Merge git://git.kernel.org/pub/scm/linux/kernel/git/tglx/linux-2.6-x86

* git://git.kernel.org/pub/scm/linux/kernel/git/tglx/linux-2.6-x86: (40 commits)
  x86: HPET add another ICH7 PCI id
  x86: HPET force enable ICH5 suspend/resume fix
  x86: HPET force enable for ICH5
  x86: HPET try to activate force detected hpet
  x86: HPET force enable o ICH7 and later
  x86: HPET restructure hpet code for hpet force enable
  clock events: allow replacement of broadcast timer
  i386/x8664: cleanup the shared hpet code
  i386: Remove the useless #ifdef in i8253.h
  ACPI: remove the now unused ifdef code
  jiffies: remove unused macros
  x86_64: cleanup apic.c after clock events switch
  x86_64: remove now unused code
  x86: unify timex.h variants
  x86: kill 8253pit.h
  x86: disable apic timer for AMD C1E enabled CPUs
  x86: Fix irq0 / local apic timer accounting
  x86_64: convert to clock events
  x86_64: Add (not yet used) clock event functions
  x86_64: prepare idle loop for dynamic ticks
  ...
This commit is contained in:
Linus Torvalds 2007-10-12 15:39:39 -07:00
commit 57c5b9998e
51 changed files with 1309 additions and 1265 deletions

View file

@ -1009,6 +1009,10 @@ and is between 256 and 4096 characters. It is defined in the file
meye.*= [HW] Set MotionEye Camera parameters
See Documentation/video4linux/meye.txt.
mfgpt_irq= [IA-32] Specify the IRQ to use for the
Multi-Function General Purpose Timers on AMD Geode
platforms.
mga= [HW,DRM]
mousedev.tap_time=
@ -1160,6 +1164,9 @@ and is between 256 and 4096 characters. It is defined in the file
nomce [X86-32] Machine Check Exception
nomfgpt [X86-32] Disable Multi-Function General Purpose
Timer usage (for AMD Geode machines).
noreplace-paravirt [X86-32,PV_OPS] Don't patch paravirt_ops
noreplace-smp [X86-32,SMP] Don't replace SMP instructions

View file

@ -1206,6 +1206,16 @@ config SCx200HR_TIMER
processor goes idle (as is done by the scheduler). The
other workaround is idle=poll boot option.
config GEODE_MFGPT_TIMER
bool "Geode Multi-Function General Purpose Timer (MFGPT) events"
depends on MGEODE_LX && GENERIC_TIME && GENERIC_CLOCKEVENTS
default y
help
This driver provides a clock event source based on the MFGPT
timer(s) in the CS5535 and CS5536 companion chip for the geode.
MFGPTs have a better resolution and max interval than the
generic PIT, and are suitable for use as high-res timers.
config K8_NB
def_bool y
depends on AGP_AMD64

View file

@ -7,7 +7,7 @@ extra-y := head_32.o init_task_32.o vmlinux.lds
obj-y := process_32.o signal_32.o entry_32.o traps_32.o irq_32.o \
ptrace_32.o time_32.o ioport_32.o ldt_32.o setup_32.o i8259_32.o sys_i386_32.o \
pci-dma_32.o i386_ksyms_32.o i387_32.o bootflag.o e820_32.o\
quirks.o i8237.o topology.o alternative.o i8253_32.o tsc_32.o
quirks.o i8237.o topology.o alternative.o i8253.o tsc_32.o
obj-$(CONFIG_STACKTRACE) += stacktrace.o
obj-y += cpu/
@ -37,9 +37,9 @@ obj-$(CONFIG_EFI) += efi_32.o efi_stub_32.o
obj-$(CONFIG_DOUBLEFAULT) += doublefault_32.o
obj-$(CONFIG_VM86) += vm86_32.o
obj-$(CONFIG_EARLY_PRINTK) += early_printk.o
obj-$(CONFIG_HPET_TIMER) += hpet_32.o
obj-$(CONFIG_HPET_TIMER) += hpet.o
obj-$(CONFIG_K8_NB) += k8.o
obj-$(CONFIG_MGEODE_LX) += geode_32.o
obj-$(CONFIG_MGEODE_LX) += geode_32.o mfgpt_32.o
obj-$(CONFIG_VMI) += vmi_32.o vmiclock_32.o
obj-$(CONFIG_PARAVIRT) += paravirt_32.o

View file

@ -8,8 +8,8 @@ obj-y := process_64.o signal_64.o entry_64.o traps_64.o irq_64.o \
ptrace_64.o time_64.o ioport_64.o ldt_64.o setup_64.o i8259_64.o sys_x86_64.o \
x8664_ksyms_64.o i387_64.o syscall_64.o vsyscall_64.o \
setup64.o bootflag.o e820_64.o reboot_64.o quirks.o i8237.o \
pci-dma_64.o pci-nommu_64.o alternative.o hpet_64.o tsc_64.o bugs_64.o \
perfctr-watchdog.o
pci-dma_64.o pci-nommu_64.o alternative.o hpet.o tsc_64.o bugs_64.o \
perfctr-watchdog.o i8253.o
obj-$(CONFIG_STACKTRACE) += stacktrace.o
obj-$(CONFIG_X86_MCE) += mce_64.o therm_throt.o

View file

@ -25,6 +25,7 @@
#include <linux/sysdev.h>
#include <linux/module.h>
#include <linux/ioport.h>
#include <linux/clockchips.h>
#include <asm/atomic.h>
#include <asm/smp.h>
@ -39,12 +40,9 @@
#include <asm/hpet.h>
#include <asm/apic.h>
int apic_mapped;
int apic_verbosity;
int apic_runs_main_timer;
int apic_calibrate_pmtmr __initdata;
int disable_apic_timer __initdata;
int disable_apic_timer __cpuinitdata;
static int apic_calibrate_pmtmr __initdata;
/* Local APIC timer works in C2? */
int local_apic_timer_c2_ok;
@ -56,14 +54,78 @@ static struct resource lapic_resource = {
.flags = IORESOURCE_MEM | IORESOURCE_BUSY,
};
/*
* cpu_mask that denotes the CPUs that needs timer interrupt coming in as
* IPIs in place of local APIC timers
*/
static cpumask_t timer_interrupt_broadcast_ipi_mask;
static unsigned int calibration_result;
/* Using APIC to generate smp_local_timer_interrupt? */
int using_apic_timer __read_mostly = 0;
static int lapic_next_event(unsigned long delta,
struct clock_event_device *evt);
static void lapic_timer_setup(enum clock_event_mode mode,
struct clock_event_device *evt);
static void lapic_timer_broadcast(cpumask_t mask);
static void __setup_APIC_LVTT(unsigned int clocks, int oneshot, int irqen);
static struct clock_event_device lapic_clockevent = {
.name = "lapic",
.features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT
| CLOCK_EVT_FEAT_C3STOP | CLOCK_EVT_FEAT_DUMMY,
.shift = 32,
.set_mode = lapic_timer_setup,
.set_next_event = lapic_next_event,
.broadcast = lapic_timer_broadcast,
.rating = 100,
.irq = -1,
};
static DEFINE_PER_CPU(struct clock_event_device, lapic_events);
static int lapic_next_event(unsigned long delta,
struct clock_event_device *evt)
{
apic_write(APIC_TMICT, delta);
return 0;
}
static void lapic_timer_setup(enum clock_event_mode mode,
struct clock_event_device *evt)
{
unsigned long flags;
unsigned int v;
/* Lapic used as dummy for broadcast ? */
if (evt->features & CLOCK_EVT_FEAT_DUMMY)
return;
local_irq_save(flags);
switch (mode) {
case CLOCK_EVT_MODE_PERIODIC:
case CLOCK_EVT_MODE_ONESHOT:
__setup_APIC_LVTT(calibration_result,
mode != CLOCK_EVT_MODE_PERIODIC, 1);
break;
case CLOCK_EVT_MODE_UNUSED:
case CLOCK_EVT_MODE_SHUTDOWN:
v = apic_read(APIC_LVTT);
v |= (APIC_LVT_MASKED | LOCAL_TIMER_VECTOR);
apic_write(APIC_LVTT, v);
break;
case CLOCK_EVT_MODE_RESUME:
/* Nothing to do here */
break;
}
local_irq_restore(flags);
}
/*
* Local APIC timer broadcast function
*/
static void lapic_timer_broadcast(cpumask_t mask)
{
#ifdef CONFIG_SMP
send_IPI_mask(mask, LOCAL_TIMER_VECTOR);
#endif
}
static void apic_pm_activate(void);
@ -184,7 +246,10 @@ void disconnect_bsp_APIC(int virt_wire_setup)
apic_write(APIC_SPIV, value);
if (!virt_wire_setup) {
/* For LVT0 make it edge triggered, active high, external and enabled */
/*
* For LVT0 make it edge triggered, active high,
* external and enabled
*/
value = apic_read(APIC_LVT0);
value &= ~(APIC_MODE_MASK | APIC_SEND_PENDING |
APIC_INPUT_POLARITY | APIC_LVT_REMOTE_IRR |
@ -420,10 +485,12 @@ void __cpuinit setup_local_APIC (void)
value = apic_read(APIC_LVT0) & APIC_LVT_MASKED;
if (!smp_processor_id() && !value) {
value = APIC_DM_EXTINT;
apic_printk(APIC_VERBOSE, "enabled ExtINT on CPU#%d\n", smp_processor_id());
apic_printk(APIC_VERBOSE, "enabled ExtINT on CPU#%d\n",
smp_processor_id());
} else {
value = APIC_DM_EXTINT | APIC_LVT_MASKED;
apic_printk(APIC_VERBOSE, "masked ExtINT on CPU#%d\n", smp_processor_id());
apic_printk(APIC_VERBOSE, "masked ExtINT on CPU#%d\n",
smp_processor_id());
}
apic_write(APIC_LVT0, value);
@ -706,8 +773,8 @@ void __init init_apic_mappings(void)
apic_phys = mp_lapic_addr;
set_fixmap_nocache(FIX_APIC_BASE, apic_phys);
apic_mapped = 1;
apic_printk(APIC_VERBOSE,"mapped APIC to %16lx (%16lx)\n", APIC_BASE, apic_phys);
apic_printk(APIC_VERBOSE, "mapped APIC to %16lx (%16lx)\n",
APIC_BASE, apic_phys);
/* Put local APIC into the resource map. */
lapic_resource.start = apic_phys;
@ -730,12 +797,14 @@ void __init init_apic_mappings(void)
if (smp_found_config) {
ioapic_phys = mp_ioapics[i].mpc_apicaddr;
} else {
ioapic_phys = (unsigned long) alloc_bootmem_pages(PAGE_SIZE);
ioapic_phys = (unsigned long)
alloc_bootmem_pages(PAGE_SIZE);
ioapic_phys = __pa(ioapic_phys);
}
set_fixmap_nocache(idx, ioapic_phys);
apic_printk(APIC_VERBOSE,"mapped IOAPIC to %016lx (%016lx)\n",
__fix_to_virt(idx), ioapic_phys);
apic_printk(APIC_VERBOSE,
"mapped IOAPIC to %016lx (%016lx)\n",
__fix_to_virt(idx), ioapic_phys);
idx++;
if (ioapic_res != NULL) {
@ -758,16 +827,14 @@ void __init init_apic_mappings(void)
* P5 APIC double write bug.
*/
#define APIC_DIVISOR 16
static void __setup_APIC_LVTT(unsigned int clocks)
static void __setup_APIC_LVTT(unsigned int clocks, int oneshot, int irqen)
{
unsigned int lvtt_value, tmp_value;
int cpu = smp_processor_id();
lvtt_value = APIC_LVT_TIMER_PERIODIC | LOCAL_TIMER_VECTOR;
if (cpu_isset(cpu, timer_interrupt_broadcast_ipi_mask))
lvtt_value = LOCAL_TIMER_VECTOR;
if (!oneshot)
lvtt_value |= APIC_LVT_TIMER_PERIODIC;
if (!irqen)
lvtt_value |= APIC_LVT_MASKED;
apic_write(APIC_LVTT, lvtt_value);
@ -780,44 +847,18 @@ static void __setup_APIC_LVTT(unsigned int clocks)
& ~(APIC_TDR_DIV_1 | APIC_TDR_DIV_TMBASE))
| APIC_TDR_DIV_16);
apic_write(APIC_TMICT, clocks/APIC_DIVISOR);
if (!oneshot)
apic_write(APIC_TMICT, clocks);
}
static void setup_APIC_timer(unsigned int clocks)
static void setup_APIC_timer(void)
{
unsigned long flags;
struct clock_event_device *levt = &__get_cpu_var(lapic_events);
local_irq_save(flags);
memcpy(levt, &lapic_clockevent, sizeof(*levt));
levt->cpumask = cpumask_of_cpu(smp_processor_id());
/* wait for irq slice */
if (hpet_address && hpet_use_timer) {
u32 trigger = hpet_readl(HPET_T0_CMP);
while (hpet_readl(HPET_T0_CMP) == trigger)
/* do nothing */ ;
} else {
int c1, c2;
outb_p(0x00, 0x43);
c2 = inb_p(0x40);
c2 |= inb_p(0x40) << 8;
do {
c1 = c2;
outb_p(0x00, 0x43);
c2 = inb_p(0x40);
c2 |= inb_p(0x40) << 8;
} while (c2 - c1 < 300);
}
__setup_APIC_LVTT(clocks);
/* Turn off PIT interrupt if we use APIC timer as main timer.
Only works with the PM timer right now
TBD fix it for HPET too. */
if ((pmtmr_ioport != 0) &&
smp_processor_id() == boot_cpu_id &&
apic_runs_main_timer == 1 &&
!cpu_isset(boot_cpu_id, timer_interrupt_broadcast_ipi_mask)) {
stop_timer_interrupt();
apic_runs_main_timer++;
}
local_irq_restore(flags);
clockevents_register_device(levt);
}
/*
@ -835,17 +876,22 @@ static void setup_APIC_timer(unsigned int clocks)
#define TICK_COUNT 100000000
static int __init calibrate_APIC_clock(void)
static void __init calibrate_APIC_clock(void)
{
unsigned apic, apic_start;
unsigned long tsc, tsc_start;
int result;
local_irq_disable();
/*
* Put whatever arbitrary (but long enough) timeout
* value into the APIC clock, we just want to get the
* counter running for calibration.
*
* No interrupt enable !
*/
__setup_APIC_LVTT(4000000000);
__setup_APIC_LVTT(250000000, 0, 0);
apic_start = apic_read(APIC_TMCCT);
#ifdef CONFIG_X86_PM_TIMER
@ -867,123 +913,62 @@ static int __init calibrate_APIC_clock(void)
result = (apic_start - apic) * 1000L * tsc_khz /
(tsc - tsc_start);
}
printk("result %d\n", result);
local_irq_enable();
printk(KERN_DEBUG "APIC timer calibration result %d\n", result);
printk(KERN_INFO "Detected %d.%03d MHz APIC timer.\n",
result / 1000 / 1000, result / 1000 % 1000);
return result * APIC_DIVISOR / HZ;
}
/* Calculate the scaled math multiplication factor */
lapic_clockevent.mult = div_sc(result, NSEC_PER_SEC, 32);
lapic_clockevent.max_delta_ns =
clockevent_delta2ns(0x7FFFFF, &lapic_clockevent);
lapic_clockevent.min_delta_ns =
clockevent_delta2ns(0xF, &lapic_clockevent);
static unsigned int calibration_result;
calibration_result = result / HZ;
}
void __init setup_boot_APIC_clock (void)
{
/*
* The local apic timer can be disabled via the kernel commandline.
* Register the lapic timer as a dummy clock event source on SMP
* systems, so the broadcast mechanism is used. On UP systems simply
* ignore it.
*/
if (disable_apic_timer) {
printk(KERN_INFO "Disabling APIC timer\n");
/* No broadcast on UP ! */
if (num_possible_cpus() > 1)
setup_APIC_timer();
return;
}
printk(KERN_INFO "Using local APIC timer interrupts.\n");
using_apic_timer = 1;
calibrate_APIC_clock();
local_irq_disable();
calibration_result = calibrate_APIC_clock();
/*
* Now set up the timer for real.
* If nmi_watchdog is set to IO_APIC, we need the
* PIT/HPET going. Otherwise register lapic as a dummy
* device.
*/
setup_APIC_timer(calibration_result);
if (nmi_watchdog != NMI_IO_APIC)
lapic_clockevent.features &= ~CLOCK_EVT_FEAT_DUMMY;
else
printk(KERN_WARNING "APIC timer registered as dummy,"
" due to nmi_watchdog=1!\n");
local_irq_enable();
setup_APIC_timer();
}
void __cpuinit setup_secondary_APIC_clock(void)
{
local_irq_disable(); /* FIXME: Do we need this? --RR */
setup_APIC_timer(calibration_result);
local_irq_enable();
setup_APIC_timer();
}
void disable_APIC_timer(void)
{
if (using_apic_timer) {
unsigned long v;
v = apic_read(APIC_LVTT);
/*
* When an illegal vector value (0-15) is written to an LVT
* entry and delivery mode is Fixed, the APIC may signal an
* illegal vector error, with out regard to whether the mask
* bit is set or whether an interrupt is actually seen on input.
*
* Boot sequence might call this function when the LVTT has
* '0' vector value. So make sure vector field is set to
* valid value.
*/
v |= (APIC_LVT_MASKED | LOCAL_TIMER_VECTOR);
apic_write(APIC_LVTT, v);
}
}
void enable_APIC_timer(void)
{
int cpu = smp_processor_id();
if (using_apic_timer &&
!cpu_isset(cpu, timer_interrupt_broadcast_ipi_mask)) {
unsigned long v;
v = apic_read(APIC_LVTT);
apic_write(APIC_LVTT, v & ~APIC_LVT_MASKED);
}
}
void switch_APIC_timer_to_ipi(void *cpumask)
{
cpumask_t mask = *(cpumask_t *)cpumask;
int cpu = smp_processor_id();
if (cpu_isset(cpu, mask) &&
!cpu_isset(cpu, timer_interrupt_broadcast_ipi_mask)) {
disable_APIC_timer();
cpu_set(cpu, timer_interrupt_broadcast_ipi_mask);
}
}
EXPORT_SYMBOL(switch_APIC_timer_to_ipi);
void smp_send_timer_broadcast_ipi(void)
{
int cpu = smp_processor_id();
cpumask_t mask;
cpus_and(mask, cpu_online_map, timer_interrupt_broadcast_ipi_mask);
if (cpu_isset(cpu, mask)) {
cpu_clear(cpu, mask);
add_pda(apic_timer_irqs, 1);
smp_local_timer_interrupt();
}
if (!cpus_empty(mask)) {
send_IPI_mask(mask, LOCAL_TIMER_VECTOR);
}
}
void switch_ipi_to_APIC_timer(void *cpumask)
{
cpumask_t mask = *(cpumask_t *)cpumask;
int cpu = smp_processor_id();
if (cpu_isset(cpu, mask) &&
cpu_isset(cpu, timer_interrupt_broadcast_ipi_mask)) {
cpu_clear(cpu, timer_interrupt_broadcast_ipi_mask);
enable_APIC_timer();
}
}
EXPORT_SYMBOL(switch_ipi_to_APIC_timer);
int setup_profiling_timer(unsigned int multiplier)
{
return -EINVAL;
@ -997,8 +982,6 @@ void setup_APIC_extended_lvt(unsigned char lvt_off, unsigned char vector,
apic_write(reg, v);
}
#undef APIC_DIVISOR
/*
* Local timer interrupt handler. It does both profiling and
* process statistics/rescheduling.
@ -1011,22 +994,34 @@ void setup_APIC_extended_lvt(unsigned char lvt_off, unsigned char vector,
void smp_local_timer_interrupt(void)
{
profile_tick(CPU_PROFILING);
#ifdef CONFIG_SMP
update_process_times(user_mode(get_irq_regs()));
#endif
if (apic_runs_main_timer > 1 && smp_processor_id() == boot_cpu_id)
main_timer_handler();
int cpu = smp_processor_id();
struct clock_event_device *evt = &per_cpu(lapic_events, cpu);
/*
* We take the 'long' return path, and there every subsystem
* grabs the appropriate locks (kernel lock/ irq lock).
* Normally we should not be here till LAPIC has been initialized but
* in some cases like kdump, its possible that there is a pending LAPIC
* timer interrupt from previous kernel's context and is delivered in
* new kernel the moment interrupts are enabled.
*
* We might want to decouple profiling from the 'long path',
* and do the profiling totally in assembly.
*
* Currently this isn't too much of an issue (performance wise),
* we can take more than 100K local irqs per second on a 100 MHz P5.
* Interrupts are enabled early and LAPIC is setup much later, hence
* its possible that when we get here evt->event_handler is NULL.
* Check for event_handler being NULL and discard the interrupt as
* spurious.
*/
if (!evt->event_handler) {
printk(KERN_WARNING
"Spurious LAPIC timer interrupt on cpu %d\n", cpu);
/* Switch it off */
lapic_timer_setup(CLOCK_EVT_MODE_SHUTDOWN, evt);
return;
}
/*
* the NMI deadlock-detector uses this.
*/
add_pda(apic_timer_irqs, 1);
evt->event_handler(evt);
}
/*
@ -1041,11 +1036,6 @@ void smp_apic_timer_interrupt(struct pt_regs *regs)
{
struct pt_regs *old_regs = set_irq_regs(regs);
/*
* the NMI deadlock-detector uses this.
*/
add_pda(apic_timer_irqs, 1);
/*
* NOTE! We'd better ACK the irq immediately,
* because timer handling can be slow.
@ -1225,29 +1215,13 @@ static __init int setup_noapictimer(char *str)
disable_apic_timer = 1;
return 1;
}
static __init int setup_apicmaintimer(char *str)
{
apic_runs_main_timer = 1;
nohpet = 1;
return 1;
}
__setup("apicmaintimer", setup_apicmaintimer);
static __init int setup_noapicmaintimer(char *str)
{
apic_runs_main_timer = -1;
return 1;
}
__setup("noapicmaintimer", setup_noapicmaintimer);
__setup("noapictimer", setup_noapictimer);
static __init int setup_apicpmtimer(char *s)
{
apic_calibrate_pmtmr = 1;
notsc_setup(NULL);
return setup_apicmaintimer(NULL);
return 0;
}
__setup("apicpmtimer", setup_apicpmtimer);
__setup("noapictimer", setup_noapictimer);

View file

@ -145,10 +145,14 @@ EXPORT_SYMBOL_GPL(geode_gpio_setup_event);
static int __init geode_southbridge_init(void)
{
int timers;
if (!is_geode())
return -ENODEV;
init_lbars();
timers = geode_mfgpt_detect();
printk(KERN_INFO "geode: %d MFGPT timers available.\n", timers);
return 0;
}

View file

@ -1,5 +1,6 @@
#include <linux/clocksource.h>
#include <linux/clockchips.h>
#include <linux/delay.h>
#include <linux/errno.h>
#include <linux/hpet.h>
#include <linux/init.h>
@ -7,11 +8,11 @@
#include <linux/pm.h>
#include <linux/delay.h>
#include <asm/fixmap.h>
#include <asm/hpet.h>
#include <asm/i8253.h>
#include <asm/io.h>
extern struct clock_event_device *global_clock_event;
#define HPET_MASK CLOCKSOURCE_MASK(32)
#define HPET_SHIFT 22
@ -22,9 +23,9 @@ extern struct clock_event_device *global_clock_event;
* HPET address is set in acpi/boot.c, when an ACPI entry exists
*/
unsigned long hpet_address;
static void __iomem * hpet_virt_address;
static void __iomem *hpet_virt_address;
static inline unsigned long hpet_readl(unsigned long a)
unsigned long hpet_readl(unsigned long a)
{
return readl(hpet_virt_address + a);
}
@ -34,6 +35,36 @@ static inline void hpet_writel(unsigned long d, unsigned long a)
writel(d, hpet_virt_address + a);
}
#ifdef CONFIG_X86_64
#include <asm/pgtable.h>
static inline void hpet_set_mapping(void)
{
set_fixmap_nocache(FIX_HPET_BASE, hpet_address);
__set_fixmap(VSYSCALL_HPET, hpet_address, PAGE_KERNEL_VSYSCALL_NOCACHE);
hpet_virt_address = (void __iomem *)fix_to_virt(FIX_HPET_BASE);
}
static inline void hpet_clear_mapping(void)
{
hpet_virt_address = NULL;
}
#else
static inline void hpet_set_mapping(void)
{
hpet_virt_address = ioremap_nocache(hpet_address, HPET_MMAP_SIZE);
}
static inline void hpet_clear_mapping(void)
{
iounmap(hpet_virt_address);
hpet_virt_address = NULL;
}
#endif
/*
* HPET command line enable / disable
*/
@ -49,6 +80,13 @@ static int __init hpet_setup(char* str)
}
__setup("hpet=", hpet_setup);
static int __init disable_hpet(char *str)
{
boot_hpet_disable = 1;
return 1;
}
__setup("nohpet", disable_hpet);
static inline int is_hpet_capable(void)
{
return (!boot_hpet_disable && hpet_address);
@ -83,7 +121,7 @@ static void hpet_reserve_platform_timers(unsigned long id)
memset(&hd, 0, sizeof (hd));
hd.hd_phys_address = hpet_address;
hd.hd_address = hpet_virt_address;
hd.hd_address = hpet;
hd.hd_nirqs = nrtimers;
hd.hd_flags = HPET_DATA_PLATFORM;
hpet_reserve_timer(&hd, 0);
@ -111,9 +149,9 @@ static void hpet_reserve_platform_timers(unsigned long id) { }
*/
static unsigned long hpet_period;
static void hpet_set_mode(enum clock_event_mode mode,
static void hpet_legacy_set_mode(enum clock_event_mode mode,
struct clock_event_device *evt);
static int hpet_next_event(unsigned long delta,
static int hpet_legacy_next_event(unsigned long delta,
struct clock_event_device *evt);
/*
@ -122,10 +160,11 @@ static int hpet_next_event(unsigned long delta,
static struct clock_event_device hpet_clockevent = {
.name = "hpet",
.features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT,
.set_mode = hpet_set_mode,
.set_next_event = hpet_next_event,
.set_mode = hpet_legacy_set_mode,
.set_next_event = hpet_legacy_next_event,
.shift = 32,
.irq = 0,
.rating = 50,
};
static void hpet_start_counter(void)
@ -140,7 +179,18 @@ static void hpet_start_counter(void)
hpet_writel(cfg, HPET_CFG);
}
static void hpet_enable_int(void)
static void hpet_resume_device(void)
{
force_hpet_resume();
}
static void hpet_restart_counter(void)
{
hpet_resume_device();
hpet_start_counter();
}
static void hpet_enable_legacy_int(void)
{
unsigned long cfg = hpet_readl(HPET_CFG);
@ -149,7 +199,39 @@ static void hpet_enable_int(void)
hpet_legacy_int_enabled = 1;
}
static void hpet_set_mode(enum clock_event_mode mode,
static void hpet_legacy_clockevent_register(void)
{
uint64_t hpet_freq;
/* Start HPET legacy interrupts */
hpet_enable_legacy_int();
/*
* The period is a femto seconds value. We need to calculate the
* scaled math multiplication factor for nanosecond to hpet tick
* conversion.
*/
hpet_freq = 1000000000000000ULL;
do_div(hpet_freq, hpet_period);
hpet_clockevent.mult = div_sc((unsigned long) hpet_freq,
NSEC_PER_SEC, 32);
/* Calculate the min / max delta */
hpet_clockevent.max_delta_ns = clockevent_delta2ns(0x7FFFFFFF,
&hpet_clockevent);
hpet_clockevent.min_delta_ns = clockevent_delta2ns(0x30,
&hpet_clockevent);
/*
* Start hpet with the boot cpu mask and make it
* global after the IO_APIC has been initialized.
*/
hpet_clockevent.cpumask = cpumask_of_cpu(smp_processor_id());
clockevents_register_device(&hpet_clockevent);
global_clock_event = &hpet_clockevent;
printk(KERN_DEBUG "hpet clockevent registered\n");
}
static void hpet_legacy_set_mode(enum clock_event_mode mode,
struct clock_event_device *evt)
{
unsigned long cfg, cmp, now;
@ -190,12 +272,12 @@ static void hpet_set_mode(enum clock_event_mode mode,
break;
case CLOCK_EVT_MODE_RESUME:
hpet_enable_int();
hpet_enable_legacy_int();
break;
}
}
static int hpet_next_event(unsigned long delta,
static int hpet_legacy_next_event(unsigned long delta,
struct clock_event_device *evt)
{
unsigned long cnt;
@ -215,6 +297,13 @@ static cycle_t read_hpet(void)
return (cycle_t)hpet_readl(HPET_COUNTER);
}
#ifdef CONFIG_X86_64
static cycle_t __vsyscall_fn vread_hpet(void)
{
return readl((const void __iomem *)fix_to_virt(VSYSCALL_HPET) + 0xf0);
}
#endif
static struct clocksource clocksource_hpet = {
.name = "hpet",
.rating = 250,
@ -222,61 +311,17 @@ static struct clocksource clocksource_hpet = {
.mask = HPET_MASK,
.shift = HPET_SHIFT,
.flags = CLOCK_SOURCE_IS_CONTINUOUS,
.resume = hpet_start_counter,
.resume = hpet_restart_counter,
#ifdef CONFIG_X86_64
.vread = vread_hpet,
#endif
};
/*
* Try to setup the HPET timer
*/
int __init hpet_enable(void)
static int hpet_clocksource_register(void)
{
unsigned long id;
uint64_t hpet_freq;
u64 tmp, start, now;
cycle_t t1;
if (!is_hpet_capable())
return 0;
hpet_virt_address = ioremap_nocache(hpet_address, HPET_MMAP_SIZE);
/*
* Read the period and check for a sane value:
*/
hpet_period = hpet_readl(HPET_PERIOD);
if (hpet_period < HPET_MIN_PERIOD || hpet_period > HPET_MAX_PERIOD)
goto out_nohpet;
/*
* The period is a femto seconds value. We need to calculate the
* scaled math multiplication factor for nanosecond to hpet tick
* conversion.
*/
hpet_freq = 1000000000000000ULL;
do_div(hpet_freq, hpet_period);
hpet_clockevent.mult = div_sc((unsigned long) hpet_freq,
NSEC_PER_SEC, 32);
/* Calculate the min / max delta */
hpet_clockevent.max_delta_ns = clockevent_delta2ns(0x7FFFFFFF,
&hpet_clockevent);
hpet_clockevent.min_delta_ns = clockevent_delta2ns(0x30,
&hpet_clockevent);
/*
* Read the HPET ID register to retrieve the IRQ routing
* information and the number of channels
*/
id = hpet_readl(HPET_ID);
#ifdef CONFIG_HPET_EMULATE_RTC
/*
* The legacy routing mode needs at least two channels, tick timer
* and the rtc emulation channel.
*/
if (!(id & HPET_ID_NUMBER))
goto out_nohpet;
#endif
/* Start the counter */
hpet_start_counter();
@ -298,7 +343,7 @@ int __init hpet_enable(void)
if (t1 == read_hpet()) {
printk(KERN_WARNING
"HPET counter not counting. HPET disabled\n");
goto out_nohpet;
return -ENODEV;
}
/* Initialize and register HPET clocksource
@ -319,27 +364,84 @@ int __init hpet_enable(void)
clocksource_register(&clocksource_hpet);
return 0;
}
/*
* Try to setup the HPET timer
*/
int __init hpet_enable(void)
{
unsigned long id;
if (!is_hpet_capable())
return 0;
hpet_set_mapping();
/*
* Read the period and check for a sane value:
*/
hpet_period = hpet_readl(HPET_PERIOD);
if (hpet_period < HPET_MIN_PERIOD || hpet_period > HPET_MAX_PERIOD)
goto out_nohpet;
/*
* Read the HPET ID register to retrieve the IRQ routing
* information and the number of channels
*/
id = hpet_readl(HPET_ID);
#ifdef CONFIG_HPET_EMULATE_RTC
/*
* The legacy routing mode needs at least two channels, tick timer
* and the rtc emulation channel.
*/
if (!(id & HPET_ID_NUMBER))
goto out_nohpet;
#endif
if (hpet_clocksource_register())
goto out_nohpet;
if (id & HPET_ID_LEGSUP) {
hpet_enable_int();
hpet_reserve_platform_timers(id);
/*
* Start hpet with the boot cpu mask and make it
* global after the IO_APIC has been initialized.
*/
hpet_clockevent.cpumask = cpumask_of_cpu(smp_processor_id());
clockevents_register_device(&hpet_clockevent);
global_clock_event = &hpet_clockevent;
hpet_legacy_clockevent_register();
return 1;
}
return 0;
out_nohpet:
iounmap(hpet_virt_address);
hpet_virt_address = NULL;
hpet_clear_mapping();
boot_hpet_disable = 1;
return 0;
}
/*
* Needs to be late, as the reserve_timer code calls kalloc !
*
* Not a problem on i386 as hpet_enable is called from late_time_init,
* but on x86_64 it is necessary !
*/
static __init int hpet_late_init(void)
{
if (boot_hpet_disable)
return -ENODEV;
if (!hpet_address) {
if (!force_hpet_address)
return -ENODEV;
hpet_address = force_hpet_address;
hpet_enable();
if (!hpet_virt_address)
return -ENODEV;
}
hpet_reserve_platform_timers(hpet_readl(HPET_ID));
return 0;
}
fs_initcall(hpet_late_init);
#ifdef CONFIG_HPET_EMULATE_RTC

View file

@ -1,493 +0,0 @@
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/init.h>
#include <linux/mc146818rtc.h>
#include <linux/time.h>
#include <linux/clocksource.h>
#include <linux/ioport.h>
#include <linux/acpi.h>
#include <linux/hpet.h>
#include <asm/pgtable.h>
#include <asm/vsyscall.h>
#include <asm/timex.h>
#include <asm/hpet.h>
#define HPET_MASK 0xFFFFFFFF
#define HPET_SHIFT 22
/* FSEC = 10^-15 NSEC = 10^-9 */
#define FSEC_PER_NSEC 1000000
int nohpet __initdata;
unsigned long hpet_address;
unsigned long hpet_period; /* fsecs / HPET clock */
unsigned long hpet_tick; /* HPET clocks / interrupt */
int hpet_use_timer; /* Use counter of hpet for time keeping,
* otherwise PIT
*/
#ifdef CONFIG_HPET
static __init int late_hpet_init(void)
{
struct hpet_data hd;
unsigned int ntimer;
if (!hpet_address)
return 0;
memset(&hd, 0, sizeof(hd));
ntimer = hpet_readl(HPET_ID);
ntimer = (ntimer & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT;
ntimer++;
/*
* Register with driver.
* Timer0 and Timer1 is used by platform.
*/
hd.hd_phys_address = hpet_address;
hd.hd_address = (void __iomem *)fix_to_virt(FIX_HPET_BASE);
hd.hd_nirqs = ntimer;
hd.hd_flags = HPET_DATA_PLATFORM;
hpet_reserve_timer(&hd, 0);
#ifdef CONFIG_HPET_EMULATE_RTC
hpet_reserve_timer(&hd, 1);
#endif
hd.hd_irq[0] = HPET_LEGACY_8254;
hd.hd_irq[1] = HPET_LEGACY_RTC;
if (ntimer > 2) {
struct hpet *hpet;
struct hpet_timer *timer;
int i;
hpet = (struct hpet *) fix_to_virt(FIX_HPET_BASE);
timer = &hpet->hpet_timers[2];
for (i = 2; i < ntimer; timer++, i++)
hd.hd_irq[i] = (timer->hpet_config &
Tn_INT_ROUTE_CNF_MASK) >>
Tn_INT_ROUTE_CNF_SHIFT;
}
hpet_alloc(&hd);
return 0;
}
fs_initcall(late_hpet_init);
#endif
int hpet_timer_stop_set_go(unsigned long tick)
{
unsigned int cfg;
/*
* Stop the timers and reset the main counter.
*/
cfg = hpet_readl(HPET_CFG);
cfg &= ~(HPET_CFG_ENABLE | HPET_CFG_LEGACY);
hpet_writel(cfg, HPET_CFG);
hpet_writel(0, HPET_COUNTER);
hpet_writel(0, HPET_COUNTER + 4);
/*
* Set up timer 0, as periodic with first interrupt to happen at hpet_tick,
* and period also hpet_tick.
*/
if (hpet_use_timer) {
hpet_writel(HPET_TN_ENABLE | HPET_TN_PERIODIC | HPET_TN_SETVAL |
HPET_TN_32BIT, HPET_T0_CFG);
hpet_writel(hpet_tick, HPET_T0_CMP); /* next interrupt */
hpet_writel(hpet_tick, HPET_T0_CMP); /* period */
cfg |= HPET_CFG_LEGACY;
}
/*
* Go!
*/
cfg |= HPET_CFG_ENABLE;
hpet_writel(cfg, HPET_CFG);
return 0;
}
static cycle_t read_hpet(void)
{
return (cycle_t)hpet_readl(HPET_COUNTER);
}
static cycle_t __vsyscall_fn vread_hpet(void)
{
return readl((void __iomem *)fix_to_virt(VSYSCALL_HPET) + 0xf0);
}
struct clocksource clocksource_hpet = {
.name = "hpet",
.rating = 250,
.read = read_hpet,
.mask = (cycle_t)HPET_MASK,
.mult = 0, /* set below */
.shift = HPET_SHIFT,
.flags = CLOCK_SOURCE_IS_CONTINUOUS,
.vread = vread_hpet,
};
int __init hpet_arch_init(void)
{
unsigned int id;
u64 tmp;
if (!hpet_address)
return -1;
set_fixmap_nocache(FIX_HPET_BASE, hpet_address);
__set_fixmap(VSYSCALL_HPET, hpet_address, PAGE_KERNEL_VSYSCALL_NOCACHE);
/*
* Read the period, compute tick and quotient.
*/
id = hpet_readl(HPET_ID);
if (!(id & HPET_ID_VENDOR) || !(id & HPET_ID_NUMBER))
return -1;
hpet_period = hpet_readl(HPET_PERIOD);
if (hpet_period < 100000 || hpet_period > 100000000)
return -1;
hpet_tick = (FSEC_PER_TICK + hpet_period / 2) / hpet_period;
hpet_use_timer = (id & HPET_ID_LEGSUP);
/*
* hpet period is in femto seconds per cycle
* so we need to convert this to ns/cyc units
* aproximated by mult/2^shift
*
* fsec/cyc * 1nsec/1000000fsec = nsec/cyc = mult/2^shift
* fsec/cyc * 1ns/1000000fsec * 2^shift = mult
* fsec/cyc * 2^shift * 1nsec/1000000fsec = mult
* (fsec/cyc << shift)/1000000 = mult
* (hpet_period << shift)/FSEC_PER_NSEC = mult
*/
tmp = (u64)hpet_period << HPET_SHIFT;
do_div(tmp, FSEC_PER_NSEC);
clocksource_hpet.mult = (u32)tmp;
clocksource_register(&clocksource_hpet);
return hpet_timer_stop_set_go(hpet_tick);
}
int hpet_reenable(void)
{
return hpet_timer_stop_set_go(hpet_tick);
}
/*
* calibrate_tsc() calibrates the processor TSC in a very simple way, comparing
* it to the HPET timer of known frequency.
*/
#define TICK_COUNT 100000000
#define SMI_THRESHOLD 50000
#define MAX_TRIES 5
/*
* Some platforms take periodic SMI interrupts with 5ms duration. Make sure none
* occurs between the reads of the hpet & TSC.
*/
static void __init read_hpet_tsc(int *hpet, int *tsc)
{
int tsc1, tsc2, hpet1, i;
for (i = 0; i < MAX_TRIES; i++) {
tsc1 = get_cycles_sync();
hpet1 = hpet_readl(HPET_COUNTER);
tsc2 = get_cycles_sync();
if ((tsc2 - tsc1) < SMI_THRESHOLD)
break;
}
*hpet = hpet1;
*tsc = tsc2;
}
unsigned int __init hpet_calibrate_tsc(void)
{
int tsc_start, hpet_start;
int tsc_now, hpet_now;
unsigned long flags;
local_irq_save(flags);
read_hpet_tsc(&hpet_start, &tsc_start);
do {
local_irq_disable();
read_hpet_tsc(&hpet_now, &tsc_now);
local_irq_restore(flags);
} while ((tsc_now - tsc_start) < TICK_COUNT &&
(hpet_now - hpet_start) < TICK_COUNT);
return (tsc_now - tsc_start) * 1000000000L
/ ((hpet_now - hpet_start) * hpet_period / 1000);
}
#ifdef CONFIG_HPET_EMULATE_RTC
/* HPET in LegacyReplacement Mode eats up RTC interrupt line. When, HPET
* is enabled, we support RTC interrupt functionality in software.
* RTC has 3 kinds of interrupts:
* 1) Update Interrupt - generate an interrupt, every sec, when RTC clock
* is updated
* 2) Alarm Interrupt - generate an interrupt at a specific time of day
* 3) Periodic Interrupt - generate periodic interrupt, with frequencies
* 2Hz-8192Hz (2Hz-64Hz for non-root user) (all freqs in powers of 2)
* (1) and (2) above are implemented using polling at a frequency of
* 64 Hz. The exact frequency is a tradeoff between accuracy and interrupt
* overhead. (DEFAULT_RTC_INT_FREQ)
* For (3), we use interrupts at 64Hz or user specified periodic
* frequency, whichever is higher.
*/
#include <linux/rtc.h>
#define DEFAULT_RTC_INT_FREQ 64
#define RTC_NUM_INTS 1
static unsigned long UIE_on;
static unsigned long prev_update_sec;
static unsigned long AIE_on;
static struct rtc_time alarm_time;
static unsigned long PIE_on;
static unsigned long PIE_freq = DEFAULT_RTC_INT_FREQ;
static unsigned long PIE_count;
static unsigned long hpet_rtc_int_freq; /* RTC interrupt frequency */
static unsigned int hpet_t1_cmp; /* cached comparator register */
int is_hpet_enabled(void)
{
return hpet_address != 0;
}
/*
* Timer 1 for RTC, we do not use periodic interrupt feature,
* even if HPET supports periodic interrupts on Timer 1.
* The reason being, to set up a periodic interrupt in HPET, we need to
* stop the main counter. And if we do that everytime someone diables/enables
* RTC, we will have adverse effect on main kernel timer running on Timer 0.
* So, for the time being, simulate the periodic interrupt in software.
*
* hpet_rtc_timer_init() is called for the first time and during subsequent
* interuppts reinit happens through hpet_rtc_timer_reinit().
*/
int hpet_rtc_timer_init(void)
{
unsigned int cfg, cnt;
unsigned long flags;
if (!is_hpet_enabled())
return 0;
/*
* Set the counter 1 and enable the interrupts.
*/
if (PIE_on && (PIE_freq > DEFAULT_RTC_INT_FREQ))
hpet_rtc_int_freq = PIE_freq;
else
hpet_rtc_int_freq = DEFAULT_RTC_INT_FREQ;
local_irq_save(flags);
cnt = hpet_readl(HPET_COUNTER);
cnt += ((hpet_tick*HZ)/hpet_rtc_int_freq);
hpet_writel(cnt, HPET_T1_CMP);
hpet_t1_cmp = cnt;
cfg = hpet_readl(HPET_T1_CFG);
cfg &= ~HPET_TN_PERIODIC;
cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
hpet_writel(cfg, HPET_T1_CFG);
local_irq_restore(flags);
return 1;
}
static void hpet_rtc_timer_reinit(void)
{
unsigned int cfg, cnt, ticks_per_int, lost_ints;
if (unlikely(!(PIE_on | AIE_on | UIE_on))) {
cfg = hpet_readl(HPET_T1_CFG);
cfg &= ~HPET_TN_ENABLE;
hpet_writel(cfg, HPET_T1_CFG);
return;
}
if (PIE_on && (PIE_freq > DEFAULT_RTC_INT_FREQ))
hpet_rtc_int_freq = PIE_freq;
else
hpet_rtc_int_freq = DEFAULT_RTC_INT_FREQ;
/* It is more accurate to use the comparator value than current count.*/
ticks_per_int = hpet_tick * HZ / hpet_rtc_int_freq;
hpet_t1_cmp += ticks_per_int;
hpet_writel(hpet_t1_cmp, HPET_T1_CMP);
/*
* If the interrupt handler was delayed too long, the write above tries
* to schedule the next interrupt in the past and the hardware would
* not interrupt until the counter had wrapped around.
* So we have to check that the comparator wasn't set to a past time.
*/
cnt = hpet_readl(HPET_COUNTER);
if (unlikely((int)(cnt - hpet_t1_cmp) > 0)) {
lost_ints = (cnt - hpet_t1_cmp) / ticks_per_int + 1;
/* Make sure that, even with the time needed to execute
* this code, the next scheduled interrupt has been moved
* back to the future: */
lost_ints++;
hpet_t1_cmp += lost_ints * ticks_per_int;
hpet_writel(hpet_t1_cmp, HPET_T1_CMP);
if (PIE_on)
PIE_count += lost_ints;
if (printk_ratelimit())
printk(KERN_WARNING "rtc: lost some interrupts at %ldHz.\n",
hpet_rtc_int_freq);
}
}
/*
* The functions below are called from rtc driver.
* Return 0 if HPET is not being used.
* Otherwise do the necessary changes and return 1.
*/
int hpet_mask_rtc_irq_bit(unsigned long bit_mask)
{
if (!is_hpet_enabled())
return 0;
if (bit_mask & RTC_UIE)
UIE_on = 0;
if (bit_mask & RTC_PIE)
PIE_on = 0;
if (bit_mask & RTC_AIE)
AIE_on = 0;
return 1;
}
int hpet_set_rtc_irq_bit(unsigned long bit_mask)
{
int timer_init_reqd = 0;
if (!is_hpet_enabled())
return 0;
if (!(PIE_on | AIE_on | UIE_on))
timer_init_reqd = 1;
if (bit_mask & RTC_UIE) {
UIE_on = 1;
}
if (bit_mask & RTC_PIE) {
PIE_on = 1;
PIE_count = 0;
}
if (bit_mask & RTC_AIE) {
AIE_on = 1;
}
if (timer_init_reqd)
hpet_rtc_timer_init();
return 1;
}
int hpet_set_alarm_time(unsigned char hrs, unsigned char min, unsigned char sec)
{
if (!is_hpet_enabled())
return 0;
alarm_time.tm_hour = hrs;
alarm_time.tm_min = min;
alarm_time.tm_sec = sec;
return 1;
}
int hpet_set_periodic_freq(unsigned long freq)
{
if (!is_hpet_enabled())
return 0;
PIE_freq = freq;
PIE_count = 0;
return 1;
}
int hpet_rtc_dropped_irq(void)
{
if (!is_hpet_enabled())
return 0;
return 1;
}
irqreturn_t hpet_rtc_interrupt(int irq, void *dev_id)
{
struct rtc_time curr_time;
unsigned long rtc_int_flag = 0;
int call_rtc_interrupt = 0;
hpet_rtc_timer_reinit();
if (UIE_on | AIE_on) {
rtc_get_rtc_time(&curr_time);
}
if (UIE_on) {
if (curr_time.tm_sec != prev_update_sec) {
/* Set update int info, call real rtc int routine */
call_rtc_interrupt = 1;
rtc_int_flag = RTC_UF;
prev_update_sec = curr_time.tm_sec;
}
}
if (PIE_on) {
PIE_count++;
if (PIE_count >= hpet_rtc_int_freq/PIE_freq) {
/* Set periodic int info, call real rtc int routine */
call_rtc_interrupt = 1;
rtc_int_flag |= RTC_PF;
PIE_count = 0;
}
}
if (AIE_on) {
if ((curr_time.tm_sec == alarm_time.tm_sec) &&
(curr_time.tm_min == alarm_time.tm_min) &&
(curr_time.tm_hour == alarm_time.tm_hour)) {
/* Set alarm int info, call real rtc int routine */
call_rtc_interrupt = 1;
rtc_int_flag |= RTC_AF;
}
}
if (call_rtc_interrupt) {
rtc_int_flag |= (RTC_IRQF | (RTC_NUM_INTS << 8));
rtc_interrupt(rtc_int_flag, dev_id);
}
return IRQ_HANDLED;
}
#endif
static int __init nohpet_setup(char *s)
{
nohpet = 1;
return 1;
}
__setup("nohpet", nohpet_setup);

View file

@ -13,7 +13,6 @@
#include <asm/delay.h>
#include <asm/i8253.h>
#include <asm/io.h>
#include <asm/timer.h>
DEFINE_SPINLOCK(i8253_lock);
EXPORT_SYMBOL(i8253_lock);
@ -120,6 +119,7 @@ void __init setup_pit_timer(void)
global_clock_event = &pit_clockevent;
}
#ifndef CONFIG_X86_64
/*
* Since the PIT overflows every tick, its not very useful
* to just read by itself. So use jiffies to emulate a free
@ -204,3 +204,5 @@ static int __init init_pit_clocksource(void)
return clocksource_register(&clocksource_pit);
}
arch_initcall(init_pit_clocksource);
#endif

View file

@ -10,7 +10,6 @@
#include <linux/sysdev.h>
#include <linux/bitops.h>
#include <asm/8253pit.h>
#include <asm/atomic.h>
#include <asm/system.h>
#include <asm/io.h>

View file

@ -444,46 +444,6 @@ void __init init_ISA_irqs (void)
}
}
static void setup_timer_hardware(void)
{
outb_p(0x34,0x43); /* binary, mode 2, LSB/MSB, ch 0 */
udelay(10);
outb_p(LATCH & 0xff , 0x40); /* LSB */
udelay(10);
outb(LATCH >> 8 , 0x40); /* MSB */
}
static int timer_resume(struct sys_device *dev)
{
setup_timer_hardware();
return 0;
}
void i8254_timer_resume(void)
{
setup_timer_hardware();
}
static struct sysdev_class timer_sysclass = {
set_kset_name("timer_pit"),
.resume = timer_resume,
};
static struct sys_device device_timer = {
.id = 0,
.cls = &timer_sysclass,
};
static int __init init_timer_sysfs(void)
{
int error = sysdev_class_register(&timer_sysclass);
if (!error)
error = sysdev_register(&device_timer);
return error;
}
device_initcall(init_timer_sysfs);
void __init init_IRQ(void)
{
int i;
@ -533,12 +493,6 @@ void __init init_IRQ(void)
set_intr_gate(SPURIOUS_APIC_VECTOR, spurious_interrupt);
set_intr_gate(ERROR_APIC_VECTOR, error_interrupt);
/*
* Set the clock to HZ Hz, we already have a valid
* vector now:
*/
setup_timer_hardware();
if (!acpi_ioapic)
setup_irq(2, &irq2);
}

362
arch/x86/kernel/mfgpt_32.c Normal file
View file

@ -0,0 +1,362 @@
/*
* Driver/API for AMD Geode Multi-Function General Purpose Timers (MFGPT)
*
* Copyright (C) 2006, Advanced Micro Devices, Inc.
* Copyright (C) 2007, Andres Salomon <dilinger@debian.org>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of version 2 of the GNU General Public License
* as published by the Free Software Foundation.
*
* The MFGPTs are documented in AMD Geode CS5536 Companion Device Data Book.
*/
/*
* We are using the 32Khz input clock - its the only one that has the
* ranges we find desirable. The following table lists the suitable
* divisors and the associated hz, minimum interval
* and the maximum interval:
*
* Divisor Hz Min Delta (S) Max Delta (S)
* 1 32000 .0005 2.048
* 2 16000 .001 4.096
* 4 8000 .002 8.192
* 8 4000 .004 16.384
* 16 2000 .008 32.768
* 32 1000 .016 65.536
* 64 500 .032 131.072
* 128 250 .064 262.144
* 256 125 .128 524.288
*/
#include <linux/kernel.h>
#include <linux/interrupt.h>
#include <linux/module.h>
#include <asm/geode.h>
#define F_AVAIL 0x01
static struct mfgpt_timer_t {
int flags;
struct module *owner;
} mfgpt_timers[MFGPT_MAX_TIMERS];
/* Selected from the table above */
#define MFGPT_DIVISOR 16
#define MFGPT_SCALE 4 /* divisor = 2^(scale) */
#define MFGPT_HZ (32000 / MFGPT_DIVISOR)
#define MFGPT_PERIODIC (MFGPT_HZ / HZ)
#ifdef CONFIG_GEODE_MFGPT_TIMER
static int __init mfgpt_timer_setup(void);
#else
#define mfgpt_timer_setup() (0)
#endif
/* Allow for disabling of MFGPTs */
static int disable;
static int __init mfgpt_disable(char *s)
{
disable = 1;
return 1;
}
__setup("nomfgpt", mfgpt_disable);
/*
* Check whether any MFGPTs are available for the kernel to use. In most
* cases, firmware that uses AMD's VSA code will claim all timers during
* bootup; we certainly don't want to take them if they're already in use.
* In other cases (such as with VSAless OpenFirmware), the system firmware
* leaves timers available for us to use.
*/
int __init geode_mfgpt_detect(void)
{
int count = 0, i;
u16 val;
if (disable) {
printk(KERN_INFO "geode-mfgpt: Skipping MFGPT setup\n");
return 0;
}
for (i = 0; i < MFGPT_MAX_TIMERS; i++) {
val = geode_mfgpt_read(i, MFGPT_REG_SETUP);
if (!(val & MFGPT_SETUP_SETUP)) {
mfgpt_timers[i].flags = F_AVAIL;
count++;
}
}
/* set up clock event device, if desired */
i = mfgpt_timer_setup();
return count;
}
int geode_mfgpt_toggle_event(int timer, int cmp, int event, int enable)
{
u32 msr, mask, value, dummy;
int shift = (cmp == MFGPT_CMP1) ? 0 : 8;
if (timer < 0 || timer >= MFGPT_MAX_TIMERS)
return -EIO;
/*
* The register maps for these are described in sections 6.17.1.x of
* the AMD Geode CS5536 Companion Device Data Book.
*/
switch (event) {
case MFGPT_EVENT_RESET:
/*
* XXX: According to the docs, we cannot reset timers above
* 6; that is, resets for 7 and 8 will be ignored. Is this
* a problem? -dilinger
*/
msr = MFGPT_NR_MSR;
mask = 1 << (timer + 24);
break;
case MFGPT_EVENT_NMI:
msr = MFGPT_NR_MSR;
mask = 1 << (timer + shift);
break;
case MFGPT_EVENT_IRQ:
msr = MFGPT_IRQ_MSR;
mask = 1 << (timer + shift);
break;
default:
return -EIO;
}
rdmsr(msr, value, dummy);
if (enable)
value |= mask;
else
value &= ~mask;
wrmsr(msr, value, dummy);
return 0;
}
int geode_mfgpt_set_irq(int timer, int cmp, int irq, int enable)
{
u32 val, dummy;
int offset;
if (timer < 0 || timer >= MFGPT_MAX_TIMERS)
return -EIO;
if (geode_mfgpt_toggle_event(timer, cmp, MFGPT_EVENT_IRQ, enable))
return -EIO;
rdmsr(MSR_PIC_ZSEL_LOW, val, dummy);
offset = (timer % 4) * 4;
val &= ~((0xF << offset) | (0xF << (offset + 16)));
if (enable) {
val |= (irq & 0x0F) << (offset);
val |= (irq & 0x0F) << (offset + 16);
}
wrmsr(MSR_PIC_ZSEL_LOW, val, dummy);
return 0;
}
static int mfgpt_get(int timer, struct module *owner)
{
mfgpt_timers[timer].flags &= ~F_AVAIL;
mfgpt_timers[timer].owner = owner;
printk(KERN_INFO "geode-mfgpt: Registered timer %d\n", timer);
return timer;
}
int geode_mfgpt_alloc_timer(int timer, int domain, struct module *owner)
{
int i;
if (!geode_get_dev_base(GEODE_DEV_MFGPT))
return -ENODEV;
if (timer >= MFGPT_MAX_TIMERS)
return -EIO;
if (timer < 0) {
/* Try to find an available timer */
for (i = 0; i < MFGPT_MAX_TIMERS; i++) {
if (mfgpt_timers[i].flags & F_AVAIL)
return mfgpt_get(i, owner);
if (i == 5 && domain == MFGPT_DOMAIN_WORKING)
break;
}
} else {
/* If they requested a specific timer, try to honor that */
if (mfgpt_timers[timer].flags & F_AVAIL)
return mfgpt_get(timer, owner);
}
/* No timers available - too bad */
return -1;
}
#ifdef CONFIG_GEODE_MFGPT_TIMER
/*
* The MFPGT timers on the CS5536 provide us with suitable timers to use
* as clock event sources - not as good as a HPET or APIC, but certainly
* better then the PIT. This isn't a general purpose MFGPT driver, but
* a simplified one designed specifically to act as a clock event source.
* For full details about the MFGPT, please consult the CS5536 data sheet.
*/
#include <linux/clocksource.h>
#include <linux/clockchips.h>
static unsigned int mfgpt_tick_mode = CLOCK_EVT_MODE_SHUTDOWN;
static u16 mfgpt_event_clock;
static int irq = 7;
static int __init mfgpt_setup(char *str)
{
get_option(&str, &irq);
return 1;
}
__setup("mfgpt_irq=", mfgpt_setup);
static inline void mfgpt_disable_timer(u16 clock)
{
u16 val = geode_mfgpt_read(clock, MFGPT_REG_SETUP);
geode_mfgpt_write(clock, MFGPT_REG_SETUP, val & ~MFGPT_SETUP_CNTEN);
}
static int mfgpt_next_event(unsigned long, struct clock_event_device *);
static void mfgpt_set_mode(enum clock_event_mode, struct clock_event_device *);
static struct clock_event_device mfgpt_clockevent = {
.name = "mfgpt-timer",
.features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT,
.set_mode = mfgpt_set_mode,
.set_next_event = mfgpt_next_event,
.rating = 250,
.cpumask = CPU_MASK_ALL,
.shift = 32
};
static inline void mfgpt_start_timer(u16 clock, u16 delta)
{
geode_mfgpt_write(mfgpt_event_clock, MFGPT_REG_CMP2, (u16) delta);
geode_mfgpt_write(mfgpt_event_clock, MFGPT_REG_COUNTER, 0);
geode_mfgpt_write(mfgpt_event_clock, MFGPT_REG_SETUP,
MFGPT_SETUP_CNTEN | MFGPT_SETUP_CMP2);
}
static void mfgpt_set_mode(enum clock_event_mode mode,
struct clock_event_device *evt)
{
mfgpt_disable_timer(mfgpt_event_clock);
if (mode == CLOCK_EVT_MODE_PERIODIC)
mfgpt_start_timer(mfgpt_event_clock, MFGPT_PERIODIC);
mfgpt_tick_mode = mode;
}
static int mfgpt_next_event(unsigned long delta, struct clock_event_device *evt)
{
mfgpt_start_timer(mfgpt_event_clock, delta);
return 0;
}
/* Assume (foolishly?), that this interrupt was due to our tick */
static irqreturn_t mfgpt_tick(int irq, void *dev_id)
{
if (mfgpt_tick_mode == CLOCK_EVT_MODE_SHUTDOWN)
return IRQ_HANDLED;
/* Turn off the clock */
mfgpt_disable_timer(mfgpt_event_clock);
/* Clear the counter */
geode_mfgpt_write(mfgpt_event_clock, MFGPT_REG_COUNTER, 0);
/* Restart the clock in periodic mode */
if (mfgpt_tick_mode == CLOCK_EVT_MODE_PERIODIC) {
geode_mfgpt_write(mfgpt_event_clock, MFGPT_REG_SETUP,
MFGPT_SETUP_CNTEN | MFGPT_SETUP_CMP2);
}
mfgpt_clockevent.event_handler(&mfgpt_clockevent);
return IRQ_HANDLED;
}
static struct irqaction mfgptirq = {
.handler = mfgpt_tick,
.flags = IRQF_DISABLED | IRQF_NOBALANCING,
.mask = CPU_MASK_NONE,
.name = "mfgpt-timer"
};
static int __init mfgpt_timer_setup(void)
{
int timer, ret;
u16 val;
timer = geode_mfgpt_alloc_timer(MFGPT_TIMER_ANY, MFGPT_DOMAIN_WORKING,
THIS_MODULE);
if (timer < 0) {
printk(KERN_ERR
"mfgpt-timer: Could not allocate a MFPGT timer\n");
return -ENODEV;
}
mfgpt_event_clock = timer;
/* Set the clock scale and enable the event mode for CMP2 */
val = MFGPT_SCALE | (3 << 8);
geode_mfgpt_write(mfgpt_event_clock, MFGPT_REG_SETUP, val);
/* Set up the IRQ on the MFGPT side */
if (geode_mfgpt_setup_irq(mfgpt_event_clock, MFGPT_CMP2, irq)) {
printk(KERN_ERR "mfgpt-timer: Could not set up IRQ %d\n", irq);
return -EIO;
}
/* And register it with the kernel */
ret = setup_irq(irq, &mfgptirq);
if (ret) {
printk(KERN_ERR
"mfgpt-timer: Unable to set up the interrupt.\n");
goto err;
}
/* Set up the clock event */
mfgpt_clockevent.mult = div_sc(MFGPT_HZ, NSEC_PER_SEC, 32);
mfgpt_clockevent.min_delta_ns = clockevent_delta2ns(0xF,
&mfgpt_clockevent);
mfgpt_clockevent.max_delta_ns = clockevent_delta2ns(0xFFFE,
&mfgpt_clockevent);
printk(KERN_INFO
"mfgpt-timer: registering the MFGT timer as a clock event.\n");
clockevents_register_device(&mfgpt_clockevent);
return 0;
err:
geode_mfgpt_release_irq(mfgpt_event_clock, MFGPT_CMP2, irq);
printk(KERN_ERR
"mfgpt-timer: Unable to set up the MFGPT clock source\n");
return -EIO;
}
#endif

View file

@ -353,7 +353,8 @@ __kprobes int nmi_watchdog_tick(struct pt_regs * regs, unsigned reason)
* Take the local apic timer and PIT/HPET into account. We don't
* know which one is active, when we have highres/dyntick on
*/
sum = per_cpu(irq_stat, cpu).apic_timer_irqs + kstat_cpu(cpu).irqs[0];
sum = per_cpu(irq_stat, cpu).apic_timer_irqs +
per_cpu(irq_stat, cpu).irq0_irqs;
/* if the none of the timers isn't firing, this cpu isn't doing much */
if (!touched && last_irq_sums[cpu] == sum) {

View file

@ -329,7 +329,7 @@ int __kprobes nmi_watchdog_tick(struct pt_regs * regs, unsigned reason)
touched = 1;
}
sum = read_pda(apic_timer_irqs);
sum = read_pda(apic_timer_irqs) + read_pda(irq0_irqs);
if (__get_cpu_var(nmi_touch)) {
__get_cpu_var(nmi_touch) = 0;
touched = 1;

View file

@ -38,6 +38,7 @@
#include <linux/notifier.h>
#include <linux/kprobes.h>
#include <linux/kdebug.h>
#include <linux/tick.h>
#include <asm/uaccess.h>
#include <asm/pgtable.h>
@ -208,6 +209,8 @@ void cpu_idle (void)
if (__get_cpu_var(cpu_idle_state))
__get_cpu_var(cpu_idle_state) = 0;
tick_nohz_stop_sched_tick();
rmb();
idle = pm_idle;
if (!idle)
@ -228,6 +231,7 @@ void cpu_idle (void)
__exit_idle();
}
tick_nohz_restart_sched_tick();
preempt_enable_no_resched();
schedule();
preempt_disable();

View file

@ -4,6 +4,8 @@
#include <linux/pci.h>
#include <linux/irq.h>
#include <asm/hpet.h>
#if defined(CONFIG_X86_IO_APIC) && defined(CONFIG_SMP) && defined(CONFIG_PCI)
static void __devinit quirk_intel_irqbalance(struct pci_dev *dev)
@ -47,3 +49,206 @@ DECLARE_PCI_FIXUP_FINAL(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_E7320_MCH, quir
DECLARE_PCI_FIXUP_FINAL(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_E7525_MCH, quirk_intel_irqbalance);
DECLARE_PCI_FIXUP_FINAL(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_E7520_MCH, quirk_intel_irqbalance);
#endif
#if defined(CONFIG_HPET_TIMER)
unsigned long force_hpet_address;
static enum {
NONE_FORCE_HPET_RESUME,
OLD_ICH_FORCE_HPET_RESUME,
ICH_FORCE_HPET_RESUME
} force_hpet_resume_type;
static void __iomem *rcba_base;
static void ich_force_hpet_resume(void)
{
u32 val;
if (!force_hpet_address)
return;
if (rcba_base == NULL)
BUG();
/* read the Function Disable register, dword mode only */
val = readl(rcba_base + 0x3404);
if (!(val & 0x80)) {
/* HPET disabled in HPTC. Trying to enable */
writel(val | 0x80, rcba_base + 0x3404);
}
val = readl(rcba_base + 0x3404);
if (!(val & 0x80))
BUG();
else
printk(KERN_DEBUG "Force enabled HPET at resume\n");
return;
}
static void ich_force_enable_hpet(struct pci_dev *dev)
{
u32 val;
u32 uninitialized_var(rcba);
int err = 0;
if (hpet_address || force_hpet_address)
return;
pci_read_config_dword(dev, 0xF0, &rcba);
rcba &= 0xFFFFC000;
if (rcba == 0) {
printk(KERN_DEBUG "RCBA disabled. Cannot force enable HPET\n");
return;
}
/* use bits 31:14, 16 kB aligned */
rcba_base = ioremap_nocache(rcba, 0x4000);
if (rcba_base == NULL) {
printk(KERN_DEBUG "ioremap failed. Cannot force enable HPET\n");
return;
}
/* read the Function Disable register, dword mode only */
val = readl(rcba_base + 0x3404);
if (val & 0x80) {
/* HPET is enabled in HPTC. Just not reported by BIOS */
val = val & 0x3;
force_hpet_address = 0xFED00000 | (val << 12);
printk(KERN_DEBUG "Force enabled HPET at base address 0x%lx\n",
force_hpet_address);
iounmap(rcba_base);
return;
}
/* HPET disabled in HPTC. Trying to enable */
writel(val | 0x80, rcba_base + 0x3404);
val = readl(rcba_base + 0x3404);
if (!(val & 0x80)) {
err = 1;
} else {
val = val & 0x3;
force_hpet_address = 0xFED00000 | (val << 12);
}
if (err) {
force_hpet_address = 0;
iounmap(rcba_base);
printk(KERN_DEBUG "Failed to force enable HPET\n");
} else {
force_hpet_resume_type = ICH_FORCE_HPET_RESUME;
printk(KERN_DEBUG "Force enabled HPET at base address 0x%lx\n",
force_hpet_address);
}
}
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_ESB2_0,
ich_force_enable_hpet);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_ICH6_1,
ich_force_enable_hpet);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_ICH7_0,
ich_force_enable_hpet);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_ICH7_1,
ich_force_enable_hpet);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_ICH7_31,
ich_force_enable_hpet);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_ICH8_1,
ich_force_enable_hpet);
static struct pci_dev *cached_dev;
static void old_ich_force_hpet_resume(void)
{
u32 val;
u32 uninitialized_var(gen_cntl);
if (!force_hpet_address || !cached_dev)
return;
pci_read_config_dword(cached_dev, 0xD0, &gen_cntl);
gen_cntl &= (~(0x7 << 15));
gen_cntl |= (0x4 << 15);
pci_write_config_dword(cached_dev, 0xD0, gen_cntl);
pci_read_config_dword(cached_dev, 0xD0, &gen_cntl);
val = gen_cntl >> 15;
val &= 0x7;
if (val == 0x4)
printk(KERN_DEBUG "Force enabled HPET at resume\n");
else
BUG();
}
static void old_ich_force_enable_hpet(struct pci_dev *dev)
{
u32 val;
u32 uninitialized_var(gen_cntl);
if (hpet_address || force_hpet_address)
return;
pci_read_config_dword(dev, 0xD0, &gen_cntl);
/*
* Bit 17 is HPET enable bit.
* Bit 16:15 control the HPET base address.
*/
val = gen_cntl >> 15;
val &= 0x7;
if (val & 0x4) {
val &= 0x3;
force_hpet_address = 0xFED00000 | (val << 12);
printk(KERN_DEBUG "HPET at base address 0x%lx\n",
force_hpet_address);
return;
}
/*
* HPET is disabled. Trying enabling at FED00000 and check
* whether it sticks
*/
gen_cntl &= (~(0x7 << 15));
gen_cntl |= (0x4 << 15);
pci_write_config_dword(dev, 0xD0, gen_cntl);
pci_read_config_dword(dev, 0xD0, &gen_cntl);
val = gen_cntl >> 15;
val &= 0x7;
if (val & 0x4) {
/* HPET is enabled in HPTC. Just not reported by BIOS */
val &= 0x3;
force_hpet_address = 0xFED00000 | (val << 12);
printk(KERN_DEBUG "Force enabled HPET at base address 0x%lx\n",
force_hpet_address);
cached_dev = dev;
force_hpet_resume_type = OLD_ICH_FORCE_HPET_RESUME;
return;
}
printk(KERN_DEBUG "Failed to force enable HPET\n");
}
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82801EB_0,
old_ich_force_enable_hpet);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82801EB_12,
old_ich_force_enable_hpet);
void force_hpet_resume(void)
{
switch (force_hpet_resume_type) {
case ICH_FORCE_HPET_RESUME:
return ich_force_hpet_resume();
case OLD_ICH_FORCE_HPET_RESUME:
return old_ich_force_hpet_resume();
default:
break;
}
}
#endif

View file

@ -546,6 +546,37 @@ static void __init amd_detect_cmp(struct cpuinfo_x86 *c)
#endif
}
#define ENABLE_C1E_MASK 0x18000000
#define CPUID_PROCESSOR_SIGNATURE 1
#define CPUID_XFAM 0x0ff00000
#define CPUID_XFAM_K8 0x00000000
#define CPUID_XFAM_10H 0x00100000
#define CPUID_XFAM_11H 0x00200000
#define CPUID_XMOD 0x000f0000
#define CPUID_XMOD_REV_F 0x00040000
/* AMD systems with C1E don't have a working lAPIC timer. Check for that. */
static __cpuinit int amd_apic_timer_broken(void)
{
u32 lo, hi;
u32 eax = cpuid_eax(CPUID_PROCESSOR_SIGNATURE);
switch (eax & CPUID_XFAM) {
case CPUID_XFAM_K8:
if ((eax & CPUID_XMOD) < CPUID_XMOD_REV_F)
break;
case CPUID_XFAM_10H:
case CPUID_XFAM_11H:
rdmsr(MSR_K8_ENABLE_C1E, lo, hi);
if (lo & ENABLE_C1E_MASK)
return 1;
break;
default:
/* err on the side of caution */
return 1;
}
return 0;
}
static void __cpuinit init_amd(struct cpuinfo_x86 *c)
{
unsigned level;
@ -617,6 +648,9 @@ static void __cpuinit init_amd(struct cpuinfo_x86 *c)
/* Family 10 doesn't support C states in MWAIT so don't use it */
if (c->x86 == 0x10 && !force_mwait)
clear_bit(X86_FEATURE_MWAIT, &c->x86_capability);
if (amd_apic_timer_broken())
disable_apic_timer = 1;
}
static void __cpuinit detect_ht(struct cpuinfo_x86 *c)

View file

@ -223,8 +223,6 @@ void __cpuinit smp_callin(void)
local_irq_disable();
Dprintk("Stack at about %p\n",&cpuid);
disable_APIC_timer();
/*
* Save our processor parameters
*/
@ -348,8 +346,6 @@ void __cpuinit start_secondary(void)
enable_8259A_irq(0);
}
enable_APIC_timer();
/*
* The sibling maps must be set before turing the online map on for
* this cpu

View file

@ -157,6 +157,9 @@ EXPORT_SYMBOL(profile_pc);
*/
irqreturn_t timer_interrupt(int irq, void *dev_id)
{
/* Keep nmi watchdog up to date */
per_cpu(irq_stat, smp_processor_id()).irq0_irqs++;
#ifdef CONFIG_X86_IO_APIC
if (timer_ack) {
/*

View file

@ -28,11 +28,12 @@
#include <linux/cpu.h>
#include <linux/kallsyms.h>
#include <linux/acpi.h>
#include <linux/clockchips.h>
#ifdef CONFIG_ACPI
#include <acpi/achware.h> /* for PM timer frequency */
#include <acpi/acpi_bus.h>
#endif
#include <asm/8253pit.h>
#include <asm/i8253.h>
#include <asm/pgtable.h>
#include <asm/vsyscall.h>
@ -47,12 +48,8 @@
#include <asm/nmi.h>
#include <asm/vgtod.h>
static char *timename = NULL;
DEFINE_SPINLOCK(rtc_lock);
EXPORT_SYMBOL(rtc_lock);
DEFINE_SPINLOCK(i8253_lock);
EXPORT_SYMBOL(i8253_lock);
volatile unsigned long __jiffies __section_jiffies = INITIAL_JIFFIES;
@ -153,45 +150,12 @@ int update_persistent_clock(struct timespec now)
return set_rtc_mmss(now.tv_sec);
}
void main_timer_handler(void)
static irqreturn_t timer_event_interrupt(int irq, void *dev_id)
{
/*
* Here we are in the timer irq handler. We have irqs locally disabled (so we
* don't need spin_lock_irqsave()) but we don't know if the timer_bh is running
* on the other CPU, so we need a lock. We also need to lock the vsyscall
* variables, because both do_timer() and us change them -arca+vojtech
*/
add_pda(irq0_irqs, 1);
write_seqlock(&xtime_lock);
global_clock_event->event_handler(global_clock_event);
/*
* Do the timer stuff.
*/
do_timer(1);
#ifndef CONFIG_SMP
update_process_times(user_mode(get_irq_regs()));
#endif
/*
* In the SMP case we use the local APIC timer interrupt to do the profiling,
* except when we simulate SMP mode on a uniprocessor system, in that case we
* have to call the local interrupt handler.
*/
if (!using_apic_timer)
smp_local_timer_interrupt();
write_sequnlock(&xtime_lock);
}
static irqreturn_t timer_interrupt(int irq, void *dev_id)
{
if (apic_runs_main_timer > 1)
return IRQ_HANDLED;
main_timer_handler();
if (using_apic_timer)
smp_send_timer_broadcast_ipi();
return IRQ_HANDLED;
}
@ -292,97 +256,21 @@ static unsigned int __init tsc_calibrate_cpu_khz(void)
return pmc_now * tsc_khz / (tsc_now - tsc_start);
}
/*
* pit_calibrate_tsc() uses the speaker output (channel 2) of
* the PIT. This is better than using the timer interrupt output,
* because we can read the value of the speaker with just one inb(),
* where we need three i/o operations for the interrupt channel.
* We count how many ticks the TSC does in 50 ms.
*/
static unsigned int __init pit_calibrate_tsc(void)
{
unsigned long start, end;
unsigned long flags;
spin_lock_irqsave(&i8253_lock, flags);
outb((inb(0x61) & ~0x02) | 0x01, 0x61);
outb(0xb0, 0x43);
outb((PIT_TICK_RATE / (1000 / 50)) & 0xff, 0x42);
outb((PIT_TICK_RATE / (1000 / 50)) >> 8, 0x42);
start = get_cycles_sync();
while ((inb(0x61) & 0x20) == 0);
end = get_cycles_sync();
spin_unlock_irqrestore(&i8253_lock, flags);
return (end - start) / 50;
}
#define PIT_MODE 0x43
#define PIT_CH0 0x40
static void __pit_init(int val, u8 mode)
{
unsigned long flags;
spin_lock_irqsave(&i8253_lock, flags);
outb_p(mode, PIT_MODE);
outb_p(val & 0xff, PIT_CH0); /* LSB */
outb_p(val >> 8, PIT_CH0); /* MSB */
spin_unlock_irqrestore(&i8253_lock, flags);
}
void __init pit_init(void)
{
__pit_init(LATCH, 0x34); /* binary, mode 2, LSB/MSB, ch 0 */
}
void pit_stop_interrupt(void)
{
__pit_init(0, 0x30); /* mode 0 */
}
void stop_timer_interrupt(void)
{
char *name;
if (hpet_address) {
name = "HPET";
hpet_timer_stop_set_go(0);
} else {
name = "PIT";
pit_stop_interrupt();
}
printk(KERN_INFO "timer: %s interrupt stopped.\n", name);
}
static struct irqaction irq0 = {
.handler = timer_interrupt,
.flags = IRQF_DISABLED | IRQF_IRQPOLL,
.handler = timer_event_interrupt,
.flags = IRQF_DISABLED | IRQF_IRQPOLL | IRQF_NOBALANCING,
.mask = CPU_MASK_NONE,
.name = "timer"
};
void __init time_init(void)
{
if (nohpet)
hpet_address = 0;
if (!hpet_enable())
setup_pit_timer();
if (hpet_arch_init())
hpet_address = 0;
setup_irq(0, &irq0);
if (hpet_use_timer) {
/* set tick_nsec to use the proper rate for HPET */
tick_nsec = TICK_NSEC_HPET;
tsc_khz = hpet_calibrate_tsc();
timename = "HPET";
} else {
pit_init();
tsc_khz = pit_calibrate_tsc();
timename = "PIT";
}
tsc_calibrate();
cpu_khz = tsc_khz;
if (cpu_has(&boot_cpu_data, X86_FEATURE_CONSTANT_TSC) &&
@ -398,50 +286,7 @@ void __init time_init(void)
else
vgetcpu_mode = VGETCPU_LSL;
set_cyc2ns_scale(tsc_khz);
printk(KERN_INFO "time.c: Detected %d.%03d MHz processor.\n",
cpu_khz / 1000, cpu_khz % 1000);
init_tsc_clocksource();
setup_irq(0, &irq0);
}
/*
* sysfs support for the timer.
*/
static int timer_suspend(struct sys_device *dev, pm_message_t state)
{
return 0;
}
static int timer_resume(struct sys_device *dev)
{
if (hpet_address)
hpet_reenable();
else
i8254_timer_resume();
return 0;
}
static struct sysdev_class timer_sysclass = {
.resume = timer_resume,
.suspend = timer_suspend,
set_kset_name("timer"),
};
/* XXX this sysfs stuff should probably go elsewhere later -john */
static struct sys_device device_timer = {
.id = 0,
.cls = &timer_sysclass,
};
static int time_init_device(void)
{
int error = sysdev_class_register(&timer_sysclass);
if (!error)
error = sysdev_register(&device_timer);
return error;
}
device_initcall(time_init_device);

View file

@ -6,7 +6,9 @@
#include <linux/time.h>
#include <linux/acpi.h>
#include <linux/cpufreq.h>
#include <linux/acpi_pmtmr.h>
#include <asm/hpet.h>
#include <asm/timex.h>
static int notsc __initdata = 0;
@ -18,7 +20,7 @@ EXPORT_SYMBOL(tsc_khz);
static unsigned int cyc2ns_scale __read_mostly;
void set_cyc2ns_scale(unsigned long khz)
static inline void set_cyc2ns_scale(unsigned long khz)
{
cyc2ns_scale = (NSEC_PER_MSEC << NS_SCALE) / khz;
}
@ -118,6 +120,95 @@ core_initcall(cpufreq_tsc);
#endif
#define MAX_RETRIES 5
#define SMI_TRESHOLD 50000
/*
* Read TSC and the reference counters. Take care of SMI disturbance
*/
static unsigned long __init tsc_read_refs(unsigned long *pm,
unsigned long *hpet)
{
unsigned long t1, t2;
int i;
for (i = 0; i < MAX_RETRIES; i++) {
t1 = get_cycles_sync();
if (hpet)
*hpet = hpet_readl(HPET_COUNTER) & 0xFFFFFFFF;
else
*pm = acpi_pm_read_early();
t2 = get_cycles_sync();
if ((t2 - t1) < SMI_TRESHOLD)
return t2;
}
return ULONG_MAX;
}
/**
* tsc_calibrate - calibrate the tsc on boot
*/
void __init tsc_calibrate(void)
{
unsigned long flags, tsc1, tsc2, tr1, tr2, pm1, pm2, hpet1, hpet2;
int hpet = is_hpet_enabled();
local_irq_save(flags);
tsc1 = tsc_read_refs(&pm1, hpet ? &hpet1 : NULL);
outb((inb(0x61) & ~0x02) | 0x01, 0x61);
outb(0xb0, 0x43);
outb((CLOCK_TICK_RATE / (1000 / 50)) & 0xff, 0x42);
outb((CLOCK_TICK_RATE / (1000 / 50)) >> 8, 0x42);
tr1 = get_cycles_sync();
while ((inb(0x61) & 0x20) == 0);
tr2 = get_cycles_sync();
tsc2 = tsc_read_refs(&pm2, hpet ? &hpet2 : NULL);
local_irq_restore(flags);
/*
* Preset the result with the raw and inaccurate PIT
* calibration value
*/
tsc_khz = (tr2 - tr1) / 50;
/* hpet or pmtimer available ? */
if (!hpet && !pm1 && !pm2) {
printk(KERN_INFO "TSC calibrated against PIT\n");
return;
}
/* Check, whether the sampling was disturbed by an SMI */
if (tsc1 == ULONG_MAX || tsc2 == ULONG_MAX) {
printk(KERN_WARNING "TSC calibration disturbed by SMI, "
"using PIT calibration result\n");
return;
}
tsc2 = (tsc2 - tsc1) * 1000000L;
if (hpet) {
printk(KERN_INFO "TSC calibrated against HPET\n");
if (hpet2 < hpet1)
hpet2 += 0x100000000;
hpet2 -= hpet1;
tsc1 = (hpet2 * hpet_readl(HPET_PERIOD)) / 1000000;
} else {
printk(KERN_INFO "TSC calibrated against PM_TIMER\n");
if (pm2 < pm1)
pm2 += ACPI_PM_OVRRUN;
pm2 -= pm1;
tsc1 = (pm2 * 1000000000) / PMTMR_TICKS_PER_SEC;
}
tsc_khz = tsc2 / tsc1;
set_cyc2ns_scale(tsc_khz);
}
/*
* Make an educated guess if the TSC is trustworthy and synchronized
* over all CPUs.

View file

@ -36,6 +36,18 @@ config GENERIC_CMOS_UPDATE
bool
default y
config CLOCKSOURCE_WATCHDOG
bool
default y
config GENERIC_CLOCKEVENTS
bool
default y
config GENERIC_CLOCKEVENTS_BROADCAST
bool
default y
config ZONE_DMA32
bool
default y
@ -130,6 +142,8 @@ source "init/Kconfig"
menu "Processor type and features"
source "kernel/time/Kconfig"
choice
prompt "Subarchitecture Type"
default X86_PC

View file

@ -276,21 +276,12 @@ static void acpi_timer_check_state(int state, struct acpi_processor *pr,
static void acpi_propagate_timer_broadcast(struct acpi_processor *pr)
{
#ifdef CONFIG_GENERIC_CLOCKEVENTS
unsigned long reason;
reason = pr->power.timer_broadcast_on_state < INT_MAX ?
CLOCK_EVT_NOTIFY_BROADCAST_ON : CLOCK_EVT_NOTIFY_BROADCAST_OFF;
clockevents_notify(reason, &pr->id);
#else
cpumask_t mask = cpumask_of_cpu(pr->id);
if (pr->power.timer_broadcast_on_state < INT_MAX)
on_each_cpu(switch_APIC_timer_to_ipi, &mask, 1, 1);
else
on_each_cpu(switch_ipi_to_APIC_timer, &mask, 1, 1);
#endif
}
/* Power(C) State timer broadcast control */
@ -298,8 +289,6 @@ static void acpi_state_timer_broadcast(struct acpi_processor *pr,
struct acpi_processor_cx *cx,
int broadcast)
{
#ifdef CONFIG_GENERIC_CLOCKEVENTS
int state = cx - pr->power.states;
if (state >= pr->power.timer_broadcast_on_state) {
@ -309,7 +298,6 @@ static void acpi_state_timer_broadcast(struct acpi_processor *pr,
CLOCK_EVT_NOTIFY_BROADCAST_EXIT;
clockevents_notify(reason, &pr->id);
}
#endif
}
#else

View file

@ -17,7 +17,6 @@
#include <linux/init.h>
#include <linux/input.h>
#include <linux/platform_device.h>
#include <asm/8253pit.h>
#include <asm/io.h>
MODULE_AUTHOR("Vojtech Pavlik <vojtech@ucw.cz>");
@ -28,6 +27,7 @@ MODULE_LICENSE("GPL");
/* Use the global PIT lock ! */
#include <asm/i8253.h>
#else
#include <asm/8253pit.h>
static DEFINE_SPINLOCK(i8253_lock);
#endif

View file

@ -1,5 +0,0 @@
#ifdef CONFIG_X86_32
# include "8253pit_32.h"
#else
# include "8253pit_64.h"
#endif

View file

@ -1,12 +0,0 @@
/*
* 8253/8254 Programmable Interval Timer
*/
#ifndef _8253PIT_H
#define _8253PIT_H
#include <asm/timex.h>
#define PIT_TICK_RATE CLOCK_TICK_RATE
#endif

View file

@ -1,10 +0,0 @@
/*
* 8253/8254 Programmable Interval Timer
*/
#ifndef _8253PIT_H
#define _8253PIT_H
#define PIT_TICK_RATE 1193182UL
#endif

View file

@ -19,7 +19,7 @@
extern int apic_verbosity;
extern int apic_runs_main_timer;
extern int ioapic_force;
extern int apic_mapped;
extern int disable_apic_timer;
/*
* Define the default level of output to be very little
@ -79,8 +79,6 @@ extern void smp_local_timer_interrupt (void);
extern void setup_boot_APIC_clock (void);
extern void setup_secondary_APIC_clock (void);
extern int APIC_init_uniprocessor (void);
extern void disable_APIC_timer(void);
extern void enable_APIC_timer(void);
extern void setup_apic_routing(void);
extern void setup_APIC_extended_lvt(unsigned char lvt_off, unsigned char vector,
@ -95,10 +93,6 @@ extern int apic_is_clustered_box(void);
#define K8_APIC_EXT_INT_MSG_EXT 0x7
#define K8_APIC_EXT_LVT_ENTRY_THRESHOLD 0
void smp_send_timer_broadcast_ipi(void);
void switch_APIC_timer_to_ipi(void *cpumask);
void switch_ipi_to_APIC_timer(void *cpumask);
#define ARCH_APICTIMER_STOPS_ON_C3 1
extern unsigned boot_cpu_id;

View file

@ -156,4 +156,54 @@ static inline int is_geode(void)
return (is_geode_gx() || is_geode_lx());
}
/* MFGPTs */
#define MFGPT_MAX_TIMERS 8
#define MFGPT_TIMER_ANY -1
#define MFGPT_DOMAIN_WORKING 1
#define MFGPT_DOMAIN_STANDBY 2
#define MFGPT_DOMAIN_ANY (MFGPT_DOMAIN_WORKING | MFGPT_DOMAIN_STANDBY)
#define MFGPT_CMP1 0
#define MFGPT_CMP2 1
#define MFGPT_EVENT_IRQ 0
#define MFGPT_EVENT_NMI 1
#define MFGPT_EVENT_RESET 3
#define MFGPT_REG_CMP1 0
#define MFGPT_REG_CMP2 2
#define MFGPT_REG_COUNTER 4
#define MFGPT_REG_SETUP 6
#define MFGPT_SETUP_CNTEN (1 << 15)
#define MFGPT_SETUP_CMP2 (1 << 14)
#define MFGPT_SETUP_CMP1 (1 << 13)
#define MFGPT_SETUP_SETUP (1 << 12)
#define MFGPT_SETUP_STOPEN (1 << 11)
#define MFGPT_SETUP_EXTEN (1 << 10)
#define MFGPT_SETUP_REVEN (1 << 5)
#define MFGPT_SETUP_CLKSEL (1 << 4)
static inline void geode_mfgpt_write(int timer, u16 reg, u16 value)
{
u32 base = geode_get_dev_base(GEODE_DEV_MFGPT);
outw(value, base + reg + (timer * 8));
}
static inline u16 geode_mfgpt_read(int timer, u16 reg)
{
u32 base = geode_get_dev_base(GEODE_DEV_MFGPT);
return inw(base + reg + (timer * 8));
}
extern int __init geode_mfgpt_detect(void);
extern int geode_mfgpt_toggle_event(int timer, int cmp, int event, int enable);
extern int geode_mfgpt_set_irq(int timer, int cmp, int irq, int enable);
extern int geode_mfgpt_alloc_timer(int timer, int domain, struct module *owner);
#define geode_mfgpt_setup_irq(t, c, i) geode_mfgpt_set_irq((t), (c), (i), 1)
#define geode_mfgpt_release_irq(t, c, i) geode_mfgpt_set_irq((t), (c), (i), 0)
#endif

View file

@ -9,6 +9,7 @@ typedef struct {
unsigned long idle_timestamp;
unsigned int __nmi_count; /* arch dependent */
unsigned int apic_timer_irqs; /* arch dependent */
unsigned int irq0_irqs;
} ____cacheline_aligned irq_cpustat_t;
DECLARE_PER_CPU(irq_cpustat_t, irq_stat);

View file

@ -1,5 +1,93 @@
#ifdef CONFIG_X86_32
# include "hpet_32.h"
#ifndef ASM_X86_HPET_H
#define ASM_X86_HPET_H
#ifdef CONFIG_HPET_TIMER
/*
* Documentation on HPET can be found at:
* http://www.intel.com/ial/home/sp/pcmmspec.htm
* ftp://download.intel.com/ial/home/sp/mmts098.pdf
*/
#define HPET_MMAP_SIZE 1024
#define HPET_ID 0x000
#define HPET_PERIOD 0x004
#define HPET_CFG 0x010
#define HPET_STATUS 0x020
#define HPET_COUNTER 0x0f0
#define HPET_T0_CFG 0x100
#define HPET_T0_CMP 0x108
#define HPET_T0_ROUTE 0x110
#define HPET_T1_CFG 0x120
#define HPET_T1_CMP 0x128
#define HPET_T1_ROUTE 0x130
#define HPET_T2_CFG 0x140
#define HPET_T2_CMP 0x148
#define HPET_T2_ROUTE 0x150
#define HPET_ID_REV 0x000000ff
#define HPET_ID_NUMBER 0x00001f00
#define HPET_ID_64BIT 0x00002000
#define HPET_ID_LEGSUP 0x00008000
#define HPET_ID_VENDOR 0xffff0000
#define HPET_ID_NUMBER_SHIFT 8
#define HPET_ID_VENDOR_SHIFT 16
#define HPET_ID_VENDOR_8086 0x8086
#define HPET_CFG_ENABLE 0x001
#define HPET_CFG_LEGACY 0x002
#define HPET_LEGACY_8254 2
#define HPET_LEGACY_RTC 8
#define HPET_TN_LEVEL 0x0002
#define HPET_TN_ENABLE 0x0004
#define HPET_TN_PERIODIC 0x0008
#define HPET_TN_PERIODIC_CAP 0x0010
#define HPET_TN_64BIT_CAP 0x0020
#define HPET_TN_SETVAL 0x0040
#define HPET_TN_32BIT 0x0100
#define HPET_TN_ROUTE 0x3e00
#define HPET_TN_FSB 0x4000
#define HPET_TN_FSB_CAP 0x8000
#define HPET_TN_ROUTE_SHIFT 9
/* Max HPET Period is 10^8 femto sec as in HPET spec */
#define HPET_MAX_PERIOD 100000000UL
/*
* Min HPET period is 10^5 femto sec just for safety. If it is less than this,
* then 32 bit HPET counter wrapsaround in less than 0.5 sec.
*/
#define HPET_MIN_PERIOD 100000UL
/* hpet memory map physical address */
extern unsigned long hpet_address;
extern unsigned long force_hpet_address;
extern int is_hpet_enabled(void);
extern int hpet_enable(void);
extern unsigned long hpet_readl(unsigned long a);
extern void force_hpet_resume(void);
#ifdef CONFIG_HPET_EMULATE_RTC
#include <linux/interrupt.h>
extern int hpet_mask_rtc_irq_bit(unsigned long bit_mask);
extern int hpet_set_rtc_irq_bit(unsigned long bit_mask);
extern int hpet_set_alarm_time(unsigned char hrs, unsigned char min,
unsigned char sec);
extern int hpet_set_periodic_freq(unsigned long freq);
extern int hpet_rtc_dropped_irq(void);
extern int hpet_rtc_timer_init(void);
extern irqreturn_t hpet_rtc_interrupt(int irq, void *dev_id);
#endif /* CONFIG_HPET_EMULATE_RTC */
#else
# include "hpet_64.h"
#endif
static inline int hpet_enable(void) { return 0; }
static inline unsigned long hpet_readl(unsigned long a) { return 0; }
#endif /* CONFIG_HPET_TIMER */
#endif /* ASM_X86_HPET_H */

View file

@ -1,90 +0,0 @@
#ifndef _I386_HPET_H
#define _I386_HPET_H
#ifdef CONFIG_HPET_TIMER
/*
* Documentation on HPET can be found at:
* http://www.intel.com/ial/home/sp/pcmmspec.htm
* ftp://download.intel.com/ial/home/sp/mmts098.pdf
*/
#define HPET_MMAP_SIZE 1024
#define HPET_ID 0x000
#define HPET_PERIOD 0x004
#define HPET_CFG 0x010
#define HPET_STATUS 0x020
#define HPET_COUNTER 0x0f0
#define HPET_T0_CFG 0x100
#define HPET_T0_CMP 0x108
#define HPET_T0_ROUTE 0x110
#define HPET_T1_CFG 0x120
#define HPET_T1_CMP 0x128
#define HPET_T1_ROUTE 0x130
#define HPET_T2_CFG 0x140
#define HPET_T2_CMP 0x148
#define HPET_T2_ROUTE 0x150
#define HPET_ID_REV 0x000000ff
#define HPET_ID_NUMBER 0x00001f00
#define HPET_ID_64BIT 0x00002000
#define HPET_ID_LEGSUP 0x00008000
#define HPET_ID_VENDOR 0xffff0000
#define HPET_ID_NUMBER_SHIFT 8
#define HPET_ID_VENDOR_SHIFT 16
#define HPET_ID_VENDOR_8086 0x8086
#define HPET_CFG_ENABLE 0x001
#define HPET_CFG_LEGACY 0x002
#define HPET_LEGACY_8254 2
#define HPET_LEGACY_RTC 8
#define HPET_TN_LEVEL 0x0002
#define HPET_TN_ENABLE 0x0004
#define HPET_TN_PERIODIC 0x0008
#define HPET_TN_PERIODIC_CAP 0x0010
#define HPET_TN_64BIT_CAP 0x0020
#define HPET_TN_SETVAL 0x0040
#define HPET_TN_32BIT 0x0100
#define HPET_TN_ROUTE 0x3e00
#define HPET_TN_FSB 0x4000
#define HPET_TN_FSB_CAP 0x8000
#define HPET_TN_ROUTE_SHIFT 9
/* Max HPET Period is 10^8 femto sec as in HPET spec */
#define HPET_MAX_PERIOD 100000000UL
/*
* Min HPET period is 10^5 femto sec just for safety. If it is less than this,
* then 32 bit HPET counter wrapsaround in less than 0.5 sec.
*/
#define HPET_MIN_PERIOD 100000UL
/* hpet memory map physical address */
extern unsigned long hpet_address;
extern int is_hpet_enabled(void);
extern int hpet_enable(void);
#ifdef CONFIG_HPET_EMULATE_RTC
#include <linux/interrupt.h>
extern int hpet_mask_rtc_irq_bit(unsigned long bit_mask);
extern int hpet_set_rtc_irq_bit(unsigned long bit_mask);
extern int hpet_set_alarm_time(unsigned char hrs, unsigned char min,
unsigned char sec);
extern int hpet_set_periodic_freq(unsigned long freq);
extern int hpet_rtc_dropped_irq(void);
extern int hpet_rtc_timer_init(void);
extern irqreturn_t hpet_rtc_interrupt(int irq, void *dev_id);
#endif /* CONFIG_HPET_EMULATE_RTC */
#else
static inline int hpet_enable(void) { return 0; }
#endif /* CONFIG_HPET_TIMER */
#endif /* _I386_HPET_H */

View file

@ -1,18 +0,0 @@
#ifndef _ASM_X8664_HPET_H
#define _ASM_X8664_HPET_H 1
#include <asm/hpet_32.h>
#define HPET_TICK_RATE (HZ * 100000UL)
extern int hpet_rtc_timer_init(void);
extern int hpet_arch_init(void);
extern int hpet_timer_stop_set_go(unsigned long tick);
extern int hpet_reenable(void);
extern unsigned int hpet_calibrate_tsc(void);
extern int hpet_use_timer;
extern unsigned long hpet_period;
extern unsigned long hpet_tick;
#endif

View file

@ -1,5 +1,15 @@
#ifdef CONFIG_X86_32
# include "i8253_32.h"
#else
# include "i8253_64.h"
#endif
#ifndef __ASM_I8253_H__
#define __ASM_I8253_H__
/* i8253A PIT registers */
#define PIT_MODE 0x43
#define PIT_CH0 0x40
#define PIT_CH2 0x42
extern spinlock_t i8253_lock;
extern struct clock_event_device *global_clock_event;
extern void setup_pit_timer(void);
#endif /* __ASM_I8253_H__ */

View file

@ -1,17 +0,0 @@
#ifndef __ASM_I8253_H__
#define __ASM_I8253_H__
#include <linux/clockchips.h>
/* i8253A PIT registers */
#define PIT_MODE 0x43
#define PIT_CH0 0x40
#define PIT_CH2 0x42
extern spinlock_t i8253_lock;
extern struct clock_event_device *global_clock_event;
extern void setup_pit_timer(void);
#endif /* __ASM_I8253_H__ */

View file

@ -1,6 +0,0 @@
#ifndef __ASM_I8253_H__
#define __ASM_I8253_H__
extern spinlock_t i8253_lock;
#endif /* __ASM_I8253_H__ */

View file

@ -29,6 +29,7 @@ struct x8664_pda {
short isidle;
struct mm_struct *active_mm;
unsigned apic_timer_irqs;
unsigned irq0_irqs;
} ____cacheline_aligned_in_smp;
extern struct x8664_pda *_cpu_pda[];

View file

@ -51,9 +51,6 @@ extern void reserve_bootmem_generic(unsigned long phys, unsigned len);
extern void load_gs_index(unsigned gs);
extern void stop_timer_interrupt(void);
extern void main_timer_handler(void);
extern unsigned long end_pfn_map;
extern void show_trace(struct task_struct *, struct pt_regs *, unsigned long * rsp);
@ -90,14 +87,10 @@ extern int timer_over_8254;
extern int gsi_irq_sharing(int gsi);
extern void smp_local_timer_interrupt(void);
extern int force_mwait;
long do_arch_prctl(struct task_struct *task, int code, unsigned long addr);
void i8254_timer_resume(void);
#define round_up(x,y) (((x) + (y) - 1) & ~((y)-1))
#define round_down(x,y) ((x) & ~((y)-1))

View file

@ -1,5 +1,18 @@
#ifdef CONFIG_X86_32
# include "timex_32.h"
/* x86 architecture timex specifications */
#ifndef _ASM_X86_TIMEX_H
#define _ASM_X86_TIMEX_H
#include <asm/processor.h>
#include <asm/tsc.h>
#ifdef CONFIG_X86_ELAN
# define PIT_TICK_RATE 1189200 /* AMD Elan has different frequency! */
#else
# include "timex_64.h"
# define PIT_TICK_RATE 1193182 /* Underlying HZ */
#endif
#define CLOCK_TICK_RATE PIT_TICK_RATE
extern int read_current_timer(unsigned long *timer_value);
#define ARCH_HAS_READ_CURRENT_TIMER 1
#endif

View file

@ -1,22 +0,0 @@
/*
* linux/include/asm-i386/timex.h
*
* i386 architecture timex specifications
*/
#ifndef _ASMi386_TIMEX_H
#define _ASMi386_TIMEX_H
#include <asm/processor.h>
#include <asm/tsc.h>
#ifdef CONFIG_X86_ELAN
# define CLOCK_TICK_RATE 1189200 /* AMD Elan has different frequency! */
#else
# define CLOCK_TICK_RATE 1193182 /* Underlying HZ */
#endif
extern int read_current_timer(unsigned long *timer_value);
#define ARCH_HAS_READ_CURRENT_TIMER 1
#endif

View file

@ -1,31 +0,0 @@
/*
* linux/include/asm-x86_64/timex.h
*
* x86-64 architecture timex specifications
*/
#ifndef _ASMx8664_TIMEX_H
#define _ASMx8664_TIMEX_H
#include <asm/8253pit.h>
#include <asm/msr.h>
#include <asm/vsyscall.h>
#include <asm/system.h>
#include <asm/processor.h>
#include <asm/tsc.h>
#include <linux/compiler.h>
#define CLOCK_TICK_RATE PIT_TICK_RATE /* Underlying HZ */
extern int read_current_timer(unsigned long *timer_value);
#define ARCH_HAS_READ_CURRENT_TIMER 1
#define USEC_PER_TICK (USEC_PER_SEC / HZ)
#define NSEC_PER_TICK (NSEC_PER_SEC / HZ)
#define FSEC_PER_TICK (FSEC_PER_SEC / HZ)
#define NS_SCALE 10 /* 2^10, carefully chosen */
#define US_SCALE 32 /* 2^32, arbitralrily chosen */
extern void mark_tsc_unstable(char *msg);
extern void set_cyc2ns_scale(unsigned long khz);
#endif

View file

@ -1,13 +1,14 @@
/*
* linux/include/asm-i386/tsc.h
*
* i386 TSC related functions
* x86 TSC related functions
*/
#ifndef _ASM_i386_TSC_H
#define _ASM_i386_TSC_H
#ifndef _ASM_X86_TSC_H
#define _ASM_X86_TSC_H
#include <asm/processor.h>
#define NS_SCALE 10 /* 2^10, carefully chosen */
#define US_SCALE 32 /* 2^32, arbitralrily chosen */
/*
* Standard way to access the cycle counter.
*/
@ -72,4 +73,8 @@ int check_tsc_unstable(void);
extern void check_tsc_sync_source(int cpu);
extern void check_tsc_sync_target(void);
#ifdef CONFIG_X86_64
extern void tsc_calibrate(void);
#endif
#endif

View file

@ -29,9 +29,6 @@ enum vsyscall_num {
#define VGETCPU_RDTSCP 1
#define VGETCPU_LSL 2
#define hpet_readl(a) readl((const void __iomem *)fix_to_virt(FIX_HPET_BASE) + a)
#define hpet_writel(d,a) writel(d, (void __iomem *)fix_to_virt(FIX_HPET_BASE) + a)
extern int __vgetcpu_mode;
extern volatile unsigned long __jiffies;

View file

@ -8,7 +8,7 @@
#ifndef _LINUX_CLOCKCHIPS_H
#define _LINUX_CLOCKCHIPS_H
#ifdef CONFIG_GENERIC_CLOCKEVENTS
#ifdef CONFIG_GENERIC_CLOCKEVENTS_BUILD
#include <linux/clocksource.h>
#include <linux/cpumask.h>
@ -126,11 +126,14 @@ extern int clockevents_register_notifier(struct notifier_block *nb);
extern int clockevents_program_event(struct clock_event_device *dev,
ktime_t expires, ktime_t now);
#ifdef CONFIG_GENERIC_CLOCKEVENTS
extern void clockevents_notify(unsigned long reason, void *arg);
#else
# define clockevents_notify(reason, arg) do { } while (0)
#endif
#else /* CONFIG_GENERIC_CLOCKEVENTS_BUILD */
static inline void clockevents_resume_events(void) { }
#define clockevents_notify(reason, arg) do { } while (0)
#endif

View file

@ -36,8 +36,6 @@
/* LATCH is used in the interval timer and ftape setup. */
#define LATCH ((CLOCK_TICK_RATE + HZ/2) / HZ) /* For divider */
#define LATCH_HPET ((HPET_TICK_RATE + HZ/2) / HZ)
/* Suppose we want to devide two numbers NOM and DEN: NOM/DEN, the we can
* improve accuracy by shifting LSH bits, hence calculating:
* (NOM << LSH) / DEN
@ -53,13 +51,9 @@
/* HZ is the requested value. ACTHZ is actual HZ ("<< 8" is for accuracy) */
#define ACTHZ (SH_DIV (CLOCK_TICK_RATE, LATCH, 8))
#define ACTHZ_HPET (SH_DIV (HPET_TICK_RATE, LATCH_HPET, 8))
/* TICK_NSEC is the time between ticks in nsec assuming real ACTHZ */
#define TICK_NSEC (SH_DIV (1000000UL * 1000, ACTHZ, 8))
#define TICK_NSEC_HPET (SH_DIV(1000000UL * 1000, ACTHZ_HPET, 8))
/* TICK_USEC is the time between ticks in usec assuming fake USER_HZ */
#define TICK_USEC ((1000000UL + USER_HZ/2) / USER_HZ)

View file

@ -2242,6 +2242,7 @@
#define PCI_DEVICE_ID_INTEL_82801EB_5 0x24d5
#define PCI_DEVICE_ID_INTEL_82801EB_6 0x24d6
#define PCI_DEVICE_ID_INTEL_82801EB_11 0x24db
#define PCI_DEVICE_ID_INTEL_82801EB_12 0x24dc
#define PCI_DEVICE_ID_INTEL_82801EB_13 0x24dd
#define PCI_DEVICE_ID_INTEL_ESB_1 0x25a1
#define PCI_DEVICE_ID_INTEL_ESB_2 0x25a2

View file

@ -23,3 +23,8 @@ config HIGH_RES_TIMERS
hardware is not capable then this option only increases
the size of the kernel image.
config GENERIC_CLOCKEVENTS_BUILD
bool
default y
depends on GENERIC_CLOCKEVENTS || GENERIC_CLOCKEVENTS_MIGR

View file

@ -1,6 +1,6 @@
obj-y += timekeeping.o ntp.o clocksource.o jiffies.o timer_list.o
obj-$(CONFIG_GENERIC_CLOCKEVENTS) += clockevents.o
obj-$(CONFIG_GENERIC_CLOCKEVENTS_BUILD) += clockevents.o
obj-$(CONFIG_GENERIC_CLOCKEVENTS) += tick-common.o
obj-$(CONFIG_GENERIC_CLOCKEVENTS_BROADCAST) += tick-broadcast.o
obj-$(CONFIG_TICK_ONESHOT) += tick-oneshot.o

View file

@ -194,6 +194,7 @@ void clockevents_exchange_device(struct clock_event_device *old,
local_irq_restore(flags);
}
#ifdef CONFIG_GENERIC_CLOCKEVENTS
/**
* clockevents_notify - notification about relevant events
*/
@ -222,4 +223,4 @@ void clockevents_notify(unsigned long reason, void *arg)
spin_unlock(&clockevents_lock);
}
EXPORT_SYMBOL_GPL(clockevents_notify);
#endif

View file

@ -64,8 +64,9 @@ static void tick_broadcast_start_periodic(struct clock_event_device *bc)
*/
int tick_check_broadcast_device(struct clock_event_device *dev)
{
if (tick_broadcast_device.evtdev ||
(dev->features & CLOCK_EVT_FEAT_C3STOP))
if ((tick_broadcast_device.evtdev &&
tick_broadcast_device.evtdev->rating >= dev->rating) ||
(dev->features & CLOCK_EVT_FEAT_C3STOP))
return 0;
clockevents_exchange_device(NULL, dev);
@ -176,8 +177,6 @@ static void tick_do_periodic_broadcast(void)
*/
static void tick_handle_periodic_broadcast(struct clock_event_device *dev)
{
dev->next_event.tv64 = KTIME_MAX;
tick_do_periodic_broadcast();
/*
@ -515,11 +514,9 @@ static void tick_broadcast_clear_oneshot(int cpu)
*/
void tick_broadcast_setup_oneshot(struct clock_event_device *bc)
{
if (bc->mode != CLOCK_EVT_MODE_ONESHOT) {
bc->event_handler = tick_handle_oneshot_broadcast;
clockevents_set_mode(bc, CLOCK_EVT_MODE_ONESHOT);
bc->next_event.tv64 = KTIME_MAX;
}
bc->event_handler = tick_handle_oneshot_broadcast;
clockevents_set_mode(bc, CLOCK_EVT_MODE_ONESHOT);
bc->next_event.tv64 = KTIME_MAX;
}
/*

View file

@ -200,7 +200,7 @@ static int tick_check_new_device(struct clock_event_device *newdev)
cpu = smp_processor_id();
if (!cpu_isset(cpu, newdev->cpumask))
goto out;
goto out_bc;
td = &per_cpu(tick_cpu_device, cpu);
curdev = td->evtdev;
@ -265,7 +265,7 @@ out_bc:
*/
if (tick_check_broadcast_device(newdev))
ret = NOTIFY_STOP;
out:
spin_unlock_irqrestore(&tick_device_lock, flags);
return ret;