Commit Graph

8 Commits

Author SHA1 Message Date
Ben Hutchings c8f0b86996 dsa: Move all definitions needed by drivers into <net/dsa.h>
Any headers included by drivers should be under include/, and
any definitions they use are not really private to the core as
the name "dsa_priv.h" suggests.

Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
Acked-by: Lennert Buytenhek <buytenh@wantstofly.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
2011-11-29 00:21:36 -05:00
Ben Hutchings 7df899c36c dsa: Combine core and tagging code
These files have circular dependencies, so if we make DSA modular then
they must be built into the same module.  Therefore, link them
together and merge their respective module init and exit functions.

Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
Signed-off-by: David S. Miller <davem@davemloft.net>
2011-11-26 14:48:15 -05:00
Ben Hutchings cf50dcc24f dsa: Change dsa_uses_{dsa, trailer}_tags() into inline functions
eth_type_trans() will use these functions if DSA is enabled, which
blocks building DSA as a module.

Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
Signed-off-by: David S. Miller <davem@davemloft.net>
2011-11-26 14:48:14 -05:00
Stephen Hemminger 6fef4c0c8e netdev: convert pseudo-devices to netdev_tx_t
Signed-off-by: Stephen Hemminger <shemminger@vyatta.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2009-09-01 01:13:07 -07:00
Lennert Buytenhek e84665c9cb dsa: add switch chip cascading support
The initial version of the DSA driver only supported a single switch
chip per network interface, while DSA-capable switch chips can be
interconnected to form a tree of switch chips.  This patch adds support
for multiple switch chips on a network interface.

An example topology for a 16-port device with an embedded CPU is as
follows:

	+-----+          +--------+       +--------+
	|     |eth0    10| switch |9    10| switch |
	| CPU +----------+        +-------+        |
	|     |          | chip 0 |       | chip 1 |
	+-----+          +---++---+       +---++---+
	                     ||               ||
	                     ||               ||
	                     ||1000baseT      ||1000baseT
	                     ||ports 1-8      ||ports 9-16

This requires a couple of interdependent changes in the DSA layer:

- The dsa platform driver data needs to be extended: there is still
  only one netdevice per DSA driver instance (eth0 in the example
  above), but each of the switch chips in the tree needs its own
  mii_bus device pointer, MII management bus address, and port name
  array. (include/net/dsa.h)  The existing in-tree dsa users need
  some small changes to deal with this. (arch/arm)

- The DSA and Ethertype DSA tagging modules need to be extended to
  use the DSA device ID field on receive and demultiplex the packet
  accordingly, and fill in the DSA device ID field on transmit
  according to which switch chip the packet is heading to.
  (net/dsa/tag_{dsa,edsa}.c)

- The concept of "CPU port", which is the switch chip port that the
  CPU is connected to (port 10 on switch chip 0 in the example), needs
  to be extended with the concept of "upstream port", which is the
  port on the switch chip that will bring us one hop closer to the CPU
  (port 10 for both switch chips in the example above).

- The dsa platform data needs to specify which ports on which switch
  chips are links to other switch chips, so that we can enable DSA
  tagging mode on them.  (For inter-switch links, we always use
  non-EtherType DSA tagging, since it has lower overhead.  The CPU
  link uses dsa or edsa tagging depending on what the 'root' switch
  chip supports.)  This is done by specifying "dsa" for the given
  port in the port array.

- The dsa platform data needs to be extended with information on via
  which port to reach any given switch chip from any given switch chip.
  This info is specified via the per-switch chip data struct ->rtable[]
  array, which gives the nexthop ports for each of the other switches
  in the tree.

For the example topology above, the dsa platform data would look
something like this:

	static struct dsa_chip_data sw[2] = {
		{
			.mii_bus	= &foo,
			.sw_addr	= 1,
			.port_names[0]	= "p1",
			.port_names[1]	= "p2",
			.port_names[2]	= "p3",
			.port_names[3]	= "p4",
			.port_names[4]	= "p5",
			.port_names[5]	= "p6",
			.port_names[6]	= "p7",
			.port_names[7]	= "p8",
			.port_names[9]	= "dsa",
			.port_names[10]	= "cpu",
			.rtable		= (s8 []){ -1, 9, },
		}, {
			.mii_bus	= &foo,
			.sw_addr	= 2,
			.port_names[0]	= "p9",
			.port_names[1]	= "p10",
			.port_names[2]	= "p11",
			.port_names[3]	= "p12",
			.port_names[4]	= "p13",
			.port_names[5]	= "p14",
			.port_names[6]	= "p15",
			.port_names[7]	= "p16",
			.port_names[10]	= "dsa",
			.rtable		= (s8 []){ 10, -1, },
		},
	},

	static struct dsa_platform_data pd = {
		.netdev		= &foo,
		.nr_switches	= 2,
		.sw		= sw,
	};

Signed-off-by: Lennert Buytenhek <buytenh@marvell.com>
Tested-by: Gary Thomas <gary@mlbassoc.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2009-03-21 19:06:54 -07:00
Lennert Buytenhek 396138f03f dsa: add support for Trailer tagging format
This adds support for the Trailer switch tagging format.  This is
another tagging that doesn't explicitly mark tagged packets with a
distinct ethertype, so that we need to add a similar hack in the
receive path as for the Original DSA tagging format.

Signed-off-by: Lennert Buytenhek <buytenh@marvell.com>
Tested-by: Byron Bradley <byron.bbradley@gmail.com>
Tested-by: Tim Ellis <tim.ellis@mac.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2008-10-08 17:24:16 -07:00
Lennert Buytenhek cf85d08fdf dsa: add support for original DSA tagging format
Most of the DSA switches currently in the field do not support the
Ethertype DSA tagging format that one of the previous patches added
support for, but only the original DSA tagging format.

The original DSA tagging format carries the same information as the
Ethertype DSA tagging format, but with the difference that it does not
have an ethertype field.  In other words, when receiving a packet that
is tagged with an original DSA tag, there is no way of telling in
eth_type_trans() that this packet is in fact a DSA-tagged packet.

This patch adds a hook into eth_type_trans() which is only compiled in
if support for a switch chip that doesn't support Ethertype DSA is
selected, and which checks whether there is a DSA switch driver
instance attached to this network device which uses the old tag format.
If so, it sets the protocol field to ETH_P_DSA without looking at the
packet, so that the packet ends up in the right place.

Signed-off-by: Lennert Buytenhek <buytenh@marvell.com>
Tested-by: Nicolas Pitre <nico@marvell.com>
Tested-by: Peter van Valderen <linux@ddcrew.com>
Tested-by: Dirk Teurlings <dirk@upexia.nl>
Signed-off-by: David S. Miller <davem@davemloft.net>
2008-10-08 17:19:56 -07:00
Lennert Buytenhek 91da11f870 net: Distributed Switch Architecture protocol support
Distributed Switch Architecture is a protocol for managing hardware
switch chips.  It consists of a set of MII management registers and
commands to configure the switch, and an ethernet header format to
signal which of the ports of the switch a packet was received from
or is intended to be sent to.

The switches that this driver supports are typically embedded in
access points and routers, and a typical setup with a DSA switch
looks something like this:

	+-----------+       +-----------+
	|           | RGMII |           |
	|           +-------+           +------ 1000baseT MDI ("WAN")
	|           |       |  6-port   +------ 1000baseT MDI ("LAN1")
	|    CPU    |       |  ethernet +------ 1000baseT MDI ("LAN2")
	|           |MIImgmt|  switch   +------ 1000baseT MDI ("LAN3")
	|           +-------+  w/5 PHYs +------ 1000baseT MDI ("LAN4")
	|           |       |           |
	+-----------+       +-----------+

The switch driver presents each port on the switch as a separate
network interface to Linux, polls the switch to maintain software
link state of those ports, forwards MII management interface
accesses to those network interfaces (e.g. as done by ethtool) to
the switch, and exposes the switch's hardware statistics counters
via the appropriate Linux kernel interfaces.

This initial patch supports the MII management interface register
layout of the Marvell 88E6123, 88E6161 and 88E6165 switch chips, and
supports the "Ethertype DSA" packet tagging format.

(There is no officially registered ethertype for the Ethertype DSA
packet format, so we just grab a random one.  The ethertype to use
is programmed into the switch, and the switch driver uses the value
of ETH_P_EDSA for this, so this define can be changed at any time in
the future if the one we chose is allocated to another protocol or
if Ethertype DSA gets its own officially registered ethertype, and
everything will continue to work.)

Signed-off-by: Lennert Buytenhek <buytenh@marvell.com>
Tested-by: Nicolas Pitre <nico@marvell.com>
Tested-by: Byron Bradley <byron.bbradley@gmail.com>
Tested-by: Tim Ellis <tim.ellis@mac.com>
Tested-by: Peter van Valderen <linux@ddcrew.com>
Tested-by: Dirk Teurlings <dirk@upexia.nl>
Signed-off-by: David S. Miller <davem@davemloft.net>
2008-10-08 17:15:19 -07:00