/* * BFQ: Hierarchical B-WF2Q+ scheduler. * * Based on ideas and code from CFQ: * Copyright (C) 2003 Jens Axboe * * Copyright (C) 2008 Fabio Checconi * Paolo Valente * * Copyright (C) 2010 Paolo Valente */ #ifdef CONFIG_CGROUP_BFQIO #define for_each_entity(entity) \ for (; entity != NULL; entity = entity->parent) #define for_each_entity_safe(entity, parent) \ for (; entity && ({ parent = entity->parent; 1; }); entity = parent) static struct bfq_entity *bfq_lookup_next_entity(struct bfq_sched_data *sd, int extract, struct bfq_data *bfqd); static inline void bfq_update_budget(struct bfq_entity *next_in_service) { struct bfq_entity *bfqg_entity; struct bfq_group *bfqg; struct bfq_sched_data *group_sd; BUG_ON(next_in_service == NULL); group_sd = next_in_service->sched_data; bfqg = container_of(group_sd, struct bfq_group, sched_data); /* * bfq_group's my_entity field is not NULL only if the group * is not the root group. We must not touch the root entity * as it must never become an in-service entity. */ bfqg_entity = bfqg->my_entity; if (bfqg_entity != NULL) bfqg_entity->budget = next_in_service->budget; } static int bfq_update_next_in_service(struct bfq_sched_data *sd) { struct bfq_entity *next_in_service; if (sd->in_service_entity != NULL) /* will update/requeue at the end of service */ return 0; /* * NOTE: this can be improved in many ways, such as returning * 1 (and thus propagating upwards the update) only when the * budget changes, or caching the bfqq that will be scheduled * next from this subtree. By now we worry more about * correctness than about performance... */ next_in_service = bfq_lookup_next_entity(sd, 0, NULL); sd->next_in_service = next_in_service; if (next_in_service != NULL) bfq_update_budget(next_in_service); return 1; } static inline void bfq_check_next_in_service(struct bfq_sched_data *sd, struct bfq_entity *entity) { BUG_ON(sd->next_in_service != entity); } #else #define for_each_entity(entity) \ for (; entity != NULL; entity = NULL) #define for_each_entity_safe(entity, parent) \ for (parent = NULL; entity != NULL; entity = parent) static inline int bfq_update_next_in_service(struct bfq_sched_data *sd) { return 0; } static inline void bfq_check_next_in_service(struct bfq_sched_data *sd, struct bfq_entity *entity) { } static inline void bfq_update_budget(struct bfq_entity *next_in_service) { } #endif /* * Shift for timestamp calculations. This actually limits the maximum * service allowed in one timestamp delta (small shift values increase it), * the maximum total weight that can be used for the queues in the system * (big shift values increase it), and the period of virtual time * wraparounds. */ #define WFQ_SERVICE_SHIFT 22 /** * bfq_gt - compare two timestamps. * @a: first ts. * @b: second ts. * * Return @a > @b, dealing with wrapping correctly. */ static inline int bfq_gt(u64 a, u64 b) { return (s64)(a - b) > 0; } static inline struct bfq_queue *bfq_entity_to_bfqq(struct bfq_entity *entity) { struct bfq_queue *bfqq = NULL; BUG_ON(entity == NULL); if (entity->my_sched_data == NULL) bfqq = container_of(entity, struct bfq_queue, entity); return bfqq; } /** * bfq_delta - map service into the virtual time domain. * @service: amount of service. * @weight: scale factor (weight of an entity or weight sum). */ static inline u64 bfq_delta(unsigned long service, unsigned long weight) { u64 d = (u64)service << WFQ_SERVICE_SHIFT; do_div(d, weight); return d; } /** * bfq_calc_finish - assign the finish time to an entity. * @entity: the entity to act upon. * @service: the service to be charged to the entity. */ static inline void bfq_calc_finish(struct bfq_entity *entity, unsigned long service) { struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity); BUG_ON(entity->weight == 0); entity->finish = entity->start + bfq_delta(service, entity->weight); if (bfqq != NULL) { bfq_log_bfqq(bfqq->bfqd, bfqq, "calc_finish: serv %lu, w %d", service, entity->weight); bfq_log_bfqq(bfqq->bfqd, bfqq, "calc_finish: start %llu, finish %llu, delta %llu", entity->start, entity->finish, bfq_delta(service, entity->weight)); } } /** * bfq_entity_of - get an entity from a node. * @node: the node field of the entity. * * Convert a node pointer to the relative entity. This is used only * to simplify the logic of some functions and not as the generic * conversion mechanism because, e.g., in the tree walking functions, * the check for a %NULL value would be redundant. */ static inline struct bfq_entity *bfq_entity_of(struct rb_node *node) { struct bfq_entity *entity = NULL; if (node != NULL) entity = rb_entry(node, struct bfq_entity, rb_node); return entity; } /** * bfq_extract - remove an entity from a tree. * @root: the tree root. * @entity: the entity to remove. */ static inline void bfq_extract(struct rb_root *root, struct bfq_entity *entity) { BUG_ON(entity->tree != root); entity->tree = NULL; rb_erase(&entity->rb_node, root); } /** * bfq_idle_extract - extract an entity from the idle tree. * @st: the service tree of the owning @entity. * @entity: the entity being removed. */ static void bfq_idle_extract(struct bfq_service_tree *st, struct bfq_entity *entity) { struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity); struct rb_node *next; BUG_ON(entity->tree != &st->idle); if (entity == st->first_idle) { next = rb_next(&entity->rb_node); st->first_idle = bfq_entity_of(next); } if (entity == st->last_idle) { next = rb_prev(&entity->rb_node); st->last_idle = bfq_entity_of(next); } bfq_extract(&st->idle, entity); if (bfqq != NULL) list_del(&bfqq->bfqq_list); } /** * bfq_insert - generic tree insertion. * @root: tree root. * @entity: entity to insert. * * This is used for the idle and the active tree, since they are both * ordered by finish time. */ static void bfq_insert(struct rb_root *root, struct bfq_entity *entity) { struct bfq_entity *entry; struct rb_node **node = &root->rb_node; struct rb_node *parent = NULL; BUG_ON(entity->tree != NULL); while (*node != NULL) { parent = *node; entry = rb_entry(parent, struct bfq_entity, rb_node); if (bfq_gt(entry->finish, entity->finish)) node = &parent->rb_left; else node = &parent->rb_right; } rb_link_node(&entity->rb_node, parent, node); rb_insert_color(&entity->rb_node, root); entity->tree = root; } /** * bfq_update_min - update the min_start field of a entity. * @entity: the entity to update. * @node: one of its children. * * This function is called when @entity may store an invalid value for * min_start due to updates to the active tree. The function assumes * that the subtree rooted at @node (which may be its left or its right * child) has a valid min_start value. */ static inline void bfq_update_min(struct bfq_entity *entity, struct rb_node *node) { struct bfq_entity *child; if (node != NULL) { child = rb_entry(node, struct bfq_entity, rb_node); if (bfq_gt(entity->min_start, child->min_start)) entity->min_start = child->min_start; } } /** * bfq_update_active_node - recalculate min_start. * @node: the node to update. * * @node may have changed position or one of its children may have moved, * this function updates its min_start value. The left and right subtrees * are assumed to hold a correct min_start value. */ static inline void bfq_update_active_node(struct rb_node *node) { struct bfq_entity *entity = rb_entry(node, struct bfq_entity, rb_node); entity->min_start = entity->start; bfq_update_min(entity, node->rb_right); bfq_update_min(entity, node->rb_left); } /** * bfq_update_active_tree - update min_start for the whole active tree. * @node: the starting node. * * @node must be the deepest modified node after an update. This function * updates its min_start using the values held by its children, assuming * that they did not change, and then updates all the nodes that may have * changed in the path to the root. The only nodes that may have changed * are the ones in the path or their siblings. */ static void bfq_update_active_tree(struct rb_node *node) { struct rb_node *parent; up: bfq_update_active_node(node); parent = rb_parent(node); if (parent == NULL) return; if (node == parent->rb_left && parent->rb_right != NULL) bfq_update_active_node(parent->rb_right); else if (parent->rb_left != NULL) bfq_update_active_node(parent->rb_left); node = parent; goto up; } static void bfq_weights_tree_add(struct bfq_data *bfqd, struct bfq_entity *entity, struct rb_root *root); static void bfq_weights_tree_remove(struct bfq_data *bfqd, struct bfq_entity *entity, struct rb_root *root); /** * bfq_active_insert - insert an entity in the active tree of its * group/device. * @st: the service tree of the entity. * @entity: the entity being inserted. * * The active tree is ordered by finish time, but an extra key is kept * per each node, containing the minimum value for the start times of * its children (and the node itself), so it's possible to search for * the eligible node with the lowest finish time in logarithmic time. */ static void bfq_active_insert(struct bfq_service_tree *st, struct bfq_entity *entity) { struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity); struct rb_node *node = &entity->rb_node; #ifdef CONFIG_CGROUP_BFQIO struct bfq_sched_data *sd = NULL; struct bfq_group *bfqg = NULL; struct bfq_data *bfqd = NULL; #endif bfq_insert(&st->active, entity); if (node->rb_left != NULL) node = node->rb_left; else if (node->rb_right != NULL) node = node->rb_right; bfq_update_active_tree(node); #ifdef CONFIG_CGROUP_BFQIO sd = entity->sched_data; bfqg = container_of(sd, struct bfq_group, sched_data); BUG_ON(!bfqg); bfqd = (struct bfq_data *)bfqg->bfqd; #endif if (bfqq != NULL) list_add(&bfqq->bfqq_list, &bfqq->bfqd->active_list); #ifdef CONFIG_CGROUP_BFQIO else { /* bfq_group */ BUG_ON(!bfqd); bfq_weights_tree_add(bfqd, entity, &bfqd->group_weights_tree); } if (bfqg != bfqd->root_group) { BUG_ON(!bfqg); BUG_ON(!bfqd); bfqg->active_entities++; if (bfqg->active_entities == 2) bfqd->active_numerous_groups++; } #endif } /** * bfq_ioprio_to_weight - calc a weight from an ioprio. * @ioprio: the ioprio value to convert. */ static inline unsigned short bfq_ioprio_to_weight(int ioprio) { BUG_ON(ioprio < 0 || ioprio >= IOPRIO_BE_NR); return IOPRIO_BE_NR - ioprio; } /** * bfq_weight_to_ioprio - calc an ioprio from a weight. * @weight: the weight value to convert. * * To preserve as mush as possible the old only-ioprio user interface, * 0 is used as an escape ioprio value for weights (numerically) equal or * larger than IOPRIO_BE_NR */ static inline unsigned short bfq_weight_to_ioprio(int weight) { BUG_ON(weight < BFQ_MIN_WEIGHT || weight > BFQ_MAX_WEIGHT); return IOPRIO_BE_NR - weight < 0 ? 0 : IOPRIO_BE_NR - weight; } static inline void bfq_get_entity(struct bfq_entity *entity) { struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity); if (bfqq != NULL) { atomic_inc(&bfqq->ref); bfq_log_bfqq(bfqq->bfqd, bfqq, "get_entity: %p %d", bfqq, atomic_read(&bfqq->ref)); } } /** * bfq_find_deepest - find the deepest node that an extraction can modify. * @node: the node being removed. * * Do the first step of an extraction in an rb tree, looking for the * node that will replace @node, and returning the deepest node that * the following modifications to the tree can touch. If @node is the * last node in the tree return %NULL. */ static struct rb_node *bfq_find_deepest(struct rb_node *node) { struct rb_node *deepest; if (node->rb_right == NULL && node->rb_left == NULL) deepest = rb_parent(node); else if (node->rb_right == NULL) deepest = node->rb_left; else if (node->rb_left == NULL) deepest = node->rb_right; else { deepest = rb_next(node); if (deepest->rb_right != NULL) deepest = deepest->rb_right; else if (rb_parent(deepest) != node) deepest = rb_parent(deepest); } return deepest; } /** * bfq_active_extract - remove an entity from the active tree. * @st: the service_tree containing the tree. * @entity: the entity being removed. */ static void bfq_active_extract(struct bfq_service_tree *st, struct bfq_entity *entity) { struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity); struct rb_node *node; #ifdef CONFIG_CGROUP_BFQIO struct bfq_sched_data *sd = NULL; struct bfq_group *bfqg = NULL; struct bfq_data *bfqd = NULL; #endif node = bfq_find_deepest(&entity->rb_node); bfq_extract(&st->active, entity); if (node != NULL) bfq_update_active_tree(node); #ifdef CONFIG_CGROUP_BFQIO sd = entity->sched_data; bfqg = container_of(sd, struct bfq_group, sched_data); BUG_ON(!bfqg); bfqd = (struct bfq_data *)bfqg->bfqd; #endif if (bfqq != NULL) list_del(&bfqq->bfqq_list); #ifdef CONFIG_CGROUP_BFQIO else { /* bfq_group */ BUG_ON(!bfqd); bfq_weights_tree_remove(bfqd, entity, &bfqd->group_weights_tree); } if (bfqg != bfqd->root_group) { BUG_ON(!bfqg); BUG_ON(!bfqd); BUG_ON(!bfqg->active_entities); bfqg->active_entities--; if (bfqg->active_entities == 1) { BUG_ON(!bfqd->active_numerous_groups); bfqd->active_numerous_groups--; } } #endif } /** * bfq_idle_insert - insert an entity into the idle tree. * @st: the service tree containing the tree. * @entity: the entity to insert. */ static void bfq_idle_insert(struct bfq_service_tree *st, struct bfq_entity *entity) { struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity); struct bfq_entity *first_idle = st->first_idle; struct bfq_entity *last_idle = st->last_idle; if (first_idle == NULL || bfq_gt(first_idle->finish, entity->finish)) st->first_idle = entity; if (last_idle == NULL || bfq_gt(entity->finish, last_idle->finish)) st->last_idle = entity; bfq_insert(&st->idle, entity); if (bfqq != NULL) list_add(&bfqq->bfqq_list, &bfqq->bfqd->idle_list); } /** * bfq_forget_entity - remove an entity from the wfq trees. * @st: the service tree. * @entity: the entity being removed. * * Update the device status and forget everything about @entity, putting * the device reference to it, if it is a queue. Entities belonging to * groups are not refcounted. */ static void bfq_forget_entity(struct bfq_service_tree *st, struct bfq_entity *entity) { struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity); struct bfq_sched_data *sd; BUG_ON(!entity->on_st); entity->on_st = 0; st->wsum -= entity->weight; if (bfqq != NULL) { sd = entity->sched_data; bfq_log_bfqq(bfqq->bfqd, bfqq, "forget_entity: %p %d", bfqq, atomic_read(&bfqq->ref)); bfq_put_queue(bfqq); } } /** * bfq_put_idle_entity - release the idle tree ref of an entity. * @st: service tree for the entity. * @entity: the entity being released. */ static void bfq_put_idle_entity(struct bfq_service_tree *st, struct bfq_entity *entity) { bfq_idle_extract(st, entity); bfq_forget_entity(st, entity); } /** * bfq_forget_idle - update the idle tree if necessary. * @st: the service tree to act upon. * * To preserve the global O(log N) complexity we only remove one entry here; * as the idle tree will not grow indefinitely this can be done safely. */ static void bfq_forget_idle(struct bfq_service_tree *st) { struct bfq_entity *first_idle = st->first_idle; struct bfq_entity *last_idle = st->last_idle; if (RB_EMPTY_ROOT(&st->active) && last_idle != NULL && !bfq_gt(last_idle->finish, st->vtime)) { /* * Forget the whole idle tree, increasing the vtime past * the last finish time of idle entities. */ st->vtime = last_idle->finish; } if (first_idle != NULL && !bfq_gt(first_idle->finish, st->vtime)) bfq_put_idle_entity(st, first_idle); } static struct bfq_service_tree * __bfq_entity_update_weight_prio(struct bfq_service_tree *old_st, struct bfq_entity *entity) { struct bfq_service_tree *new_st = old_st; if (entity->ioprio_changed) { struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity); unsigned short prev_weight, new_weight; struct bfq_data *bfqd = NULL; struct rb_root *root; #ifdef CONFIG_CGROUP_BFQIO struct bfq_sched_data *sd; struct bfq_group *bfqg; #endif if (bfqq != NULL) bfqd = bfqq->bfqd; #ifdef CONFIG_CGROUP_BFQIO else { sd = entity->my_sched_data; bfqg = container_of(sd, struct bfq_group, sched_data); BUG_ON(!bfqg); bfqd = (struct bfq_data *)bfqg->bfqd; BUG_ON(!bfqd); } #endif BUG_ON(old_st->wsum < entity->weight); old_st->wsum -= entity->weight; if (entity->new_weight != entity->orig_weight) { if (entity->new_weight < BFQ_MIN_WEIGHT || entity->new_weight > BFQ_MAX_WEIGHT) { printk(KERN_CRIT "update_weight_prio: " "new_weight %d\n", entity->new_weight); BUG(); } entity->orig_weight = entity->new_weight; entity->ioprio = bfq_weight_to_ioprio(entity->orig_weight); } entity->ioprio_class = entity->new_ioprio_class; entity->ioprio_changed = 0; /* * NOTE: here we may be changing the weight too early, * this will cause unfairness. The correct approach * would have required additional complexity to defer * weight changes to the proper time instants (i.e., * when entity->finish <= old_st->vtime). */ new_st = bfq_entity_service_tree(entity); prev_weight = entity->weight; new_weight = entity->orig_weight * (bfqq != NULL ? bfqq->wr_coeff : 1); /* * If the weight of the entity changes, remove the entity * from its old weight counter (if there is a counter * associated with the entity), and add it to the counter * associated with its new weight. */ if (prev_weight != new_weight) { root = bfqq ? &bfqd->queue_weights_tree : &bfqd->group_weights_tree; bfq_weights_tree_remove(bfqd, entity, root); } entity->weight = new_weight; /* * Add the entity to its weights tree only if it is * not associated with a weight-raised queue. */ if (prev_weight != new_weight && (bfqq ? bfqq->wr_coeff == 1 : 1)) /* If we get here, root has been initialized. */ bfq_weights_tree_add(bfqd, entity, root); new_st->wsum += entity->weight; if (new_st != old_st) entity->start = new_st->vtime; } return new_st; } /** * bfq_bfqq_served - update the scheduler status after selection for * service. * @bfqq: the queue being served. * @served: bytes to transfer. * * NOTE: this can be optimized, as the timestamps of upper level entities * are synchronized every time a new bfqq is selected for service. By now, * we keep it to better check consistency. */ static void bfq_bfqq_served(struct bfq_queue *bfqq, unsigned long served) { struct bfq_entity *entity = &bfqq->entity; struct bfq_service_tree *st; for_each_entity(entity) { st = bfq_entity_service_tree(entity); entity->service += served; BUG_ON(entity->service > entity->budget); BUG_ON(st->wsum == 0); st->vtime += bfq_delta(served, st->wsum); bfq_forget_idle(st); } bfq_log_bfqq(bfqq->bfqd, bfqq, "bfqq_served %lu secs", served); } /** * bfq_bfqq_charge_full_budget - set the service to the entity budget. * @bfqq: the queue that needs a service update. * * When it's not possible to be fair in the service domain, because * a queue is not consuming its budget fast enough (the meaning of * fast depends on the timeout parameter), we charge it a full * budget. In this way we should obtain a sort of time-domain * fairness among all the seeky/slow queues. */ static inline void bfq_bfqq_charge_full_budget(struct bfq_queue *bfqq) { struct bfq_entity *entity = &bfqq->entity; bfq_log_bfqq(bfqq->bfqd, bfqq, "charge_full_budget"); bfq_bfqq_served(bfqq, entity->budget - entity->service); } /** * __bfq_activate_entity - activate an entity. * @entity: the entity being activated. * * Called whenever an entity is activated, i.e., it is not active and one * of its children receives a new request, or has to be reactivated due to * budget exhaustion. It uses the current budget of the entity (and the * service received if @entity is active) of the queue to calculate its * timestamps. */ static void __bfq_activate_entity(struct bfq_entity *entity) { struct bfq_sched_data *sd = entity->sched_data; struct bfq_service_tree *st = bfq_entity_service_tree(entity); if (entity == sd->in_service_entity) { BUG_ON(entity->tree != NULL); /* * If we are requeueing the current entity we have * to take care of not charging to it service it has * not received. */ bfq_calc_finish(entity, entity->service); entity->start = entity->finish; sd->in_service_entity = NULL; } else if (entity->tree == &st->active) { /* * Requeueing an entity due to a change of some * next_in_service entity below it. We reuse the * old start time. */ bfq_active_extract(st, entity); } else if (entity->tree == &st->idle) { /* * Must be on the idle tree, bfq_idle_extract() will * check for that. */ bfq_idle_extract(st, entity); entity->start = bfq_gt(st->vtime, entity->finish) ? st->vtime : entity->finish; } else { /* * The finish time of the entity may be invalid, and * it is in the past for sure, otherwise the queue * would have been on the idle tree. */ entity->start = st->vtime; st->wsum += entity->weight; bfq_get_entity(entity); BUG_ON(entity->on_st); entity->on_st = 1; } st = __bfq_entity_update_weight_prio(st, entity); bfq_calc_finish(entity, entity->budget); bfq_active_insert(st, entity); } /** * bfq_activate_entity - activate an entity and its ancestors if necessary. * @entity: the entity to activate. * * Activate @entity and all the entities on the path from it to the root. */ static void bfq_activate_entity(struct bfq_entity *entity) { struct bfq_sched_data *sd; for_each_entity(entity) { __bfq_activate_entity(entity); sd = entity->sched_data; if (!bfq_update_next_in_service(sd)) /* * No need to propagate the activation to the * upper entities, as they will be updated when * the in-service entity is rescheduled. */ break; } } /** * __bfq_deactivate_entity - deactivate an entity from its service tree. * @entity: the entity to deactivate. * @requeue: if false, the entity will not be put into the idle tree. * * Deactivate an entity, independently from its previous state. If the * entity was not on a service tree just return, otherwise if it is on * any scheduler tree, extract it from that tree, and if necessary * and if the caller did not specify @requeue, put it on the idle tree. * * Return %1 if the caller should update the entity hierarchy, i.e., * if the entity was in service or if it was the next_in_service for * its sched_data; return %0 otherwise. */ static int __bfq_deactivate_entity(struct bfq_entity *entity, int requeue) { struct bfq_sched_data *sd = entity->sched_data; struct bfq_service_tree *st = bfq_entity_service_tree(entity); int was_in_service = entity == sd->in_service_entity; int ret = 0; if (!entity->on_st) return 0; BUG_ON(was_in_service && entity->tree != NULL); if (was_in_service) { bfq_calc_finish(entity, entity->service); sd->in_service_entity = NULL; } else if (entity->tree == &st->active) bfq_active_extract(st, entity); else if (entity->tree == &st->idle) bfq_idle_extract(st, entity); else if (entity->tree != NULL) BUG(); if (was_in_service || sd->next_in_service == entity) ret = bfq_update_next_in_service(sd); if (!requeue || !bfq_gt(entity->finish, st->vtime)) bfq_forget_entity(st, entity); else bfq_idle_insert(st, entity); BUG_ON(sd->in_service_entity == entity); BUG_ON(sd->next_in_service == entity); return ret; } /** * bfq_deactivate_entity - deactivate an entity. * @entity: the entity to deactivate. * @requeue: true if the entity can be put on the idle tree */ static void bfq_deactivate_entity(struct bfq_entity *entity, int requeue) { struct bfq_sched_data *sd; struct bfq_entity *parent; for_each_entity_safe(entity, parent) { sd = entity->sched_data; if (!__bfq_deactivate_entity(entity, requeue)) /* * The parent entity is still backlogged, and * we don't need to update it as it is still * in service. */ break; if (sd->next_in_service != NULL) /* * The parent entity is still backlogged and * the budgets on the path towards the root * need to be updated. */ goto update; /* * If we reach there the parent is no more backlogged and * we want to propagate the dequeue upwards. */ requeue = 1; } return; update: entity = parent; for_each_entity(entity) { __bfq_activate_entity(entity); sd = entity->sched_data; if (!bfq_update_next_in_service(sd)) break; } } /** * bfq_update_vtime - update vtime if necessary. * @st: the service tree to act upon. * * If necessary update the service tree vtime to have at least one * eligible entity, skipping to its start time. Assumes that the * active tree of the device is not empty. * * NOTE: this hierarchical implementation updates vtimes quite often, * we may end up with reactivated processes getting timestamps after a * vtime skip done because we needed a ->first_active entity on some * intermediate node. */ static void bfq_update_vtime(struct bfq_service_tree *st) { struct bfq_entity *entry; struct rb_node *node = st->active.rb_node; entry = rb_entry(node, struct bfq_entity, rb_node); if (bfq_gt(entry->min_start, st->vtime)) { st->vtime = entry->min_start; bfq_forget_idle(st); } } /** * bfq_first_active_entity - find the eligible entity with * the smallest finish time * @st: the service tree to select from. * * This function searches the first schedulable entity, starting from the * root of the tree and going on the left every time on this side there is * a subtree with at least one eligible (start >= vtime) entity. The path on * the right is followed only if a) the left subtree contains no eligible * entities and b) no eligible entity has been found yet. */ static struct bfq_entity *bfq_first_active_entity(struct bfq_service_tree *st) { struct bfq_entity *entry, *first = NULL; struct rb_node *node = st->active.rb_node; while (node != NULL) { entry = rb_entry(node, struct bfq_entity, rb_node); left: if (!bfq_gt(entry->start, st->vtime)) first = entry; BUG_ON(bfq_gt(entry->min_start, st->vtime)); if (node->rb_left != NULL) { entry = rb_entry(node->rb_left, struct bfq_entity, rb_node); if (!bfq_gt(entry->min_start, st->vtime)) { node = node->rb_left; goto left; } } if (first != NULL) break; node = node->rb_right; } BUG_ON(first == NULL && !RB_EMPTY_ROOT(&st->active)); return first; } /** * __bfq_lookup_next_entity - return the first eligible entity in @st. * @st: the service tree. * * Update the virtual time in @st and return the first eligible entity * it contains. */ static struct bfq_entity *__bfq_lookup_next_entity(struct bfq_service_tree *st, bool force) { struct bfq_entity *entity, *new_next_in_service = NULL; if (RB_EMPTY_ROOT(&st->active)) return NULL; bfq_update_vtime(st); entity = bfq_first_active_entity(st); BUG_ON(bfq_gt(entity->start, st->vtime)); /* * If the chosen entity does not match with the sched_data's * next_in_service and we are forcedly serving the IDLE priority * class tree, bubble up budget update. */ if (unlikely(force && entity != entity->sched_data->next_in_service)) { new_next_in_service = entity; for_each_entity(new_next_in_service) bfq_update_budget(new_next_in_service); } return entity; } /** * bfq_lookup_next_entity - return the first eligible entity in @sd. * @sd: the sched_data. * @extract: if true the returned entity will be also extracted from @sd. * * NOTE: since we cache the next_in_service entity at each level of the * hierarchy, the complexity of the lookup can be decreased with * absolutely no effort just returning the cached next_in_service value; * we prefer to do full lookups to test the consistency of * the data * structures. */ static struct bfq_entity *bfq_lookup_next_entity(struct bfq_sched_data *sd, int extract, struct bfq_data *bfqd) { struct bfq_service_tree *st = sd->service_tree; struct bfq_entity *entity; int i = 0; BUG_ON(sd->in_service_entity != NULL); if (bfqd != NULL && jiffies - bfqd->bfq_class_idle_last_service > BFQ_CL_IDLE_TIMEOUT) { entity = __bfq_lookup_next_entity(st + BFQ_IOPRIO_CLASSES - 1, true); if (entity != NULL) { i = BFQ_IOPRIO_CLASSES - 1; bfqd->bfq_class_idle_last_service = jiffies; sd->next_in_service = entity; } } for (; i < BFQ_IOPRIO_CLASSES; i++) { entity = __bfq_lookup_next_entity(st + i, false); if (entity != NULL) { if (extract) { if (sd->next_in_service != entity) { entity = __bfq_lookup_next_entity(st + i, true); } bfq_check_next_in_service(sd, entity); bfq_active_extract(st + i, entity); sd->in_service_entity = entity; sd->next_in_service = NULL; } break; } } return entity; } /* * Get next queue for service. */ static struct bfq_queue *bfq_get_next_queue(struct bfq_data *bfqd) { struct bfq_entity *entity = NULL; struct bfq_sched_data *sd; struct bfq_queue *bfqq; BUG_ON(bfqd->in_service_queue != NULL); if (bfqd->busy_queues == 0) return NULL; sd = &bfqd->root_group->sched_data; for (; sd != NULL; sd = entity->my_sched_data) { entity = bfq_lookup_next_entity(sd, 1, bfqd); BUG_ON(entity == NULL); entity->service = 0; } bfqq = bfq_entity_to_bfqq(entity); BUG_ON(bfqq == NULL); return bfqq; } static void __bfq_bfqd_reset_in_service(struct bfq_data *bfqd) { if (bfqd->in_service_bic != NULL) { put_io_context(bfqd->in_service_bic->icq.ioc); bfqd->in_service_bic = NULL; } bfqd->in_service_queue = NULL; del_timer(&bfqd->idle_slice_timer); } static void bfq_deactivate_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq, int requeue) { struct bfq_entity *entity = &bfqq->entity; if (bfqq == bfqd->in_service_queue) __bfq_bfqd_reset_in_service(bfqd); bfq_deactivate_entity(entity, requeue); } static void bfq_activate_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq) { struct bfq_entity *entity = &bfqq->entity; bfq_activate_entity(entity); } /* * Called when the bfqq no longer has requests pending, remove it from * the service tree. */ static void bfq_del_bfqq_busy(struct bfq_data *bfqd, struct bfq_queue *bfqq, int requeue) { BUG_ON(!bfq_bfqq_busy(bfqq)); BUG_ON(!RB_EMPTY_ROOT(&bfqq->sort_list)); bfq_log_bfqq(bfqd, bfqq, "del from busy"); bfq_clear_bfqq_busy(bfqq); BUG_ON(bfqd->busy_queues == 0); bfqd->busy_queues--; if (!bfqq->dispatched) { bfq_weights_tree_remove(bfqd, &bfqq->entity, &bfqd->queue_weights_tree); if (!blk_queue_nonrot(bfqd->queue)) { BUG_ON(!bfqd->busy_in_flight_queues); bfqd->busy_in_flight_queues--; if (bfq_bfqq_constantly_seeky(bfqq)) { BUG_ON(!bfqd-> const_seeky_busy_in_flight_queues); bfqd->const_seeky_busy_in_flight_queues--; } } } if (bfqq->wr_coeff > 1) bfqd->wr_busy_queues--; bfq_deactivate_bfqq(bfqd, bfqq, requeue); } /* * Called when an inactive queue receives a new request. */ static void bfq_add_bfqq_busy(struct bfq_data *bfqd, struct bfq_queue *bfqq) { BUG_ON(bfq_bfqq_busy(bfqq)); BUG_ON(bfqq == bfqd->in_service_queue); bfq_log_bfqq(bfqd, bfqq, "add to busy"); bfq_activate_bfqq(bfqd, bfqq); bfq_mark_bfqq_busy(bfqq); bfqd->busy_queues++; if (!bfqq->dispatched) { if (bfqq->wr_coeff == 1) bfq_weights_tree_add(bfqd, &bfqq->entity, &bfqd->queue_weights_tree); if (!blk_queue_nonrot(bfqd->queue)) { bfqd->busy_in_flight_queues++; if (bfq_bfqq_constantly_seeky(bfqq)) bfqd->const_seeky_busy_in_flight_queues++; } } if (bfqq->wr_coeff > 1) bfqd->wr_busy_queues++; }