/* Copyright (c) 2012-2014, The Linux Foundation. All rights reserved. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 and * only version 2 as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. */ #define pr_fmt(fmt) "%s: " fmt, __func__ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* QPNP IADC register definition */ #define QPNP_IADC_REVISION1 0x0 #define QPNP_IADC_REVISION2 0x1 #define QPNP_IADC_REVISION3 0x2 #define QPNP_IADC_REVISION4 0x3 #define QPNP_IADC_PERPH_TYPE 0x4 #define QPNP_IADC_PERH_SUBTYPE 0x5 #define QPNP_IADC_SUPPORTED_REVISION2 1 #define QPNP_STATUS1 0x8 #define QPNP_STATUS1_OP_MODE 4 #define QPNP_STATUS1_MULTI_MEAS_EN BIT(3) #define QPNP_STATUS1_MEAS_INTERVAL_EN_STS BIT(2) #define QPNP_STATUS1_REQ_STS BIT(1) #define QPNP_STATUS1_EOC BIT(0) #define QPNP_STATUS1_REQ_STS_EOC_MASK 0x3 #define QPNP_STATUS2 0x9 #define QPNP_STATUS2_CONV_SEQ_STATE_SHIFT 4 #define QPNP_STATUS2_FIFO_NOT_EMPTY_FLAG BIT(1) #define QPNP_STATUS2_CONV_SEQ_TIMEOUT_STS BIT(0) #define QPNP_CONV_TIMEOUT_ERR 2 #define QPNP_IADC_MODE_CTL 0x40 #define QPNP_OP_MODE_SHIFT 4 #define QPNP_USE_BMS_DATA BIT(4) #define QPNP_VADC_SYNCH_EN BIT(2) #define QPNP_OFFSET_RMV_EN BIT(1) #define QPNP_ADC_TRIM_EN BIT(0) #define QPNP_IADC_EN_CTL1 0x46 #define QPNP_IADC_ADC_EN BIT(7) #define QPNP_ADC_CH_SEL_CTL 0x48 #define QPNP_ADC_DIG_PARAM 0x50 #define QPNP_ADC_CLK_SEL_MASK 0x3 #define QPNP_ADC_DEC_RATIO_SEL_MASK 0xc #define QPNP_ADC_DIG_DEC_RATIO_SEL_SHIFT 2 #define QPNP_CONV_REQ 0x52 #define QPNP_CONV_REQ_SET BIT(7) #define QPNP_CONV_SEQ_CTL 0x54 #define QPNP_CONV_SEQ_HOLDOFF_SHIFT 4 #define QPNP_CONV_SEQ_TRIG_CTL 0x55 #define QPNP_FAST_AVG_CTL 0x5a #define QPNP_M0_LOW_THR_LSB 0x5c #define QPNP_M0_LOW_THR_MSB 0x5d #define QPNP_M0_HIGH_THR_LSB 0x5e #define QPNP_M0_HIGH_THR_MSB 0x5f #define QPNP_M1_LOW_THR_LSB 0x69 #define QPNP_M1_LOW_THR_MSB 0x6a #define QPNP_M1_HIGH_THR_LSB 0x6b #define QPNP_M1_HIGH_THR_MSB 0x6c #define QPNP_DATA0 0x60 #define QPNP_DATA1 0x61 #define QPNP_CONV_TIMEOUT_ERR 2 #define QPNP_IADC_SEC_ACCESS 0xD0 #define QPNP_IADC_SEC_ACCESS_DATA 0xA5 #define QPNP_IADC_MSB_OFFSET 0xF2 #define QPNP_IADC_LSB_OFFSET 0xF3 #define QPNP_IADC_NOMINAL_RSENSE 0xF4 #define QPNP_IADC_ATE_GAIN_CALIB_OFFSET 0xF5 #define QPNP_INT_TEST_VAL 0xE1 #define QPNP_IADC_ADC_CH_SEL_CTL 0x48 #define QPNP_IADC_ADC_CHX_SEL_SHIFT 3 #define QPNP_IADC_ADC_DIG_PARAM 0x50 #define QPNP_IADC_CLK_SEL_SHIFT 1 #define QPNP_IADC_DEC_RATIO_SEL 3 #define QPNP_IADC_CONV_REQUEST 0x52 #define QPNP_IADC_CONV_REQ BIT(7) #define QPNP_IADC_DATA0 0x60 #define QPNP_IADC_DATA1 0x61 #define QPNP_ADC_CONV_TIME_MIN 2000 #define QPNP_ADC_CONV_TIME_MAX 2100 #define QPNP_ADC_ERR_COUNT 20 #define QPNP_ADC_GAIN_NV 17857 #define QPNP_OFFSET_CALIBRATION_SHORT_CADC_LEADS_IDEAL 0 #define QPNP_IADC_INTERNAL_RSENSE_N_OHMS_FACTOR 10000000 #define QPNP_IADC_NANO_VOLTS_FACTOR 1000000 #define QPNP_IADC_CALIB_SECONDS 300000 #define QPNP_IADC_RSENSE_LSB_N_OHMS_PER_BIT 15625 #define QPNP_IADC_DIE_TEMP_CALIB_OFFSET 5000 #define QPNP_RAW_CODE_16_BIT_MSB_MASK 0xff00 #define QPNP_RAW_CODE_16_BIT_LSB_MASK 0xff #define QPNP_BIT_SHIFT_8 8 #define QPNP_RSENSE_MSB_SIGN_CHECK 0x80 #define QPNP_ADC_COMPLETION_TIMEOUT HZ #define SMBB_BAT_IF_TRIM_CNST_RDS_MASK 0x7 #define SMBB_BAT_IF_TRIM_CNST_RDS_MASK_CONST_0 0 #define SMBB_BAT_IF_TRIM_CNST_RDS_MASK_CONST_2 2 #define QPNP_IADC1_USR_TRIM2_ADC_FULLSCALE1_CONST 127 #define QPNP_IADC_RSENSE_DEFAULT_VALUE 7800000 #define QPNP_IADC_RSENSE_DEFAULT_TYPEB_GF 9000000 #define QPNP_IADC_RSENSE_DEFAULT_TYPEB_SMIC 9700000 struct qpnp_iadc_comp { bool ext_rsense; u8 id; u8 sys_gain; u8 revision_dig_major; u8 revision_ana_minor; }; struct qpnp_iadc_chip { struct device *dev; struct qpnp_adc_drv *adc; int32_t rsense; bool external_rsense; bool default_internal_rsense; struct device *iadc_hwmon; struct list_head list; int64_t die_temp; struct delayed_work iadc_work; bool iadc_mode_sel; struct qpnp_iadc_comp iadc_comp; struct qpnp_vadc_chip *vadc_dev; struct work_struct trigger_completion_work; bool skip_auto_calibrations; bool iadc_poll_eoc; u16 batt_id_trim_cnst_rds; int rds_trim_default_type; int max_channels_available; bool rds_trim_default_check; int32_t rsense_workaround_value; struct sensor_device_attribute sens_attr[0]; }; LIST_HEAD(qpnp_iadc_device_list); enum qpnp_iadc_rsense_rds_workaround { QPNP_IADC_RDS_DEFAULT_TYPEA, QPNP_IADC_RDS_DEFAULT_TYPEB, QPNP_IADC_RDS_DEFAULT_TYPEC, }; static int32_t qpnp_iadc_read_reg(struct qpnp_iadc_chip *iadc, uint32_t reg, u8 *data) { int rc; rc = spmi_ext_register_readl(iadc->adc->spmi->ctrl, iadc->adc->slave, (iadc->adc->offset + reg), data, 1); if (rc < 0) { pr_err("qpnp iadc read reg %d failed with %d\n", reg, rc); return rc; } return 0; } static int32_t qpnp_iadc_write_reg(struct qpnp_iadc_chip *iadc, uint32_t reg, u8 data) { int rc; u8 *buf; buf = &data; rc = spmi_ext_register_writel(iadc->adc->spmi->ctrl, iadc->adc->slave, (iadc->adc->offset + reg), buf, 1); if (rc < 0) { pr_err("qpnp iadc write reg %d failed with %d\n", reg, rc); return rc; } return 0; } static int qpnp_iadc_is_valid(struct qpnp_iadc_chip *iadc) { struct qpnp_iadc_chip *iadc_chip = NULL; list_for_each_entry(iadc_chip, &qpnp_iadc_device_list, list) if (iadc == iadc_chip) return 0; return -EINVAL; } static void qpnp_iadc_trigger_completion(struct work_struct *work) { struct qpnp_iadc_chip *iadc = container_of(work, struct qpnp_iadc_chip, trigger_completion_work); if (qpnp_iadc_is_valid(iadc) < 0) return; complete(&iadc->adc->adc_rslt_completion); return; } static irqreturn_t qpnp_iadc_isr(int irq, void *dev_id) { struct qpnp_iadc_chip *iadc = dev_id; schedule_work(&iadc->trigger_completion_work); return IRQ_HANDLED; } static int32_t qpnp_iadc_enable(struct qpnp_iadc_chip *dev, bool state) { int rc = 0; u8 data = 0; data = QPNP_IADC_ADC_EN; if (state) { rc = qpnp_iadc_write_reg(dev, QPNP_IADC_EN_CTL1, data); if (rc < 0) { pr_err("IADC enable failed\n"); return rc; } } else { rc = qpnp_iadc_write_reg(dev, QPNP_IADC_EN_CTL1, (~data & QPNP_IADC_ADC_EN)); if (rc < 0) { pr_err("IADC disable failed\n"); return rc; } } return 0; } static int32_t qpnp_iadc_status_debug(struct qpnp_iadc_chip *dev) { int rc = 0; u8 mode = 0, status1 = 0, chan = 0, dig = 0, en = 0; rc = qpnp_iadc_read_reg(dev, QPNP_IADC_MODE_CTL, &mode); if (rc < 0) { pr_err("mode ctl register read failed with %d\n", rc); return rc; } rc = qpnp_iadc_read_reg(dev, QPNP_ADC_DIG_PARAM, &dig); if (rc < 0) { pr_err("digital param read failed with %d\n", rc); return rc; } rc = qpnp_iadc_read_reg(dev, QPNP_IADC_ADC_CH_SEL_CTL, &chan); if (rc < 0) { pr_err("channel read failed with %d\n", rc); return rc; } rc = qpnp_iadc_read_reg(dev, QPNP_STATUS1, &status1); if (rc < 0) { pr_err("status1 read failed with %d\n", rc); return rc; } rc = qpnp_iadc_read_reg(dev, QPNP_IADC_EN_CTL1, &en); if (rc < 0) { pr_err("en read failed with %d\n", rc); return rc; } pr_debug("EOC not set with status:%x, dig:%x, ch:%x, mode:%x, en:%x\n", status1, dig, chan, mode, en); rc = qpnp_iadc_enable(dev, false); if (rc < 0) { pr_err("IADC disable failed with %d\n", rc); return rc; } return 0; } static int32_t qpnp_iadc_read_conversion_result(struct qpnp_iadc_chip *iadc, int16_t *data) { uint8_t rslt_lsb, rslt_msb; uint16_t rslt; int32_t rc; rc = qpnp_iadc_read_reg(iadc, QPNP_IADC_DATA0, &rslt_lsb); if (rc < 0) { pr_err("qpnp adc result read failed with %d\n", rc); return rc; } rc = qpnp_iadc_read_reg(iadc, QPNP_IADC_DATA1, &rslt_msb); if (rc < 0) { pr_err("qpnp adc result read failed with %d\n", rc); return rc; } rslt = (rslt_msb << 8) | rslt_lsb; *data = rslt; rc = qpnp_iadc_enable(iadc, false); if (rc) return rc; return 0; } #define QPNP_IADC_PM8026_2_REV2 4 #define QPNP_IADC_PM8026_2_REV3 2 #define QPNP_COEFF_1 969000 #define QPNP_COEFF_2 32 #define QPNP_COEFF_3_TYPEA 1700000 #define QPNP_COEFF_3_TYPEB 1000000 #define QPNP_COEFF_4 100 #define QPNP_COEFF_5 15 #define QPNP_COEFF_6 100000 #define QPNP_COEFF_7 21 #define QPNP_COEFF_8 100000000 #define QPNP_COEFF_9 38 #define QPNP_COEFF_10 40 #define QPNP_COEFF_11 7 #define QPNP_COEFF_12 11 #define QPNP_COEFF_13 37 #define QPNP_COEFF_14 39 #define QPNP_COEFF_15 9 #define QPNP_COEFF_16 11 #define QPNP_COEFF_17 851200 #define QPNP_COEFF_18 296500 #define QPNP_COEFF_19 222400 #define QPNP_COEFF_20 813800 #define QPNP_COEFF_21 1059100 #define QPNP_COEFF_22 5000000 #define QPNP_COEFF_23 3722500 #define QPNP_COEFF_24 84 #define QPNP_COEFF_25 33 #define QPNP_COEFF_26 22 #define QPNP_COEFF_27 53 #define QPNP_COEFF_28 48 static int32_t qpnp_iadc_comp(int64_t *result, struct qpnp_iadc_chip *iadc, int64_t die_temp) { int64_t temp_var = 0, sys_gain_coeff = 0, old; int32_t coeff_a = 0, coeff_b = 0; int version = 0; version = qpnp_adc_get_revid_version(iadc->dev); if (version == -EINVAL) return 0; old = *result; *result = *result * 1000000; if (iadc->iadc_comp.sys_gain > 127) sys_gain_coeff = -QPNP_COEFF_6 * (iadc->iadc_comp.sys_gain - 128); else sys_gain_coeff = QPNP_COEFF_6 * iadc->iadc_comp.sys_gain; switch (version) { case QPNP_REV_ID_8941_3_1: switch (iadc->iadc_comp.id) { case COMP_ID_GF: if (!iadc->iadc_comp.ext_rsense) { /* internal rsense */ coeff_a = QPNP_COEFF_2; coeff_b = -QPNP_COEFF_3_TYPEA; } else { if (*result < 0) { /* charge */ coeff_a = QPNP_COEFF_5; coeff_b = QPNP_COEFF_6; } else { /* discharge */ coeff_a = -QPNP_COEFF_7; coeff_b = QPNP_COEFF_6; } } break; case COMP_ID_TSMC: default: if (!iadc->iadc_comp.ext_rsense) { /* internal rsense */ coeff_a = QPNP_COEFF_2; coeff_b = -QPNP_COEFF_3_TYPEB; } else { if (*result < 0) { /* charge */ coeff_a = QPNP_COEFF_5; coeff_b = QPNP_COEFF_6; } else { /* discharge */ coeff_a = -QPNP_COEFF_7; coeff_b = QPNP_COEFF_6; } } break; } break; case QPNP_REV_ID_8026_2_1: case QPNP_REV_ID_8026_2_2: /* pm8026 rev 2.1 and 2.2 */ switch (iadc->iadc_comp.id) { case COMP_ID_GF: if (!iadc->iadc_comp.ext_rsense) { /* internal rsense */ if (*result < 0) { /* charge */ coeff_a = 0; coeff_b = 0; } else { coeff_a = QPNP_COEFF_25; coeff_b = 0; } } else { if (*result < 0) { /* charge */ coeff_a = 0; coeff_b = 0; } else { /* discharge */ coeff_a = 0; coeff_b = 0; } } break; case COMP_ID_TSMC: default: if (!iadc->iadc_comp.ext_rsense) { /* internal rsense */ if (*result < 0) { /* charge */ coeff_a = 0; coeff_b = 0; } else { coeff_a = QPNP_COEFF_26; coeff_b = 0; } } else { if (*result < 0) { /* charge */ coeff_a = 0; coeff_b = 0; } else { /* discharge */ coeff_a = 0; coeff_b = 0; } } break; } break; case QPNP_REV_ID_8026_1_0: /* pm8026 rev 1.0 */ switch (iadc->iadc_comp.id) { case COMP_ID_GF: if (!iadc->iadc_comp.ext_rsense) { /* internal rsense */ if (*result < 0) { /* charge */ coeff_a = QPNP_COEFF_9; coeff_b = -QPNP_COEFF_17; } else { coeff_a = QPNP_COEFF_10; coeff_b = QPNP_COEFF_18; } } else { if (*result < 0) { /* charge */ coeff_a = -QPNP_COEFF_11; coeff_b = 0; } else { /* discharge */ coeff_a = -QPNP_COEFF_17; coeff_b = -QPNP_COEFF_19; } } break; case COMP_ID_TSMC: default: if (!iadc->iadc_comp.ext_rsense) { /* internal rsense */ if (*result < 0) { /* charge */ coeff_a = QPNP_COEFF_13; coeff_b = -QPNP_COEFF_20; } else { coeff_a = QPNP_COEFF_14; coeff_b = QPNP_COEFF_21; } } else { if (*result < 0) { /* charge */ coeff_a = -QPNP_COEFF_15; coeff_b = 0; } else { /* discharge */ coeff_a = -QPNP_COEFF_12; coeff_b = -QPNP_COEFF_19; } } break; } break; case QPNP_REV_ID_8110_1_0: /* pm8110 rev 1.0 */ switch (iadc->iadc_comp.id) { case COMP_ID_GF: if (!iadc->iadc_comp.ext_rsense) { /* internal rsense */ if (*result < 0) { /* charge */ coeff_a = QPNP_COEFF_24; coeff_b = -QPNP_COEFF_22; } else { coeff_a = QPNP_COEFF_24; coeff_b = -QPNP_COEFF_23; } } break; case COMP_ID_SMIC: default: if (!iadc->iadc_comp.ext_rsense) { /* internal rsense */ if (*result < 0) { /* charge */ coeff_a = QPNP_COEFF_24; coeff_b = -QPNP_COEFF_22; } else { coeff_a = QPNP_COEFF_24; coeff_b = -QPNP_COEFF_23; } } break; } break; case QPNP_REV_ID_8110_2_0: die_temp -= 25000; /* pm8110 rev 2.0 */ switch (iadc->iadc_comp.id) { case COMP_ID_GF: if (!iadc->iadc_comp.ext_rsense) { /* internal rsense */ if (*result < 0) { /* charge */ coeff_a = 0; coeff_b = 0; } else { coeff_a = QPNP_COEFF_27; coeff_b = 0; } } break; case COMP_ID_SMIC: default: if (!iadc->iadc_comp.ext_rsense) { /* internal rsense */ if (*result < 0) { /* charge */ coeff_a = 0; coeff_b = 0; } else { coeff_a = QPNP_COEFF_28; coeff_b = 0; } } break; } break; default: case QPNP_REV_ID_8026_2_0: /* pm8026 rev 1.0 */ coeff_a = 0; coeff_b = 0; break; } temp_var = (coeff_a * die_temp) + coeff_b; temp_var = div64_s64(temp_var, QPNP_COEFF_4); temp_var = 1000 * (1000000 - temp_var); if (!iadc->iadc_comp.ext_rsense) { /* internal rsense */ *result = div64_s64(*result * 1000, temp_var); } if (iadc->iadc_comp.ext_rsense) { /* external rsense */ sys_gain_coeff = (1000000 + div64_s64(sys_gain_coeff, QPNP_COEFF_4)); temp_var = div64_s64(temp_var * sys_gain_coeff, 1000000); *result = div64_s64(*result * 1000, temp_var); } pr_debug("%lld compensated into %lld, a: %d, b: %d, sys_gain: %lld\n", old, *result, coeff_a, coeff_b, sys_gain_coeff); return 0; } int32_t qpnp_iadc_comp_result(struct qpnp_iadc_chip *iadc, int64_t *result) { return qpnp_iadc_comp(result, iadc, iadc->die_temp); } EXPORT_SYMBOL(qpnp_iadc_comp_result); static int qpnp_iadc_rds_trim_update_check(struct qpnp_iadc_chip *iadc) { int rc = 0; u8 trim2_val = 0, smbb_batt_trm_data = 0; u8 smbb_batt_trm_cnst_rds = 0; if (!iadc->rds_trim_default_check) { pr_debug("No internal rds trim check needed\n"); return 0; } rc = qpnp_iadc_read_reg(iadc, QPNP_IADC_NOMINAL_RSENSE, &trim2_val); if (rc < 0) { pr_err("qpnp adc trim2_fullscale1 reg read failed %d\n", rc); return rc; } rc = spmi_ext_register_readl(iadc->adc->spmi->ctrl, iadc->adc->slave, iadc->batt_id_trim_cnst_rds, &smbb_batt_trm_data, 1); if (rc < 0) { pr_err("batt_id trim_cnst rds reg read failed %d\n", rc); return rc; } smbb_batt_trm_cnst_rds = smbb_batt_trm_data & SMBB_BAT_IF_TRIM_CNST_RDS_MASK; pr_debug("n_trim:0x%x smb_trm:0x%x\n", trim2_val, smbb_batt_trm_data); if (iadc->rds_trim_default_type == QPNP_IADC_RDS_DEFAULT_TYPEA) { if ((smbb_batt_trm_cnst_rds == SMBB_BAT_IF_TRIM_CNST_RDS_MASK_CONST_2) && (trim2_val == QPNP_IADC1_USR_TRIM2_ADC_FULLSCALE1_CONST)) { iadc->rsense_workaround_value = QPNP_IADC_RSENSE_DEFAULT_VALUE; iadc->default_internal_rsense = true; } } else if (iadc->rds_trim_default_type == QPNP_IADC_RDS_DEFAULT_TYPEB) { if ((smbb_batt_trm_cnst_rds >= SMBB_BAT_IF_TRIM_CNST_RDS_MASK_CONST_2) && (trim2_val == QPNP_IADC1_USR_TRIM2_ADC_FULLSCALE1_CONST)) { iadc->rsense_workaround_value = QPNP_IADC_RSENSE_DEFAULT_VALUE; iadc->default_internal_rsense = true; } else if ((smbb_batt_trm_cnst_rds < SMBB_BAT_IF_TRIM_CNST_RDS_MASK_CONST_2) && (trim2_val == QPNP_IADC1_USR_TRIM2_ADC_FULLSCALE1_CONST)) { if (iadc->iadc_comp.id == COMP_ID_GF) { iadc->rsense_workaround_value = QPNP_IADC_RSENSE_DEFAULT_TYPEB_GF; iadc->default_internal_rsense = true; } else if (iadc->iadc_comp.id == COMP_ID_SMIC) { iadc->rsense_workaround_value = QPNP_IADC_RSENSE_DEFAULT_TYPEB_SMIC; iadc->default_internal_rsense = true; } } } else if (iadc->rds_trim_default_type == QPNP_IADC_RDS_DEFAULT_TYPEC) { if ((smbb_batt_trm_cnst_rds > SMBB_BAT_IF_TRIM_CNST_RDS_MASK_CONST_0) && (smbb_batt_trm_cnst_rds <= SMBB_BAT_IF_TRIM_CNST_RDS_MASK_CONST_2) && (trim2_val == QPNP_IADC1_USR_TRIM2_ADC_FULLSCALE1_CONST)) { iadc->rsense_workaround_value = QPNP_IADC_RSENSE_DEFAULT_VALUE; iadc->default_internal_rsense = true; } } return 0; } static int32_t qpnp_iadc_comp_info(struct qpnp_iadc_chip *iadc) { int rc = 0; rc = qpnp_iadc_read_reg(iadc, QPNP_INT_TEST_VAL, &iadc->iadc_comp.id); if (rc < 0) { pr_err("qpnp adc comp id failed with %d\n", rc); return rc; } rc = qpnp_iadc_read_reg(iadc, QPNP_IADC_REVISION2, &iadc->iadc_comp.revision_dig_major); if (rc < 0) { pr_err("qpnp adc revision2 read failed with %d\n", rc); return rc; } rc = qpnp_iadc_read_reg(iadc, QPNP_IADC_REVISION3, &iadc->iadc_comp.revision_ana_minor); if (rc < 0) { pr_err("qpnp adc revision3 read failed with %d\n", rc); return rc; } rc = qpnp_iadc_read_reg(iadc, QPNP_IADC_ATE_GAIN_CALIB_OFFSET, &iadc->iadc_comp.sys_gain); if (rc < 0) { pr_err("full scale read failed with %d\n", rc); return rc; } if (iadc->external_rsense) iadc->iadc_comp.ext_rsense = true; pr_debug("fab id = %u, revision_dig_major = %u, revision_ana_minor = %u sys gain = %u, external_rsense = %d\n", iadc->iadc_comp.id, iadc->iadc_comp.revision_dig_major, iadc->iadc_comp.revision_ana_minor, iadc->iadc_comp.sys_gain, iadc->iadc_comp.ext_rsense); return rc; } static int32_t qpnp_iadc_configure(struct qpnp_iadc_chip *iadc, enum qpnp_iadc_channels channel, uint16_t *raw_code, uint32_t mode_sel) { u8 qpnp_iadc_mode_reg = 0, qpnp_iadc_ch_sel_reg = 0; u8 qpnp_iadc_conv_req = 0, qpnp_iadc_dig_param_reg = 0; u8 status1 = 0; uint32_t count = 0; int32_t rc = 0; qpnp_iadc_ch_sel_reg = channel; qpnp_iadc_dig_param_reg |= iadc->adc->amux_prop->decimation << QPNP_IADC_DEC_RATIO_SEL; if (iadc->iadc_mode_sel) qpnp_iadc_mode_reg |= (QPNP_ADC_TRIM_EN | QPNP_VADC_SYNCH_EN); else qpnp_iadc_mode_reg |= QPNP_ADC_TRIM_EN; qpnp_iadc_conv_req = QPNP_IADC_CONV_REQ; rc = qpnp_iadc_write_reg(iadc, QPNP_IADC_MODE_CTL, qpnp_iadc_mode_reg); if (rc) { pr_err("qpnp adc read adc failed with %d\n", rc); return rc; } rc = qpnp_iadc_write_reg(iadc, QPNP_IADC_ADC_CH_SEL_CTL, qpnp_iadc_ch_sel_reg); if (rc) { pr_err("qpnp adc read adc failed with %d\n", rc); return rc; } rc = qpnp_iadc_write_reg(iadc, QPNP_ADC_DIG_PARAM, qpnp_iadc_dig_param_reg); if (rc) { pr_err("qpnp adc read adc failed with %d\n", rc); return rc; } rc = qpnp_iadc_write_reg(iadc, QPNP_FAST_AVG_CTL, iadc->adc->amux_prop->fast_avg_setup); if (rc < 0) { pr_err("qpnp adc fast averaging configure error\n"); return rc; } if (!iadc->iadc_poll_eoc) INIT_COMPLETION(iadc->adc->adc_rslt_completion); rc = qpnp_iadc_enable(iadc, true); if (rc) return rc; rc = qpnp_iadc_write_reg(iadc, QPNP_CONV_REQ, qpnp_iadc_conv_req); if (rc) { pr_err("qpnp adc read adc failed with %d\n", rc); return rc; } if (iadc->iadc_poll_eoc) { while (status1 != QPNP_STATUS1_EOC) { rc = qpnp_iadc_read_reg(iadc, QPNP_STATUS1, &status1); if (rc < 0) return rc; status1 &= QPNP_STATUS1_REQ_STS_EOC_MASK; usleep_range(QPNP_ADC_CONV_TIME_MIN, QPNP_ADC_CONV_TIME_MAX); count++; if (count > QPNP_ADC_ERR_COUNT) { pr_err("retry error exceeded\n"); rc = qpnp_iadc_status_debug(iadc); if (rc < 0) pr_err("IADC status debug failed\n"); rc = -EINVAL; return rc; } } } else { rc = wait_for_completion_timeout( &iadc->adc->adc_rslt_completion, QPNP_ADC_COMPLETION_TIMEOUT); if (!rc) { rc = qpnp_iadc_read_reg(iadc, QPNP_STATUS1, &status1); if (rc < 0) return rc; status1 &= QPNP_STATUS1_REQ_STS_EOC_MASK; if (status1 == QPNP_STATUS1_EOC) pr_debug("End of conversion status set\n"); else { rc = qpnp_iadc_status_debug(iadc); if (rc < 0) { pr_err("status debug failed %d\n", rc); return rc; } return -EINVAL; } } } rc = qpnp_iadc_read_conversion_result(iadc, raw_code); if (rc) { pr_err("qpnp adc read adc failed with %d\n", rc); return rc; } return 0; } #define IADC_CENTER 0xC000 #define IADC_READING_RESOLUTION_N 542535 #define IADC_READING_RESOLUTION_D 100000 static int32_t qpnp_convert_raw_offset_voltage(struct qpnp_iadc_chip *iadc) { s64 numerator; if ((iadc->adc->calib.gain_raw - iadc->adc->calib.offset_raw) == 0) { pr_err("raw offset errors! raw_gain:0x%x and raw_offset:0x%x\n", iadc->adc->calib.gain_raw, iadc->adc->calib.offset_raw); return -EINVAL; } numerator = iadc->adc->calib.offset_raw - IADC_CENTER; numerator *= IADC_READING_RESOLUTION_N; iadc->adc->calib.offset_uv = div_s64(numerator, IADC_READING_RESOLUTION_D); numerator = iadc->adc->calib.gain_raw - iadc->adc->calib.offset_raw; numerator *= IADC_READING_RESOLUTION_N; iadc->adc->calib.gain_uv = div_s64(numerator, IADC_READING_RESOLUTION_D); pr_debug("gain_uv:%d offset_uv:%d\n", iadc->adc->calib.gain_uv, iadc->adc->calib.offset_uv); return 0; } #define IADC_IDEAL_RAW_GAIN 3291 int32_t qpnp_iadc_calibrate_for_trim(struct qpnp_iadc_chip *iadc, bool batfet_closed) { uint8_t rslt_lsb, rslt_msb; int32_t rc = 0, version = 0; uint16_t raw_data; uint32_t mode_sel = 0; bool iadc_offset_ch_batfet_check; if (qpnp_iadc_is_valid(iadc) < 0) return -EPROBE_DEFER; mutex_lock(&iadc->adc->adc_lock); if (iadc->iadc_poll_eoc) { pr_debug("acquiring iadc eoc wakelock\n"); pm_stay_awake(iadc->dev); } iadc->adc->amux_prop->decimation = DECIMATION_TYPE1; iadc->adc->amux_prop->fast_avg_setup = ADC_FAST_AVG_SAMPLE_1; rc = qpnp_iadc_configure(iadc, GAIN_CALIBRATION_17P857MV, &raw_data, mode_sel); if (rc < 0) { pr_err("qpnp adc result read failed with %d\n", rc); goto fail; } iadc->adc->calib.gain_raw = raw_data; /* * there is a features on PM8941 in the BMS where if the batfet is * opened the BMS reads from INTERNAL_RSENSE (channel 0) actually go to * OFFSET_CALIBRATION_CSP_CSN (channel 5). Hence if batfet is opened * we have to calibrate based on OFFSET_CALIBRATION_CSP_CSN even for * internal rsense. */ version = qpnp_adc_get_revid_version(iadc->dev); if ((version == QPNP_REV_ID_8941_3_1) || (version == QPNP_REV_ID_8941_3_0) || (version == QPNP_REV_ID_8941_2_0)) iadc_offset_ch_batfet_check = true; else iadc_offset_ch_batfet_check = false; if ((iadc_offset_ch_batfet_check && !batfet_closed) || (iadc->external_rsense)) { /* external offset calculation */ rc = qpnp_iadc_configure(iadc, OFFSET_CALIBRATION_CSP_CSN, &raw_data, mode_sel); if (rc < 0) { pr_err("qpnp adc result read failed with %d\n", rc); goto fail; } } else { /* internal offset calculation */ rc = qpnp_iadc_configure(iadc, OFFSET_CALIBRATION_CSP2_CSN2, &raw_data, mode_sel); if (rc < 0) { pr_err("qpnp adc result read failed with %d\n", rc); goto fail; } } iadc->adc->calib.offset_raw = raw_data; if (rc < 0) { pr_err("qpnp adc offset/gain calculation failed\n"); goto fail; } if (iadc->iadc_comp.revision_dig_major == QPNP_IADC_PM8026_2_REV2 && iadc->iadc_comp.revision_ana_minor == QPNP_IADC_PM8026_2_REV3) iadc->adc->calib.gain_raw = iadc->adc->calib.offset_raw + IADC_IDEAL_RAW_GAIN; pr_debug("raw gain:0x%x, raw offset:0x%x\n", iadc->adc->calib.gain_raw, iadc->adc->calib.offset_raw); rc = qpnp_convert_raw_offset_voltage(iadc); if (rc < 0) { pr_err("qpnp raw_voltage conversion failed\n"); goto fail; } rslt_msb = (raw_data & QPNP_RAW_CODE_16_BIT_MSB_MASK) >> QPNP_BIT_SHIFT_8; rslt_lsb = raw_data & QPNP_RAW_CODE_16_BIT_LSB_MASK; pr_debug("trim values:lsb:0x%x and msb:0x%x\n", rslt_lsb, rslt_msb); rc = qpnp_iadc_write_reg(iadc, QPNP_IADC_SEC_ACCESS, QPNP_IADC_SEC_ACCESS_DATA); if (rc < 0) { pr_err("qpnp iadc configure error for sec access\n"); goto fail; } rc = qpnp_iadc_write_reg(iadc, QPNP_IADC_MSB_OFFSET, rslt_msb); if (rc < 0) { pr_err("qpnp iadc configure error for MSB write\n"); goto fail; } rc = qpnp_iadc_write_reg(iadc, QPNP_IADC_SEC_ACCESS, QPNP_IADC_SEC_ACCESS_DATA); if (rc < 0) { pr_err("qpnp iadc configure error for sec access\n"); goto fail; } rc = qpnp_iadc_write_reg(iadc, QPNP_IADC_LSB_OFFSET, rslt_lsb); if (rc < 0) { pr_err("qpnp iadc configure error for LSB write\n"); goto fail; } fail: if (iadc->iadc_poll_eoc) { pr_debug("releasing iadc eoc wakelock\n"); pm_relax(iadc->dev); } mutex_unlock(&iadc->adc->adc_lock); return rc; } EXPORT_SYMBOL(qpnp_iadc_calibrate_for_trim); static void qpnp_iadc_work(struct work_struct *work) { struct qpnp_iadc_chip *iadc = container_of(work, struct qpnp_iadc_chip, iadc_work.work); int rc = 0; if (!iadc->skip_auto_calibrations) { rc = qpnp_iadc_calibrate_for_trim(iadc, true); if (rc) pr_debug("periodic IADC calibration failed\n"); } schedule_delayed_work(&iadc->iadc_work, round_jiffies_relative(msecs_to_jiffies (QPNP_IADC_CALIB_SECONDS))); return; } static int32_t qpnp_iadc_version_check(struct qpnp_iadc_chip *iadc) { uint8_t revision; int rc; rc = qpnp_iadc_read_reg(iadc, QPNP_IADC_REVISION2, &revision); if (rc < 0) { pr_err("qpnp adc result read failed with %d\n", rc); return rc; } if (revision < QPNP_IADC_SUPPORTED_REVISION2) { pr_err("IADC Version not supported\n"); return -EINVAL; } return 0; } struct qpnp_iadc_chip *qpnp_get_iadc(struct device *dev, const char *name) { struct qpnp_iadc_chip *iadc; struct device_node *node = NULL; char prop_name[QPNP_MAX_PROP_NAME_LEN]; snprintf(prop_name, QPNP_MAX_PROP_NAME_LEN, "qcom,%s-iadc", name); node = of_parse_phandle(dev->of_node, prop_name, 0); if (node == NULL) return ERR_PTR(-ENODEV); list_for_each_entry(iadc, &qpnp_iadc_device_list, list) if (iadc->adc->spmi->dev.of_node == node) return iadc; return ERR_PTR(-EPROBE_DEFER); } EXPORT_SYMBOL(qpnp_get_iadc); int32_t qpnp_iadc_get_rsense(struct qpnp_iadc_chip *iadc, int32_t *rsense) { uint8_t rslt_rsense = 0; int32_t rc = 0, sign_bit = 0; if (qpnp_iadc_is_valid(iadc) < 0) return -EPROBE_DEFER; if (iadc->external_rsense) { *rsense = iadc->rsense; } else if (iadc->default_internal_rsense) { *rsense = iadc->rsense_workaround_value; } else { rc = qpnp_iadc_read_reg(iadc, QPNP_IADC_NOMINAL_RSENSE, &rslt_rsense); if (rc < 0) { pr_err("qpnp adc rsense read failed with %d\n", rc); return rc; } pr_debug("rsense:0%x\n", rslt_rsense); if (rslt_rsense & QPNP_RSENSE_MSB_SIGN_CHECK) sign_bit = 1; rslt_rsense &= ~QPNP_RSENSE_MSB_SIGN_CHECK; if (sign_bit) *rsense = QPNP_IADC_INTERNAL_RSENSE_N_OHMS_FACTOR - (rslt_rsense * QPNP_IADC_RSENSE_LSB_N_OHMS_PER_BIT); else *rsense = QPNP_IADC_INTERNAL_RSENSE_N_OHMS_FACTOR + (rslt_rsense * QPNP_IADC_RSENSE_LSB_N_OHMS_PER_BIT); } pr_debug("rsense value is %d\n", *rsense); if (*rsense == 0) pr_err("incorrect rsens value:%d rslt_rsense:%d\n", *rsense, rslt_rsense); return rc; } EXPORT_SYMBOL(qpnp_iadc_get_rsense); static int32_t qpnp_check_pmic_temp(struct qpnp_iadc_chip *iadc) { struct qpnp_vadc_result result_pmic_therm; int64_t die_temp_offset; int rc = 0; rc = qpnp_vadc_read(iadc->vadc_dev, DIE_TEMP, &result_pmic_therm); if (rc < 0) return rc; die_temp_offset = result_pmic_therm.physical - iadc->die_temp; if (die_temp_offset < 0) die_temp_offset = -die_temp_offset; if (die_temp_offset > QPNP_IADC_DIE_TEMP_CALIB_OFFSET) { iadc->die_temp = result_pmic_therm.physical; if (!iadc->skip_auto_calibrations) { rc = qpnp_iadc_calibrate_for_trim(iadc, true); if (rc) pr_err("IADC calibration failed rc = %d\n", rc); } } return rc; } int32_t qpnp_iadc_read(struct qpnp_iadc_chip *iadc, enum qpnp_iadc_channels channel, struct qpnp_iadc_result *result) { int32_t rc, rsense_n_ohms, sign = 0, num, mode_sel = 0; int32_t rsense_u_ohms = 0; int64_t result_current; uint16_t raw_data; int dt_index = 0; if (qpnp_iadc_is_valid(iadc) < 0) return -EPROBE_DEFER; if ((iadc->adc->calib.gain_raw - iadc->adc->calib.offset_raw) == 0) { pr_err("raw offset errors! run iadc calibration again\n"); return -EINVAL; } rc = qpnp_check_pmic_temp(iadc); if (rc) { pr_err("Error checking pmic therm temp\n"); return rc; } mutex_lock(&iadc->adc->adc_lock); while (((enum qpnp_iadc_channels) iadc->adc->adc_channels[dt_index].channel_num != channel) && (dt_index < iadc->max_channels_available)) dt_index++; if (dt_index >= iadc->max_channels_available) { pr_err("not a valid IADC channel\n"); rc = -EINVAL; goto fail; } iadc->adc->amux_prop->decimation = iadc->adc->adc_channels[dt_index].adc_decimation; iadc->adc->amux_prop->fast_avg_setup = iadc->adc->adc_channels[dt_index].fast_avg_setup; if (iadc->iadc_poll_eoc) { pr_debug("acquiring iadc eoc wakelock\n"); pm_stay_awake(iadc->dev); } rc = qpnp_iadc_configure(iadc, channel, &raw_data, mode_sel); if (rc < 0) { pr_err("qpnp adc result read failed with %d\n", rc); goto fail; } rc = qpnp_iadc_get_rsense(iadc, &rsense_n_ohms); pr_debug("current raw:0%x and rsense:%d\n", raw_data, rsense_n_ohms); rsense_u_ohms = rsense_n_ohms/1000; num = raw_data - iadc->adc->calib.offset_raw; if (num < 0) { sign = 1; num = -num; } result->result_uv = (num * QPNP_ADC_GAIN_NV)/ (iadc->adc->calib.gain_raw - iadc->adc->calib.offset_raw); result_current = result->result_uv; result_current *= QPNP_IADC_NANO_VOLTS_FACTOR; /* Intentional fall through. Process the result w/o comp */ do_div(result_current, rsense_u_ohms); if (sign) { result->result_uv = -result->result_uv; result_current = -result_current; } result_current *= -1; rc = qpnp_iadc_comp_result(iadc, &result_current); if (rc < 0) pr_err("Error during compensating the IADC\n"); rc = 0; result_current *= -1; result->result_ua = (int32_t) result_current; fail: if (iadc->iadc_poll_eoc) { pr_debug("releasing iadc eoc wakelock\n"); pm_relax(iadc->dev); } mutex_unlock(&iadc->adc->adc_lock); return rc; } EXPORT_SYMBOL(qpnp_iadc_read); int32_t qpnp_iadc_get_gain_and_offset(struct qpnp_iadc_chip *iadc, struct qpnp_iadc_calib *result) { int rc; if (qpnp_iadc_is_valid(iadc) < 0) return -EPROBE_DEFER; rc = qpnp_check_pmic_temp(iadc); if (rc) { pr_err("Error checking pmic therm temp\n"); return rc; } mutex_lock(&iadc->adc->adc_lock); result->gain_raw = iadc->adc->calib.gain_raw; result->ideal_gain_nv = QPNP_ADC_GAIN_NV; result->gain_uv = iadc->adc->calib.gain_uv; result->offset_raw = iadc->adc->calib.offset_raw; result->ideal_offset_uv = QPNP_OFFSET_CALIBRATION_SHORT_CADC_LEADS_IDEAL; result->offset_uv = iadc->adc->calib.offset_uv; pr_debug("raw gain:0%x, raw offset:0%x\n", result->gain_raw, result->offset_raw); pr_debug("gain_uv:%d offset_uv:%d\n", result->gain_uv, result->offset_uv); mutex_unlock(&iadc->adc->adc_lock); return 0; } EXPORT_SYMBOL(qpnp_iadc_get_gain_and_offset); int qpnp_iadc_skip_calibration(struct qpnp_iadc_chip *iadc) { iadc->skip_auto_calibrations = true; return 0; } EXPORT_SYMBOL(qpnp_iadc_skip_calibration); int qpnp_iadc_resume_calibration(struct qpnp_iadc_chip *iadc) { iadc->skip_auto_calibrations = false; return 0; } EXPORT_SYMBOL(qpnp_iadc_resume_calibration); int32_t qpnp_iadc_vadc_sync_read(struct qpnp_iadc_chip *iadc, enum qpnp_iadc_channels i_channel, struct qpnp_iadc_result *i_result, enum qpnp_vadc_channels v_channel, struct qpnp_vadc_result *v_result) { int rc = 0, mode_sel = 0, num = 0, rsense_n_ohms = 0, sign = 0; int dt_index = 0; uint16_t raw_data; int32_t rsense_u_ohms = 0; int64_t result_current; if (qpnp_iadc_is_valid(iadc) < 0) return -EPROBE_DEFER; if ((iadc->adc->calib.gain_raw - iadc->adc->calib.offset_raw) == 0) { pr_err("raw offset errors! run iadc calibration again\n"); return -EINVAL; } mutex_lock(&iadc->adc->adc_lock); if (iadc->iadc_poll_eoc) { pr_debug("acquiring iadc eoc wakelock\n"); pm_stay_awake(iadc->dev); } iadc->iadc_mode_sel = true; rc = qpnp_vadc_iadc_sync_request(iadc->vadc_dev, v_channel); if (rc) { pr_err("Configuring VADC failed\n"); goto fail; } while (((enum qpnp_iadc_channels) iadc->adc->adc_channels[dt_index].channel_num != i_channel) && (dt_index < iadc->max_channels_available)) dt_index++; if (dt_index >= iadc->max_channels_available) { pr_err("not a valid IADC channel\n"); rc = -EINVAL; goto fail; } iadc->adc->amux_prop->decimation = iadc->adc->adc_channels[dt_index].adc_decimation; iadc->adc->amux_prop->fast_avg_setup = iadc->adc->adc_channels[dt_index].fast_avg_setup; rc = qpnp_iadc_configure(iadc, i_channel, &raw_data, mode_sel); if (rc < 0) { pr_err("qpnp adc result read failed with %d\n", rc); goto fail_release_vadc; } rc = qpnp_iadc_get_rsense(iadc, &rsense_n_ohms); pr_debug("current raw:0%x and rsense:%d\n", raw_data, rsense_n_ohms); rsense_u_ohms = rsense_n_ohms/1000; num = raw_data - iadc->adc->calib.offset_raw; if (num < 0) { sign = 1; num = -num; } i_result->result_uv = (num * QPNP_ADC_GAIN_NV)/ (iadc->adc->calib.gain_raw - iadc->adc->calib.offset_raw); result_current = i_result->result_uv; result_current *= QPNP_IADC_NANO_VOLTS_FACTOR; /* Intentional fall through. Process the result w/o comp */ if (!rsense_u_ohms) { pr_err("rsense error=%d\n", rsense_u_ohms); goto fail_release_vadc; } do_div(result_current, rsense_u_ohms); if (sign) { i_result->result_uv = -i_result->result_uv; result_current = -result_current; } result_current *= -1; rc = qpnp_iadc_comp_result(iadc, &result_current); if (rc < 0) pr_err("Error during compensating the IADC\n"); rc = 0; result_current *= -1; i_result->result_ua = (int32_t) result_current; fail_release_vadc: rc = qpnp_vadc_iadc_sync_complete_request(iadc->vadc_dev, v_channel, v_result); if (rc) pr_err("Releasing VADC failed\n"); fail: iadc->iadc_mode_sel = false; if (iadc->iadc_poll_eoc) { pr_debug("releasing iadc eoc wakelock\n"); pm_relax(iadc->dev); } mutex_unlock(&iadc->adc->adc_lock); return rc; } EXPORT_SYMBOL(qpnp_iadc_vadc_sync_read); static ssize_t qpnp_iadc_show(struct device *dev, struct device_attribute *devattr, char *buf) { struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr); struct qpnp_iadc_chip *iadc = dev_get_drvdata(dev); struct qpnp_iadc_result result; int rc = -1; rc = qpnp_iadc_read(iadc, attr->index, &result); if (rc) return 0; return snprintf(buf, QPNP_ADC_HWMON_NAME_LENGTH, "Result:%d\n", result.result_ua); } static struct sensor_device_attribute qpnp_adc_attr = SENSOR_ATTR(NULL, S_IRUGO, qpnp_iadc_show, NULL, 0); static int32_t qpnp_iadc_init_hwmon(struct qpnp_iadc_chip *iadc, struct spmi_device *spmi) { struct device_node *child; struct device_node *node = spmi->dev.of_node; int rc = 0, i = 0, channel; for_each_child_of_node(node, child) { channel = iadc->adc->adc_channels[i].channel_num; qpnp_adc_attr.index = iadc->adc->adc_channels[i].channel_num; qpnp_adc_attr.dev_attr.attr.name = iadc->adc->adc_channels[i].name; memcpy(&iadc->sens_attr[i], &qpnp_adc_attr, sizeof(qpnp_adc_attr)); sysfs_attr_init(&iadc->sens_attr[i].dev_attr.attr); rc = device_create_file(&spmi->dev, &iadc->sens_attr[i].dev_attr); if (rc) { dev_err(&spmi->dev, "device_create_file failed for dev %s\n", iadc->adc->adc_channels[i].name); goto hwmon_err_sens; } i++; } return 0; hwmon_err_sens: pr_err("Init HWMON failed for qpnp_iadc with %d\n", rc); return rc; } static int qpnp_iadc_probe(struct spmi_device *spmi) { struct qpnp_iadc_chip *iadc; struct qpnp_adc_drv *adc_qpnp; struct device_node *node = spmi->dev.of_node; struct device_node *child; struct resource *res; int rc, count_adc_channel_list = 0, i = 0; for_each_child_of_node(node, child) count_adc_channel_list++; if (!count_adc_channel_list) { pr_err("No channel listing\n"); return -EINVAL; } iadc = devm_kzalloc(&spmi->dev, sizeof(struct qpnp_iadc_chip) + (sizeof(struct sensor_device_attribute) * count_adc_channel_list), GFP_KERNEL); if (!iadc) { dev_err(&spmi->dev, "Unable to allocate memory\n"); return -ENOMEM; } adc_qpnp = devm_kzalloc(&spmi->dev, sizeof(struct qpnp_adc_drv), GFP_KERNEL); if (!adc_qpnp) { dev_err(&spmi->dev, "Unable to allocate memory\n"); return -ENOMEM; } iadc->dev = &(spmi->dev); iadc->adc = adc_qpnp; rc = qpnp_adc_get_devicetree_data(spmi, iadc->adc); if (rc) { dev_err(&spmi->dev, "failed to read device tree\n"); return rc; } res = spmi_get_resource_byname(spmi, NULL, IORESOURCE_MEM, "batt-id-trim-cnst-rds"); if (!res) { dev_err(&spmi->dev, "failed to read batt_id trim register\n"); return -EINVAL; } iadc->batt_id_trim_cnst_rds = res->start; rc = of_property_read_u32(node, "qcom,use-default-rds-trim", &iadc->rds_trim_default_type); if (rc) pr_debug("No trim workaround needed\n"); else { pr_debug("Use internal RDS trim workaround\n"); iadc->rds_trim_default_check = true; } iadc->vadc_dev = qpnp_get_vadc(&spmi->dev, "iadc"); if (IS_ERR(iadc->vadc_dev)) { rc = PTR_ERR(iadc->vadc_dev); if (rc != -EPROBE_DEFER) pr_err("vadc property missing, rc=%d\n", rc); return rc; } mutex_init(&iadc->adc->adc_lock); rc = of_property_read_u32(node, "qcom,rsense", &iadc->rsense); if (rc) pr_debug("Defaulting to internal rsense\n"); else { pr_debug("Use external rsense\n"); iadc->external_rsense = true; } iadc->iadc_poll_eoc = of_property_read_bool(node, "qcom,iadc-poll-eoc"); if (!iadc->iadc_poll_eoc) { rc = devm_request_irq(&spmi->dev, iadc->adc->adc_irq_eoc, qpnp_iadc_isr, IRQF_TRIGGER_RISING, "qpnp_iadc_interrupt", iadc); if (rc) { dev_err(&spmi->dev, "failed to request adc irq\n"); return rc; } else enable_irq_wake(iadc->adc->adc_irq_eoc); } rc = qpnp_iadc_init_hwmon(iadc, spmi); if (rc) { dev_err(&spmi->dev, "failed to initialize qpnp hwmon adc\n"); return rc; } iadc->iadc_hwmon = hwmon_device_register(&iadc->adc->spmi->dev); rc = qpnp_iadc_version_check(iadc); if (rc) { dev_err(&spmi->dev, "IADC version not supported\n"); goto fail; } iadc->max_channels_available = count_adc_channel_list; INIT_WORK(&iadc->trigger_completion_work, qpnp_iadc_trigger_completion); INIT_DELAYED_WORK(&iadc->iadc_work, qpnp_iadc_work); rc = qpnp_iadc_comp_info(iadc); if (rc) { dev_err(&spmi->dev, "abstracting IADC comp info failed!\n"); goto fail; } rc = qpnp_iadc_rds_trim_update_check(iadc); if (rc) { dev_err(&spmi->dev, "Rds trim update failed!\n"); goto fail; } dev_set_drvdata(&spmi->dev, iadc); list_add(&iadc->list, &qpnp_iadc_device_list); rc = qpnp_iadc_calibrate_for_trim(iadc, true); if (rc) dev_err(&spmi->dev, "failed to calibrate for USR trim\n"); if (iadc->iadc_poll_eoc) device_init_wakeup(iadc->dev, 1); schedule_delayed_work(&iadc->iadc_work, round_jiffies_relative(msecs_to_jiffies (QPNP_IADC_CALIB_SECONDS))); return 0; fail: for_each_child_of_node(node, child) { device_remove_file(&spmi->dev, &iadc->sens_attr[i].dev_attr); i++; } hwmon_device_unregister(iadc->iadc_hwmon); return rc; } static int qpnp_iadc_remove(struct spmi_device *spmi) { struct qpnp_iadc_chip *iadc = dev_get_drvdata(&spmi->dev); struct device_node *node = spmi->dev.of_node; struct device_node *child; int i = 0; cancel_delayed_work(&iadc->iadc_work); for_each_child_of_node(node, child) { device_remove_file(&spmi->dev, &iadc->sens_attr[i].dev_attr); i++; } hwmon_device_unregister(iadc->iadc_hwmon); if (iadc->iadc_poll_eoc) pm_relax(iadc->dev); dev_set_drvdata(&spmi->dev, NULL); return 0; } static const struct of_device_id qpnp_iadc_match_table[] = { { .compatible = "qcom,qpnp-iadc", }, {} }; static struct spmi_driver qpnp_iadc_driver = { .driver = { .name = "qcom,qpnp-iadc", .of_match_table = qpnp_iadc_match_table, }, .probe = qpnp_iadc_probe, .remove = qpnp_iadc_remove, }; static int __init qpnp_iadc_init(void) { return spmi_driver_register(&qpnp_iadc_driver); } module_init(qpnp_iadc_init); static void __exit qpnp_iadc_exit(void) { spmi_driver_unregister(&qpnp_iadc_driver); } module_exit(qpnp_iadc_exit); MODULE_DESCRIPTION("QPNP PMIC current ADC driver"); MODULE_LICENSE("GPL v2");