_curr_idx = 0;
rx_ring->sbq_free_cnt++;
return sbq_desc;
}
/* Update an rx ring index. */
static void ql_update_cq(struct rx_ring *rx_ring)
{
rx_ring->cnsmr_idx++;
rx_ring->curr_entry++;
if (unlikely(rx_ring->cnsmr_idx == rx_ring->cq_len)) {
rx_ring->cnsmr_idx = 0;
rx_ring->curr_entry = rx_ring->cq_base;
}
}
static void ql_write_cq_idx(struct rx_ring *rx_ring)
{
ql_write_db_reg(rx_ring->cnsmr_idx, rx_ring->cnsmr_idx_db_reg);
}
static int ql_get_next_chunk(struct ql_adapter *qdev, struct rx_ring *rx_ring,
struct bq_desc *lbq_desc)
{
if (!rx_ring->pg_chunk.page) {
u64 map;
rx_ring->pg_chunk.page = alloc_pages(__GFP_COLD | __GFP_COMP |
GFP_ATOMIC,
qdev->lbq_buf_order);
if (unlikely(!rx_ring->pg_chunk.page)) {
netif_err(qdev, drv, qdev->ndev,
"page allocation failed.\n");
return -ENOMEM;
}
rx_ring->pg_chunk.offset = 0;
map = pci_map_page(qdev->pdev, rx_ring->pg_chunk.page,
0, ql_lbq_block_size(qdev),
PCI_DMA_FROMDEVICE);
if (pci_dma_mapping_error(qdev->pdev, map)) {
__free_pages(rx_ring->pg_chunk.page,
qdev->lbq_buf_order);
qlge: fix dma map leak when the last chunk is not allocated qlge allocates chunks from a page that it maps and unmaps that page when the last chunk is released. When the driver is unloaded or the card is removed, all chunks are released and the page is unmapped for the last chunk. However, when the last chunk of a page is not allocated and the device is removed, that page is not unmapped. In fact, its last reference is not put and there's also a page leak. This bug prevents a device from being properly hotplugged. When the DMA API debug option is enabled, the following messages show the pending DMA allocation after we remove the driver. This patch fixes the bug by unmapping and putting the page from the ring if its last chunk has not been allocated. pci 0005:98:00.0: DMA-API: device driver has pending DMA allocations while released from device [count=1] One of leaked entries details: [device address=0x0000000060a80000] [size=65536 bytes] [mapped with DMA_FROM_DEVICE] [mapped as page] ------------[ cut here ]------------ WARNING: at lib/dma-debug.c:746 Modules linked in: qlge(-) rpadlpar_io rpaphp pci_hotplug fuse [last unloaded: qlge] NIP: c0000000003fc3ec LR: c0000000003fc3e8 CTR: c00000000054de60 REGS: c0000003ee9c74e0 TRAP: 0700 Tainted: G O (3.7.2) MSR: 8000000000029032 <SF,EE,ME,IR,DR,RI> CR: 28002424 XER: 00000001 SOFTE: 1 CFAR: c0000000007a39c8 TASK = c0000003ee8d5c90[8406] 'rmmod' THREAD: c0000003ee9c4000 CPU: 31 GPR00: c0000000003fc3e8 c0000003ee9c7760 c000000000c789f8 00000000000000ee GPR04: 0000000000000000 00000000000000ef 0000000000004000 0000000000010000 GPR08: 00000000000000be c000000000b22088 c000000000c4c218 00000000007c0000 GPR12: 0000000028002422 c00000000ff26c80 0000000000000000 000001001b0f1b40 GPR16: 00000000100cb9d8 0000000010093088 c000000000cdf910 0000000000000001 GPR20: 0000000000000000 c000000000dbfc00 0000000000000000 c000000000dbfb80 GPR24: c0000003fafc9d80 0000000000000001 000000000001ff80 c0000003f38f7888 GPR28: c000000000ddfc00 0000000000000400 c000000000bd7790 c000000000ddfb80 NIP [c0000000003fc3ec] .dma_debug_device_change+0x22c/0x2b0 LR [c0000000003fc3e8] .dma_debug_device_change+0x228/0x2b0 Call Trace: [c0000003ee9c7760] [c0000000003fc3e8] .dma_debug_device_change+0x228/0x2b0 (unreliable) [c0000003ee9c7840] [c00000000079a098] .notifier_call_chain+0x78/0xf0 [c0000003ee9c78e0] [c0000000000acc20] .__blocking_notifier_call_chain+0x70/0xb0 [c0000003ee9c7990] [c0000000004a9580] .__device_release_driver+0x100/0x140 [c0000003ee9c7a20] [c0000000004a9708] .driver_detach+0x148/0x150 [c0000003ee9c7ac0] [c0000000004a8144] .bus_remove_driver+0xc4/0x150 [c0000003ee9c7b60] [c0000000004aa58c] .driver_unregister+0x8c/0xe0 [c0000003ee9c7bf0] [c0000000004090b4] .pci_unregister_driver+0x34/0xf0 [c0000003ee9c7ca0] [d000000002231194] .qlge_exit+0x1c/0x34 [qlge] [c0000003ee9c7d20] [c0000000000e36d8] .SyS_delete_module+0x1e8/0x290 [c0000003ee9c7e30] [c0000000000098d4] syscall_exit+0x0/0x94 Instruction dump: 7f26cb78 e818003a e87e81a0 e8f80028 e9180030 796b1f24 78001f24 7d6a5a14 7d2a002a e94b0020 483a7595 60000000 <0fe00000> 2fb80000 40de0048 80120050 ---[ end trace 4294f9abdb01031d ]--- Mapped at: [<d000000002222f54>] .ql_update_lbq+0x384/0x580 [qlge] [<d000000002227bd0>] .ql_clean_inbound_rx_ring+0x300/0xc60 [qlge] [<d0000000022288cc>] .ql_napi_poll_msix+0x39c/0x5a0 [qlge] [<c0000000006b3c50>] .net_rx_action+0x170/0x300 [<c000000000081840>] .__do_softirq+0x170/0x300 Signed-off-by: Thadeu Lima de Souza Cascardo <cascardo@linux.vnet.ibm.com> Acked-by: Jitendra Kalsaria <Jitendra.kalsaria@qlogic.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2013-05-11 09:15:37 +00:00
rx_ring->pg_chunk.page = NULL;
netif_err(qdev, drv, qdev->ndev,
"PCI mapping failed.\n");
return -ENOMEM;
}
rx_ring->pg_chunk.map = map;
rx_ring->pg_chunk.va = page_address(rx_ring->pg_chunk.page);
}
/* Copy the current master pg_chunk info
* to the current descriptor.
*/
lbq_desc->p.pg_chunk = rx_ring->pg_chunk;
/* Adjust the master page chunk for next
* buffer get.
*/
rx_ring->pg_chunk.offset += rx_ring->lbq_buf_size;
if (rx_ring->pg_chunk.offset == ql_lbq_block_size(qdev)) {
rx_ring->pg_chunk.page = NULL;
lbq_desc->p.pg_chunk.last_flag = 1;
} else {
rx_ring->pg_chunk.va += rx_ring->lbq_buf_size;
get_page(rx_ring->pg_chunk.page);
lbq_desc->p.pg_chunk.last_flag = 0;
}
return 0;
}
/* Process (refill) a large buffer queue. */
static void ql_update_lbq(struct ql_adapter *qdev, struct rx_ring *rx_ring)
{
u32 clean_idx = rx_ring->lbq_clean_idx;
u32 start_idx = clean_idx;
struct bq_desc *lbq_desc;
u64 map;
int i;
while (rx_ring->lbq_free_cnt > 32) {
for (i = (rx_ring->lbq_clean_idx % 16); i < 16; i++) {
netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
"lbq: try cleaning clean_idx = %d.\n",
clean_idx);
lbq_desc = &rx_ring->lbq[clean_idx];
if (ql_get_next_chunk(qdev, rx_ring, lbq_desc)) {
rx_ring->lbq_clean_idx = clean_idx;
netif_err(qdev, ifup, qdev->ndev,
"Could not get a page chunk, i=%d, clean_idx =%d .\n",
i, clean_idx);
return;
}
map = lbq_desc->p.pg_chunk.map +
lbq_desc->p.pg_chunk.offset;
dma_unmap_addr_set(lbq_desc, mapaddr, map);
dma_unmap_len_set(lbq_desc, maplen,
rx_ring->lbq_buf_size);
qlge: Fix sparse warning regarding rx buffer queues. Warnings: drivers/net/qlge/qlge_main.c:909:17: warning: incorrect type in assignment (different base types) drivers/net/qlge/qlge_main.c:909:17: expected unsigned int [unsigned] [usertype] addr_lo drivers/net/qlge/qlge_main.c:909:17: got restricted unsigned int [usertype] <noident> drivers/net/qlge/qlge_main.c:911:17: warning: incorrect type in assignment (different base types) drivers/net/qlge/qlge_main.c:911:17: expected unsigned int [unsigned] [usertype] addr_hi drivers/net/qlge/qlge_main.c:911:17: got restricted unsigned int [usertype] <noident> drivers/net/qlge/qlge_main.c:974:17: warning: incorrect type in assignment (different base types) drivers/net/qlge/qlge_main.c:974:17: expected unsigned int [unsigned] [usertype] addr_lo drivers/net/qlge/qlge_main.c:974:17: got restricted unsigned int [usertype] <noident> drivers/net/qlge/qlge_main.c:975:17: warning: incorrect type in assignment (different base types) drivers/net/qlge/qlge_main.c:975:17: expected unsigned int [unsigned] [usertype] addr_hi drivers/net/qlge/qlge_main.c:975:17: got restricted unsigned int [usertype] <noident> drivers/net/qlge/qlge_main.c:2132:16: warning: incorrect type in assignment (different base types) drivers/net/qlge/qlge_main.c:2132:16: expected unsigned int [unsigned] [usertype] addr_lo drivers/net/qlge/qlge_main.c:2132:16: got restricted unsigned int [usertype] <noident> drivers/net/qlge/qlge_main.c:2133:16: warning: incorrect type in assignment (different base types) drivers/net/qlge/qlge_main.c:2133:16: expected unsigned int [unsigned] [usertype] addr_hi drivers/net/qlge/qlge_main.c:2133:16: got restricted unsigned int [usertype] <noident> drivers/net/qlge/qlge_main.c:2212:15: warning: incorrect type in assignment (different base types) drivers/net/qlge/qlge_main.c:2212:15: expected unsigned int [unsigned] [usertype] addr_lo drivers/net/qlge/qlge_main.c:2212:15: got restricted unsigned int [usertype] <noident> drivers/net/qlge/qlge_main.c:2214:15: warning: incorrect type in assignment (different base types) drivers/net/qlge/qlge_main.c:2214:15: expected unsigned int [unsigned] [usertype] addr_hi drivers/net/qlge/qlge_main.c:2214:15: got restricted unsigned int [usertype] <noident> Signed-off-by: Ron Mercer <ron.mercer@qlogic.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2009-01-06 02:19:20 +00:00
*lbq_desc->addr = cpu_to_le64(map);
pci_dma_sync_single_for_device(qdev->pdev, map,
rx_ring->lbq_buf_size,
PCI_DMA_FROMDEVICE);
clean_idx++;
if (clean_idx == rx_ring->lbq_len)
clean_idx = 0;
}
rx_ring->lbq_clean_idx = clean_idx;
rx_ring->lbq_prod_idx += 16;
if (rx_ring->lbq_prod_idx == rx_ring->lbq_len)
rx_ring->lbq_prod_idx = 0;
rx_ring->lbq_free_cnt -= 16;
}
if (start_idx != clean_idx) {
netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
"lbq: updating prod idx = %d.\n",
rx_ring->lbq_prod_idx);
ql_write_db_reg(rx_ring->lbq_prod_idx,
rx_ring->lbq_prod_idx_db_reg);
}
}
/* Process (refill) a small buffer queue. */
static void ql_update_sbq(struct ql_adapter *qdev, struct rx_ring *rx_ring)
{
u32 clean_idx = rx_ring->sbq_clean_idx;
u32 start_idx = clean_idx;
struct bq_desc *sbq_desc;
u64 map;
int i;
while (rx_ring->sbq_free_cnt > 16) {
for (i = (rx_ring->sbq_clean_idx % 16); i < 16; i++) {
sbq_desc = &rx_ring->sbq[clean_idx];
netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
"sbq: try cleaning clean_idx = %d.\n",
clean_idx);
if (sbq_desc->p.skb == NULL) {
netif_printk(qdev, rx_status, KERN_DEBUG,
qdev->ndev,
"sbq: getting new skb for index %d.\n",
sbq_desc->index);
sbq_desc->p.skb =
netdev_alloc_skb(qdev->ndev,
SMALL_BUFFER_SIZE);
if (sbq_desc->p.skb == NULL) {
rx_ring->sbq_clean_idx = clean_idx;
return;
}
skb_reserve(sbq_desc->p.skb, QLGE_SB_PAD);
map = pci_map_single(qdev->pdev,
sbq_desc->p.skb->data,
rx_ring->sbq_buf_size,
PCI_DMA_FROMDEVICE);
if (pci_dma_mapping_error(qdev->pdev, map)) {
netif_err(qdev, ifup, qdev->ndev,
"PCI mapping failed.\n");
rx_ring->sbq_clean_idx = clean_idx;
dev_kfree_skb_any(sbq_desc->p.skb);
sbq_desc->p.skb = NULL;
return;
}
dma_unmap_addr_set(sbq_desc, mapaddr, map);
dma_unmap_len_set(sbq_desc, maplen,
rx_ring->sbq_buf_size);
qlge: Fix sparse warning regarding rx buffer queues. Warnings: drivers/net/qlge/qlge_main.c:909:17: warning: incorrect type in assignment (different base types) drivers/net/qlge/qlge_main.c:909:17: expected unsigned int [unsigned] [usertype] addr_lo drivers/net/qlge/qlge_main.c:909:17: got restricted unsigned int [usertype] <noident> drivers/net/qlge/qlge_main.c:911:17: warning: incorrect type in assignment (different base types) drivers/net/qlge/qlge_main.c:911:17: expected unsigned int [unsigned] [usertype] addr_hi drivers/net/qlge/qlge_main.c:911:17: got restricted unsigned int [usertype] <noident> drivers/net/qlge/qlge_main.c:974:17: warning: incorrect type in assignment (different base types) drivers/net/qlge/qlge_main.c:974:17: expected unsigned int [unsigned] [usertype] addr_lo drivers/net/qlge/qlge_main.c:974:17: got restricted unsigned int [usertype] <noident> drivers/net/qlge/qlge_main.c:975:17: warning: incorrect type in assignment (different base types) drivers/net/qlge/qlge_main.c:975:17: expected unsigned int [unsigned] [usertype] addr_hi drivers/net/qlge/qlge_main.c:975:17: got restricted unsigned int [usertype] <noident> drivers/net/qlge/qlge_main.c:2132:16: warning: incorrect type in assignment (different base types) drivers/net/qlge/qlge_main.c:2132:16: expected unsigned int [unsigned] [usertype] addr_lo drivers/net/qlge/qlge_main.c:2132:16: got restricted unsigned int [usertype] <noident> drivers/net/qlge/qlge_main.c:2133:16: warning: incorrect type in assignment (different base types) drivers/net/qlge/qlge_main.c:2133:16: expected unsigned int [unsigned] [usertype] addr_hi drivers/net/qlge/qlge_main.c:2133:16: got restricted unsigned int [usertype] <noident> drivers/net/qlge/qlge_main.c:2212:15: warning: incorrect type in assignment (different base types) drivers/net/qlge/qlge_main.c:2212:15: expected unsigned int [unsigned] [usertype] addr_lo drivers/net/qlge/qlge_main.c:2212:15: got restricted unsigned int [usertype] <noident> drivers/net/qlge/qlge_main.c:2214:15: warning: incorrect type in assignment (different base types) drivers/net/qlge/qlge_main.c:2214:15: expected unsigned int [unsigned] [usertype] addr_hi drivers/net/qlge/qlge_main.c:2214:15: got restricted unsigned int [usertype] <noident> Signed-off-by: Ron Mercer <ron.mercer@qlogic.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2009-01-06 02:19:20 +00:00
*sbq_desc->addr = cpu_to_le64(map);
}
clean_idx++;
if (clean_idx == rx_ring->sbq_len)
clean_idx = 0;
}
rx_ring->sbq_clean_idx = clean_idx;
rx_ring->sbq_prod_idx += 16;
if (rx_ring->sbq_prod_idx == rx_ring->sbq_len)
rx_ring->sbq_prod_idx = 0;
rx_ring->sbq_free_cnt -= 16;
}
if (start_idx != clean_idx) {
netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
"sbq: updating prod idx = %d.\n",
rx_ring->sbq_prod_idx);
ql_write_db_reg(rx_ring->sbq_prod_idx,
rx_ring->sbq_prod_idx_db_reg);
}
}
static void ql_update_buffer_queues(struct ql_adapter *qdev,
struct rx_ring *rx_ring)
{
ql_update_sbq(qdev, rx_ring);
ql_update_lbq(qdev, rx_ring);
}
/* Unmaps tx buffers. Can be called from send() if a pci mapping
* fails at some stage, or from the interrupt when a tx completes.
*/
static void ql_unmap_send(struct ql_adapter *qdev,
struct tx_ring_desc *tx_ring_desc, int mapped)
{
int i;
for (i = 0; i < mapped; i++) {
if (i == 0 || (i == 7 && mapped > 7)) {
/*
* Unmap the skb->data area, or the
* external sglist (AKA the Outbound
* Address List (OAL)).
* If its the zeroeth element, then it's
* the skb->data area. If it's the 7th
* element and there is more than 6 frags,
* then its an OAL.
*/
if (i == 7) {
netif_printk(qdev, tx_done, KERN_DEBUG,
qdev->ndev,
"unmapping OAL area.\n");
}
pci_unmap_single(qdev->pdev,
dma_unmap_addr(&tx_ring_desc->map[i],
mapaddr),
dma_unmap_len(&tx_ring_desc->map[i],
maplen),
PCI_DMA_TODEVICE);
} else {
netif_printk(qdev, tx_done, KERN_DEBUG, qdev->ndev,
"unmapping frag %d.\n", i);
pci_unmap_page(qdev->pdev,
dma_unmap_addr(&tx_ring_desc->map[i],
mapaddr),
dma_unmap_len(&tx_ring_desc->map[i],
maplen), PCI_DMA_TODEVICE);
}
}
}
/* Map the buffers for this transmit. This will return
* NETDEV_TX_BUSY or NETDEV_TX_OK based on success.
*/
static int ql_map_send(struct ql_adapter *qdev,
struct ob_mac_iocb_req *mac_iocb_ptr,
struct sk_buff *skb, struct tx_ring_desc *tx_ring_desc)
{
int len = skb_headlen(skb);
dma_addr_t map;
int frag_idx, err, map_idx = 0;
struct tx_buf_desc *tbd = mac_iocb_ptr->tbd;
int frag_cnt = skb_shinfo(skb)->nr_frags;
if (frag_cnt) {
netif_printk(qdev, tx_queued, KERN_DEBUG, qdev->ndev,
"frag_cnt = %d.\n", frag_cnt);
}
/*
* Map the skb buffer first.
*/
map = pci_map_single(qdev->pdev, skb->data, len, PCI_DMA_TODEVICE);
err = pci_dma_mapping_error(qdev->pdev, map);
if (err) {
netif_err(qdev, tx_queued, qdev->ndev,
"PCI mapping failed with error: %d\n", err);
return NETDEV_TX_BUSY;
}
tbd->len = cpu_to_le32(len);
tbd->addr = cpu_to_le64(map);
dma_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr, map);
dma_unmap_len_set(&tx_ring_desc->map[map_idx], maplen, len);
map_idx++;
/*
* This loop fills the remainder of the 8 address descriptors
* in the IOCB. If there are more than 7 fragments, then the
* eighth address desc will point to an external list (OAL).
* When this happens, the remainder of the frags will be stored
* in this list.
*/
for (frag_idx = 0; frag_idx < frag_cnt; frag_idx++, map_idx++) {
skb_frag_t *frag = &skb_shinfo(skb)->frags[frag_idx];
tbd++;
if (frag_idx == 6 && frag_cnt > 7) {
/* Let's tack on an sglist.
* Our control block will now
* look like this:
* iocb->seg[0] = skb->data
* iocb->seg[1] = frag[0]
* iocb->seg[2] = frag[1]
* iocb->seg[3] = frag[2]
* iocb->seg[4] = frag[3]
* iocb->seg[5] = frag[4]
* iocb->seg[6] = frag[5]
* iocb->seg[7] = ptr to OAL (external sglist)
* oal->seg[0] = frag[6]
* oal->seg[1] = frag[7]
* oal->seg[2] = frag[8]
* oal->seg[3] = frag[9]
* oal->seg[4] = frag[10]
* etc...
*/
/* Tack on the OAL in the eighth segment of IOCB. */
map = pci_map_single(qdev->pdev, &tx_ring_desc->oal,
sizeof(struct oal),
PCI_DMA_TODEVICE);
err = pci_dma_mapping_error(qdev->pdev, map);
if (err) {
netif_err(qdev, tx_queued, qdev->ndev,
"PCI mapping outbound address list with error: %d\n",
err);
goto map_error;
}
tbd->addr = cpu_to_le64(map);
/*
* The length is the number of fragments
* that remain to be mapped times the length
* of our sglist (OAL).
*/
tbd->len =
cpu_to_le32((sizeof(struct tx_buf_desc) *
(frag_cnt - frag_idx)) | TX_DESC_C);
dma_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr,
map);
dma_unmap_len_set(&tx_ring_desc->map[map_idx], maplen,
sizeof(struct oal));
tbd = (struct tx_buf_desc *)&tx_ring_desc->oal;
map_idx++;
}
map = skb_frag_dma_map(&qdev->pdev->dev, frag, 0, skb_frag_size(frag),
DMA_TO_DEVICE);
err = dma_mapping_error(&qdev->pdev->dev, map);
if (err) {
netif_err(qdev, tx_queued, qdev->ndev,
"PCI mapping frags failed with error: %d.\n",
err);
goto map_error;
}
tbd->addr = cpu_to_le64(map);
tbd->len = cpu_to_le32(skb_frag_size(frag));
dma_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr, map);
dma_unmap_len_set(&tx_ring_desc->map[map_idx], maplen,
skb_frag_size(frag));
}
/* Save the number of segments we've mapped. */
tx_ring_desc->map_cnt = map_idx;
/* Terminate the last segment. */
tbd->len = cpu_to_le32(le32_to_cpu(tbd->len) | TX_DESC_E);
return NETDEV_TX_OK;
map_error:
/*
* If the first frag mapping failed, then i will be zero.
* This causes the unmap of the skb->data area. Otherwise
* we pass in the number of frags that mapped successfully
* so they can be umapped.
*/
ql_unmap_send(qdev, tx_ring_desc, map_idx);
return NETDEV_TX_BUSY;
}
/* Categorizing receive firmware frame errors */
static void ql_categorize_rx_err(struct ql_adapter *qdev, u8 rx_err,
struct rx_ring *rx_ring)
{
struct nic_stats *stats = &qdev->nic_stats;
stats->rx_err_count++;
rx_ring->rx_errors++;
switch (rx_err & IB_MAC_IOCB_RSP_ERR_MASK) {
case IB_MAC_IOCB_RSP_ERR_CODE_ERR:
stats->rx_code_err++;
break;
case IB_MAC_IOCB_RSP_ERR_OVERSIZE:
stats->rx_oversize_err++;
break;
case IB_MAC_IOCB_RSP_ERR_UNDERSIZE:
stats->rx_undersize_err++;
break;
case IB_MAC_IOCB_RSP_ERR_PREAMBLE:
stats->rx_preamble_err++;
break;
case IB_MAC_IOCB_RSP_ERR_FRAME_LEN:
stats->rx_frame_len_err++;
break;
case IB_MAC_IOCB_RSP_ERR_CRC:
stats->rx_crc_err++;
default:
break;
}
}
/* Process an inbound completion from an rx ring. */
static void ql_process_mac_rx_gro_page(struct ql_adapter *qdev,
struct rx_ring *rx_ring,
struct ib_mac_iocb_rsp *ib_mac_rsp,
u32 length,
u16 vlan_id)
{
struct sk_buff *skb;
struct bq_desc *lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
struct napi_struct *napi = &rx_ring->napi;
/* Frame error, so drop the packet. */
if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) {
ql_categorize_rx_err(qdev, ib_mac_rsp->flags2, rx_ring);
put_page(lbq_desc->p.pg_chunk.page);
return;
}
napi->dev = qdev->ndev;
skb = napi_get_frags(napi);
if (!skb) {
netif_err(qdev, drv, qdev->ndev,
"Couldn't get an skb, exiting.\n");
rx_ring->rx_dropped++;
put_page(lbq_desc->p.pg_chunk.page);
return;
}
prefetch(lbq_desc->p.pg_chunk.va);
__skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
lbq_desc->p.pg_chunk.page,
lbq_desc->p.pg_chunk.offset,
length);
skb->len += length;
skb->data_len += length;
skb->truesize += length;
skb_shinfo(skb)->nr_frags++;
rx_ring->rx_packets++;
rx_ring->rx_bytes += length;
skb->ip_summed = CHECKSUM_UNNECESSARY;
skb_record_rx_queue(skb, rx_ring->cq_id);
if (vlan_id != 0xffff)
__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_id);
napi_gro_frags(napi);
}
/* Process an inbound completion from an rx ring. */
static void ql_process_mac_rx_page(struct ql_adapter *qdev,
struct rx_ring *rx_ring,
struct ib_mac_iocb_rsp *ib_mac_rsp,
u32 length,
u16 vlan_id)
{
struct net_device *ndev = qdev->ndev;
struct sk_buff *skb = NULL;
void *addr;
struct bq_desc *lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
struct napi_struct *napi = &rx_ring->napi;
skb = netdev_alloc_skb(ndev, length);
if (!skb) {
rx_ring->rx_dropped++;
put_page(lbq_desc->p.pg_chunk.page);
return;
}
addr = lbq_desc->p.pg_chunk.va;
prefetch(addr);
/* Frame error, so drop the packet. */
if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) {
ql_categorize_rx_err(qdev, ib_mac_rsp->flags2, rx_ring);
goto err_out;
}
/* The max framesize filter on this chip is set higher than
* MTU since FCoE uses 2k frames.
*/
if (skb->len > ndev->mtu + ETH_HLEN) {
netif_err(qdev, drv, qdev->ndev,
"Segment too small, dropping.\n");
rx_ring->rx_dropped++;
goto err_out;
}
memcpy(skb_put(skb, ETH_HLEN), addr, ETH_HLEN);
netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
"%d bytes of headers and data in large. Chain page to new skb and pull tail.\n",
length);
skb_fill_page_desc(skb, 0, lbq_desc->p.pg_chunk.page,
lbq_desc->p.pg_chunk.offset+ETH_HLEN,
length-ETH_HLEN);
skb->len += length-ETH_HLEN;
skb->data_len += length-ETH_HLEN;
skb->truesize += length-ETH_HLEN;
rx_ring->rx_packets++;
rx_ring->rx_bytes += skb->len;
skb->protocol = eth_type_trans(skb, ndev);
skb_checksum_none_assert(skb);
if ((ndev->features & NETIF_F_RXCSUM) &&
!(ib_mac_rsp->flags1 & IB_MAC_CSUM_ERR_MASK)) {
/* TCP frame. */
if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T) {
netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
"TCP checksum done!\n");
skb->ip_summed = CHECKSUM_UNNECESSARY;
} else if ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_U) &&
(ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_V4)) {
/* Unfragmented ipv4 UDP frame. */
struct iphdr *iph =
(struct iphdr *) ((u8 *)addr + ETH_HLEN);
if (!(iph->frag_off &
htons(IP_MF|IP_OFFSET))) {
skb->ip_summed = CHECKSUM_UNNECESSARY;
netif_printk(qdev, rx_status, KERN_DEBUG,
qdev->ndev,
"UDP checksum done!\n");
}
}
}
skb_record_rx_queue(skb, rx_ring->cq_id);
if (vlan_id != 0xffff)
__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_id);
if (skb->ip_summed == CHECKSUM_UNNECESSARY)
napi_gro_receive(napi, skb);
else
netif_receive_skb(skb);
return;
err_out:
dev_kfree_skb_any(skb);
put_page(lbq_desc->p.pg_chunk.page);
}
/* Process an inbound completion from an rx ring. */
static void ql_process_mac_rx_skb(struct ql_adapter *qdev,
struct rx_ring *rx_ring,
struct ib_mac_iocb_rsp *ib_mac_rsp,
u32 length,
u16 vlan_id)
{
struct net_device *ndev = qdev->ndev;
struct sk_buff *skb = NULL;
struct sk_buff *new_skb = NULL;
struct bq_desc *sbq_desc = ql_get_curr_sbuf(rx_ring);
skb = sbq_desc->p.skb;
/* Allocate new_skb and copy */
new_skb = netdev_alloc_skb(qdev->ndev, length + NET_IP_ALIGN);
if (new_skb == NULL) {
rx_ring->rx_dropped++;
return;
}
skb_reserve(new_skb, NET_IP_ALIGN);
pci_dma_sync_single_for_cpu(qdev->pdev,
dma_unmap_addr(sbq_desc, mapaddr),
dma_unmap_len(sbq_desc, maplen),
PCI_DMA_FROMDEVICE);
memcpy(skb_put(new_skb, length), skb->data, length);
pci_dma_sync_single_for_device(qdev->pdev,
dma_unmap_addr(sbq_desc, mapaddr),
dma_unmap_len(sbq_desc, maplen),
PCI_DMA_FROMDEVICE);
skb = new_skb;
/* Frame error, so drop the packet. */
if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) {
ql_categorize_rx_err(qdev, ib_mac_rsp->flags2, rx_ring);
dev_kfree_skb_any(skb);
return;
}
/* loopback self test for ethtool */
if (test_bit(QL_SELFTEST, &qdev->flags)) {
ql_check_lb_frame(qdev, skb);
dev_kfree_skb_any(skb);
return;
}
/* The max framesize filter on this chip is set higher than
* MTU since FCoE uses 2k frames.
*/
if (skb->len > ndev->mtu + ETH_HLEN) {
dev_kfree_skb_any(skb);
rx_ring->rx_dropped++;
return;
}
prefetch(skb->data);
if (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) {
netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
"%s Multicast.\n",
(ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
IB_MAC_IOCB_RSP_M_HASH ? "Hash" :
(ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
IB_MAC_IOCB_RSP_M_REG ? "Registered" :
(ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
IB_MAC_IOCB_RSP_M_PROM ? "Promiscuous" : "");
}
if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_P)
netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
"Promiscuous Packet.\n");
rx_ring->rx_packets++;
rx_ring->rx_bytes += skb->len;
skb->protocol = eth_type_trans(skb, ndev);
skb_checksum_none_assert(skb);
/* If rx checksum is on, and there are no
* csum or frame errors.
*/
if ((ndev->features & NETIF_F_RXCSUM) &&
!(ib_mac_rsp->flags1 & IB_MAC_CSUM_ERR_MASK)) {
/* TCP frame. */
if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T) {
netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
"TCP checksum done!\n");
skb->ip_summed = CHECKSUM_UNNECESSARY;
} else if ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_U) &&
(ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_V4)) {
/* Unfragmented ipv4 UDP frame. */
struct iphdr *iph = (struct iphdr *) skb->data;
if (!(iph->frag_off &
htons(IP_MF|IP_OFFSET))) {
skb->ip_summed = CHECKSUM_UNNECESSARY;
netif_printk(qdev, rx_status, KERN_DEBUG,
qdev->ndev,
"UDP checksum done!\n");
}
}
}
skb_record_rx_queue(skb, rx_ring->cq_id);
if (vlan_id != 0xffff)
__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_id);
if (skb->ip_summed == CHECKSUM_UNNECESSARY)
napi_gro_receive(&rx_ring->napi, skb);
else
netif_receive_skb(skb);
}
static void ql_realign_skb(struct sk_buff *skb, int len)
{
void *temp_addr = skb->data;
/* Undo the skb_reserve(skb,32) we did before
* giving to hardware, and realign data on
* a 2-byte boundary.
*/
skb->data -= QLGE_SB_PAD - NET_IP_ALIGN;
skb->tail -= QLGE_SB_PAD - NET_IP_ALIGN;
skb_copy_to_linear_data(skb, temp_addr,
(unsigned int)len);
}
/*
* This function builds an skb for the given inbound
* completion. It will be rewritten for readability in the near
* future, but for not it works well.
*/
static struct sk_buff *ql_build_rx_skb(struct ql_adapter *qdev,
struct rx_ring *rx_ring,
struct ib_mac_iocb_rsp *ib_mac_rsp)
{
struct bq_desc *lbq_desc;
struct bq_desc *sbq_desc;
struct sk_buff *skb = NULL;
u32 length = le32_to_cpu(ib_mac_rsp->data_len);
u32 hdr_len = le32_to_cpu(ib_mac_rsp->hdr_len);
/*
* Handle the header buffer if present.
*/
if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HV &&
ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
"Header of %d bytes in small buffer.\n", hdr_len);
/*
* Headers fit nicely into a small buffer.
*/
sbq_desc = ql_get_curr_sbuf(rx_ring);
pci_unmap_single(qdev->pdev,
dma_unmap_addr(sbq_desc, mapaddr),
dma_unmap_len(sbq_desc, maplen),
PCI_DMA_FROMDEVICE);
skb = sbq_desc->p.skb;
ql_realign_skb(skb, hdr_len);
skb_put(skb, hdr_len);
sbq_desc->p.skb = NULL;
}
/*
* Handle the data buffer(s).
*/
if (unlikely(!length)) { /* Is there data too? */
netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
"No Data buffer in this packet.\n");
return skb;
}
if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DS) {
if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
"Headers in small, data of %d bytes in small, combine them.\n",
length);
/*
* Data is less than small buffer size so it's
* stuffed in a small buffer.
* For this case we append the data
* from the "data" small buffer to the "header" small
* buffer.
*/
sbq_desc = ql_get_curr_sbuf(rx_ring);
pci_dma_sync_single_for_cpu(qdev->pdev,
dma_unmap_addr
(sbq_desc, mapaddr),
dma_unmap_len
(sbq_desc, maplen),
PCI_DMA_FROMDEVICE);
memcpy(skb_put(skb, length),
sbq_desc->p.skb->data, length);
pci_dma_sync_single_for_device(qdev->pdev,
dma_unmap_addr
(sbq_desc,
mapaddr),
dma_unmap_len
(sbq_desc,
maplen),
PCI_DMA_FROMDEVICE);
} else {
netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
"%d bytes in a single small buffer.\n",
length);
sbq_desc = ql_get_curr_sbuf(rx_ring);
skb = sbq_desc->p.skb;
ql_realign_skb(skb, length);
skb_put(skb, length);
pci_unmap_single(qdev->pdev,
dma_unmap_addr(sbq_desc,
mapaddr),
dma_unmap_len(sbq_desc,
maplen),
PCI_DMA_FROMDEVICE);
sbq_desc->p.skb = NULL;
}
} else if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DL) {
if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
"Header in small, %d bytes in large. Chain large to small!\n",
length);
/*
* The data is in a single large buffer. We
* chain it to the header buffer's skb and let
* it rip.
*/
lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
"Chaining page at offset = %d, for %d bytes to skb.\n",
lbq_desc->p.pg_chunk.offset, length);
skb_fill_page_desc(skb, 0, lbq_desc->p.pg_chunk.page,
lbq_desc->p.pg_chunk.offset,
length);
skb->len += length;
skb->data_len += length;
skb->truesize += length;
} else {
/*
* The headers and data are in a single large buffer. We
* copy it to a new skb and let it go. This can happen with
* jumbo mtu on a non-TCP/UDP frame.
*/
lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
skb = netdev_alloc_skb(qdev->ndev, length);
if (skb == NULL) {
netif_printk(qdev, probe, KERN_DEBUG, qdev->ndev,
"No skb available, drop the packet.\n");
return NULL;
}
pci_unmap_page(qdev->pdev,
dma_unmap_addr(lbq_desc,
mapaddr),
dma_unmap_len(lbq_desc, maplen),
PCI_DMA_FROMDEVICE);
skb_reserve(skb, NET_IP_ALIGN);
netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
"%d bytes of headers and data in large. Chain page to new skb and pull tail.\n",
length);
skb_fill_page_desc(skb, 0,
lbq_desc->p.pg_chunk.page,
lbq_desc->p.pg_chunk.offset,
length);
skb->len += length;
skb->data_len += length;
skb->truesize += length;
length -= length;
__pskb_pull_tail(skb,
(ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) ?
VLAN_ETH_HLEN : ETH_HLEN);
}
} else {
/*
* The data is in a chain of large buffers
* pointed to by a small buffer. We loop
* thru and chain them to the our small header
* buffer's skb.
* frags: There are 18 max frags and our small
* buffer will hold 32 of them. The thing is,
* we'll use 3 max for our 9000 byte jumbo
* frames. If the MTU goes up we could
* eventually be in trouble.
*/
int size, i = 0;
sbq_desc = ql_get_curr_sbuf(rx_ring);
pci_unmap_single(qdev->pdev,
dma_unmap_addr(sbq_desc, mapaddr),
dma_unmap_len(sbq_desc, maplen),
PCI_DMA_FROMDEVICE);
if (!(ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS)) {
/*
* This is an non TCP/UDP IP frame, so
* the headers aren't split into a small
* buffer. We have to use the small buffer
* that contains our sg list as our skb to
* send upstairs. Copy the sg list here to
* a local buffer and use it to find the
* pages to chain.
*/
netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
"%d bytes of headers & data in chain of large.\n",
length);
skb = sbq_desc->p.skb;
sbq_desc->p.skb = NULL;
skb_reserve(skb, NET_IP_ALIGN);
}
while (length > 0) {
lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
size = (length < rx_ring->lbq_buf_size) ? length :
rx_ring->lbq_buf_size;
netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
"Adding page %d to skb for %d bytes.\n",
i, size);
skb_fill_page_desc(skb, i,
lbq_desc->p.pg_chunk.page,
lbq_desc->p.pg_chunk.offset,
size);
skb->len += size;
skb->data_len += size;
skb->truesize += size;
length -= size;
i++;
}
__pskb_pull_tail(skb, (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) ?
VLAN_ETH_HLEN : ETH_HLEN);
}
return skb;
}
/* Process an inbound completion from an rx ring. */
static void ql_process_mac_split_rx_intr(struct ql_adapter *qdev,
struct rx_ring *rx_ring,
struct ib_mac_iocb_rsp *ib_mac_rsp,
u16 vlan_id)
{
struct net_device *ndev = qdev->ndev;
struct sk_buff *skb = NULL;
QL_DUMP_IB_MAC_RSP(ib_mac_rsp);
skb = ql_build_rx_skb(qdev, rx_ring, ib_mac_rsp);
if (unlikely(!skb)) {
netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
"No skb available, drop packet.\n");
rx_ring->rx_dropped++;
return;
}
/* Frame error, so drop the packet. */
if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) {
ql_categorize_rx_err(qdev, ib_mac_rsp->flags2, rx_ring);
dev_kfree_skb_any(skb);
return;
}
/* The max framesize filter on this chip is set higher than
* MTU since FCoE uses 2k frames.
*/
if (skb->len > ndev->mtu + ETH_HLEN) {
dev_kfree_skb_any(skb);
rx_ring->rx_dropped++;
return;
}
/* loopback self test for ethtool */
if (test_bit(QL_SELFTEST, &qdev->flags)) {
ql_check_lb_frame(qdev, skb);
dev_kfree_skb_any(skb);
return;
}
prefetch(skb->data);
if (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) {
netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev, "%s Multicast.\n",
(ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
IB_MAC_IOCB_RSP_M_HASH ? "Hash" :
(ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
IB_MAC_IOCB_RSP_M_REG ? "Registered" :
(ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
IB_MAC_IOCB_RSP_M_PROM ? "Promiscuous" : "");
rx_ring->rx_multicast++;
}
if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_P) {
netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
"Promiscuous Packet.\n");
}
skb->protocol = eth_type_trans(skb, ndev);
skb_checksum_none_assert(skb);
/* If rx checksum is on, and there are no
* csum or frame errors.
*/
if ((ndev->features & NETIF_F_RXCSUM) &&
!(ib_mac_rsp->flags1 & IB_MAC_CSUM_ERR_MASK)) {
/* TCP frame. */
if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T) {
netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
"TCP checksum done!\n");
skb->ip_summed = CHECKSUM_UNNECESSARY;
} else if ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_U) &&
(ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_V4)) {
/* Unfragmented ipv4 UDP frame. */
struct iphdr *iph = (struct iphdr *) skb->data;
if (!(iph->frag_off &
htons(IP_MF|IP_OFFSET))) {
skb->ip_summed = CHECKSUM_UNNECESSARY;
netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
"TCP checksum done!\n");
}
}
}
rx_ring->rx_packets++;
rx_ring->rx_bytes += skb->len;
skb_record_rx_queue(skb, rx_ring->cq_id);
if ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) && (vlan_id != 0))
__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_id);
if (skb->ip_summed == CHECKSUM_UNNECESSARY)
napi_gro_receive(&rx_ring->napi, skb);
else
netif_receive_skb(skb);
}
/* Process an inbound completion from an rx ring. */
static unsigned long ql_process_mac_rx_intr(struct ql_adapter *qdev,
struct rx_ring *rx_ring,
struct ib_mac_iocb_rsp *ib_mac_rsp)
{
u32 length = le32_to_cpu(ib_mac_rsp->data_len);
u16 vlan_id = (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) ?
((le16_to_cpu(ib_mac_rsp->vlan_id) &
IB_MAC_IOCB_RSP_VLAN_MASK)) : 0xffff;
QL_DUMP_IB_MAC_RSP(ib_mac_rsp);
if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HV) {
/* The data and headers are split into
* separate buffers.
*/
ql_process_mac_split_rx_intr(qdev, rx_ring, ib_mac_rsp,
vlan_id);
} else if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DS) {
/* The data fit in a single small buffer.
* Allocate a new skb, copy the data and
* return the buffer to the free pool.
*/
ql_process_mac_rx_skb(qdev, rx_ring, ib_mac_rsp,
length, vlan_id);
} else if ((ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DL) &&
!(ib_mac_rsp->flags1 & IB_MAC_CSUM_ERR_MASK) &&
(ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T)) {
/* TCP packet in a page chunk that's been checksummed.
* Tack it on to our GRO skb and let it go.
*/
ql_process_mac_rx_gro_page(qdev, rx_ring, ib_mac_rsp,
length, vlan_id);
} else if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DL) {
/* Non-TCP packet in a page chunk. Allocate an
* skb, tack it on frags, and send it up.
*/
ql_process_mac_rx_page(qdev, rx_ring, ib_mac_rsp,
length, vlan_id);
} else {
/* Non-TCP/UDP large frames that span multiple buffers
* can be processed corrrectly by the split frame logic.
*/
ql_process_mac_split_rx_intr(qdev, rx_ring, ib_mac_rsp,
vlan_id);
}
return (unsigned long)length;
}
/* Process an outbound completion from an rx ring. */
static void ql_process_mac_tx_intr(struct ql_adapter *qdev,
struct ob_mac_iocb_rsp *mac_rsp)
{
struct tx_ring *tx_ring;
struct tx_ring_desc *tx_ring_desc;
QL_DUMP_OB_MAC_RSP(mac_rsp);
tx_ring = &qdev->tx_ring[mac_rsp->txq_idx];
tx_ring_desc = &tx_ring->q[mac_rsp->tid];
ql_unmap_send(qdev, tx_ring_desc, tx_ring_desc->map_cnt);
tx_ring->tx_bytes += (tx_ring_desc->skb)->len;
tx_ring->tx_packets++;
dev_kfree_skb(tx_ring_desc->skb);
tx_ring_desc->skb = NULL;
if (unlikely(mac_rsp->flags1 & (OB_MAC_IOCB_RSP_E |
OB_MAC_IOCB_RSP_S |
OB_MAC_IOCB_RSP_L |
OB_MAC_IOCB_RSP_P | OB_MAC_IOCB_RSP_B))) {
if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_E) {
netif_warn(qdev, tx_done, qdev->ndev,
"Total descriptor length did not match transfer length.\n");
}
if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_S) {
netif_warn(qdev, tx_done, qdev->ndev,
"Frame too short to be valid, not sent.\n");
}
if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_L) {
netif_warn(qdev, tx_done, qdev->ndev,
"Frame too long, but sent anyway.\n");
}
if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_B) {
netif_warn(qdev, tx_done, qdev->ndev,
"PCI backplane error. Frame not sent.\n");
}
}
atomic_inc(&tx_ring->tx_count);
}
/* Fire up a handler to reset the MPI processor. */
void ql_queue_fw_error(struct ql_adapter *qdev)
{
ql_link_off(qdev);
queue_delayed_work(qdev->workqueue, &qdev->mpi_reset_work, 0);
}
void ql_queue_asic_error(struct ql_adapter *qdev)
{
ql_link_off(qdev);
ql_disable_interrupts(qdev);
/* Clear adapter up bit to signal the recovery
* process that it shouldn't kill the reset worker
* thread
*/
clear_bit(QL_ADAPTER_UP, &qdev->flags);
/* Set asic recovery bit to indicate reset process that we are
* in fatal error recovery process rather than normal close
*/
set_bit(QL_ASIC_RECOVERY, &qdev->flags);
queue_delayed_work(qdev->workqueue, &qdev->asic_reset_work, 0);
}
static void ql_process_chip_ae_intr(struct ql_adapter *qdev,
struct ib_ae_iocb_rsp *ib_ae_rsp)
{
switch (ib_ae_rsp->event) {
case MGMT_ERR_EVENT:
netif_err(qdev, rx_err, qdev->ndev,
"Management Processor Fatal Error.\n");
ql_queue_fw_error(qdev);
return;
case CAM_LOOKUP_ERR_EVENT:
netdev_err(qdev->ndev, "Multiple CAM hits lookup occurred.\n");
netdev_err(qdev->ndev, "This event shouldn't occur.\n");
ql_queue_asic_error(qdev);
return;
case SOFT_ECC_ERROR_EVENT:
netdev_err(qdev->ndev, "Soft ECC error detected.\n");
ql_queue_asic_error(qdev);
break;
case PCI_ERR_ANON_BUF_RD:
netdev_err(qdev->ndev, "PCI error occurred when reading "
"anonymous buffers from rx_ring %d.\n",
ib_ae_rsp->q_id);
ql_queue_asic_error(qdev);
break;
default:
netif_err(qdev, drv, qdev->ndev, "Unexpected event %d.\n",
ib_ae_rsp->event);
ql_queue_asic_error(qdev);
break;
}
}
static int ql_clean_outbound_rx_ring(struct rx_ring *rx_ring)
{
struct ql_adapter *qdev = rx_ring->qdev;
u32 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
struct ob_mac_iocb_rsp *net_rsp = NULL;
int count = 0;
struct tx_ring *tx_ring;
/* While there are entries in the completion queue. */
while (prod != rx_ring->cnsmr_idx) {
netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
"cq_id = %d, prod = %d, cnsmr = %d.\n.",
rx_ring->cq_id, prod, rx_ring->cnsmr_idx);
net_rsp = (struct ob_mac_iocb_rsp *)rx_ring->curr_entry;
rmb();
switch (net_rsp->opcode) {
case OPCODE_OB_MAC_TSO_IOCB:
case OPCODE_OB_MAC_IOCB:
ql_process_mac_tx_intr(qdev, net_rsp);
break;
default:
netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
"Hit default case, not handled! dropping the packet, opcode = %x.\n",
net_rsp->opcode);
}
count++;
ql_update_cq(rx_ring);
prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
}
if (!net_rsp)
return 0;
ql_write_cq_idx(rx_ring);
tx_ring = &qdev->tx_ring[net_rsp->txq_idx];
if (__netif_subqueue_stopped(qdev->ndev, tx_ring->wq_id)) {
if ((atomic_read(&tx_ring->tx_count) > (tx_ring->wq_len / 4)))
/*
* The queue got stopped because the tx_ring was full.
* Wake it up, because it's now at least 25% empty.
*/
netif_wake_subqueue(qdev->ndev, tx_ring->wq_id);
}
return count;
}
static int ql_clean_inbound_rx_ring(struct rx_ring *rx_ring, int budget)
{
struct ql_adapter *qdev = rx_ring->qdev;
u32 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
struct ql_net_rsp_iocb *net_rsp;
int count = 0;
/* While there are entries in the completion queue. */
while (prod != rx_ring->cnsmr_idx) {
netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
"cq_id = %d, prod = %d, cnsmr = %d.\n.",
rx_ring->cq_id, prod, rx_ring->cnsmr_idx);
net_rsp = rx_ring->curr_entry;
rmb();
switch (net_rsp->opcode) {
case OPCODE_IB_MAC_IOCB:
ql_process_mac_rx_intr(qdev, rx_ring,
(struct ib_mac_iocb_rsp *)
net_rsp);
break;
case OPCODE_IB_AE_IOCB:
ql_process_chip_ae_intr(qdev, (struct ib_ae_iocb_rsp *)
net_rsp);
break;
default:
netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
"Hit default case, not handled! dropping the packet, opcode = %x.\n",
net_rsp->opcode);
break;
}
count++;
ql_update_cq(rx_ring);
prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
if (count == budget)
break;
}
ql_update_buffer_queues(qdev, rx_ring);
ql_write_cq_idx(rx_ring);
return count;
}
static int ql_napi_poll_msix(struct napi_struct *napi, int budget)
{
struct rx_ring *rx_ring = container_of(napi, struct rx_ring, napi);
struct ql_adapter *qdev = rx_ring->qdev;
struct rx_ring *trx_ring;
int i, work_done = 0;
struct intr_context *ctx = &qdev->intr_context[rx_ring->cq_id];
netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
"Enter, NAPI POLL cq_id = %d.\n", rx_ring->cq_id);
/* Service the TX rings first. They start
* right after the RSS rings. */
for (i = qdev->rss_ring_count; i < qdev->rx_ring_count; i++) {
trx_ring = &qdev->rx_ring[i];
/* If this TX completion ring belongs to this vector and
* it's not empty then service it.
*/
if ((ctx->irq_mask & (1 << trx_ring->cq_id)) &&
(ql_read_sh_reg(trx_ring->prod_idx_sh_reg) !=
trx_ring->cnsmr_idx)) {
netif_printk(qdev, intr, KERN_DEBUG, qdev->ndev,
"%s: Servicing TX completion ring %d.\n",
__func__, trx_ring->cq_id);
ql_clean_outbound_rx_ring(trx_ring);
}
}
/*
* Now service the RSS ring if it's active.
*/
if (ql_read_sh_reg(rx_ring->prod_idx_sh_reg) !=
rx_ring->cnsmr_idx) {
netif_printk(qdev, intr, KERN_DEBUG, qdev->ndev,
"%s: Servicing RX completion ring %d.\n",
__func__, rx_ring->cq_id);
work_done = ql_clean_inbound_rx_ring(rx_ring, budget);
}
if (work_done < budget) {
napi_complete(napi);
ql_enable_completion_interrupt(qdev, rx_ring->irq);
}
return work_done;
}
static void qlge_vlan_mode(struct net_device *ndev, netdev_features_t features)
{
struct ql_adapter *qdev = netdev_priv(ndev);
if (features & NETIF_F_HW_VLAN_CTAG_RX) {
ql_write32(qdev, NIC_RCV_CFG, NIC_RCV_CFG_VLAN_MASK |
NIC_RCV_CFG_VLAN_MATCH_AND_NON);
} else {
ql_write32(qdev, NIC_RCV_CFG, NIC_RCV_CFG_VLAN_MASK);
}
}
static netdev_features_t qlge_fix_features(struct net_device *ndev,
netdev_features_t features)
{
/*
* Since there is no support for separate rx/tx vlan accel
* enable/disable make sure tx flag is always in same state as rx.
*/
if (features & NETIF_F_HW_VLAN_CTAG_RX)
features |= NETIF_F_HW_VLAN_CTAG_TX;
else
features &= ~NETIF_F_HW_VLAN_CTAG_TX;
return features;
}
static int qlge_set_features(struct net_device *ndev,
netdev_features_t features)
{
netdev_features_t changed = ndev->features ^ features;
if (changed & NETIF_F_HW_VLAN_CTAG_RX)
qlge_vlan_mode(ndev, features);
return 0;
}
static int __qlge_vlan_rx_add_vid(struct ql_adapter *qdev, u16 vid)
{
u32 enable_bit = MAC_ADDR_E;
int err;
err = ql_set_mac_addr_reg(qdev, (u8 *) &enable_bit,
MAC_ADDR_TYPE_VLAN, vid);
if (err)
netif_err(qdev, ifup, qdev->ndev,
"Failed to init vlan address.\n");
return err;
}
static int qlge_vlan_rx_add_vid(struct net_device *ndev, __be16 proto, u16 vid)
{
struct ql_adapter *qdev = netdev_priv(ndev);
int status;
int err;
status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
if (status)
return status;
err = __qlge_vlan_rx_add_vid(qdev, vid);
set_bit(vid, qdev->active_vlans);
ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
return err;
}
static int __qlge_vlan_rx_kill_vid(struct ql_adapter *qdev, u16 vid)
{
u32 enable_bit = 0;
int err;
err = ql_set_mac_addr_reg(qdev, (u8 *) &enable_bit,
MAC_ADDR_TYPE_VLAN, vid);
if (err)
netif_err(qdev, ifup, qdev->ndev,
"Failed to clear vlan address.\n");
return err;
}
static int qlge_vlan_rx_kill_vid(struct net_device *ndev, __be16 proto, u16 vid)
{
struct ql_adapter *qdev = netdev_priv(ndev);
int status;
int err;
status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
if (status)
return status;
err = __qlge_vlan_rx_kill_vid(qdev, vid);
clear_bit(vid, qdev->active_vlans);
ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
return err;
}
static void qlge_restore_vlan(struct ql_adapter *qdev)
{
int status;
u16 vid;
status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
if (status)
return;
for_each_set_bit(vid, qdev->active_vlans, VLAN_N_VID)
__qlge_vlan_rx_add_vid(qdev, vid);
ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
}
/* MSI-X Multiple Vector Interrupt Handler for inbound completions. */
static irqreturn_t qlge_msix_rx_isr(int irq, void *dev_id)
{
struct rx_ring *rx_ring = dev_id;
napi_schedule(&rx_ring->napi);
return IRQ_HANDLED;
}
/* This handles a fatal error, MPI activity, and the default
* rx_ring in an MSI-X multiple vector environment.
* In MSI/Legacy environment it also process the rest of
* the rx_rings.
*/
static irqreturn_t qlge_isr(int irq, void *dev_id)
{
struct rx_ring *rx_ring = dev_id;
struct ql_adapter *qdev = rx_ring->qdev;
struct intr_context *intr_context = &qdev->intr_context[0];
u32 var;
int work_done = 0;
spin_lock(&qdev->hw_lock);
if (atomic_read(&qdev->intr_context[0].irq_cnt)) {
netif_printk(qdev, intr, KERN_DEBUG, qdev->ndev,
"Shared Interrupt, Not ours!\n");
spin_unlock(&qdev->hw_lock);
return IRQ_NONE;
}
spin_unlock(&qdev->hw_lock);
var = ql_disable_completion_interrupt(qdev, intr_context->intr);
/*
* Check for fatal error.
*/
if (var & STS_FE) {
ql_queue_asic_error(qdev);
netdev_err(qdev->ndev, "Got fatal error, STS = %x.\n", var);
var = ql_read32(qdev, ERR_STS);
netdev_err(qdev->ndev, "Resetting chip. "
"Error Status Register = 0x%x\n", var);
return IRQ_HANDLED;
}
/*
* Check MPI processor activity.
*/
if ((var & STS_PI) &&
(ql_read32(qdev, INTR_MASK) & INTR_MASK_PI)) {
/*
* We've got an async event or mailbox completion.
* Handle it and clear the source of the interrupt.
*/
netif_err(qdev, intr, qdev->ndev,
"Got MPI processor interrupt.\n");
ql_disable_completion_interrupt(qdev, intr_context->intr);
ql_write32(qdev, INTR_MASK, (INTR_MASK_PI << 16));
queue_delayed_work_on(smp_processor_id(),
qdev->workqueue, &qdev->mpi_work, 0);
work_done++;
}
/*
* Get the bit-mask that shows the active queues for this
* pass. Compare it to the queues that this irq services
* and call napi if there's a match.
*/
var = ql_read32(qdev, ISR1);
if (var & intr_context->irq_mask) {
netif_info(qdev, intr, qdev->ndev,
"Waking handler for rx_ring[0].\n");
ql_disable_completion_interrupt(qdev, intr_context->intr);
napi_schedule(&rx_ring->napi);
work_done++;
}
ql_enable_completion_interrupt(qdev, intr_context->intr);
return work_done ? IRQ_HANDLED : IRQ_NONE;
}
static int ql_tso(struct sk_buff *skb, struct ob_mac_tso_iocb_req *mac_iocb_ptr)
{
if (skb_is_gso(skb)) {
int err;
if (skb_header_cloned(skb)) {
err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
if (err)
return err;
}
mac_iocb_ptr->opcode = OPCODE_OB_MAC_TSO_IOCB;
mac_iocb_ptr->flags3 |= OB_MAC_TSO_IOCB_IC;
mac_iocb_ptr->frame_len = cpu_to_le32((u32) skb->len);
mac_iocb_ptr->total_hdrs_len =
cpu_to_le16(skb_transport_offset(skb) + tcp_hdrlen(skb));
mac_iocb_ptr->net_trans_offset =
cpu_to_le16(skb_network_offset(skb) |
skb_transport_offset(skb)
<< OB_MAC_TRANSPORT_HDR_SHIFT);
mac_iocb_ptr->mss = cpu_to_le16(skb_shinfo(skb)->gso_size);
mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_LSO;
if (likely(skb->protocol == htons(ETH_P_IP))) {
struct iphdr *iph = ip_hdr(skb);
iph->check = 0;
mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP4;
tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
iph->daddr, 0,
IPPROTO_TCP,
0);
} else if (skb->protocol == htons(ETH_P_IPV6)) {
mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP6;
tcp_hdr(skb)->check =
~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
&ipv6_hdr(skb)->daddr,
0, IPPROTO_TCP, 0);
}
return 1;
}
return 0;
}
static void ql_hw_csum_setup(struct sk_buff *skb,
struct ob_mac_tso_iocb_req *mac_iocb_ptr)
{
int len;
struct iphdr *iph = ip_hdr(skb);
__sum16 *check;
mac_iocb_ptr->opcode = OPCODE_OB_MAC_TSO_IOCB;
mac_iocb_ptr->frame_len = cpu_to_le32((u32) skb->len);
mac_iocb_ptr->net_trans_offset =
cpu_to_le16(skb_network_offset(skb) |
skb_transport_offset(skb) << OB_MAC_TRANSPORT_HDR_SHIFT);
mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP4;
len = (ntohs(iph->tot_len) - (iph->ihl << 2));
if (likely(iph->protocol == IPPROTO_TCP)) {
check = &(tcp_hdr(skb)->check);
mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_TC;
mac_iocb_ptr->total_hdrs_len =
cpu_to_le16(skb_transport_offset(skb) +
(tcp_hdr(skb)->doff << 2));
} else {
check = &(udp_hdr(skb)->check);
mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_UC;
mac_iocb_ptr->total_hdrs_len =
cpu_to_le16(skb_transport_offset(skb) +
sizeof(struct udphdr));
}
*check = ~csum_tcpudp_magic(iph->saddr,
iph->daddr, len, iph->protocol, 0);
}
static netdev_tx_t qlge_send(struct sk_buff *skb, struct net_device *ndev)
{
struct tx_ring_desc *tx_ring_desc;
struct ob_mac_iocb_req *mac_iocb_ptr;
struct ql_adapter *qdev = netdev_priv(ndev);
int tso;
struct tx_ring *tx_ring;
u32 tx_ring_idx = (u32) skb->queue_mapping;
tx_ring = &qdev->tx_ring[tx_ring_idx];
if (skb_padto(skb, ETH_ZLEN))
return NETDEV_TX_OK;
if (unlikely(atomic_read(&tx_ring->tx_count) < 2)) {
netif_info(qdev, tx_queued, qdev->ndev,
"%s: BUG! shutting down tx queue %d due to lack of resources.\n",
__func__, tx_ring_idx);
netif_stop_subqueue(ndev, tx_ring->wq_id);
tx_ring->tx_errors++;
return NETDEV_TX_BUSY;
}
tx_ring_desc = &tx_ring->q[tx_ring->prod_idx];
mac_iocb_ptr = tx_ring_desc->queue_entry;
memset((void *)mac_iocb_ptr, 0, sizeof(*mac_iocb_ptr));
mac_iocb_ptr->opcode = OPCODE_OB_MAC_IOCB;
mac_iocb_ptr->tid = tx_ring_desc->index;
/* We use the upper 32-bits to store the tx queue for this IO.
* When we get the completion we can use it to establish the context.
*/
mac_iocb_ptr->txq_idx = tx_ring_idx;
tx_ring_desc->skb = skb;
mac_iocb_ptr->frame_len = cpu_to_le16((u16) skb->len);
if (vlan_tx_tag_present(skb)) {
netif_printk(qdev, tx_queued, KERN_DEBUG, qdev->ndev,
"Adding a vlan tag %d.\n", vlan_tx_tag_get(skb));
mac_iocb_ptr->flags3 |= OB_MAC_IOCB_V;
mac_iocb_ptr->vlan_tci = cpu_to_le16(vlan_tx_tag_get(skb));
}
tso = ql_tso(skb, (struct ob_mac_tso_iocb_req *)mac_iocb_ptr);
if (tso < 0) {
dev_kfree_skb_any(skb);
return NETDEV_TX_OK;
} else if (unlikely(!tso) && (skb->ip_summed == CHECKSUM_PARTIAL)) {
ql_hw_csum_setup(skb,
(struct ob_mac_tso_iocb_req *)mac_iocb_ptr);
}
if (ql_map_send(qdev, mac_iocb_ptr, skb, tx_ring_desc) !=
NETDEV_TX_OK) {
netif_err(qdev, tx_queued, qdev->ndev,
"Could not map the segments.\n");
tx_ring->tx_errors++;
return NETDEV_TX_BUSY;
}
QL_DUMP_OB_MAC_IOCB(mac_iocb_ptr);
tx_ring->prod_idx++;
if (tx_ring->prod_idx == tx_ring->wq_len)
tx_ring->prod_idx = 0;
wmb();
ql_write_db_reg(tx_ring->prod_idx, tx_ring->prod_idx_db_reg);
netif_printk(qdev, tx_queued, KERN_DEBUG, qdev->ndev,
"tx queued, slot %d, len %d\n",
tx_ring->prod_idx, skb->len);
atomic_dec(&tx_ring->tx_count);
if (unlikely(atomic_read(&tx_ring->tx_count) < 2)) {
netif_stop_subqueue(ndev, tx_ring->wq_id);
if ((atomic_read(&tx_ring->tx_count) > (tx_ring->wq_len / 4)))
/*
* The queue got stopped because the tx_ring was full.
* Wake it up, because it's now at least 25% empty.
*/
netif_wake_subqueue(qdev->ndev, tx_ring->wq_id);
}
return NETDEV_TX_OK;
}
static void ql_free_shadow_space(struct ql_adapter *qdev)
{
if (qdev->rx_ring_shadow_reg_area) {
pci_free_consistent(qdev->pdev,
PAGE_SIZE,
qdev->rx_ring_shadow_reg_area,
qdev->rx_ring_shadow_reg_dma);
qdev->rx_ring_shadow_reg_area = NULL;
}
if (qdev->tx_ring_shadow_reg_area) {
pci_free_consistent(qdev->pdev,
PAGE_SIZE,
qdev->tx_ring_shadow_reg_area,
qdev->tx_ring_shadow_reg_dma);
qdev->tx_ring_shadow_reg_area = NULL;
}
}
static int ql_alloc_shadow_space(struct ql_adapter *qdev)
{
qdev->rx_ring_shadow_reg_area =
pci_alloc_consistent(qdev->pdev,
PAGE_SIZE, &qdev->rx_ring_shadow_reg_dma);
if (qdev->rx_ring_shadow_reg_area == NULL) {
netif_err(qdev, ifup, qdev->ndev,
"Allocation of RX shadow space failed.\n");
return -ENOMEM;
}
memset(qdev->rx_ring_shadow_reg_area, 0, PAGE_SIZE);
qdev->tx_ring_shadow_reg_area =
pci_alloc_consistent(qdev->pdev, PAGE_SIZE,
&qdev->tx_ring_shadow_reg_dma);
if (qdev->tx_ring_shadow_reg_area == NULL) {
netif_err(qdev, ifup, qdev->ndev,
"Allocation of TX shadow space failed.\n");
goto err_wqp_sh_area;
}
memset(qdev->tx_ring_shadow_reg_area, 0, PAGE_SIZE);
return 0;
err_wqp_sh_area:
pci_free_consistent(qdev->pdev,
PAGE_SIZE,
qdev->rx_ring_shadow_reg_area,
qdev->rx_ring_shadow_reg_dma);
return -ENOMEM;
}
static void ql_init_tx_ring(struct ql_adapter *qdev, struct tx_ring *tx_ring)
{
struct tx_ring_desc *tx_ring_desc;
int i;
struct ob_mac_iocb_req *mac_iocb_ptr;
mac_iocb_ptr = tx_ring->wq_base;
tx_ring_desc = tx_ring->q;
for (i = 0; i < tx_ring->wq_len; i++) {
tx_ring_desc->index = i;
tx_ring_desc->skb = NULL;
tx_ring_desc->queue_entry = mac_iocb_ptr;
mac_iocb_ptr++;
tx_ring_desc++;
}
atomic_set(&tx_ring->tx_count, tx_ring->wq_len);
}
static void ql_free_tx_resources(struct ql_adapter *qdev,
struct tx_ring *tx_ring)
{
if (tx_ring->wq_base) {
pci_free_consistent(qdev->pdev, tx_ring->wq_size,
tx_ring->wq_base, tx_ring->wq_base_dma);
tx_ring->wq_base = NULL;
}
kfree(tx_ring->q);
tx_ring->q = NULL;
}
static int ql_alloc_tx_resources(struct ql_adapter *qdev,
struct tx_ring *tx_ring)
{
tx_ring->wq_base =
pci_alloc_consistent(qdev->pdev, tx_ring->wq_size,
&tx_ring->wq_base_dma);
if ((tx_ring->wq_base == NULL) ||
tx_ring->wq_base_dma & WQ_ADDR_ALIGN)
goto pci_alloc_err;
tx_ring->q =
kmalloc(tx_ring->wq_len * sizeof(struct tx_ring_desc), GFP_KERNEL);
if (tx_ring->q == NULL)
goto err;
return 0;
err:
pci_free_consistent(qdev->pdev, tx_ring->wq_size,
tx_ring->wq_base, tx_ring->wq_base_dma);
tx_ring->wq_base = NULL;
pci_alloc_err:
netif_err(qdev, ifup, qdev->ndev, "tx_ring alloc failed.\n");
return -ENOMEM;
}
static void ql_free_lbq_buffers(struct ql_adapter *qdev, struct rx_ring *rx_ring)
{
struct bq_desc *lbq_desc;
uint32_t curr_idx, clean_idx;
curr_idx = rx_ring->lbq_curr_idx;
clean_idx = rx_ring->lbq_clean_idx;
while (curr_idx != clean_idx) {
lbq_desc = &rx_ring->lbq[curr_idx];
if (lbq_desc->p.pg_chunk.last_flag) {
pci_unmap_page(qdev->pdev,
lbq_desc->p.pg_chunk.map,
ql_lbq_block_size(qdev),
PCI_DMA_FROMDEVICE);
lbq_desc->p.pg_chunk.last_flag = 0;
}
put_page(lbq_desc->p.pg_chunk.page);
lbq_desc->p.pg_chunk.page = NULL;
if (++curr_idx == rx_ring->lbq_len)
curr_idx = 0;
}
qlge: fix dma map leak when the last chunk is not allocated qlge allocates chunks from a page that it maps and unmaps that page when the last chunk is released. When the driver is unloaded or the card is removed, all chunks are released and the page is unmapped for the last chunk. However, when the last chunk of a page is not allocated and the device is removed, that page is not unmapped. In fact, its last reference is not put and there's also a page leak. This bug prevents a device from being properly hotplugged. When the DMA API debug option is enabled, the following messages show the pending DMA allocation after we remove the driver. This patch fixes the bug by unmapping and putting the page from the ring if its last chunk has not been allocated. pci 0005:98:00.0: DMA-API: device driver has pending DMA allocations while released from device [count=1] One of leaked entries details: [device address=0x0000000060a80000] [size=65536 bytes] [mapped with DMA_FROM_DEVICE] [mapped as page] ------------[ cut here ]------------ WARNING: at lib/dma-debug.c:746 Modules linked in: qlge(-) rpadlpar_io rpaphp pci_hotplug fuse [last unloaded: qlge] NIP: c0000000003fc3ec LR: c0000000003fc3e8 CTR: c00000000054de60 REGS: c0000003ee9c74e0 TRAP: 0700 Tainted: G O (3.7.2) MSR: 8000000000029032 <SF,EE,ME,IR,DR,RI> CR: 28002424 XER: 00000001 SOFTE: 1 CFAR: c0000000007a39c8 TASK = c0000003ee8d5c90[8406] 'rmmod' THREAD: c0000003ee9c4000 CPU: 31 GPR00: c0000000003fc3e8 c0000003ee9c7760 c000000000c789f8 00000000000000ee GPR04: 0000000000000000 00000000000000ef 0000000000004000 0000000000010000 GPR08: 00000000000000be c000000000b22088 c000000000c4c218 00000000007c0000 GPR12: 0000000028002422 c00000000ff26c80 0000000000000000 000001001b0f1b40 GPR16: 00000000100cb9d8 0000000010093088 c000000000cdf910 0000000000000001 GPR20: 0000000000000000 c000000000dbfc00 0000000000000000 c000000000dbfb80 GPR24: c0000003fafc9d80 0000000000000001 000000000001ff80 c0000003f38f7888 GPR28: c000000000ddfc00 0000000000000400 c000000000bd7790 c000000000ddfb80 NIP [c0000000003fc3ec] .dma_debug_device_change+0x22c/0x2b0 LR [c0000000003fc3e8] .dma_debug_device_change+0x228/0x2b0 Call Trace: [c0000003ee9c7760] [c0000000003fc3e8] .dma_debug_device_change+0x228/0x2b0 (unreliable) [c0000003ee9c7840] [c00000000079a098] .notifier_call_chain+0x78/0xf0 [c0000003ee9c78e0] [c0000000000acc20] .__blocking_notifier_call_chain+0x70/0xb0 [c0000003ee9c7990] [c0000000004a9580] .__device_release_driver+0x100/0x140 [c0000003ee9c7a20] [c0000000004a9708] .driver_detach+0x148/0x150 [c0000003ee9c7ac0] [c0000000004a8144] .bus_remove_driver+0xc4/0x150 [c0000003ee9c7b60] [c0000000004aa58c] .driver_unregister+0x8c/0xe0 [c0000003ee9c7bf0] [c0000000004090b4] .pci_unregister_driver+0x34/0xf0 [c0000003ee9c7ca0] [d000000002231194] .qlge_exit+0x1c/0x34 [qlge] [c0000003ee9c7d20] [c0000000000e36d8] .SyS_delete_module+0x1e8/0x290 [c0000003ee9c7e30] [c0000000000098d4] syscall_exit+0x0/0x94 Instruction dump: 7f26cb78 e818003a e87e81a0 e8f80028 e9180030 796b1f24 78001f24 7d6a5a14 7d2a002a e94b0020 483a7595 60000000 <0fe00000> 2fb80000 40de0048 80120050 ---[ end trace 4294f9abdb01031d ]--- Mapped at: [<d000000002222f54>] .ql_update_lbq+0x384/0x580 [qlge] [<d000000002227bd0>] .ql_clean_inbound_rx_ring+0x300/0xc60 [qlge] [<d0000000022288cc>] .ql_napi_poll_msix+0x39c/0x5a0 [qlge] [<c0000000006b3c50>] .net_rx_action+0x170/0x300 [<c000000000081840>] .__do_softirq+0x170/0x300 Signed-off-by: Thadeu Lima de Souza Cascardo <cascardo@linux.vnet.ibm.com> Acked-by: Jitendra Kalsaria <Jitendra.kalsaria@qlogic.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2013-05-11 09:15:37 +00:00
if (rx_ring->pg_chunk.page) {
pci_unmap_page(qdev->pdev, rx_ring->pg_chunk.map,
ql_lbq_block_size(qdev), PCI_DMA_FROMDEVICE);
put_page(rx_ring->pg_chunk.page);
rx_ring->pg_chunk.page = NULL;
}
}
static void ql_free_sbq_buffers(struct ql_adapter *qdev, struct rx_ring *rx_ring)
{
int i;
struct bq_desc *sbq_desc;
for (i = 0; i < rx_ring->sbq_len; i++) {
sbq_desc = &rx_ring->sbq[i];
if (sbq_desc == NULL) {
netif_err(qdev, ifup, qdev->ndev,
"sbq_desc %d is NULL.\n", i);
return;
}
if (sbq_desc->p.skb) {
pci_unmap_single(qdev->pdev,
dma_unmap_addr(sbq_desc, mapaddr),
dma_unmap_len(sbq_desc, maplen),
PCI_DMA_FROMDEVICE);
dev_kfree_skb(sbq_desc->p.skb);
sbq_desc->p.skb = NULL;
}
}
}
/* Free all large and small rx buffers associated
* with the completion queues for this device.
*/
static void ql_free_rx_buffers(struct ql_adapter *qdev)
{
int i;
struct rx_ring *rx_ring;
for (i = 0; i < qdev->rx_ring_count; i++) {
rx_ring = &qdev->rx_ring[i];
if (rx_ring->lbq)
ql_free_lbq_buffers(qdev, rx_ring);
if (rx_ring->sbq)
ql_free_sbq_buffers(qdev, rx_ring);
}
}
static void ql_alloc_rx_buffers(struct ql_adapter *qdev)
{
struct rx_ring *rx_ring;
int i;
for (i = 0; i < qdev->rx_ring_count; i++) {
rx_ring = &qdev->rx_ring[i];
if (rx_ring->type != TX_Q)
ql_update_buffer_queues(qdev, rx_ring);
}
}
static void ql_init_lbq_ring(struct ql_adapter *qdev,
struct rx_ring *rx_ring)
{
int i;
struct bq_desc *lbq_desc;
__le64 *bq = rx_ring->lbq_base;
memset(rx_ring->lbq, 0, rx_ring->lbq_len * sizeof(struct bq_desc));
for (i = 0; i < rx_ring->lbq_len; i++) {
lbq_desc = &rx_ring->lbq[i];
memset(lbq_desc, 0, sizeof(*lbq_desc));
lbq_desc->index = i;
lbq_desc->addr = bq;
bq++;
}
}
static void ql_init_sbq_ring(struct ql_adapter *qdev,
struct rx_ring *rx_ring)
{
int i;
struct bq_desc *sbq_desc;
qlge: Fix sparse warning regarding rx buffer queues. Warnings: drivers/net/qlge/qlge_main.c:909:17: warning: incorrect type in assignment (different base types) drivers/net/qlge/qlge_main.c:909:17: expected unsigned int [unsigned] [usertype] addr_lo drivers/net/qlge/qlge_main.c:909:17: got restricted unsigned int [usertype] <noident> drivers/net/qlge/qlge_main.c:911:17: warning: incorrect type in assignment (different base types) drivers/net/qlge/qlge_main.c:911:17: expected unsigned int [unsigned] [usertype] addr_hi drivers/net/qlge/qlge_main.c:911:17: got restricted unsigned int [usertype] <noident> drivers/net/qlge/qlge_main.c:974:17: warning: incorrect type in assignment (different base types) drivers/net/qlge/qlge_main.c:974:17: expected unsigned int [unsigned] [usertype] addr_lo drivers/net/qlge/qlge_main.c:974:17: got restricted unsigned int [usertype] <noident> drivers/net/qlge/qlge_main.c:975:17: warning: incorrect type in assignment (different base types) drivers/net/qlge/qlge_main.c:975:17: expected unsigned int [unsigned] [usertype] addr_hi drivers/net/qlge/qlge_main.c:975:17: got restricted unsigned int [usertype] <noident> drivers/net/qlge/qlge_main.c:2132:16: warning: incorrect type in assignment (different base types) drivers/net/qlge/qlge_main.c:2132:16: expected unsigned int [unsigned] [usertype] addr_lo drivers/net/qlge/qlge_main.c:2132:16: got restricted unsigned int [usertype] <noident> drivers/net/qlge/qlge_main.c:2133:16: warning: incorrect type in assignment (different base types) drivers/net/qlge/qlge_main.c:2133:16: expected unsigned int [unsigned] [usertype] addr_hi drivers/net/qlge/qlge_main.c:2133:16: got restricted unsigned int [usertype] <noident> drivers/net/qlge/qlge_main.c:2212:15: warning: incorrect type in assignment (different base types) drivers/net/qlge/qlge_main.c:2212:15: expected unsigned int [unsigned] [usertype] addr_lo drivers/net/qlge/qlge_main.c:2212:15: got restricted unsigned int [usertype] <noident> drivers/net/qlge/qlge_main.c:2214:15: warning: incorrect type in assignment (different base types) drivers/net/qlge/qlge_main.c:2214:15: expected unsigned int [unsigned] [usertype] addr_hi drivers/net/qlge/qlge_main.c:2214:15: got restricted unsigned int [usertype] <noident> Signed-off-by: Ron Mercer <ron.mercer@qlogic.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2009-01-06 02:19:20 +00:00
__le64 *bq = rx_ring->sbq_base;
memset(rx_ring->sbq, 0, rx_ring->sbq_len * sizeof(struct bq_desc));
for (i = 0; i < rx_ring->sbq_len; i++) {
sbq_desc = &rx_ring->sbq[i];
memset(sbq_desc, 0, sizeof(*sbq_desc));
sbq_desc->index = i;
qlge: Fix sparse warning regarding rx buffer queues. Warnings: drivers/net/qlge/qlge_main.c:909:17: warning: incorrect type in assignment (different base types) drivers/net/qlge/qlge_main.c:909:17: expected unsigned int [unsigned] [usertype] addr_lo drivers/net/qlge/qlge_main.c:909:17: got restricted unsigned int [usertype] <noident> drivers/net/qlge/qlge_main.c:911:17: warning: incorrect type in assignment (different base types) drivers/net/qlge/qlge_main.c:911:17: expected unsigned int [unsigned] [usertype] addr_hi drivers/net/qlge/qlge_main.c:911:17: got restricted unsigned int [usertype] <noident> drivers/net/qlge/qlge_main.c:974:17: warning: incorrect type in assignment (different base types) drivers/net/qlge/qlge_main.c:974:17: expected unsigned int [unsigned] [usertype] addr_lo drivers/net/qlge/qlge_main.c:974:17: got restricted unsigned int [usertype] <noident> drivers/net/qlge/qlge_main.c:975:17: warning: incorrect type in assignment (different base types) drivers/net/qlge/qlge_main.c:975:17: expected unsigned int [unsigned] [usertype] addr_hi drivers/net/qlge/qlge_main.c:975:17: got restricted unsigned int [usertype] <noident> drivers/net/qlge/qlge_main.c:2132:16: warning: incorrect type in assignment (different base types) drivers/net/qlge/qlge_main.c:2132:16: expected unsigned int [unsigned] [usertype] addr_lo drivers/net/qlge/qlge_main.c:2132:16: got restricted unsigned int [usertype] <noident> drivers/net/qlge/qlge_main.c:2133:16: warning: incorrect type in assignment (different base types) drivers/net/qlge/qlge_main.c:2133:16: expected unsigned int [unsigned] [usertype] addr_hi drivers/net/qlge/qlge_main.c:2133:16: got restricted unsigned int [usertype] <noident> drivers/net/qlge/qlge_main.c:2212:15: warning: incorrect type in assignment (different base types) drivers/net/qlge/qlge_main.c:2212:15: expected unsigned int [unsigned] [usertype] addr_lo drivers/net/qlge/qlge_main.c:2212:15: got restricted unsigned int [usertype] <noident> drivers/net/qlge/qlge_main.c:2214:15: warning: incorrect type in assignment (different base types) drivers/net/qlge/qlge_main.c:2214:15: expected unsigned int [unsigned] [usertype] addr_hi drivers/net/qlge/qlge_main.c:2214:15: got restricted unsigned int [usertype] <noident> Signed-off-by: Ron Mercer <ron.mercer@qlogic.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2009-01-06 02:19:20 +00:00
sbq_desc->addr = bq;
bq++;
}
}
static void ql_free_rx_resources(struct ql_adapter *qdev,
struct rx_ring *rx_ring)
{
/* Free the small buffer queue. */
if (rx_ring->sbq_base) {
pci_free_consistent(qdev->pdev,
rx_ring->sbq_size,
rx_ring->sbq_base, rx_ring->sbq_base_dma);
rx_ring->sbq_base = NULL;
}
/* Free the small buffer queue control blocks. */
kfree(rx_ring->sbq);
rx_ring->sbq = NULL;
/* Free the large buffer queue. */
if (rx_ring->lbq_base) {
pci_free_consistent(qdev->pdev,
rx_ring->lbq_size,
rx_ring->lbq_base, rx_ring->lbq_base_dma);
rx_ring->lbq_base = NULL;
}
/* Free the large buffer queue control blocks. */
kfree(rx_ring->lbq);
rx_ring->lbq = NULL;
/* Free the rx queue. */
if (rx_ring->cq_base) {
pci_free_consistent(qdev->pdev,
rx_ring->cq_size,
rx_ring->cq_base, rx_ring->cq_base_dma);
rx_ring->cq_base = NULL;
}
}
/* Allocate queues and buffers for this completions queue based
* on the values in the parameter structure. */
static int ql_alloc_rx_resources(struct ql_adapter *qdev,
struct rx_ring *rx_ring)
{
/*
* Allocate the completion queue for this rx_ring.
*/
rx_ring->cq_base =
pci_alloc_consistent(qdev->pdev, rx_ring->cq_size,
&rx_ring->cq_base_dma);
if (rx_ring->cq_base == NULL) {
netif_err(qdev, ifup, qdev->ndev, "rx_ring alloc failed.\n");
return -ENOMEM;
}
if (rx_ring->sbq_len) {
/*
* Allocate small buffer queue.
*/
rx_ring->sbq_base =
pci_alloc_consistent(qdev->pdev, rx_ring->sbq_size,
&rx_ring->sbq_base_dma);
if (rx_ring->sbq_base == NULL) {
netif_err(qdev, ifup, qdev->ndev,
"Small buffer queue allocation failed.\n");
goto err_mem;
}
/*
* Allocate small buffer queue control blocks.
*/
rx_ring->sbq = kmalloc_array(rx_ring->sbq_len,
sizeof(struct bq_desc),
GFP_KERNEL);
if (rx_ring->sbq == NULL)
goto err_mem;
ql_init_sbq_ring(qdev, rx_ring);
}
if (rx_ring->lbq_len) {
/*
* Allocate large buffer queue.
*/
rx_ring->lbq_base =
pci_alloc_consistent(qdev->pdev, rx_ring->lbq_size,
&rx_ring->lbq_base_dma);
if (rx_ring->lbq_base == NULL) {
netif_err(qdev, ifup, qdev->ndev,
"Large buffer queue allocation failed.\n");
goto err_mem;
}
/*
* Allocate large buffer queue control blocks.
*/
rx_ring->lbq = kmalloc_array(rx_ring->lbq_len,
sizeof(struct bq_desc),
GFP_KERNEL);
if (rx_ring->lbq == NULL)
goto err_mem;
ql_init_lbq_ring(qdev, rx_ring);
}
return 0;
err_mem:
ql_free_rx_resources(qdev, rx_ring);
return -ENOMEM;
}
static void ql_tx_ring_clean(struct ql_adapter *qdev)
{
struct tx_ring *tx_ring;
struct tx_ring_desc *tx_ring_desc;
int i, j;
/*
* Loop through all queues and free
* any resources.
*/
for (j = 0; j < qdev->tx_ring_count; j++) {
tx_ring = &qdev->tx_ring[j];
for (i = 0; i < tx_ring->wq_len; i++) {
tx_ring_desc = &tx_ring->q[i];
if (tx_ring_desc && tx_ring_desc->skb) {
netif_err(qdev, ifdown, qdev->ndev,
"Freeing lost SKB %p, from queue %d, index %d.\n",
tx_ring_desc->skb, j,
tx_ring_desc->index);
ql_unmap_send(qdev, tx_ring_desc,
tx_ring_desc->map_cnt);
dev_kfree_skb(tx_ring_desc->skb);
tx_ring_desc->skb = NULL;
}
}
}
}
static void ql_free_mem_resources(struct ql_adapter *qdev)
{
int i;
for (i = 0; i < qdev->tx_ring_count; i++)
ql_free_tx_resources(qdev, &qdev->tx_ring[i]);
for (i = 0; i < qdev->rx_ring_count; i++)
ql_free_rx_resources(qdev, &qdev->rx_ring[i]);
ql_free_shadow_space(qdev);
}
static int ql_alloc_mem_resources(struct ql_adapter *qdev)
{
int i;
/* Allocate space for our shadow registers and such. */
if (ql_alloc_shadow_space(qdev))
return -ENOMEM;
for (i = 0; i < qdev->rx_ring_count; i++) {
if (ql_alloc_rx_resources(qdev, &qdev->rx_ring[i]) != 0) {
netif_err(qdev, ifup, qdev->ndev,
"RX resource allocation failed.\n");
goto err_mem;
}
}
/* Allocate tx queue resources */
for (i = 0; i < qdev->tx_ring_count; i++) {
if (ql_alloc_tx_resources(qdev, &qdev->tx_ring[i]) != 0) {
netif_err(qdev, ifup, qdev->ndev,
"TX resource allocation failed.\n");
goto err_mem;
}
}
return 0;
err_mem:
ql_free_mem_resources(qdev);
return -ENOMEM;
}
/* Set up the rx ring control block and pass it to the chip.
* The control block is defined as
* "Completion Queue Initialization Control Block", or cqicb.
*/
static int ql_start_rx_ring(struct ql_adapter *qdev, struct rx_ring *rx_ring)
{
struct cqicb *cqicb = &rx_ring->cqicb;
void *shadow_reg = qdev->rx_ring_shadow_reg_area +
(rx_ring->cq_id * RX_RING_SHADOW_SPACE);
u64 shadow_reg_dma = qdev->rx_ring_shadow_reg_dma +
(rx_ring->cq_id * RX_RING_SHADOW_SPACE);
void __iomem *doorbell_area =
qdev->doorbell_area + (DB_PAGE_SIZE * (128 + rx_ring->cq_id));
int err = 0;
u16 bq_len;
u64 tmp;
__le64 *base_indirect_ptr;
int page_entries;
/* Set up the shadow registers for this ring. */
rx_ring->prod_idx_sh_reg = shadow_reg;
rx_ring->prod_idx_sh_reg_dma = shadow_reg_dma;
*rx_ring->prod_idx_sh_reg = 0;
shadow_reg += sizeof(u64);
shadow_reg_dma += sizeof(u64);
rx_ring->lbq_base_indirect = shadow_reg;
rx_ring->lbq_base_indirect_dma = shadow_reg_dma;
shadow_reg += (sizeof(u64) * MAX_DB_PAGES_PER_BQ(rx_ring->lbq_len));
shadow_reg_dma += (sizeof(u64) * MAX_DB_PAGES_PER_BQ(rx_ring->lbq_len));
rx_ring->sbq_base_indirect = shadow_reg;
rx_ring->sbq_base_indirect_dma = shadow_reg_dma;
/* PCI doorbell mem area + 0x00 for consumer index register */
rx_ring->cnsmr_idx_db_reg = (u32 __iomem *) doorbell_area;
rx_ring->cnsmr_idx = 0;
rx_ring->curr_entry = rx_ring->cq_base;
/* PCI doorbell mem area + 0x04 for valid register */
rx_ring->valid_db_reg = doorbell_area + 0x04;
/* PCI doorbell mem area + 0x18 for large buffer consumer */
rx_ring->lbq_prod_idx_db_reg = (u32 __iomem *) (doorbell_area + 0x18);
/* PCI doorbell mem area + 0x1c */
rx_ring->sbq_prod_idx_db_reg = (u32 __iomem *) (doorbell_area + 0x1c);
memset((void *)cqicb, 0, sizeof(struct cqicb));
cqicb->msix_vect = rx_ring->irq;
bq_len = (rx_ring->cq_len == 65536) ? 0 : (u16) rx_ring->cq_len;
cqicb->len = cpu_to_le16(bq_len | LEN_V | LEN_CPP_CONT);
cqicb->addr = cpu_to_le64(rx_ring->cq_base_dma);
cqicb->prod_idx_addr = cpu_to_le64(rx_ring->prod_idx_sh_reg_dma);
/*
* Set up the control block load flags.
*/
cqicb->flags = FLAGS_LC | /* Load queue base address */
FLAGS_LV | /* Load MSI-X vector */
FLAGS_LI; /* Load irq delay values */
if (rx_ring->lbq_len) {
cqicb->flags |= FLAGS_LL; /* Load lbq values */
tmp = (u64)rx_ring->lbq_base_dma;
base_indirect_ptr = rx_ring->lbq_base_indirect;
page_entries = 0;
do {
*base_indirect_ptr = cpu_to_le64(tmp);
tmp += DB_PAGE_SIZE;
base_indirect_ptr++;
page_entries++;
} while (page_entries < MAX_DB_PAGES_PER_BQ(rx_ring->lbq_len));
cqicb->lbq_addr =
cpu_to_le64(rx_ring->lbq_base_indirect_dma);
bq_len = (rx_ring->lbq_buf_size == 65536) ? 0 :
(u16) rx_ring->lbq_buf_size;
cqicb->lbq_buf_size = cpu_to_le16(bq_len);
bq_len = (rx_ring->lbq_len == 65536) ? 0 :
(u16) rx_ring->lbq_len;
cqicb->lbq_len = cpu_to_le16(bq_len);
rx_ring->lbq_prod_idx = 0;
rx_ring->lbq_curr_idx = 0;
rx_ring->lbq_clean_idx = 0;
rx_ring->lbq_free_cnt = rx_ring->lbq_len;
}
if (rx_ring->sbq_len) {
cqicb->flags |= FLAGS_LS; /* Load sbq values */
tmp = (u64)rx_ring->sbq_base_dma;
base_indirect_ptr = rx_ring->sbq_base_indirect;
page_entries = 0;
do {
*base_indirect_ptr = cpu_to_le64(tmp);
tmp += DB_PAGE_SIZE;
base_indirect_ptr++;
page_entries++;
} while (page_entries < MAX_DB_PAGES_PER_BQ(rx_ring->sbq_len));
cqicb->sbq_addr =
cpu_to_le64(rx_ring->sbq_base_indirect_dma);
cqicb->sbq_buf_size =
cpu_to_le16((u16)(rx_ring->sbq_buf_size));
bq_len = (rx_ring->sbq_len == 65536) ? 0 :
(u16) rx_ring->sbq_len;
cqicb->sbq_len = cpu_to_le16(bq_len);
rx_ring->sbq_prod_idx = 0;
rx_ring->sbq_curr_idx = 0;
rx_ring->sbq_clean_idx = 0;
rx_ring->sbq_free_cnt = rx_ring->sbq_len;
}
switch (rx_ring->type) {
case TX_Q:
cqicb->irq_delay = cpu_to_le16(qdev->tx_coalesce_usecs);
cqicb->pkt_delay = cpu_to_le16(qdev->tx_max_coalesced_frames);
break;
case RX_Q:
/* Inbound completion handling rx_rings run in
* separate NAPI contexts.
*/
netif_napi_add(qdev->ndev, &rx_ring->napi, ql_napi_poll_msix,
64);
cqicb->irq_delay = cpu_to_le16(qdev->rx_coalesce_usecs);
cqicb->pkt_delay = cpu_to_le16(qdev->rx_max_coalesced_frames);
break;
default:
netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
"Invalid rx_ring->type = %d.\n", rx_ring->type);
}
err = ql_write_cfg(qdev, cqicb, sizeof(struct cqicb),
CFG_LCQ, rx_ring->cq_id);
if (err) {
netif_err(qdev, ifup, qdev->ndev, "Failed to load CQICB.\n");
return err;
}
return err;
}
static int ql_start_tx_ring(struct ql_adapter *qdev, struct tx_ring *tx_ring)
{
struct wqicb *wqicb = (struct wqicb *)tx_ring;
void __iomem *doorbell_area =
qdev->doorbell_area + (DB_PAGE_SIZE * tx_ring->wq_id);
void *shadow_reg = qdev->tx_ring_shadow_reg_area +
(tx_ring->wq_id * sizeof(u64));
u64 shadow_reg_dma = qdev->tx_ring_shadow_reg_dma +
(tx_ring->wq_id * sizeof(u64));
int err = 0;
/*
* Assign doorbell registers for this tx_ring.
*/
/* TX PCI doorbell mem area for tx producer index */
tx_ring->prod_idx_db_reg = (u32 __iomem *) doorbell_area;
tx_ring->prod_idx = 0;
/* TX PCI doorbell mem area + 0x04 */
tx_ring->valid_db_reg = doorbell_area + 0x04;
/*
* Assign shadow registers for this tx_ring.
*/
tx_ring->cnsmr_idx_sh_reg = shadow_reg;
tx_ring->cnsmr_idx_sh_reg_dma = shadow_reg_dma;
wqicb->len = cpu_to_le16(tx_ring->wq_len | Q_LEN_V | Q_LEN_CPP_CONT);
wqicb->flags = cpu_to_le16(Q_FLAGS_LC |
Q_FLAGS_LB | Q_FLAGS_LI | Q_FLAGS_LO);
wqicb->cq_id_rss = cpu_to_le16(tx_ring->cq_id);
wqicb->rid = 0;
wqicb->addr = cpu_to_le64(tx_ring->wq_base_dma);
wqicb->cnsmr_idx_addr = cpu_to_le64(tx_ring->cnsmr_idx_sh_reg_dma);
ql_init_tx_ring(qdev, tx_ring);
err = ql_write_cfg(qdev, wqicb, sizeof(*wqicb), CFG_LRQ,
(u16) tx_ring->wq_id);
if (err) {
netif_err(qdev, ifup, qdev->ndev, "Failed to load tx_ring.\n");
return err;
}
return err;
}
static void ql_disable_msix(struct ql_adapter *qdev)
{
if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
pci_disable_msix(qdev->pdev);
clear_bit(QL_MSIX_ENABLED, &qdev->flags);
kfree(qdev->msi_x_entry);
qdev->msi_x_entry = NULL;
} else if (test_bit(QL_MSI_ENABLED, &qdev->flags)) {
pci_disable_msi(qdev->pdev);
clear_bit(QL_MSI_ENABLED, &qdev->flags);
}
}
/* We start by trying to get the number of vectors
* stored in qdev->intr_count. If we don't get that
* many then we reduce the count and try again.
*/
static void ql_enable_msix(struct ql_adapter *qdev)
{
int i, err;
/* Get the MSIX vectors. */
if (qlge_irq_type == MSIX_IRQ) {
/* Try to alloc space for the msix struct,
* if it fails then go to MSI/legacy.
*/
qdev->msi_x_entry = kcalloc(qdev->intr_count,
sizeof(struct msix_entry),
GFP_KERNEL);
if (!qdev->msi_x_entry) {
qlge_irq_type = MSI_IRQ;
goto msi;
}
for (i = 0; i < qdev->intr_count; i++)
qdev->msi_x_entry[i].entry = i;
/* Loop to get our vectors. We start with
* what we want and settle for what we get.
*/
do {
err = pci_enable_msix(qdev->pdev,
qdev->msi_x_entry, qdev->intr_count);
if (err > 0)
qdev->intr_count = err;
} while (err > 0);
if (err < 0) {
kfree(qdev->msi_x_entry);
qdev->msi_x_entry = NULL;
netif_warn(qdev, ifup, qdev->ndev,
"MSI-X Enable failed, trying MSI.\n");
qdev->intr_count = 1;
qlge_irq_type = MSI_IRQ;
} else if (err == 0) {
set_bit(QL_MSIX_ENABLED, &qdev->flags);
netif_info(qdev, ifup, qdev->ndev,
"MSI-X Enabled, got %d vectors.\n",
qdev->intr_count);
return;
}
}
msi:
qdev->intr_count = 1;
if (qlge_irq_type == MSI_IRQ) {
if (!pci_enable_msi(qdev->pdev)) {
set_bit(QL_MSI_ENABLED, &qdev->flags);
netif_info(qdev, ifup, qdev->ndev,
"Running with MSI interrupts.\n");
return;
}
}
qlge_irq_type = LEG_IRQ;
netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
"Running with legacy interrupts.\n");
}
/* Each vector services 1 RSS ring and and 1 or more
* TX completion rings. This function loops through
* the TX completion rings and assigns the vector that
* will service it. An example would be if there are
* 2 vectors (so 2 RSS rings) and 8 TX completion rings.
* This would mean that vector 0 would service RSS ring 0
* and TX completion rings 0,1,2 and 3. Vector 1 would
* service RSS ring 1 and TX completion rings 4,5,6 and 7.
*/
static void ql_set_tx_vect(struct ql_adapter *qdev)
{
int i, j, vect;
u32 tx_rings_per_vector = qdev->tx_ring_count / qdev->intr_count;
if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags))) {
/* Assign irq vectors to TX rx_rings.*/
for (vect = 0, j = 0, i = qdev->rss_ring_count;
i < qdev->rx_ring_count; i++) {
if (j == tx_rings_per_vector) {
vect++;
j = 0;
}
qdev->rx_ring[i].irq = vect;
j++;
}
} else {
/* For single vector all rings have an irq
* of zero.
*/
for (i = 0; i < qdev->rx_ring_count; i++)
qdev->rx_ring[i].irq = 0;
}
}
/* Set the interrupt mask for this vector. Each vector
* will service 1 RSS ring and 1 or more TX completion
* rings. This function sets up a bit mask per vector
* that indicates which rings it services.
*/
static void ql_set_irq_mask(struct ql_adapter *qdev, struct intr_context *ctx)
{
int j, vect = ctx->intr;
u32 tx_rings_per_vector = qdev->tx_ring_count / qdev->intr_count;
if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags))) {
/* Add the RSS ring serviced by this vector
* to the mask.
*/
ctx->irq_mask = (1 << qdev->rx_ring[vect].cq_id);
/* Add the TX ring(s) serviced by this vector
* to the mask. */
for (j = 0; j < tx_rings_per_vector; j++) {
ctx->irq_mask |=
(1 << qdev->rx_ring[qdev->rss_ring_count +
(vect * tx_rings_per_vector) + j].cq_id);
}
} else {
/* For single vector we just shift each queue's
* ID into the mask.
*/
for (j = 0; j < qdev->rx_ring_count; j++)
ctx->irq_mask |= (1 << qdev->rx_ring[j].cq_id);
}
}
/*
* Here we build the intr_context structures based on
* our rx_ring count and intr vector count.
* The intr_context structure is used to hook each vector
* to possibly different handlers.
*/
static void ql_resolve_queues_to_irqs(struct ql_adapter *qdev)
{
int i = 0;
struct intr_context *intr_context = &qdev->intr_context[0];
if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags))) {
/* Each rx_ring has it's
* own intr_context since we have separate
* vectors for each queue.
*/
for (i = 0; i < qdev->intr_count; i++, intr_context++) {
qdev->rx_ring[i].irq = i;
intr_context->intr = i;
intr_context->qdev = qdev;
/* Set up this vector's bit-mask that indicates
* which queues it services.
*/
ql_set_irq_mask(qdev, intr_context);
/*
* We set up each vectors enable/disable/read bits so
* there's no bit/mask calculations in the critical path.
*/
intr_context->intr_en_mask =
INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
INTR_EN_TYPE_ENABLE | INTR_EN_IHD_MASK | INTR_EN_IHD
| i;
intr_context->intr_dis_mask =
INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
INTR_EN_TYPE_DISABLE | INTR_EN_IHD_MASK |
INTR_EN_IHD | i;
intr_context->intr_read_mask =
INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
INTR_EN_TYPE_READ | INTR_EN_IHD_MASK | INTR_EN_IHD |
i;
if (i == 0) {
/* The first vector/queue handles
* broadcast/multicast, fatal errors,
* and firmware events. This in addition
* to normal inbound NAPI processing.
*/
intr_context->handler = qlge_isr;
sprintf(intr_context->name, "%s-rx-%d",
qdev->ndev->name, i);
} else {
/*
* Inbound queues handle unicast frames only.
*/
intr_context->handler = qlge_msix_rx_isr;
sprintf(intr_context->name, "%s-rx-%d",
qdev->ndev->name, i);
}
}
} else {
/*
* All rx_rings use the same intr_context since
* there is only one vector.
*/
intr_context->intr = 0;
intr_context->qdev = qdev;
/*
* We set up each vectors enable/disable/read bits so
* there's no bit/mask calculations in the critical path.
*/
intr_context->intr_en_mask =
INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK | INTR_EN_TYPE_ENABLE;
intr_context->intr_dis_mask =
INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
INTR_EN_TYPE_DISABLE;
intr_context->intr_read_mask =
INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK | INTR_EN_TYPE_READ;
/*
* Single interrupt means one handler for all rings.
*/
intr_context->handler = qlge_isr;
sprintf(intr_context->name, "%s-single_irq", qdev->ndev->name);
/* Set up this vector's bit-mask that indicates
* which queues it services. In this case there is
* a single vector so it will service all RSS and
* TX completion rings.
*/
ql_set_irq_mask(qdev, intr_context);
}
/* Tell the TX completion rings which MSIx vector
* they will be using.
*/
ql_set_tx_vect(qdev);
}
static void ql_free_irq(struct ql_adapter *qdev)
{
int i;
struct intr_context *intr_context = &qdev->intr_context[0];
for (i = 0; i < qdev->intr_count; i++, intr_context++) {
if (intr_context->hooked) {
if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
free_irq(qdev->msi_x_entry[i].vector,
&qdev->rx_ring[i]);
} else {
free_irq(qdev->pdev->irq, &qdev->rx_ring[0]);
}
}
}
ql_disable_msix(qdev);
}
static int ql_request_irq(struct ql_adapter *qdev)
{
int i;
int status = 0;
struct pci_dev *pdev = qdev->pdev;
struct intr_context *intr_context = &qdev->intr_context[0];
ql_resolve_queues_to_irqs(qdev);
for (i = 0; i < qdev->intr_count; i++, intr_context++) {
atomic_set(&intr_context->irq_cnt, 0);
if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
status = request_irq(qdev->msi_x_entry[i].vector,
intr_context->handler,
0,
intr_context->name,
&qdev->rx_ring[i]);
if (status) {
netif_err(qdev, ifup, qdev->ndev,
"Failed request for MSIX interrupt %d.\n",
i);
goto err_irq;
}
} else {
netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
"trying msi or legacy interrupts.\n");
netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
"%s: irq = %d.\n", __func__, pdev->irq);
netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
"%s: context->name = %s.\n", __func__,
intr_context->name);
netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
"%s: dev_id = 0x%p.\n", __func__,
&qdev->rx_ring[0]);
status =
request_irq(pdev->irq, qlge_isr,
test_bit(QL_MSI_ENABLED,
&qdev->
flags) ? 0 : IRQF_SHARED,
intr_context->name, &qdev->rx_ring[0]);
if (status)
goto err_irq;
netif_err(qdev, ifup, qdev->ndev,
"Hooked intr %d, queue type %s, with name %s.\n",
i,
qdev->rx_ring[0].type == DEFAULT_Q ?
"DEFAULT_Q" :
qdev->rx_ring[0].type == TX_Q ? "TX_Q" :
qdev->rx_ring[0].type == RX_Q ? "RX_Q" : "",
intr_context->name);
}
intr_context->hooked = 1;
}
return status;
err_irq:
netif_err(qdev, ifup, qdev->ndev, "Failed to get the interrupts!!!/n");
ql_free_irq(qdev);
return status;
}
static int ql_start_rss(struct ql_adapter *qdev)
{
static const u8 init_hash_seed[] = {
0x6d, 0x5a, 0x56, 0xda, 0x25, 0x5b, 0x0e, 0xc2,
0x41, 0x67, 0x25, 0x3d, 0x43, 0xa3, 0x8f, 0xb0,
0xd0, 0xca, 0x2b, 0xcb, 0xae, 0x7b, 0x30, 0xb4,
0x77, 0xcb, 0x2d, 0xa3, 0x80, 0x30, 0xf2, 0x0c,
0x6a, 0x42, 0xb7, 0x3b, 0xbe, 0xac, 0x01, 0xfa
};
struct ricb *ricb = &qdev->ricb;
int status = 0;
int i;
u8 *hash_id = (u8 *) ricb->hash_cq_id;
memset((void *)ricb, 0, sizeof(*ricb));
ricb->base_cq = RSS_L4K;
ricb->flags =
(RSS_L6K | RSS_LI | RSS_LB | RSS_LM | RSS_RT4 | RSS_RT6);
ricb->mask = cpu_to_le16((u16)(0x3ff));
/*
* Fill out the Indirection Table.
*/
for (i = 0; i < 1024; i++)
hash_id[i] = (i & (qdev->rss_ring_count - 1));
memcpy((void *)&ricb->ipv6_hash_key[0], init_hash_seed, 40);
memcpy((void *)&ricb->ipv4_hash_key[0], init_hash_seed, 16);
status = ql_write_cfg(qdev, ricb, sizeof(*ricb), CFG_LR, 0);
if (status) {
netif_err(qdev, ifup, qdev->ndev, "Failed to load RICB.\n");
return status;
}
return status;
}
static int ql_clear_routing_entries(struct ql_adapter *qdev)
{
int i, status = 0;
status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
if (status)
return status;
/* Clear all the entries in the routing table. */
for (i = 0; i < 16; i++) {
status = ql_set_routing_reg(qdev, i, 0, 0);
if (status) {
netif_err(qdev, ifup, qdev->ndev,
"Failed to init routing register for CAM packets.\n");
break;
}
}
ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
return status;
}
/* Initialize the frame-to-queue routing. */
static int ql_route_initialize(struct ql_adapter *qdev)
{
int status = 0;
/* Clear all the entries in the routing table. */
status = ql_clear_routing_entries(qdev);
if (status)
return status;
status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
if (status)
return status;
status = ql_set_routing_reg(qdev, RT_IDX_IP_CSUM_ERR_SLOT,
RT_IDX_IP_CSUM_ERR, 1);
if (status) {
netif_err(qdev, ifup, qdev->ndev,
"Failed to init routing register "
"for IP CSUM error packets.\n");
goto exit;
}
status = ql_set_routing_reg(qdev, RT_IDX_TCP_UDP_CSUM_ERR_SLOT,
RT_IDX_TU_CSUM_ERR, 1);
if (status) {
netif_err(qdev, ifup, qdev->ndev,
"Failed to init routing register "
"for TCP/UDP CSUM error packets.\n");
goto exit;
}
status = ql_set_routing_reg(qdev, RT_IDX_BCAST_SLOT, RT_IDX_BCAST, 1);
if (status) {
netif_err(qdev, ifup, qdev->ndev,
"Failed to init routing register for broadcast packets.\n");
goto exit;
}
/* If we have more than one inbound queue, then turn on RSS in the
* routing block.
*/
if (qdev->rss_ring_count > 1) {
status = ql_set_routing_reg(qdev, RT_IDX_RSS_MATCH_SLOT,
RT_IDX_RSS_MATCH, 1);
if (status) {
netif_err(qdev, ifup, qdev->ndev,
"Failed to init routing register for MATCH RSS packets.\n");
goto exit;
}
}
status = ql_set_routing_reg(qdev, RT_IDX_CAM_HIT_SLOT,
RT_IDX_CAM_HIT, 1);
if (status)
netif_err(qdev, ifup, qdev->ndev,
"Failed to init routing register for CAM packets.\n");
exit:
ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
return status;
}
int ql_cam_route_initialize(struct ql_adapter *qdev)
{
int status, set;
/* If check if the link is up and use to
* determine if we are setting or clearing
* the MAC address in the CAM.
*/
set = ql_read32(qdev, STS);
set &= qdev->port_link_up;
status = ql_set_mac_addr(qdev, set);
if (status) {
netif_err(qdev, ifup, qdev->ndev, "Failed to init mac address.\n");
return status;
}
status = ql_route_initialize(qdev);
if (status)
netif_err(qdev, ifup, qdev->ndev, "Failed to init routing table.\n");
return status;
}
static int ql_adapter_initialize(struct ql_adapter *qdev)
{
u32 value, mask;
int i;
int status = 0;
/*
* Set up the System register to halt on errors.
*/
value = SYS_EFE | SYS_FAE;
mask = value << 16;
ql_write32(qdev, SYS, mask | value);
/* Set the default queue, and VLAN behavior. */
value = NIC_RCV_CFG_DFQ | NIC_RCV_CFG_RV;
mask = NIC_RCV_CFG_DFQ_MASK | (NIC_RCV_CFG_RV << 16);
ql_write32(qdev, NIC_RCV_CFG, (mask | value));
/* Set the MPI interrupt to enabled. */
ql_write32(qdev, INTR_MASK, (INTR_MASK_PI << 16) | INTR_MASK_PI);
/* Enable the function, set pagesize, enable error checking. */
value = FSC_FE | FSC_EPC_INBOUND | FSC_EPC_OUTBOUND |
FSC_EC | FSC_VM_PAGE_4K;
value |= SPLT_SETTING;
/* Set/clear header splitting. */
mask = FSC_VM_PAGESIZE_MASK |
FSC_DBL_MASK | FSC_DBRST_MASK | (value << 16);
ql_write32(qdev, FSC, mask | value);
ql_write32(qdev, SPLT_HDR, SPLT_LEN);
/* Set RX packet routing to use port/pci function on which the
* packet arrived on in addition to usual frame routing.
* This is helpful on bonding where both interfaces can have
* the same MAC address.
*/
ql_write32(qdev, RST_FO, RST_FO_RR_MASK | RST_FO_RR_RCV_FUNC_CQ);
/* Reroute all packets to our Interface.
* They may have been routed to MPI firmware
* due to WOL.
*/
value = ql_read32(qdev, MGMT_RCV_CFG);
value &= ~MGMT_RCV_CFG_RM;
mask = 0xffff0000;
/* Sticky reg needs clearing due to WOL. */
ql_write32(qdev, MGMT_RCV_CFG, mask);
ql_write32(qdev, MGMT_RCV_CFG, mask | value);
/* Default WOL is enable on Mezz cards */
if (qdev->pdev->subsystem_device == 0x0068 ||
qdev->pdev->subsystem_device == 0x0180)
qdev->wol = WAKE_MAGIC;
/* Start up the rx queues. */
for (i = 0; i < qdev->rx_ring_count; i++) {
status = ql_start_rx_ring(qdev, &qdev->rx_ring[i]);
if (status) {
netif_err(qdev, ifup, qdev->ndev,
"Failed to start rx ring[%d].\n", i);
return status;
}
}
/* If there is more than one inbound completion queue
* then download a RICB to configure RSS.
*/
if (qdev->rss_ring_count > 1) {
status = ql_start_rss(qdev);
if (status) {
netif_err(qdev, ifup, qdev->ndev, "Failed to start RSS.\n");
return status;
}
}
/* Start up the tx queues. */
for (i = 0; i < qdev->tx_ring_count; i++) {
status = ql_start_tx_ring(qdev, &qdev->tx_ring[i]);
if (status) {
netif_err(qdev, ifup, qdev->ndev,
"Failed to start tx ring[%d].\n", i);
return status;
}
}
/* Initialize the port and set the max framesize. */
status = qdev->nic_ops->port_initialize(qdev);
if (status)
netif_err(qdev, ifup, qdev->ndev, "Failed to start port.\n");
/* Set up the MAC address and frame routing filter. */
status = ql_cam_route_initialize(qdev);
if (status) {
netif_err(qdev, ifup, qdev->ndev,
"Failed to init CAM/Routing tables.\n");
return status;
}
/* Start NAPI for the RSS queues. */
for (i = 0; i < qdev->rss_ring_count; i++)
napi_enable(&qdev->rx_ring[i].napi);
return status;
}
/* Issue soft reset to chip. */
static int ql_adapter_reset(struct ql_adapter *qdev)
{
u32 value;
int status = 0;
unsigned long end_jiffies;
/* Clear all the entries in the routing table. */
status = ql_clear_routing_entries(qdev);
if (status) {
netif_err(qdev, ifup, qdev->ndev, "Failed to clear routing bits.\n");
return status;
}
end_jiffies = jiffies +
max((unsigned long)1, usecs_to_jiffies(30));
/* Check if bit is set then skip the mailbox command and
* clear the bit, else we are in normal reset process.
*/
if (!test_bit(QL_ASIC_RECOVERY, &qdev->flags)) {
/* Stop management traffic. */
ql_mb_set_mgmnt_traffic_ctl(qdev, MB_SET_MPI_TFK_STOP);
/* Wait for the NIC and MGMNT FIFOs to empty. */
ql_wait_fifo_empty(qdev);
} else
clear_bit(QL_ASIC_RECOVERY, &qdev->flags);
ql_write32(qdev, RST_FO, (RST_FO_FR << 16) | RST_FO_FR);
do {
value = ql_read32(qdev, RST_FO);
if ((value & RST_FO_FR) == 0)
break;
cpu_relax();
} while (time_before(jiffies, end_jiffies));
if (value & RST_FO_FR) {
netif_err(qdev, ifdown, qdev->ndev,
"ETIMEDOUT!!! errored out of resetting the chip!\n");
status = -ETIMEDOUT;
}
/* Resume management traffic. */
ql_mb_set_mgmnt_traffic_ctl(qdev, MB_SET_MPI_TFK_RESUME);
return status;
}
static void ql_display_dev_info(struct net_device *ndev)
{
struct ql_adapter *qdev = netdev_priv(ndev);
netif_info(qdev, probe, qdev->ndev,
"Function #%d, Port %d, NIC Roll %d, NIC Rev = %d, "
"XG Roll = %d, XG Rev = %d.\n",
qdev->func,
qdev->port,
qdev->chip_rev_id & 0x0000000f,
qdev->chip_rev_id >> 4 & 0x0000000f,
qdev->chip_rev_id >> 8 & 0x0000000f,
qdev->chip_rev_id >> 12 & 0x0000000f);
netif_info(qdev, probe, qdev->ndev,
"MAC address %pM\n", ndev->dev_addr);
}
static int ql_wol(struct ql_adapter *qdev)
{
int status = 0;
u32 wol = MB_WOL_DISABLE;
/* The CAM is still intact after a reset, but if we
* are doing WOL, then we may need to program the
* routing regs. We would also need to issue the mailbox
* commands to instruct the MPI what to do per the ethtool
* settings.
*/
if (qdev->wol & (WAKE_ARP | WAKE_MAGICSECURE | WAKE_PHY | WAKE_UCAST |
WAKE_MCAST | WAKE_BCAST)) {
netif_err(qdev, ifdown, qdev->ndev,
"Unsupported WOL parameter. qdev->wol = 0x%x.\n",
qdev->wol);
return -EINVAL;
}
if (qdev->wol & WAKE_MAGIC) {
status = ql_mb_wol_set_magic(qdev, 1);
if (status) {
netif_err(qdev, ifdown, qdev->ndev,
"Failed to set magic packet on %s.\n",
qdev->ndev->name);
return status;
} else
netif_info(qdev, drv, qdev->ndev,
"Enabled magic packet successfully on %s.\n",
qdev->ndev->name);
wol |= MB_WOL_MAGIC_PKT;
}
if (qdev->wol) {
wol |= MB_WOL_MODE_ON;
status = ql_mb_wol_mode(qdev, wol);
netif_err(qdev, drv, qdev->ndev,
"WOL %s (wol code 0x%x) on %s\n",
(status == 0) ? "Successfully set" : "Failed",
wol, qdev->ndev->name);
}
return status;
}
qlge: Fix a deadlock when the interface is going down Currently qlge can deadlock when the interface is going down, and the mpi_port_cfg_work() is executing on another processor. It happens because unregister_netdev() holds the rtnl lock, and the mpi_port_cfg_work() also request this lock. Since unregiter_netdev() may wait mpi_port_cfg_work(), who also request the holding lock, it can cause an deadlock, displaying the following error: "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. rmmod D 00000080c6c1d190 0 3993 2081 0x00008080 Call Trace: [c000000975f56ee0] [c0000000000152a0] .__switch_to+0x100/0x1d0 [c000000975f56f70] [c0000000005781b4] .schedule+0x3a4/0x8c0 [c000000975f570c0] [c000000000578e8c] .schedule_timeout+0x24c/0x350 [c000000975f571e0] [c000000000578a88] .wait_for_common+0x198/0x210 [c000000975f572c0] [c0000000000abbb4] .__cancel_work_timer+0x2c4/0x2e0 [c000000975f57400] [d0000000078e7a20] .ql_adapter_down+0x80/0x260 [qlge] [c000000975f574b0] [d0000000078e7d80] .qlge_close+0x70/0x130 [qlge] [c000000975f57540] [c000000000497ef8] .__dev_close+0x98/0xf0 [c000000975f575d0] [c000000000497f74] .dev_close+0x24/0x60 [c000000975f57650] [c000000000498080] .rollback_registered_many+0xd0/0x2b0 [c000000975f576f0] [c000000000498338] .rollback_registered+0x38/0x50 [c000000975f57780] [c0000000004983d8] .unregister_netdevice_queue+0x88/0xe0 [c000000975f57810] [c000000000498574] .unregister_netdev+0x24/0x40 [c000000975f57890] [d0000000078f6f38] .qlge_remove+0x3c/0x78 [qlge] [c000000975f57920] [c0000000002d9298] .pci_device_remove+0x48/0x90 [c000000975f579a0] [c000000000372850] .__device_release_driver+0xa0/0x130 [c000000975f57a30] [c000000000372a08] .driver_detach+0x128/0x150 [c000000975f57ad0] [c000000000371134] .bus_remove_driver+0xc4/0x1a0 [c000000975f57b70] [c00000000037357c] .driver_unregister+0x8c/0xd0 [c000000975f57c00] [c0000000002d968c] .pci_unregister_driver+0x5c/0x110 [c000000975f57ca0] [d0000000078f6ee4] .qlge_exit+0x1c/0x34 [qlge] Signed-off-by: Breno Leitao <leitao@linux.vnet.ibm.com> Signed-off-by: Ron Mercer <ron.mercer@qlogic.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2010-08-24 12:50:40 +00:00
static void ql_cancel_all_work_sync(struct ql_adapter *qdev)
{
/* Don't kill the reset worker thread if we
* are in the process of recovery.
*/
if (test_bit(QL_ADAPTER_UP, &qdev->flags))
cancel_delayed_work_sync(&qdev->asic_reset_work);
cancel_delayed_work_sync(&qdev->mpi_reset_work);
cancel_delayed_work_sync(&qdev->mpi_work);
cancel_delayed_work_sync(&qdev->mpi_idc_work);
cancel_delayed_work_sync(&qdev->mpi_core_to_log);
cancel_delayed_work_sync(&qdev->mpi_port_cfg_work);
qlge: Fix a deadlock when the interface is going down Currently qlge can deadlock when the interface is going down, and the mpi_port_cfg_work() is executing on another processor. It happens because unregister_netdev() holds the rtnl lock, and the mpi_port_cfg_work() also request this lock. Since unregiter_netdev() may wait mpi_port_cfg_work(), who also request the holding lock, it can cause an deadlock, displaying the following error: "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. rmmod D 00000080c6c1d190 0 3993 2081 0x00008080 Call Trace: [c000000975f56ee0] [c0000000000152a0] .__switch_to+0x100/0x1d0 [c000000975f56f70] [c0000000005781b4] .schedule+0x3a4/0x8c0 [c000000975f570c0] [c000000000578e8c] .schedule_timeout+0x24c/0x350 [c000000975f571e0] [c000000000578a88] .wait_for_common+0x198/0x210 [c000000975f572c0] [c0000000000abbb4] .__cancel_work_timer+0x2c4/0x2e0 [c000000975f57400] [d0000000078e7a20] .ql_adapter_down+0x80/0x260 [qlge] [c000000975f574b0] [d0000000078e7d80] .qlge_close+0x70/0x130 [qlge] [c000000975f57540] [c000000000497ef8] .__dev_close+0x98/0xf0 [c000000975f575d0] [c000000000497f74] .dev_close+0x24/0x60 [c000000975f57650] [c000000000498080] .rollback_registered_many+0xd0/0x2b0 [c000000975f576f0] [c000000000498338] .rollback_registered+0x38/0x50 [c000000975f57780] [c0000000004983d8] .unregister_netdevice_queue+0x88/0xe0 [c000000975f57810] [c000000000498574] .unregister_netdev+0x24/0x40 [c000000975f57890] [d0000000078f6f38] .qlge_remove+0x3c/0x78 [qlge] [c000000975f57920] [c0000000002d9298] .pci_device_remove+0x48/0x90 [c000000975f579a0] [c000000000372850] .__device_release_driver+0xa0/0x130 [c000000975f57a30] [c000000000372a08] .driver_detach+0x128/0x150 [c000000975f57ad0] [c000000000371134] .bus_remove_driver+0xc4/0x1a0 [c000000975f57b70] [c00000000037357c] .driver_unregister+0x8c/0xd0 [c000000975f57c00] [c0000000002d968c] .pci_unregister_driver+0x5c/0x110 [c000000975f57ca0] [d0000000078f6ee4] .qlge_exit+0x1c/0x34 [qlge] Signed-off-by: Breno Leitao <leitao@linux.vnet.ibm.com> Signed-off-by: Ron Mercer <ron.mercer@qlogic.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2010-08-24 12:50:40 +00:00
}
static int ql_adapter_down(struct ql_adapter *qdev)
{
int i, status = 0;
ql_link_off(qdev);
ql_cancel_all_work_sync(qdev);
for (i = 0; i < qdev->rss_ring_count; i++)
napi_disable(&qdev->rx_ring[i].napi);
clear_bit(QL_ADAPTER_UP, &qdev->flags);
ql_disable_interrupts(qdev);
ql_tx_ring_clean(qdev);
/* Call netif_napi_del() from common point.
*/
for (i = 0; i < qdev->rss_ring_count; i++)
netif_napi_del(&qdev->rx_ring[i].napi);
status = ql_adapter_reset(qdev);
if (status)
netif_err(qdev, ifdown, qdev->ndev, "reset(func #%d) FAILED!\n",
qdev->func);
ql_free_rx_buffers(qdev);
return status;
}
static int ql_adapter_up(struct ql_adapter *qdev)
{
int err = 0;
err = ql_adapter_initialize(qdev);
if (err) {
netif_info(qdev, ifup, qdev->ndev, "Unable to initialize adapter.\n");
goto err_init;
}
set_bit(QL_ADAPTER_UP, &qdev->flags);
ql_alloc_rx_buffers(qdev);
/* If the port is initialized and the
* link is up the turn on the carrier.
*/
if ((ql_read32(qdev, STS) & qdev->port_init) &&
(ql_read32(qdev, STS) & qdev->port_link_up))
ql_link_on(qdev);
/* Restore rx mode. */
clear_bit(QL_ALLMULTI, &qdev->flags);
clear_bit(QL_PROMISCUOUS, &qdev->flags);
qlge_set_multicast_list(qdev->ndev);
/* Restore vlan setting. */
qlge_restore_vlan(qdev);
ql_enable_interrupts(qdev);
ql_enable_all_completion_interrupts(qdev);
netif_tx_start_all_queues(qdev->ndev);
return 0;
err_init:
ql_adapter_reset(qdev);
return err;
}
static void ql_release_adapter_resources(struct ql_adapter *qdev)
{
ql_free_mem_resources(qdev);
ql_free_irq(qdev);
}
static int ql_get_adapter_resources(struct ql_adapter *qdev)
{
int status = 0;
if (ql_alloc_mem_resources(qdev)) {
netif_err(qdev, ifup, qdev->ndev, "Unable to allocate memory.\n");
return -ENOMEM;
}
status = ql_request_irq(qdev);
return status;
}
static int qlge_close(struct net_device *ndev)
{
struct ql_adapter *qdev = netdev_priv(ndev);
/* If we hit pci_channel_io_perm_failure
* failure condition, then we already
* brought the adapter down.
*/
if (test_bit(QL_EEH_FATAL, &qdev->flags)) {
netif_err(qdev, drv, qdev->ndev, "EEH fatal did unload.\n");
clear_bit(QL_EEH_FATAL, &qdev->flags);
return 0;
}
/*
* Wait for device to recover from a reset.
* (Rarely happens, but possible.)
*/
while (!test_bit(QL_ADAPTER_UP, &qdev->flags))
msleep(1);
ql_adapter_down(qdev);
ql_release_adapter_resources(qdev);
return 0;
}
static int ql_configure_rings(struct ql_adapter *qdev)
{
int i;
struct rx_ring *rx_ring;
struct tx_ring *tx_ring;
int cpu_cnt = min(MAX_CPUS, (int)num_online_cpus());
unsigned int lbq_buf_len = (qdev->ndev->mtu > 1500) ?
LARGE_BUFFER_MAX_SIZE : LARGE_BUFFER_MIN_SIZE;
qdev->lbq_buf_order = get_order(lbq_buf_len);
/* In a perfect world we have one RSS ring for each CPU
* and each has it's own vector. To do that we ask for
* cpu_cnt vectors. ql_enable_msix() will adjust the
* vector count to what we actually get. We then
* allocate an RSS ring for each.
* Essentially, we are doing min(cpu_count, msix_vector_count).
*/
qdev->intr_count = cpu_cnt;
ql_enable_msix(qdev);
/* Adjust the RSS ring count to the actual vector count. */
qdev->rss_ring_count = qdev->intr_count;
qdev->tx_ring_count = cpu_cnt;
qdev->rx_ring_count = qdev->tx_ring_count + qdev->rss_ring_count;
for (i = 0; i < qdev->tx_ring_count; i++) {
tx_ring = &qdev->tx_ring[i];
memset((void *)tx_ring, 0, sizeof(*tx_ring));
tx_ring->qdev = qdev;
tx_ring->wq_id = i;
tx_ring->wq_len = qdev->tx_ring_size;
tx_ring->wq_size =
tx_ring->wq_len * sizeof(struct ob_mac_iocb_req);
/*
* The completion queue ID for the tx rings start
* immediately after the rss rings.
*/
tx_ring->cq_id = qdev->rss_ring_count + i;
}
for (i = 0; i < qdev->rx_ring_count; i++) {
rx_ring = &qdev->rx_ring[i];
memset((void *)rx_ring, 0, sizeof(*rx_ring));
rx_ring->qdev = qdev;
rx_ring->cq_id = i;
rx_ring->cpu = i % cpu_cnt; /* CPU to run handler on. */
if (i < qdev->rss_ring_count) {
/*
* Inbound (RSS) queues.
*/
rx_ring->cq_len = qdev->rx_ring_size;
rx_ring->cq_size =
rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
rx_ring->lbq_len = NUM_LARGE_BUFFERS;
rx_ring->lbq_size =
qlge: Fix sparse warning regarding rx buffer queues. Warnings: drivers/net/qlge/qlge_main.c:909:17: warning: incorrect type in assignment (different base types) drivers/net/qlge/qlge_main.c:909:17: expected unsigned int [unsigned] [usertype] addr_lo drivers/net/qlge/qlge_main.c:909:17: got restricted unsigned int [usertype] <noident> drivers/net/qlge/qlge_main.c:911:17: warning: incorrect type in assignment (different base types) drivers/net/qlge/qlge_main.c:911:17: expected unsigned int [unsigned] [usertype] addr_hi drivers/net/qlge/qlge_main.c:911:17: got restricted unsigned int [usertype] <noident> drivers/net/qlge/qlge_main.c:974:17: warning: incorrect type in assignment (different base types) drivers/net/qlge/qlge_main.c:974:17: expected unsigned int [unsigned] [usertype] addr_lo drivers/net/qlge/qlge_main.c:974:17: got restricted unsigned int [usertype] <noident> drivers/net/qlge/qlge_main.c:975:17: warning: incorrect type in assignment (different base types) drivers/net/qlge/qlge_main.c:975:17: expected unsigned int [unsigned] [usertype] addr_hi drivers/net/qlge/qlge_main.c:975:17: got restricted unsigned int [usertype] <noident> drivers/net/qlge/qlge_main.c:2132:16: warning: incorrect type in assignment (different base types) drivers/net/qlge/qlge_main.c:2132:16: expected unsigned int [unsigned] [usertype] addr_lo drivers/net/qlge/qlge_main.c:2132:16: got restricted unsigned int [usertype] <noident> drivers/net/qlge/qlge_main.c:2133:16: warning: incorrect type in assignment (different base types) drivers/net/qlge/qlge_main.c:2133:16: expected unsigned int [unsigned] [usertype] addr_hi drivers/net/qlge/qlge_main.c:2133:16: got restricted unsigned int [usertype] <noident> drivers/net/qlge/qlge_main.c:2212:15: warning: incorrect type in assignment (different base types) drivers/net/qlge/qlge_main.c:2212:15: expected unsigned int [unsigned] [usertype] addr_lo drivers/net/qlge/qlge_main.c:2212:15: got restricted unsigned int [usertype] <noident> drivers/net/qlge/qlge_main.c:2214:15: warning: incorrect type in assignment (different base types) drivers/net/qlge/qlge_main.c:2214:15: expected unsigned int [unsigned] [usertype] addr_hi drivers/net/qlge/qlge_main.c:2214:15: got restricted unsigned int [usertype] <noident> Signed-off-by: Ron Mercer <ron.mercer@qlogic.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2009-01-06 02:19:20 +00:00
rx_ring->lbq_len * sizeof(__le64);
rx_ring->lbq_buf_size = (u16)lbq_buf_len;
rx_ring->sbq_len = NUM_SMALL_BUFFERS;
rx_ring->sbq_size =
qlge: Fix sparse warning regarding rx buffer queues. Warnings: drivers/net/qlge/qlge_main.c:909:17: warning: incorrect type in assignment (different base types) drivers/net/qlge/qlge_main.c:909:17: expected unsigned int [unsigned] [usertype] addr_lo drivers/net/qlge/qlge_main.c:909:17: got restricted unsigned int [usertype] <noident> drivers/net/qlge/qlge_main.c:911:17: warning: incorrect type in assignment (different base types) drivers/net/qlge/qlge_main.c:911:17: expected unsigned int [unsigned] [usertype] addr_hi drivers/net/qlge/qlge_main.c:911:17: got restricted unsigned int [usertype] <noident> drivers/net/qlge/qlge_main.c:974:17: warning: incorrect type in assignment (different base types) drivers/net/qlge/qlge_main.c:974:17: expected unsigned int [unsigned] [usertype] addr_lo drivers/net/qlge/qlge_main.c:974:17: got restricted unsigned int [usertype] <noident> drivers/net/qlge/qlge_main.c:975:17: warning: incorrect type in assignment (different base types) drivers/net/qlge/qlge_main.c:975:17: expected unsigned int [unsigned] [usertype] addr_hi drivers/net/qlge/qlge_main.c:975:17: got restricted unsigned int [usertype] <noident> drivers/net/qlge/qlge_main.c:2132:16: warning: incorrect type in assignment (different base types) drivers/net/qlge/qlge_main.c:2132:16: expected unsigned int [unsigned] [usertype] addr_lo drivers/net/qlge/qlge_main.c:2132:16: got restricted unsigned int [usertype] <noident> drivers/net/qlge/qlge_main.c:2133:16: warning: incorrect type in assignment (different base types) drivers/net/qlge/qlge_main.c:2133:16: expected unsigned int [unsigned] [usertype] addr_hi drivers/net/qlge/qlge_main.c:2133:16: got restricted unsigned int [usertype] <noident> drivers/net/qlge/qlge_main.c:2212:15: warning: incorrect type in assignment (different base types) drivers/net/qlge/qlge_main.c:2212:15: expected unsigned int [unsigned] [usertype] addr_lo drivers/net/qlge/qlge_main.c:2212:15: got restricted unsigned int [usertype] <noident> drivers/net/qlge/qlge_main.c:2214:15: warning: incorrect type in assignment (different base types) drivers/net/qlge/qlge_main.c:2214:15: expected unsigned int [unsigned] [usertype] addr_hi drivers/net/qlge/qlge_main.c:2214:15: got restricted unsigned int [usertype] <noident> Signed-off-by: Ron Mercer <ron.mercer@qlogic.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2009-01-06 02:19:20 +00:00
rx_ring->sbq_len * sizeof(__le64);
rx_ring->sbq_buf_size = SMALL_BUF_MAP_SIZE;
rx_ring->type = RX_Q;
} else {
/*
* Outbound queue handles outbound completions only.
*/
/* outbound cq is same size as tx_ring it services. */
rx_ring->cq_len = qdev->tx_ring_size;
rx_ring->cq_size =
rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
rx_ring->lbq_len = 0;
rx_ring->lbq_size = 0;
rx_ring->lbq_buf_size = 0;
rx_ring->sbq_len = 0;
rx_ring->sbq_size = 0;
rx_ring->sbq_buf_size = 0;
rx_ring->type = TX_Q;
}
}
return 0;
}
static int qlge_open(struct net_device *ndev)
{
int err = 0;
struct ql_adapter *qdev = netdev_priv(ndev);
err = ql_adapter_reset(qdev);
if (err)
return err;
err = ql_configure_rings(qdev);
if (err)
return err;
err = ql_get_adapter_resources(qdev);
if (err)
goto error_up;
err = ql_adapter_up(qdev);
if (err)
goto error_up;
return err;
error_up:
ql_release_adapter_resources(qdev);
return err;
}
static int ql_change_rx_buffers(struct ql_adapter *qdev)
{
struct rx_ring *rx_ring;
int i, status;
u32 lbq_buf_len;
/* Wait for an outstanding reset to complete. */
if (!test_bit(QL_ADAPTER_UP, &qdev->flags)) {
int i = 3;
while (i-- && !test_bit(QL_ADAPTER_UP, &qdev->flags)) {
netif_err(qdev, ifup, qdev->ndev,
"Waiting for adapter UP...\n");
ssleep(1);
}
if (!i) {
netif_err(qdev, ifup, qdev->ndev,
"Timed out waiting for adapter UP\n");
return -ETIMEDOUT;
}
}
status = ql_adapter_down(qdev);
if (status)
goto error;
/* Get the new rx buffer size. */
lbq_buf_len = (qdev->ndev->mtu > 1500) ?
LARGE_BUFFER_MAX_SIZE : LARGE_BUFFER_MIN_SIZE;
qdev->lbq_buf_order = get_order(lbq_buf_len);
for (i = 0; i < qdev->rss_ring_count; i++) {
rx_ring = &qdev->rx_ring[i];
/* Set the new size. */
rx_ring->lbq_buf_size = lbq_buf_len;
}
status = ql_adapter_up(qdev);
if (status)
goto error;
return status;
error:
netif_alert(qdev, ifup, qdev->ndev,
"Driver up/down cycle failed, closing device.\n");
set_bit(QL_ADAPTER_UP, &qdev->flags);
dev_close(qdev->ndev);
return status;
}
static int qlge_change_mtu(struct net_device *ndev, int new_mtu)
{
struct ql_adapter *qdev = netdev_priv(ndev);
int status;
if (ndev->mtu == 1500 && new_mtu == 9000) {
netif_err(qdev, ifup, qdev->ndev, "Changing to jumbo MTU.\n");
} else if (ndev->mtu == 9000 && new_mtu == 1500) {
netif_err(qdev, ifup, qdev->ndev, "Changing to normal MTU.\n");
} else
return -EINVAL;
queue_delayed_work(qdev->workqueue,
&qdev->mpi_port_cfg_work, 3*HZ);
ndev->mtu = new_mtu;
if (!netif_running(qdev->ndev)) {
return 0;
}
status = ql_change_rx_buffers(qdev);
if (status) {
netif_err(qdev, ifup, qdev->ndev,
"Changing MTU failed.\n");
}
return status;
}
static struct net_device_stats *qlge_get_stats(struct net_device
*ndev)
{
struct ql_adapter *qdev = netdev_priv(ndev);
struct rx_ring *rx_ring = &qdev->rx_ring[0];
struct tx_ring *tx_ring = &qdev->tx_ring[0];
unsigned long pkts, mcast, dropped, errors, bytes;
int i;
/* Get RX stats. */
pkts = mcast = dropped = errors = bytes = 0;
for (i = 0; i < qdev->rss_ring_count; i++, rx_ring++) {
pkts += rx_ring->rx_packets;
bytes += rx_ring->rx_bytes;
dropped += rx_ring->rx_dropped;
errors += rx_ring->rx_errors;
mcast += rx_ring->rx_multicast;
}
ndev->stats.rx_packets = pkts;
ndev->stats.rx_bytes = bytes;
ndev->stats.rx_dropped = dropped;
ndev->stats.rx_errors = errors;
ndev->stats.multicast = mcast;
/* Get TX stats. */
pkts = errors = bytes = 0;
for (i = 0; i < qdev->tx_ring_count; i++, tx_ring++) {
pkts += tx_ring->tx_packets;
bytes += tx_ring->tx_bytes;
errors += tx_ring->tx_errors;
}
ndev->stats.tx_packets = pkts;
ndev->stats.tx_bytes = bytes;
ndev->stats.tx_errors = errors;
return &ndev->stats;
}
static void qlge_set_multicast_list(struct net_device *ndev)
{
struct ql_adapter *qdev = netdev_priv(ndev);
struct netdev_hw_addr *ha;
int i, status;
status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
if (status)
return;
/*
* Set or clear promiscuous mode if a
* transition is taking place.
*/
if (ndev->flags & IFF_PROMISC) {
if (!test_bit(QL_PROMISCUOUS, &qdev->flags)) {
if (ql_set_routing_reg
(qdev, RT_IDX_PROMISCUOUS_SLOT, RT_IDX_VALID, 1)) {
netif_err(qdev, hw, qdev->ndev,
"Failed to set promiscuous mode.\n");
} else {
set_bit(QL_PROMISCUOUS, &qdev->flags);
}
}
} else {
if (test_bit(QL_PROMISCUOUS, &qdev->flags)) {
if (ql_set_routing_reg
(qdev, RT_IDX_PROMISCUOUS_SLOT, RT_IDX_VALID, 0)) {
netif_err(qdev, hw, qdev->ndev,
"Failed to clear promiscuous mode.\n");
} else {
clear_bit(QL_PROMISCUOUS, &qdev->flags);
}
}
}
/*
* Set or clear all multicast mode if a
* transition is taking place.
*/
if ((ndev->flags & IFF_ALLMULTI) ||
(netdev_mc_count(ndev) > MAX_MULTICAST_ENTRIES)) {
if (!test_bit(QL_ALLMULTI, &qdev->flags)) {
if (ql_set_routing_reg
(qdev, RT_IDX_ALLMULTI_SLOT, RT_IDX_MCAST, 1)) {
netif_err(qdev, hw, qdev->ndev,
"Failed to set all-multi mode.\n");
} else {
set_bit(QL_ALLMULTI, &qdev->flags);
}
}
} else {
if (test_bit(QL_ALLMULTI, &qdev->flags)) {
if (ql_set_routing_reg
(qdev, RT_IDX_ALLMULTI_SLOT, RT_IDX_MCAST, 0)) {
netif_err(qdev, hw, qdev->ndev,
"Failed to clear all-multi mode.\n");
} else {
clear_bit(QL_ALLMULTI, &qdev->flags);
}
}
}
if (!netdev_mc_empty(ndev)) {
status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
if (status)
goto exit;
i = 0;
netdev_for_each_mc_addr(ha, ndev) {
if (ql_set_mac_addr_reg(qdev, (u8 *) ha->addr,
MAC_ADDR_TYPE_MULTI_MAC, i)) {
netif_err(qdev, hw, qdev->ndev,
"Failed to loadmulticast address.\n");
ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
goto exit;
}
i++;
}
ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
if (ql_set_routing_reg
(qdev, RT_IDX_MCAST_MATCH_SLOT, RT_IDX_MCAST_MATCH, 1)) {
netif_err(qdev, hw, qdev->ndev,
"Failed to set multicast match mode.\n");
} else {
set_bit(QL_ALLMULTI, &qdev->flags);
}
}
exit:
ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
}
static int qlge_set_mac_address(struct net_device *ndev, void *p)
{
struct ql_adapter *qdev = netdev_priv(ndev);
struct sockaddr *addr = p;
int status;
if (!is_valid_ether_addr(addr->sa_data))
return -EADDRNOTAVAIL;
memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
/* Update local copy of current mac address. */
memcpy(qdev->current_mac_addr, ndev->dev_addr, ndev->addr_len);
status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
if (status)
return status;
status = ql_set_mac_addr_reg(qdev, (u8 *) ndev->dev_addr,
MAC_ADDR_TYPE_CAM_MAC, qdev->func * MAX_CQ);
if (status)
netif_err(qdev, hw, qdev->ndev, "Failed to load MAC address.\n");
ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
return status;
}
static void qlge_tx_timeout(struct net_device *ndev)
{
struct ql_adapter *qdev = netdev_priv(ndev);
ql_queue_asic_error(qdev);
}
static void ql_asic_reset_work(struct work_struct *work)
{
struct ql_adapter *qdev =
container_of(work, struct ql_adapter, asic_reset_work.work);
int status;
rtnl_lock();
status = ql_adapter_down(qdev);
if (status)
goto error;
status = ql_adapter_up(qdev);
if (status)
goto error;
/* Restore rx mode. */
clear_bit(QL_ALLMULTI, &qdev->flags);
clear_bit(QL_PROMISCUOUS, &qdev->flags);
qlge_set_multicast_list(qdev->ndev);
rtnl_unlock();
return;
error:
netif_alert(qdev, ifup, qdev->ndev,
"Driver up/down cycle failed, closing device\n");
set_bit(QL_ADAPTER_UP, &qdev->flags);
dev_close(qdev->ndev);
rtnl_unlock();
}
static const struct nic_operations qla8012_nic_ops = {
.get_flash = ql_get_8012_flash_params,
.port_initialize = ql_8012_port_initialize,
};
static const struct nic_operations qla8000_nic_ops = {
.get_flash = ql_get_8000_flash_params,
.port_initialize = ql_8000_port_initialize,
};
/* Find the pcie function number for the other NIC
* on this chip. Since both NIC functions share a
* common firmware we have the lowest enabled function
* do any common work. Examples would be resetting
* after a fatal firmware error, or doing a firmware
* coredump.
*/
static int ql_get_alt_pcie_func(struct ql_adapter *qdev)
{
int status = 0;
u32 temp;
u32 nic_func1, nic_func2;
status = ql_read_mpi_reg(qdev, MPI_TEST_FUNC_PORT_CFG,
&temp);
if (status)
return status;
nic_func1 = ((temp >> MPI_TEST_NIC1_FUNC_SHIFT) &
MPI_TEST_NIC_FUNC_MASK);
nic_func2 = ((temp >> MPI_TEST_NIC2_FUNC_SHIFT) &
MPI_TEST_NIC_FUNC_MASK);
if (qdev->func == nic_func1)
qdev->alt_func = nic_func2;
else if (qdev->func == nic_func2)
qdev->alt_func = nic_func1;
else
status = -EIO;
return status;
}
static int ql_get_board_info(struct ql_adapter *qdev)
{
int status;
qdev->func =
(ql_read32(qdev, STS) & STS_FUNC_ID_MASK) >> STS_FUNC_ID_SHIFT;
if (qdev->func > 3)
return -EIO;
status = ql_get_alt_pcie_func(qdev);
if (status)
return status;
qdev->port = (qdev->func < qdev->alt_func) ? 0 : 1;
if (qdev->port) {
qdev->xg_sem_mask = SEM_XGMAC1_MASK;
qdev->port_link_up = STS_PL1;
qdev->port_init = STS_PI1;
qdev->mailbox_in = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC2_MBI;
qdev->mailbox_out = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC2_MBO;
} else {
qdev->xg_sem_mask = SEM_XGMAC0_MASK;
qdev->port_link_up = STS_PL0;
qdev->port_init = STS_PI0;
qdev->mailbox_in = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC0_MBI;
qdev->mailbox_out = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC0_MBO;
}
qdev->chip_rev_id = ql_read32(qdev, REV_ID);
qdev->device_id = qdev->pdev->device;
if (qdev->device_id == QLGE_DEVICE_ID_8012)
qdev->nic_ops = &qla8012_nic_ops;
else if (qdev->device_id == QLGE_DEVICE_ID_8000)
qdev->nic_ops = &qla8000_nic_ops;
return status;
}
static void ql_release_all(struct pci_dev *pdev)
{
struct net_device *ndev = pci_get_drvdata(pdev);
struct ql_adapter *qdev = netdev_priv(ndev);
if (qdev->workqueue) {
destroy_workqueue(qdev->workqueue);
qdev->workqueue = NULL;
}
if (qdev->reg_base)
iounmap(qdev->reg_base);
if (qdev->doorbell_area)
iounmap(qdev->doorbell_area);
vfree(qdev->mpi_coredump);
pci_release_regions(pdev);
pci_set_drvdata(pdev, NULL);
}
static int ql_init_device(struct pci_dev *pdev, struct net_device *ndev,
int cards_found)
{
struct ql_adapter *qdev = netdev_priv(ndev);
int err = 0;
memset((void *)qdev, 0, sizeof(*qdev));
err = pci_enable_device(pdev);
if (err) {
dev_err(&pdev->dev, "PCI device enable failed.\n");
return err;
}
qdev->ndev = ndev;
qdev->pdev = pdev;
pci_set_drvdata(pdev, ndev);
/* Set PCIe read request size */
err = pcie_set_readrq(pdev, 4096);
if (err) {
dev_err(&pdev->dev, "Set readrq failed.\n");
goto err_out1;
}
err = pci_request_regions(pdev, DRV_NAME);
if (err) {
dev_err(&pdev->dev, "PCI region request failed.\n");
return err;
}
pci_set_master(pdev);
if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
set_bit(QL_DMA64, &qdev->flags);
err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
} else {
err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
if (!err)
err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
}
if (err) {
dev_err(&pdev->dev, "No usable DMA configuration.\n");
goto err_out2;
}
/* Set PCIe reset type for EEH to fundamental. */
pdev->needs_freset = 1;
pci_save_state(pdev);
qdev->reg_base =
ioremap_nocache(pci_resource_start(pdev, 1),
pci_resource_len(pdev, 1));
if (!qdev->reg_base) {
dev_err(&pdev->dev, "Register mapping failed.\n");
err = -ENOMEM;
goto err_out2;
}
qdev->doorbell_area_size = pci_resource_len(pdev, 3);
qdev->doorbell_area =
ioremap_nocache(pci_resource_start(pdev, 3),
pci_resource_len(pdev, 3));
if (!qdev->doorbell_area) {
dev_err(&pdev->dev, "Doorbell register mapping failed.\n");
err = -ENOMEM;
goto err_out2;
}
err = ql_get_board_info(qdev);
if (err) {
dev_err(&pdev->dev, "Register access failed.\n");
err = -EIO;
goto err_out2;
}
qdev->msg_enable = netif_msg_init(debug, default_msg);
spin_lock_init(&qdev->hw_lock);
spin_lock_init(&qdev->stats_lock);
if (qlge_mpi_coredump) {
qdev->mpi_coredump =
vmalloc(sizeof(struct ql_mpi_coredump));
if (qdev->mpi_coredump == NULL) {
err = -ENOMEM;
goto err_out2;
}
if (qlge_force_coredump)
set_bit(QL_FRC_COREDUMP, &qdev->flags);
}
/* make sure the EEPROM is good */
err = qdev->nic_ops->get_flash(qdev);
if (err) {
dev_err(&pdev->dev, "Invalid FLASH.\n");
goto err_out2;
}
/* Keep local copy of current mac address. */
memcpy(qdev->current_mac_addr, ndev->dev_addr, ndev->addr_len);
/* Set up the default ring sizes. */
qdev->tx_ring_size = NUM_TX_RING_ENTRIES;
qdev->rx_ring_size = NUM_RX_RING_ENTRIES;
/* Set up the coalescing parameters. */
qdev->rx_coalesce_usecs = DFLT_COALESCE_WAIT;
qdev->tx_coalesce_usecs = DFLT_COALESCE_WAIT;
qdev->rx_max_coalesced_frames = DFLT_INTER_FRAME_WAIT;
qdev->tx_max_coalesced_frames = DFLT_INTER_FRAME_WAIT;
/*
* Set up the operating parameters.
*/
qdev->workqueue = create_singlethread_workqueue(ndev->name);
INIT_DELAYED_WORK(&qdev->asic_reset_work, ql_asic_reset_work);
INIT_DELAYED_WORK(&qdev->mpi_reset_work, ql_mpi_reset_work);
INIT_DELAYED_WORK(&qdev->mpi_work, ql_mpi_work);
INIT_DELAYED_WORK(&qdev->mpi_port_cfg_work, ql_mpi_port_cfg_work);
INIT_DELAYED_WORK(&qdev->mpi_idc_work, ql_mpi_idc_work);
INIT_DELAYED_WORK(&qdev->mpi_core_to_log, ql_mpi_core_to_log);
init_completion(&qdev->ide_completion);
mutex_init(&qdev->mpi_mutex);
if (!cards_found) {
dev_info(&pdev->dev, "%s\n", DRV_STRING);
dev_info(&pdev->dev, "Driver name: %s, Version: %s.\n",
DRV_NAME, DRV_VERSION);
}
return 0;
err_out2:
ql_release_all(pdev);
err_out1:
pci_disable_device(pdev);
return err;
}
static const struct net_device_ops qlge_netdev_ops = {
.ndo_open = qlge_open,
.ndo_stop = qlge_close,
.ndo_start_xmit = qlge_send,
.ndo_change_mtu = qlge_change_mtu,
.ndo_get_stats = qlge_get_stats,
.ndo_set_rx_mode = qlge_set_multicast_list,
.ndo_set_mac_address = qlge_set_mac_address,
.ndo_validate_addr = eth_validate_addr,
.ndo_tx_timeout = qlge_tx_timeout,
.ndo_fix_features = qlge_fix_features,
.ndo_set_features = qlge_set_features,
.ndo_vlan_rx_add_vid = qlge_vlan_rx_add_vid,
.ndo_vlan_rx_kill_vid = qlge_vlan_rx_kill_vid,
};
static void ql_timer(unsigned long data)
{
struct ql_adapter *qdev = (struct ql_adapter *)data;
u32 var = 0;
var = ql_read32(qdev, STS);
if (pci_channel_offline(qdev->pdev)) {
netif_err(qdev, ifup, qdev->ndev, "EEH STS = 0x%.08x.\n", var);
return;
}
mod_timer(&qdev->timer, jiffies + (5*HZ));
}
static int qlge_probe(struct pci_dev *pdev,
const struct pci_device_id *pci_entry)
{
struct net_device *ndev = NULL;
struct ql_adapter *qdev = NULL;
static int cards_found = 0;
int err = 0;
ndev = alloc_etherdev_mq(sizeof(struct ql_adapter),
min(MAX_CPUS, netif_get_num_default_rss_queues()));
if (!ndev)
return -ENOMEM;
err = ql_init_device(pdev, ndev, cards_found);
if (err < 0) {
free_netdev(ndev);
return err;
}
qdev = netdev_priv(ndev);
SET_NETDEV_DEV(ndev, &pdev->dev);
ndev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM |
NETIF_F_TSO | NETIF_F_TSO_ECN |
NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_RXCSUM;
ndev->features = ndev->hw_features |
NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_FILTER;
ndev->vlan_features = ndev->hw_features;
if (test_bit(QL_DMA64, &qdev->flags))
ndev->features |= NETIF_F_HIGHDMA;
/*
* Set up net_device structure.
*/
ndev->tx_queue_len = qdev->tx_ring_size;
ndev->irq = pdev->irq;
ndev->netdev_ops = &qlge_netdev_ops;
SET_ETHTOOL_OPS(ndev, &qlge_ethtool_ops);
ndev->watchdog_timeo = 10 * HZ;
err = register_netdev(ndev);
if (err) {
dev_err(&pdev->dev, "net device registration failed.\n");
ql_release_all(pdev);
pci_disable_device(pdev);
free_netdev(ndev);
return err;
}
/* Start up the timer to trigger EEH if
* the bus goes dead
*/
init_timer_deferrable(&qdev->timer);
qdev->timer.data = (unsigned long)qdev;
qdev->timer.function = ql_timer;
qdev->timer.expires = jiffies + (5*HZ);
add_timer(&qdev->timer);
ql_link_off(qdev);
ql_display_dev_info(ndev);
atomic_set(&qdev->lb_count, 0);
cards_found++;
return 0;
}
netdev_tx_t ql_lb_send(struct sk_buff *skb, struct net_device *ndev)
{
return qlge_send(skb, ndev);
}
int ql_clean_lb_rx_ring(struct rx_ring *rx_ring, int budget)
{
return ql_clean_inbound_rx_ring(rx_ring, budget);
}
static void qlge_remove(struct pci_dev *pdev)
{
struct net_device *ndev = pci_get_drvdata(pdev);
struct ql_adapter *qdev = netdev_priv(ndev);
del_timer_sync(&qdev->timer);
qlge: Fix a deadlock when the interface is going down Currently qlge can deadlock when the interface is going down, and the mpi_port_cfg_work() is executing on another processor. It happens because unregister_netdev() holds the rtnl lock, and the mpi_port_cfg_work() also request this lock. Since unregiter_netdev() may wait mpi_port_cfg_work(), who also request the holding lock, it can cause an deadlock, displaying the following error: "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. rmmod D 00000080c6c1d190 0 3993 2081 0x00008080 Call Trace: [c000000975f56ee0] [c0000000000152a0] .__switch_to+0x100/0x1d0 [c000000975f56f70] [c0000000005781b4] .schedule+0x3a4/0x8c0 [c000000975f570c0] [c000000000578e8c] .schedule_timeout+0x24c/0x350 [c000000975f571e0] [c000000000578a88] .wait_for_common+0x198/0x210 [c000000975f572c0] [c0000000000abbb4] .__cancel_work_timer+0x2c4/0x2e0 [c000000975f57400] [d0000000078e7a20] .ql_adapter_down+0x80/0x260 [qlge] [c000000975f574b0] [d0000000078e7d80] .qlge_close+0x70/0x130 [qlge] [c000000975f57540] [c000000000497ef8] .__dev_close+0x98/0xf0 [c000000975f575d0] [c000000000497f74] .dev_close+0x24/0x60 [c000000975f57650] [c000000000498080] .rollback_registered_many+0xd0/0x2b0 [c000000975f576f0] [c000000000498338] .rollback_registered+0x38/0x50 [c000000975f57780] [c0000000004983d8] .unregister_netdevice_queue+0x88/0xe0 [c000000975f57810] [c000000000498574] .unregister_netdev+0x24/0x40 [c000000975f57890] [d0000000078f6f38] .qlge_remove+0x3c/0x78 [qlge] [c000000975f57920] [c0000000002d9298] .pci_device_remove+0x48/0x90 [c000000975f579a0] [c000000000372850] .__device_release_driver+0xa0/0x130 [c000000975f57a30] [c000000000372a08] .driver_detach+0x128/0x150 [c000000975f57ad0] [c000000000371134] .bus_remove_driver+0xc4/0x1a0 [c000000975f57b70] [c00000000037357c] .driver_unregister+0x8c/0xd0 [c000000975f57c00] [c0000000002d968c] .pci_unregister_driver+0x5c/0x110 [c000000975f57ca0] [d0000000078f6ee4] .qlge_exit+0x1c/0x34 [qlge] Signed-off-by: Breno Leitao <leitao@linux.vnet.ibm.com> Signed-off-by: Ron Mercer <ron.mercer@qlogic.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2010-08-24 12:50:40 +00:00
ql_cancel_all_work_sync(qdev);
unregister_netdev(ndev);
ql_release_all(pdev);
pci_disable_device(pdev);
free_netdev(ndev);
}
/* Clean up resources without touching hardware. */
static void ql_eeh_close(struct net_device *ndev)
{
int i;
struct ql_adapter *qdev = netdev_priv(ndev);
if (netif_carrier_ok(ndev)) {
netif_carrier_off(ndev);
netif_stop_queue(ndev);
}
/* Disabling the timer */
del_timer_sync(&qdev->timer);
qlge: Fix a deadlock when the interface is going down Currently qlge can deadlock when the interface is going down, and the mpi_port_cfg_work() is executing on another processor. It happens because unregister_netdev() holds the rtnl lock, and the mpi_port_cfg_work() also request this lock. Since unregiter_netdev() may wait mpi_port_cfg_work(), who also request the holding lock, it can cause an deadlock, displaying the following error: "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. rmmod D 00000080c6c1d190 0 3993 2081 0x00008080 Call Trace: [c000000975f56ee0] [c0000000000152a0] .__switch_to+0x100/0x1d0 [c000000975f56f70] [c0000000005781b4] .schedule+0x3a4/0x8c0 [c000000975f570c0] [c000000000578e8c] .schedule_timeout+0x24c/0x350 [c000000975f571e0] [c000000000578a88] .wait_for_common+0x198/0x210 [c000000975f572c0] [c0000000000abbb4] .__cancel_work_timer+0x2c4/0x2e0 [c000000975f57400] [d0000000078e7a20] .ql_adapter_down+0x80/0x260 [qlge] [c000000975f574b0] [d0000000078e7d80] .qlge_close+0x70/0x130 [qlge] [c000000975f57540] [c000000000497ef8] .__dev_close+0x98/0xf0 [c000000975f575d0] [c000000000497f74] .dev_close+0x24/0x60 [c000000975f57650] [c000000000498080] .rollback_registered_many+0xd0/0x2b0 [c000000975f576f0] [c000000000498338] .rollback_registered+0x38/0x50 [c000000975f57780] [c0000000004983d8] .unregister_netdevice_queue+0x88/0xe0 [c000000975f57810] [c000000000498574] .unregister_netdev+0x24/0x40 [c000000975f57890] [d0000000078f6f38] .qlge_remove+0x3c/0x78 [qlge] [c000000975f57920] [c0000000002d9298] .pci_device_remove+0x48/0x90 [c000000975f579a0] [c000000000372850] .__device_release_driver+0xa0/0x130 [c000000975f57a30] [c000000000372a08] .driver_detach+0x128/0x150 [c000000975f57ad0] [c000000000371134] .bus_remove_driver+0xc4/0x1a0 [c000000975f57b70] [c00000000037357c] .driver_unregister+0x8c/0xd0 [c000000975f57c00] [c0000000002d968c] .pci_unregister_driver+0x5c/0x110 [c000000975f57ca0] [d0000000078f6ee4] .qlge_exit+0x1c/0x34 [qlge] Signed-off-by: Breno Leitao <leitao@linux.vnet.ibm.com> Signed-off-by: Ron Mercer <ron.mercer@qlogic.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2010-08-24 12:50:40 +00:00
ql_cancel_all_work_sync(qdev);
for (i = 0; i < qdev->rss_ring_count; i++)
netif_napi_del(&qdev->rx_ring[i].napi);
clear_bit(QL_ADAPTER_UP, &qdev->flags);
ql_tx_ring_clean(qdev);
ql_free_rx_buffers(qdev);
ql_release_adapter_resources(qdev);
}
/*
* This callback is called by the PCI subsystem whenever
* a PCI bus error is detected.
*/
static pci_ers_result_t qlge_io_error_detected(struct pci_dev *pdev,
enum pci_channel_state state)
{
struct net_device *ndev = pci_get_drvdata(pdev);
struct ql_adapter *qdev = netdev_priv(ndev);
switch (state) {
case pci_channel_io_normal:
return PCI_ERS_RESULT_CAN_RECOVER;
case pci_channel_io_frozen:
netif_device_detach(ndev);
if (netif_running(ndev))
ql_eeh_close(ndev);
pci_disable_device(pdev);
return PCI_ERS_RESULT_NEED_RESET;
case pci_channel_io_perm_failure:
dev_err(&pdev->dev,
"%s: pci_channel_io_perm_failure.\n", __func__);
ql_eeh_close(ndev);
set_bit(QL_EEH_FATAL, &qdev->flags);
return PCI_ERS_RESULT_DISCONNECT;
}
/* Request a slot reset. */
return PCI_ERS_RESULT_NEED_RESET;
}
/*
* This callback is called after the PCI buss has been reset.
* Basically, this tries to restart the card from scratch.
* This is a shortened version of the device probe/discovery code,
* it resembles the first-half of the () routine.
*/
static pci_ers_result_t qlge_io_slot_reset(struct pci_dev *pdev)
{
struct net_device *ndev = pci_get_drvdata(pdev);
struct ql_adapter *qdev = netdev_priv(ndev);
pdev->error_state = pci_channel_io_normal;
pci_restore_state(pdev);
if (pci_enable_device(pdev)) {
netif_err(qdev, ifup, qdev->ndev,
"Cannot re-enable PCI device after reset.\n");
return PCI_ERS_RESULT_DISCONNECT;
}
pci_set_master(pdev);
if (ql_adapter_reset(qdev)) {
netif_err(qdev, drv, qdev->ndev, "reset FAILED!\n");
set_bit(QL_EEH_FATAL, &qdev->flags);
return PCI_ERS_RESULT_DISCONNECT;
}
return PCI_ERS_RESULT_RECOVERED;
}
static void qlge_io_resume(struct pci_dev *pdev)
{
struct net_device *ndev = pci_get_drvdata(pdev);
struct ql_adapter *qdev = netdev_priv(ndev);
int err = 0;
if (netif_running(ndev)) {
err = qlge_open(ndev);
if (err) {
netif_err(qdev, ifup, qdev->ndev,
"Device initialization failed after reset.\n");
return;
}
} else {
netif_err(qdev, ifup, qdev->ndev,
"Device was not running prior to EEH.\n");
}
mod_timer(&qdev->timer, jiffies + (5*HZ));
netif_device_attach(ndev);
}
static const struct pci_error_handlers qlge_err_handler = {
.error_detected = qlge_io_error_detected,
.slot_reset = qlge_io_slot_reset,
.resume = qlge_io_resume,
};
static int qlge_suspend(struct pci_dev *pdev, pm_message_t state)
{
struct net_device *ndev = pci_get_drvdata(pdev);
struct ql_adapter *qdev = netdev_priv(ndev);
int err;
netif_device_detach(ndev);
del_timer_sync(&qdev->timer);
if (netif_running(ndev)) {
err = ql_adapter_down(qdev);
if (!err)
return err;
}
ql_wol(qdev);
err = pci_save_state(pdev);
if (err)
return err;
pci_disable_device(pdev);
pci_set_power_state(pdev, pci_choose_state(pdev, state));
return 0;
}
#ifdef CONFIG_PM
static int qlge_resume(struct pci_dev *pdev)
{
struct net_device *ndev = pci_get_drvdata(pdev);
struct ql_adapter *qdev = netdev_priv(ndev);
int err;
pci_set_power_state(pdev, PCI_D0);
pci_restore_state(pdev);
err = pci_enable_device(pdev);
if (err) {
netif_err(qdev, ifup, qdev->ndev, "Cannot enable PCI device from suspend\n");
return err;
}
pci_set_master(pdev);
pci_enable_wake(pdev, PCI_D3hot, 0);
pci_enable_wake(pdev, PCI_D3cold, 0);
if (netif_running(ndev)) {
err = ql_adapter_up(qdev);
if (err)
return err;
}
mod_timer(&qdev->timer, jiffies + (5*HZ));
netif_device_attach(ndev);
return 0;
}
#endif /* CONFIG_PM */
static void qlge_shutdown(struct pci_dev *pdev)
{
qlge_suspend(pdev, PMSG_SUSPEND);
}
static struct pci_driver qlge_driver = {
.name = DRV_NAME,
.id_table = qlge_pci_tbl,
.probe = qlge_probe,
.remove = qlge_remove,
#ifdef CONFIG_PM
.suspend = qlge_suspend,
.resume = qlge_resume,
#endif
.shutdown = qlge_shutdown,
.err_handler = &qlge_err_handler
};
static int __init qlge_init_module(void)
{
return pci_register_driver(&qlge_driver);
}
static void __exit qlge_exit(void)
{
pci_unregister_driver(&qlge_driver);
}
module_init(qlge_init_module);
module_exit(qlge_exit);