diff --git a/kernel/time/tick-broadcast-hrtimer.c b/kernel/time/tick-broadcast-hrtimer.c index 3e7db49a2381..4ca2dec92489 100644 --- a/kernel/time/tick-broadcast-hrtimer.c +++ b/kernel/time/tick-broadcast-hrtimer.c @@ -50,34 +50,39 @@ static void bc_set_mode(enum clock_event_mode mode, */ static int bc_set_next(ktime_t expires, struct clock_event_device *bc) { - int bc_moved; /* - * We try to cancel the timer first. If the callback is on - * flight on some other cpu then we let it handle it. If we - * were able to cancel the timer nothing can rearm it as we - * own broadcast_lock. + * This is called either from enter/exit idle code or from the + * broadcast handler. In all cases tick_broadcast_lock is held. * - * However we can also be called from the event handler of - * ce_broadcast_hrtimer itself when it expires. We cannot - * restart the timer because we are in the callback, but we - * can set the expiry time and let the callback return - * HRTIMER_RESTART. + * hrtimer_cancel() cannot be called here neither from the + * broadcast handler nor from the enter/exit idle code. The idle + * code can run into the problem described in bc_shutdown() and the + * broadcast handler cannot wait for itself to complete for obvious + * reasons. * - * Since we are in the idle loop at this point and because - * hrtimer_{start/cancel} functions call into tracing, - * calls to these functions must be bound within RCU_NONIDLE. + * Each caller tries to arm the hrtimer on its own CPU, but if the + * hrtimer callbback function is currently running, then + * hrtimer_start() cannot move it and the timer stays on the CPU on + * which it is assigned at the moment. + * + * As this can be called from idle code, the hrtimer_start() + * invocation has to be wrapped with RCU_NONIDLE() as + * hrtimer_start() can call into tracing. */ - RCU_NONIDLE({ - bc_moved = hrtimer_try_to_cancel(&bctimer) >= 0; - if (bc_moved) - hrtimer_start(&bctimer, expires, - HRTIMER_MODE_ABS_PINNED);}); - if (bc_moved) { - /* Bind the "device" to the cpu */ - bc->bound_on = smp_processor_id(); - } else if (bc->bound_on == smp_processor_id()) { - hrtimer_set_expires(&bctimer, expires); - } + RCU_NONIDLE( { + hrtimer_start(&bctimer, expires, HRTIMER_MODE_ABS_PINNED); + /* + * The core tick broadcast mode expects bc->bound_on to be set + * correctly to prevent a CPU which has the broadcast hrtimer + * armed from going deep idle. + * + * As tick_broadcast_lock is held, nothing can change the cpu + * base which was just established in hrtimer_start() above. So + * the below access is safe even without holding the hrtimer + * base lock. + */ + bc->bound_on = bctimer.base->cpu_base->cpu; + } ); return 0; } @@ -102,13 +107,7 @@ static enum hrtimer_restart bc_handler(struct hrtimer *t) { ce_broadcast_hrtimer.event_handler(&ce_broadcast_hrtimer); - switch (ce_broadcast_hrtimer.mode) { - case CLOCK_EVT_MODE_ONESHOT: - if (ce_broadcast_hrtimer.next_event.tv64 != KTIME_MAX) - return HRTIMER_RESTART; - default: - return HRTIMER_NORESTART; - } + return HRTIMER_NORESTART; } void tick_setup_hrtimer_broadcast(void)