/* * Copyright (C) 2012-2013 Samsung Electronics Co., Ltd. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, see . */ /* * linux/fs/fat/misc.c * * Written 1992,1993 by Werner Almesberger * 22/11/2000 - Fixed fat_date_unix2dos for dates earlier than 01/01/1980 * and date_dos2unix for date==0 by Igor Zhbanov(bsg@uniyar.ac.ru) */ /************************************************************************/ /* */ /* PROJECT : exFAT & FAT12/16/32 File System */ /* FILE : misc.c */ /* PURPOSE : Helper function for checksum and handing sdFAT error */ /* */ /*----------------------------------------------------------------------*/ /* NOTES */ /* */ /* */ /************************************************************************/ #include #include #include #include #include "sdfat.h" #include "version.h" #ifdef CONFIG_SDFAT_SUPPORT_STLOG #ifdef CONFIG_PROC_FSLOG #include #else #include #endif #else #define ST_LOG(fmt, ...) #endif /************************************************************************* * FUNCTIONS WHICH HAS KERNEL VERSION DEPENDENCY *************************************************************************/ #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 18, 0) #define CURRENT_TIME_SEC timespec64_trunc(current_kernel_time64(), NSEC_PER_SEC) #elif LINUX_VERSION_CODE >= KERNEL_VERSION(4, 12, 0) #define CURRENT_TIME_SEC timespec_trunc(current_kernel_time(), NSEC_PER_SEC) #else /* LINUX_VERSION_CODE < KERNEL_VERSION(4, 12, 0) */ /* EMPTY */ #endif #ifdef CONFIG_SDFAT_UEVENT static struct kobject sdfat_uevent_kobj; int sdfat_uevent_init(struct kset *sdfat_kset) { int err; struct kobj_type *ktype = get_ktype(&sdfat_kset->kobj); sdfat_uevent_kobj.kset = sdfat_kset; err = kobject_init_and_add(&sdfat_uevent_kobj, ktype, NULL, "uevent"); if (err) pr_err("[SDFAT] Unable to create sdfat uevent kobj\n"); return err; } void sdfat_uevent_uninit(void) { kobject_del(&sdfat_uevent_kobj); memset(&sdfat_uevent_kobj, 0, sizeof(struct kobject)); } void sdfat_uevent_ro_remount(struct super_block *sb) { struct block_device *bdev = sb->s_bdev; dev_t bd_dev = bdev ? bdev->bd_dev : 0; char major[16], minor[16]; char *envp[] = { major, minor, NULL }; snprintf(major, sizeof(major), "MAJOR=%d", MAJOR(bd_dev)); snprintf(minor, sizeof(minor), "MINOR=%d", MINOR(bd_dev)); kobject_uevent_env(&sdfat_uevent_kobj, KOBJ_CHANGE, envp); ST_LOG("[SDFAT](%s[%d:%d]): Uevent triggered\n", sb->s_id, MAJOR(bd_dev), MINOR(bd_dev)); } #endif /* * sdfat_fs_error reports a file system problem that might indicate fa data * corruption/inconsistency. Depending on 'errors' mount option the * panic() is called, or error message is printed FAT and nothing is done, * or filesystem is remounted read-only (default behavior). * In case the file system is remounted read-only, it can be made writable * again by remounting it. */ void __sdfat_fs_error(struct super_block *sb, int report, const char *fmt, ...) { struct sdfat_mount_options *opts = &SDFAT_SB(sb)->options; va_list args; struct va_format vaf; struct block_device *bdev = sb->s_bdev; dev_t bd_dev = bdev ? bdev->bd_dev : 0; if (report) { va_start(args, fmt); vaf.fmt = fmt; vaf.va = &args; pr_err("[SDFAT](%s[%d:%d]):ERR: %pV\n", sb->s_id, MAJOR(bd_dev), MINOR(bd_dev), &vaf); #ifdef CONFIG_SDFAT_SUPPORT_STLOG if (opts->errors == SDFAT_ERRORS_RO && !SDFAT_IS_SB_RDONLY(sb)) { ST_LOG("[SDFAT](%s[%d:%d]):ERR: %pV\n", sb->s_id, MAJOR(bd_dev), MINOR(bd_dev), &vaf); } #endif va_end(args); } if (opts->errors == SDFAT_ERRORS_PANIC) { panic("[SDFAT](%s[%d:%d]): fs panic from previous error\n", sb->s_id, MAJOR(bd_dev), MINOR(bd_dev)); } else if (opts->errors == SDFAT_ERRORS_RO && !SDFAT_IS_SB_RDONLY(sb)) { #if LINUX_VERSION_CODE < KERNEL_VERSION(4, 14, 0) sb->s_flags |= MS_RDONLY; #else sb->s_flags |= SB_RDONLY; #endif sdfat_statistics_set_mnt_ro(); pr_err("[SDFAT](%s[%d:%d]): Filesystem has been set " "read-only\n", sb->s_id, MAJOR(bd_dev), MINOR(bd_dev)); #ifdef CONFIG_SDFAT_SUPPORT_STLOG ST_LOG("[SDFAT](%s[%d:%d]): Filesystem has been set read-only\n", sb->s_id, MAJOR(bd_dev), MINOR(bd_dev)); #endif sdfat_uevent_ro_remount(sb); } } EXPORT_SYMBOL(__sdfat_fs_error); /** * __sdfat_msg() - print preformated SDFAT specific messages. * All logs except what uses sdfat_fs_error() should be written by __sdfat_msg() * If 'st' is set, the log is propagated to ST_LOG. */ void __sdfat_msg(struct super_block *sb, const char *level, int st, const char *fmt, ...) { struct va_format vaf; va_list args; struct block_device *bdev = sb->s_bdev; dev_t bd_dev = bdev ? bdev->bd_dev : 0; va_start(args, fmt); vaf.fmt = fmt; vaf.va = &args; /* level means KERN_ pacility level */ printk("%s[SDFAT](%s[%d:%d]): %pV\n", level, sb->s_id, MAJOR(bd_dev), MINOR(bd_dev), &vaf); #ifdef CONFIG_SDFAT_SUPPORT_STLOG if (st) { ST_LOG("[SDFAT](%s[%d:%d]): %pV\n", sb->s_id, MAJOR(bd_dev), MINOR(bd_dev), &vaf); } #endif va_end(args); } EXPORT_SYMBOL(__sdfat_msg); void sdfat_log_version(void) { pr_info("[SDFAT] Filesystem version %s\n", SDFAT_VERSION); #ifdef CONFIG_SDFAT_SUPPORT_STLOG ST_LOG("[SDFAT] Filesystem version %s\n", SDFAT_VERSION); #endif } EXPORT_SYMBOL(sdfat_log_version); /* externs sys_tz * extern struct timezone sys_tz; */ #define UNIX_SECS_1980 315532800L #if BITS_PER_LONG == 64 #define UNIX_SECS_2108 4354819200L #endif /* days between 1970/01/01 and 1980/01/01 (2 leap days) */ #define DAYS_DELTA_DECADE (365 * 10 + 2) /* 120 (2100 - 1980) isn't leap year */ #define NO_LEAP_YEAR_2100 (120) #define IS_LEAP_YEAR(y) (!((y) & 0x3) && (y) != NO_LEAP_YEAR_2100) #define SECS_PER_MIN (60) #define SECS_PER_HOUR (60 * SECS_PER_MIN) #define SECS_PER_DAY (24 * SECS_PER_HOUR) #define MAKE_LEAP_YEAR(leap_year, year) \ do { \ /* 2100 isn't leap year */ \ if (unlikely(year > NO_LEAP_YEAR_2100)) \ leap_year = ((year + 3) / 4) - 1; \ else \ leap_year = ((year + 3) / 4); \ } while (0) /* Linear day numbers of the respective 1sts in non-leap years. */ static time_t accum_days_in_year[] = { /* Month : N 01 02 03 04 05 06 07 08 09 10 11 12 */ 0, 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334, 0, 0, 0, }; #define TIMEZONE_SEC(x) ((x) * 15 * SECS_PER_MIN) /* Convert a FAT time/date pair to a UNIX date (seconds since 1 1 70). */ void sdfat_time_fat2unix(struct sdfat_sb_info *sbi, sdfat_timespec_t *ts, DATE_TIME_T *tp) { time_t year = tp->Year; time_t ld; /* leap day */ MAKE_LEAP_YEAR(ld, year); if (IS_LEAP_YEAR(year) && (tp->Month) > 2) ld++; ts->tv_sec = tp->Second + tp->Minute * SECS_PER_MIN + tp->Hour * SECS_PER_HOUR + (year * 365 + ld + accum_days_in_year[tp->Month] + (tp->Day - 1) + DAYS_DELTA_DECADE) * SECS_PER_DAY; ts->tv_nsec = 0; /* Treat as local time */ if (!sbi->options.tz_utc && !tp->Timezone.valid) { ts->tv_sec += sys_tz.tz_minuteswest * SECS_PER_MIN; return; } /* Treat as UTC time */ if (!tp->Timezone.valid) return; /* Treat as UTC time, but need to adjust timezone to UTC0 */ if (tp->Timezone.off <= 0x3F) ts->tv_sec -= TIMEZONE_SEC(tp->Timezone.off); else /* 0x40 <= (tp->Timezone & 0x7F) <=0x7F */ ts->tv_sec += TIMEZONE_SEC(0x80 - tp->Timezone.off); } #define TIMEZONE_CUR_OFFSET() ((sys_tz.tz_minuteswest / (-15)) & 0x7F) /* Convert linear UNIX date to a FAT time/date pair. */ void sdfat_time_unix2fat(struct sdfat_sb_info *sbi, sdfat_timespec_t *ts, DATE_TIME_T *tp) { bool tz_valid = (sbi->fsi.vol_type == EXFAT) ? true : false; time_t second = ts->tv_sec; time_t day, month, year; time_t ld; /* leap day */ tp->Timezone.value = 0x00; /* Treats as local time with proper time */ if (tz_valid || !sbi->options.tz_utc) { second -= sys_tz.tz_minuteswest * SECS_PER_MIN; if (tz_valid) { tp->Timezone.valid = 1; tp->Timezone.off = TIMEZONE_CUR_OFFSET(); } } /* Jan 1 GMT 00:00:00 1980. But what about another time zone? */ if (second < UNIX_SECS_1980) { tp->Second = 0; tp->Minute = 0; tp->Hour = 0; tp->Day = 1; tp->Month = 1; tp->Year = 0; return; } #if (BITS_PER_LONG == 64) if (second >= UNIX_SECS_2108) { tp->Second = 59; tp->Minute = 59; tp->Hour = 23; tp->Day = 31; tp->Month = 12; tp->Year = 127; return; } #endif day = second / SECS_PER_DAY - DAYS_DELTA_DECADE; year = day / 365; MAKE_LEAP_YEAR(ld, year); if (year * 365 + ld > day) year--; MAKE_LEAP_YEAR(ld, year); day -= year * 365 + ld; if (IS_LEAP_YEAR(year) && day == accum_days_in_year[3]) { month = 2; } else { if (IS_LEAP_YEAR(year) && day > accum_days_in_year[3]) day--; for (month = 1; month < 12; month++) { if (accum_days_in_year[month + 1] > day) break; } } day -= accum_days_in_year[month]; tp->Second = second % SECS_PER_MIN; tp->Minute = (second / SECS_PER_MIN) % 60; tp->Hour = (second / SECS_PER_HOUR) % 24; tp->Day = day + 1; tp->Month = month; tp->Year = year; } TIMESTAMP_T *tm_now(struct sdfat_sb_info *sbi, TIMESTAMP_T *tp) { sdfat_timespec_t ts = CURRENT_TIME_SEC; DATE_TIME_T dt; sdfat_time_unix2fat(sbi, &ts, &dt); tp->year = dt.Year; tp->mon = dt.Month; tp->day = dt.Day; tp->hour = dt.Hour; tp->min = dt.Minute; tp->sec = dt.Second; tp->tz.value = dt.Timezone.value; return tp; } u8 calc_chksum_1byte(void *data, s32 len, u8 chksum) { s32 i; u8 *c = (u8 *) data; for (i = 0; i < len; i++, c++) chksum = (((chksum & 1) << 7) | ((chksum & 0xFE) >> 1)) + *c; return chksum; } u16 calc_chksum_2byte(void *data, s32 len, u16 chksum, s32 type) { s32 i; u8 *c = (u8 *) data; for (i = 0; i < len; i++, c++) { if (((i == 2) || (i == 3)) && (type == CS_DIR_ENTRY)) continue; chksum = (((chksum & 1) << 15) | ((chksum & 0xFFFE) >> 1)) + (u16) *c; } return chksum; } #ifdef CONFIG_SDFAT_TRACE_ELAPSED_TIME struct timeval __t1, __t2; u32 sdfat_time_current_usec(struct timeval *tv) { do_gettimeofday(tv); return (u32)(tv->tv_sec*1000000 + tv->tv_usec); } #endif /* CONFIG_SDFAT_TRACE_ELAPSED_TIME */ #ifdef CONFIG_SDFAT_DBG_CAREFUL /* Check the consistency of i_size_ondisk (FAT32, or flags 0x01 only) */ void sdfat_debug_check_clusters(struct inode *inode) { unsigned int num_clusters; volatile uint32_t tmp_fat_chain[50]; volatile int tmp_i = 0; volatile unsigned int num_clusters_org, tmp_i = 0; CHAIN_T clu; FILE_ID_T *fid = &(SDFAT_I(inode)->fid); FS_INFO_T *fsi = &(SDFAT_SB(inode->i_sb)->fsi); if (SDFAT_I(inode)->i_size_ondisk == 0) num_clusters = 0; else num_clusters = ((SDFAT_I(inode)->i_size_ondisk-1) >> fsi->cluster_size_bits) + 1; clu.dir = fid->start_clu; clu.size = num_clusters; clu.flags = fid->flags; num_clusters_org = num_clusters; if (clu.flags == 0x03) return; while (num_clusters > 0) { /* FAT chain logging */ tmp_fat_chain[tmp_i] = clu.dir; tmp_i++; if (tmp_i >= 50) tmp_i = 0; BUG_ON(IS_CLUS_EOF(clu.dir) || IS_CLUS_FREE(clu.dir)); if (get_next_clus_safe(inode->i_sb, &(clu.dir))) EMSG("%s: failed to access to FAT\n"); num_clusters--; } BUG_ON(!IS_CLUS_EOF(clu.dir)); } #endif /* CONFIG_SDFAT_DBG_CAREFUL */ #ifdef CONFIG_SDFAT_DBG_MSG void __sdfat_dmsg(int level, const char *fmt, ...) { #ifdef CONFIG_SDFAT_DBG_SHOW_PID struct va_format vaf; va_list args; /* should check type */ if (level > SDFAT_MSG_LEVEL) return; va_start(args, fmt); vaf.fmt = fmt; vaf.va = &args; /* fmt already includes KERN_ pacility level */ printk("[%u] %pV", current->pid, &vaf); va_end(args); #else va_list args; /* should check type */ if (level > SDFAT_MSG_LEVEL) return; va_start(args, fmt); /* fmt already includes KERN_ pacility level */ vprintk(fmt, args); va_end(args); #endif } #endif