[IA64] Cleanup use of various #defines related to nodes

Some of the SN code & #defines related to compact nodes & IO discovery
have gotten stale over the years. This patch attempts to clean them up.
Some of the various SN MAX_xxx #defines were also unclear & misused.

The primary changes are:

	- use MAX_NUMNODES. This is the generic linux #define for the number
	  of nodes that are known to the generic kernel. Arrays & loops
	  for constructs that are 1:1 with linux-defined nodes should
	  use the linux #define - not an SN equivalent.

	- use MAX_COMPACT_NODES for MAX_NUMNODES + NUM_TIOS. This is the
	  number of nodes in the SSI system. Compact nodes are a hack to
	  get around the IA64 architectural limit of 256 nodes. Large SGI
	  systems have more than 256 nodes. When we upgrade to ACPI3.0,
	  I _hope_ that all nodes will be real nodes that are known to
	  the generic kernel. That will allow us to delete the notion
	  of "compact nodes".

	- add MAX_NUMALINK_NODES for the total number of nodes that
	  are in the numalink domain - all partitions.

	- simplified (understandable) scan_for_ionodes()

	- small amount of cleanup related to cnodes

Signed-off-by: Jack Steiner <steiner@sgi.com>
Signed-off-by: Tony Luck <tony.luck@intel.com>
This commit is contained in:
Jack Steiner 2005-09-12 12:15:43 -05:00 committed by Tony Luck
parent 1619cca292
commit 24ee0a6d7b
12 changed files with 94 additions and 178 deletions

View File

@ -22,8 +22,6 @@
#include "xtalk/hubdev.h"
#include "xtalk/xwidgetdev.h"
nasid_t master_nasid = INVALID_NASID; /* Partition Master */
static struct list_head sn_sysdata_list;
/* sysdata list struct */
@ -165,7 +163,7 @@ static void sn_fixup_ionodes(void)
* Get SGI Specific HUB chipset information.
* Inform Prom that this kernel can support domain bus numbering.
*/
for (i = 0; i < numionodes; i++) {
for (i = 0; i < num_cnodes; i++) {
hubdev = (struct hubdev_info *)(NODEPDA(i)->pdinfo);
nasid = cnodeid_to_nasid(i);
hubdev->max_segment_number = 0xffffffff;

View File

@ -59,8 +59,6 @@ DEFINE_PER_CPU(struct pda_s, pda_percpu);
#define MAX_PHYS_MEMORY (1UL << IA64_MAX_PHYS_BITS) /* Max physical address supported */
lboard_t *root_lboard[MAX_COMPACT_NODES];
extern void bte_init_node(nodepda_t *, cnodeid_t);
extern void sn_timer_init(void);
@ -97,15 +95,15 @@ u8 sn_region_size;
EXPORT_SYMBOL(sn_region_size);
int sn_prom_type; /* 0=hardware, 1=medusa/realprom, 2=medusa/fakeprom */
short physical_node_map[MAX_PHYSNODE_ID];
short physical_node_map[MAX_NUMALINK_NODES];
static unsigned long sn_prom_features[MAX_PROM_FEATURE_SETS];
EXPORT_SYMBOL(physical_node_map);
int numionodes;
int num_cnodes;
static void sn_init_pdas(char **);
static void scan_for_ionodes(void);
static void build_cnode_tables(void);
static nodepda_t *nodepdaindr[MAX_COMPACT_NODES];
@ -139,19 +137,6 @@ extern char drive_info[4 * 16];
char drive_info[4 * 16];
#endif
/*
* Get nasid of current cpu early in boot before nodepda is initialized
*/
static int
boot_get_nasid(void)
{
int nasid;
if (ia64_sn_get_sapic_info(get_sapicid(), &nasid, NULL, NULL))
BUG();
return nasid;
}
/*
* This routine can only be used during init, since
* smp_boot_data is an init data structure.
@ -223,7 +208,6 @@ void __init early_sn_setup(void)
}
extern int platform_intr_list[];
extern nasid_t master_nasid;
static int __initdata shub_1_1_found = 0;
/*
@ -269,7 +253,6 @@ static void __init sn_check_for_wars(void)
void __init sn_setup(char **cmdline_p)
{
long status, ticks_per_sec, drift;
int pxm;
u32 version = sn_sal_rev();
extern void sn_cpu_init(void);
@ -300,11 +283,10 @@ void __init sn_setup(char **cmdline_p)
MAX_DMA_ADDRESS = PAGE_OFFSET + MAX_PHYS_MEMORY;
memset(physical_node_map, -1, sizeof(physical_node_map));
for (pxm = 0; pxm < MAX_PXM_DOMAINS; pxm++)
if (pxm_to_nid_map[pxm] != -1)
physical_node_map[pxm_to_nasid(pxm)] =
pxm_to_nid_map[pxm];
/*
* Build the tables for managing cnodes.
*/
build_cnode_tables();
/*
* Old PROMs do not provide an ACPI FADT. Disable legacy keyboard
@ -319,8 +301,6 @@ void __init sn_setup(char **cmdline_p)
printk("SGI SAL version %x.%02x\n", version >> 8, version & 0x00FF);
master_nasid = boot_get_nasid();
status =
ia64_sal_freq_base(SAL_FREQ_BASE_REALTIME_CLOCK, &ticks_per_sec,
&drift);
@ -378,15 +358,6 @@ static void __init sn_init_pdas(char **cmdline_p)
{
cnodeid_t cnode;
memset(sn_cnodeid_to_nasid, -1,
sizeof(__ia64_per_cpu_var(__sn_cnodeid_to_nasid)));
for_each_online_node(cnode)
sn_cnodeid_to_nasid[cnode] =
pxm_to_nasid(nid_to_pxm_map[cnode]);
numionodes = num_online_nodes();
scan_for_ionodes();
/*
* Allocate & initalize the nodepda for each node.
*/
@ -402,7 +373,7 @@ static void __init sn_init_pdas(char **cmdline_p)
/*
* Allocate & initialize nodepda for TIOs. For now, put them on node 0.
*/
for (cnode = num_online_nodes(); cnode < numionodes; cnode++) {
for (cnode = num_online_nodes(); cnode < num_cnodes; cnode++) {
nodepdaindr[cnode] =
alloc_bootmem_node(NODE_DATA(0), sizeof(nodepda_t));
memset(nodepdaindr[cnode], 0, sizeof(nodepda_t));
@ -411,7 +382,7 @@ static void __init sn_init_pdas(char **cmdline_p)
/*
* Now copy the array of nodepda pointers to each nodepda.
*/
for (cnode = 0; cnode < numionodes; cnode++)
for (cnode = 0; cnode < num_cnodes; cnode++)
memcpy(nodepdaindr[cnode]->pernode_pdaindr, nodepdaindr,
sizeof(nodepdaindr));
@ -428,7 +399,7 @@ static void __init sn_init_pdas(char **cmdline_p)
* Initialize the per node hubdev. This includes IO Nodes and
* headless/memless nodes.
*/
for (cnode = 0; cnode < numionodes; cnode++) {
for (cnode = 0; cnode < num_cnodes; cnode++) {
hubdev_init_node(nodepdaindr[cnode], cnode);
}
}
@ -553,87 +524,58 @@ void __init sn_cpu_init(void)
}
/*
* Scan klconfig for ionodes. Add the nasids to the
* physical_node_map and the pda and increment numionodes.
* Build tables for converting between NASIDs and cnodes.
*/
static void __init scan_for_ionodes(void)
static inline int __init board_needs_cnode(int type)
{
int nasid = 0;
return (type == KLTYPE_SNIA || type == KLTYPE_TIO);
}
void __init build_cnode_tables(void)
{
int nasid;
int node;
lboard_t *brd;
memset(physical_node_map, -1, sizeof(physical_node_map));
memset(sn_cnodeid_to_nasid, -1,
sizeof(__ia64_per_cpu_var(__sn_cnodeid_to_nasid)));
/*
* First populate the tables with C/M bricks. This ensures that
* cnode == node for all C & M bricks.
*/
for_each_online_node(node) {
nasid = pxm_to_nasid(nid_to_pxm_map[node]);
sn_cnodeid_to_nasid[node] = nasid;
physical_node_map[nasid] = node;
}
/*
* num_cnodes is total number of C/M/TIO bricks. Because of the 256 node
* limit on the number of nodes, we can't use the generic node numbers
* for this. Note that num_cnodes is incremented below as TIOs or
* headless/memoryless nodes are discovered.
*/
num_cnodes = num_online_nodes();
/* fakeprom does not support klgraph */
if (IS_RUNNING_ON_FAKE_PROM())
return;
/* Setup ionodes with memory */
for (nasid = 0; nasid < MAX_PHYSNODE_ID; nasid += 2) {
char *klgraph_header;
cnodeid_t cnodeid;
if (physical_node_map[nasid] == -1)
continue;
cnodeid = -1;
klgraph_header = __va(ia64_sn_get_klconfig_addr(nasid));
if (!klgraph_header) {
BUG(); /* All nodes must have klconfig tables! */
}
cnodeid = nasid_to_cnodeid(nasid);
root_lboard[cnodeid] = (lboard_t *)
NODE_OFFSET_TO_LBOARD((nasid),
((kl_config_hdr_t
*) (klgraph_header))->
ch_board_info);
}
/* Scan headless/memless IO Nodes. */
for (nasid = 0; nasid < MAX_PHYSNODE_ID; nasid += 2) {
/* if there's no nasid, don't try to read the klconfig on the node */
if (physical_node_map[nasid] == -1)
continue;
brd = find_lboard_any((lboard_t *)
root_lboard[nasid_to_cnodeid(nasid)],
KLTYPE_SNIA);
if (brd) {
brd = KLCF_NEXT_ANY(brd); /* Skip this node's lboard */
if (!brd)
continue;
}
brd = find_lboard_any(brd, KLTYPE_SNIA);
/* Find TIOs & headless/memoryless nodes and add them to the tables */
for_each_online_node(node) {
kl_config_hdr_t *klgraph_header;
nasid = cnodeid_to_nasid(node);
if ((klgraph_header = ia64_sn_get_klconfig_addr(nasid)) == NULL)
BUG();
brd = NODE_OFFSET_TO_LBOARD(nasid, klgraph_header->ch_board_info);
while (brd) {
sn_cnodeid_to_nasid[numionodes] = brd->brd_nasid;
physical_node_map[brd->brd_nasid] = numionodes;
root_lboard[numionodes] = brd;
numionodes++;
brd = KLCF_NEXT_ANY(brd);
if (!brd)
break;
brd = find_lboard_any(brd, KLTYPE_SNIA);
}
}
/* Scan for TIO nodes. */
for (nasid = 0; nasid < MAX_PHYSNODE_ID; nasid += 2) {
/* if there's no nasid, don't try to read the klconfig on the node */
if (physical_node_map[nasid] == -1)
continue;
brd = find_lboard_any((lboard_t *)
root_lboard[nasid_to_cnodeid(nasid)],
KLTYPE_TIO);
while (brd) {
sn_cnodeid_to_nasid[numionodes] = brd->brd_nasid;
physical_node_map[brd->brd_nasid] = numionodes;
root_lboard[numionodes] = brd;
numionodes++;
brd = KLCF_NEXT_ANY(brd);
if (!brd)
break;
brd = find_lboard_any(brd, KLTYPE_TIO);
if (board_needs_cnode(brd->brd_type) && physical_node_map[brd->brd_nasid] < 0) {
sn_cnodeid_to_nasid[num_cnodes] = brd->brd_nasid;
physical_node_map[brd->brd_nasid] = num_cnodes++;
}
brd = find_lboard_next(brd);
}
}
}

View File

@ -476,8 +476,8 @@ static int sn_topology_show(struct seq_file *s, void *d)
for_each_online_cpu(j) {
seq_printf(s, j ? ":%d" : ", dist %d",
node_distance(
cpuid_to_cnodeid(i),
cpuid_to_cnodeid(j)));
cpu_to_node(i),
cpu_to_node(j)));
}
seq_putc(s, '\n');
}

View File

@ -486,11 +486,10 @@ static int __init tiocx_init(void)
bus_register(&tiocx_bus_type);
for (cnodeid = 0; cnodeid < MAX_COMPACT_NODES; cnodeid++) {
for (cnodeid = 0; cnodeid < num_cnodes; cnodeid++) {
nasid_t nasid;
if ((nasid = cnodeid_to_nasid(cnodeid)) < 0)
break; /* No more nasids .. bail out of loop */
nasid = cnodeid_to_nasid(cnodeid);
if ((nasid & 0x1) && is_fpga_brick(nasid)) {
struct hubdev_info *hubdev;

View File

@ -44,7 +44,7 @@ static u64 xpc_sh2_IPI_access3;
/* original protection values for each node */
u64 xpc_prot_vec[MAX_COMPACT_NODES];
u64 xpc_prot_vec[MAX_NUMNODES];
/* this partition's reserved page */

View File

@ -377,7 +377,7 @@ scdrv_init(void)
dev_t first_dev, dev;
nasid_t event_nasid = ia64_sn_get_console_nasid();
if (alloc_chrdev_region(&first_dev, 0, numionodes,
if (alloc_chrdev_region(&first_dev, 0, num_cnodes,
SYSCTL_BASENAME) < 0) {
printk("%s: failed to register SN system controller device\n",
__FUNCTION__);
@ -385,7 +385,7 @@ scdrv_init(void)
}
snsc_class = class_create(THIS_MODULE, SYSCTL_BASENAME);
for (cnode = 0; cnode < numionodes; cnode++) {
for (cnode = 0; cnode < num_cnodes; cnode++) {
geoid = cnodeid_get_geoid(cnode);
devnamep = devname;
format_module_id(devnamep, geo_module(geoid),

View File

@ -17,6 +17,32 @@
#include <asm/sn/types.h>
#include <asm/sn/sn_cpuid.h>
/*
* This is the maximum number of NUMALINK nodes that can be part of a single
* SSI kernel. This number includes C-brick, M-bricks, and TIOs. Nodes in
* remote partitions are NOT included in this number.
* The number of compact nodes cannot exceed size of a coherency domain.
* The purpose of this define is to specify a node count that includes
* all C/M/TIO nodes in an SSI system.
*
* SGI system can currently support up to 256 C/M nodes plus additional TIO nodes.
*
* Note: ACPI20 has an architectural limit of 256 nodes. When we upgrade
* to ACPI3.0, this limit will be removed. The notion of "compact nodes"
* should be deleted and TIOs should be included in MAX_NUMNODES.
*/
#define MAX_COMPACT_NODES 512
/*
* Maximum number of nodes in all partitions and in all coherency domains.
* This is the total number of nodes accessible in the numalink fabric. It
* includes all C & M bricks, plus all TIOs.
*
* This value is also the value of the maximum number of NASIDs in the numalink
* fabric.
*/
#define MAX_NUMALINK_NODES 2048
/*
* The following defines attributes of the HUB chip. These attributes are
* frequently referenced. They are kept in the per-cpu data areas of each cpu.
@ -40,15 +66,6 @@ DECLARE_PER_CPU(struct sn_hub_info_s, __sn_hub_info);
#define enable_shub_wars_1_1() (sn_hub_info->shub_1_1_found)
/*
* This is the maximum number of nodes that can be part of a kernel.
* Effectively, it's the maximum number of compact node ids (cnodeid_t).
* This is not necessarily the same as MAX_NASIDS.
*/
#define MAX_COMPACT_NODES 2048
#define CPUS_PER_NODE 4
/*
* Compact node ID to nasid mappings kept in the per-cpu data areas of each
* cpu.
@ -57,7 +74,6 @@ DECLARE_PER_CPU(short, __sn_cnodeid_to_nasid[MAX_NUMNODES]);
#define sn_cnodeid_to_nasid (&__get_cpu_var(__sn_cnodeid_to_nasid[0]))
extern u8 sn_partition_id;
extern u8 sn_system_size;
extern u8 sn_sharing_domain_size;

View File

@ -14,7 +14,7 @@
extern void * sn_io_addr(unsigned long port) __attribute_const__; /* Forward definition */
extern void __sn_mmiowb(void); /* Forward definition */
extern int numionodes;
extern int num_cnodes;
#define __sn_mf_a() ia64_mfa()

View File

@ -208,19 +208,6 @@ typedef struct lboard_s {
klconf_off_t brd_next_same; /* Next BOARD with same nasid */
} lboard_t;
#define KLCF_NUM_COMPS(_brd) ((_brd)->brd_numcompts)
#define NODE_OFFSET_TO_KLINFO(n,off) ((klinfo_t*) TO_NODE_CAC(n,off))
#define KLCF_NEXT(_brd) \
((_brd)->brd_next_same ? \
(NODE_OFFSET_TO_LBOARD((_brd)->brd_next_same_host, (_brd)->brd_next_same)): NULL)
#define KLCF_NEXT_ANY(_brd) \
((_brd)->brd_next_any ? \
(NODE_OFFSET_TO_LBOARD(NASID_GET(_brd), (_brd)->brd_next_any)): NULL)
#define KLCF_COMP(_brd, _ndx) \
((((_brd)->brd_compts[(_ndx)]) == 0) ? 0 : \
(NODE_OFFSET_TO_KLINFO(NASID_GET(_brd), (_brd)->brd_compts[(_ndx)])))
/*
* Generic info structure. This stores common info about a
* component.
@ -249,24 +236,11 @@ typedef struct klinfo_s { /* Generic info */
} klinfo_t ;
static inline lboard_t *find_lboard_any(lboard_t * start, unsigned char brd_type)
static inline lboard_t *find_lboard_next(lboard_t * brd)
{
/* Search all boards stored on this node. */
while (start) {
if (start->brd_type == brd_type)
return start;
start = KLCF_NEXT_ANY(start);
}
/* Didn't find it. */
return (lboard_t *) NULL;
if (brd && brd->brd_next_any)
return NODE_OFFSET_TO_LBOARD(NASID_GET(brd), brd->brd_next_any);
return NULL;
}
/* external declarations of Linux kernel functions. */
extern lboard_t *root_lboard[];
extern klinfo_t *find_component(lboard_t *brd, klinfo_t *kli, unsigned char type);
extern klinfo_t *find_first_component(lboard_t *brd, unsigned char type);
#endif /* _ASM_IA64_SN_KLCONFIG_H */

View File

@ -105,7 +105,6 @@ extern short physical_node_map[]; /* indexed by nasid to get cnode */
#define cpuid_to_nasid(cpuid) (sn_nodepda->phys_cpuid[cpuid].nasid)
#define cpuid_to_subnode(cpuid) (sn_nodepda->phys_cpuid[cpuid].subnode)
#define cpuid_to_slice(cpuid) (sn_nodepda->phys_cpuid[cpuid].slice)
#define cpuid_to_cnodeid(cpuid) (physical_node_map[cpuid_to_nasid(cpuid)])
/*
@ -113,8 +112,6 @@ extern short physical_node_map[]; /* indexed by nasid to get cnode */
* of potentially large tables.
*/
extern int nasid_slice_to_cpuid(int, int);
#define nasid_slice_to_cpu_physical_id(nasid, slice) \
cpu_physical_id(nasid_slice_to_cpuid(nasid, slice))
/*
* cnodeid_to_nasid - convert a cnodeid to a NASID

View File

@ -198,26 +198,16 @@ ia64_sn_get_master_baseio_nasid(void)
return ret_stuff.v0;
}
static inline char *
static inline void *
ia64_sn_get_klconfig_addr(nasid_t nasid)
{
struct ia64_sal_retval ret_stuff;
int cnodeid;
cnodeid = nasid_to_cnodeid(nasid);
ret_stuff.status = 0;
ret_stuff.v0 = 0;
ret_stuff.v1 = 0;
ret_stuff.v2 = 0;
SAL_CALL(ret_stuff, SN_SAL_GET_KLCONFIG_ADDR, (u64)nasid, 0, 0, 0, 0, 0, 0);
/*
* We should panic if a valid cnode nasid does not produce
* a klconfig address.
*/
if (ret_stuff.status != 0) {
panic("ia64_sn_get_klconfig_addr: Returned error %lx\n", ret_stuff.status);
}
return ret_stuff.v0 ? __va(ret_stuff.v0) : NULL;
}

View File

@ -49,7 +49,7 @@
* C-brick nasids, thus the need for bitmaps which don't account for
* odd-numbered (non C-brick) nasids.
*/
#define XP_MAX_PHYSNODE_ID (MAX_PHYSNODE_ID / 2)
#define XP_MAX_PHYSNODE_ID (MAX_NUMALINK_NODES / 2)
#define XP_NASID_MASK_BYTES ((XP_MAX_PHYSNODE_ID + 7) / 8)
#define XP_NASID_MASK_WORDS ((XP_MAX_PHYSNODE_ID + 63) / 64)