android_kernel_samsung_msm8976/drivers/battery/s2mu005_fuelgauge.c

1885 lines
52 KiB
C

/*
* s2mu005_fuelgauge.c
* Samsung S2MU005 Fuel Gauge Driver
*
* Copyright (C) 2015 Samsung Electronics
* Developed by Nguyen Tien Dat (tiendat.nt@samsung.com)
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#define DEBUG
#define SINGLE_BYTE 1
#define TABLE_SIZE 22
#include <linux/battery/fuelgauge/s2mu005_fuelgauge.h>
#include <linux/of_gpio.h>
static enum power_supply_property s2mu005_fuelgauge_props[] = {
POWER_SUPPLY_PROP_STATUS,
POWER_SUPPLY_PROP_VOLTAGE_NOW,
POWER_SUPPLY_PROP_VOLTAGE_AVG,
POWER_SUPPLY_PROP_CURRENT_NOW,
POWER_SUPPLY_PROP_CURRENT_AVG,
POWER_SUPPLY_PROP_CHARGE_FULL,
POWER_SUPPLY_PROP_ENERGY_NOW,
POWER_SUPPLY_PROP_CAPACITY,
POWER_SUPPLY_PROP_TEMP,
POWER_SUPPLY_PROP_TEMP_AMBIENT,
POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN,
POWER_SUPPLY_PROP_CHARGE_TYPE,
};
static int s2mu005_get_vbat(struct s2mu005_fuelgauge_data *fuelgauge);
static int s2mu005_get_ocv(struct s2mu005_fuelgauge_data *fuelgauge);
static int s2mu005_get_current(struct s2mu005_fuelgauge_data *fuelgauge);
static int s2mu005_get_avgcurrent(struct s2mu005_fuelgauge_data *fuelgauge);
static int s2mu005_get_avgvbat(struct s2mu005_fuelgauge_data *fuelgauge);
static int s2mu005_write_reg_byte(struct i2c_client *client, int reg, u8 data)
{
int ret, i = 0;
ret = i2c_smbus_write_byte_data(client, reg, data);
if (ret < 0) {
for (i = 0; i < 3; i++) {
ret = i2c_smbus_write_byte_data(client, reg, data);
if (ret >= 0)
break;
}
if (i >= 3)
dev_err(&client->dev, "%s: Error(%d)\n", __func__, ret);
}
return ret;
}
static int s2mu005_write_reg(struct i2c_client *client, int reg, u8 *buf)
{
#if SINGLE_BYTE
int ret = 0 ;
s2mu005_write_reg_byte(client, reg, buf[0]);
s2mu005_write_reg_byte(client, reg+1, buf[1]);
#else
int ret, i = 0;
ret = i2c_smbus_write_i2c_block_data(client, reg, 2, buf);
if (ret < 0) {
for (i = 0; i < 3; i++) {
ret = i2c_smbus_write_i2c_block_data(client, reg, 2, buf);
if (ret >= 0)
break;
}
if (i >= 3)
dev_err(&client->dev, "%s: Error(%d)\n", __func__, ret);
}
#endif
return ret;
}
static int s2mu005_read_reg_byte(struct i2c_client *client, int reg, void *data)
{
int ret = 0;
ret = i2c_smbus_read_byte_data(client, reg);
if (ret < 0)
return ret;
*(u8 *)data = (u8)ret;
return ret;
}
static int s2mu005_read_reg(struct i2c_client *client, int reg, u8 *buf)
{
#if SINGLE_BYTE
int ret =0;
u8 data1 = 0 , data2 = 0;
s2mu005_read_reg_byte(client, reg, &data1);
s2mu005_read_reg_byte(client, reg+1, &data2);
buf[0] = data1;
buf[1] = data2;
#else
int ret = 0, i = 0;
ret = i2c_smbus_read_i2c_block_data(client, reg, 2, buf);
if (ret < 0) {
for (i = 0; i < 3; i++) {
ret = i2c_smbus_read_i2c_block_data(client, reg, 2, buf);
if (ret >= 0)
break;
}
if (i >= 3)
dev_err(&client->dev, "%s: Error(%d)\n", __func__, ret);
}
#endif
return ret;
}
static void WA_0_issue_at_init(struct s2mu005_fuelgauge_data *fuelgauge)
{
int a = 0;
u8 v_52 = 0, v_53 =0, temp1, temp2;
int FG_volt, UI_volt, offset;
/* Step 1: [Surge test] get UI voltage (0.1mV)*/
UI_volt = s2mu005_get_ocv(fuelgauge);
s2mu005_write_reg_byte(fuelgauge->i2c, 0x1E, 0x0F);
msleep(50);
/* Step 2: [Surge test] get FG voltage (0.1mV) */
FG_volt = s2mu005_get_vbat(fuelgauge) * 10;
/* Step 3: [Surge test] get offset */
offset = UI_volt - FG_volt;
pr_err("%s: UI_volt(%d), FG_volt(%d), offset(%d)\n",
__func__, UI_volt, FG_volt, offset);
/* Step 4: [Surge test] */
s2mu005_read_reg_byte(fuelgauge->i2c, 0x53, &v_53);
s2mu005_read_reg_byte(fuelgauge->i2c, 0x52, &v_52);
pr_err("%s: v_53(0x%x), v_52(0x%x)\n", __func__, v_53, v_52);
a = (v_53 & 0x0F) << 8;
a += v_52;
a = a << 3;
pr_err("%s: a before add offset (0x%x)\n", __func__, a);
a += (offset << 16) / 10000;
pr_err("%s: a after add offset (0x%x)\n", __func__, a);
a &= 0x7FFF;
a = a >> 3;
a &= 0xfff;
pr_err("%s: (a >> 3)&0xFFF (0x%x)\n", __func__, a);
/* modify 0x53[3:0] */
temp1 = v_53 & 0xF0;
temp2 = (u8)((a&0xF00) >> 8);
temp1 |= temp2;
s2mu005_write_reg_byte(fuelgauge->i2c, 0x53, temp1);
/* modify 0x52[7:0] */
temp2 = (u8)(a & 0xFF);
s2mu005_write_reg_byte(fuelgauge->i2c, 0x52, temp2);
/* restart and dumpdone */
s2mu005_write_reg_byte(fuelgauge->i2c, 0x1E, 0x0F);
msleep(300);
/* recovery 0x52 and 0x53 */
s2mu005_read_reg_byte(fuelgauge->i2c, 0x53, &temp1);
temp1 &= 0xF0;
temp1 |= (v_53 & 0x0F);
s2mu005_write_reg_byte(fuelgauge->i2c, 0x53, temp1);
s2mu005_write_reg_byte(fuelgauge->i2c, 0x52, v_52);
}
static int s2mu005_get_soc_from_ocv(struct s2mu005_fuelgauge_data *fuelgauge, int target_ocv)
{
int *soc_arr;
int *ocv_arr;
int soc = 0;
int ocv = target_ocv * 10;
int high_index = TABLE_SIZE - 1;
int low_index = 0;
int mid_index = 0;
soc_arr = fuelgauge->info.soc_arr_evt2;
ocv_arr = fuelgauge->info.ocv_arr_evt2;
if(ocv <= ocv_arr[TABLE_SIZE - 1]) {
soc = soc_arr[TABLE_SIZE - 1];
goto soc_ocv_mapping;
} else if (ocv >= ocv_arr[0]) {
soc = soc_arr[0];
goto soc_ocv_mapping;
}
while (low_index <= high_index) {
mid_index = (low_index + high_index) >> 1;
if(ocv_arr[mid_index] > ocv)
low_index = mid_index + 1;
else if(ocv_arr[mid_index] < ocv)
high_index = mid_index - 1;
else {
soc = soc_arr[mid_index];
goto soc_ocv_mapping;
}
}
soc = soc_arr[high_index];
soc += ((soc_arr[low_index] - soc_arr[high_index]) *
(ocv - ocv_arr[high_index])) /
(ocv_arr[low_index] - ocv_arr[high_index]);
soc_ocv_mapping:
dev_info(&fuelgauge->i2c->dev, "%s: ocv (%d), soc (%d), EVT(%d)\n", __func__, ocv, soc, fuelgauge->revision);
return soc;
}
static void WA_0_issue_at_init1(struct s2mu005_fuelgauge_data *fuelgauge, int target_ocv)
{
int a = 0;
u8 v_52 = 0, v_53 =0, temp1, temp2;
int FG_volt, UI_volt, offset;
/* Step 1: [Surge test] get UI voltage (0.1mV)*/
UI_volt = target_ocv * 10;
s2mu005_write_reg_byte(fuelgauge->i2c, 0x1E, 0x0F);
msleep(50);
/* Step 2: [Surge test] get FG voltage (0.1mV) */
FG_volt = s2mu005_get_vbat(fuelgauge) * 10;
/* Step 3: [Surge test] get offset */
offset = UI_volt - FG_volt;
pr_err("%s: UI_volt(%d), FG_volt(%d), offset(%d)\n",
__func__, UI_volt, FG_volt, offset);
/* Step 4: [Surge test] */
s2mu005_read_reg_byte(fuelgauge->i2c, 0x53, &v_53);
s2mu005_read_reg_byte(fuelgauge->i2c, 0x52, &v_52);
pr_err("%s: v_53(0x%x), v_52(0x%x)\n", __func__, v_53, v_52);
a = (v_53 & 0x0F) << 8;
a += v_52;
a = a << 3;
pr_err("%s: a before add offset (0x%x)\n", __func__, a);
a += (offset << 16) / 10000;
pr_err("%s: a after add offset (0x%x)\n", __func__, a);
a &= 0x7FFF;
a = a >> 3;
a &= 0xfff;
pr_err("%s: (a >> 3)&0xFFF (0x%x)\n", __func__, a);
/* modify 0x53[3:0] */
temp1 = v_53 & 0xF0;
temp2 = (u8)((a&0xF00) >> 8);
temp1 |= temp2;
s2mu005_write_reg_byte(fuelgauge->i2c, 0x53, temp1);
/* modify 0x52[7:0] */
temp2 = (u8)(a & 0xFF);
s2mu005_write_reg_byte(fuelgauge->i2c, 0x52, temp2);
/* restart and dumpdone */
s2mu005_write_reg_byte(fuelgauge->i2c, 0x1E, 0x0F);
msleep(300);
pr_info("%s: S2MU005 VBAT : %d\n", __func__, s2mu005_get_vbat(fuelgauge) * 10);
/* recovery 0x52 and 0x53 */
s2mu005_read_reg_byte(fuelgauge->i2c, 0x53, &temp1);
temp1 &= 0xF0;
temp1 |= (v_53 & 0x0F);
s2mu005_write_reg_byte(fuelgauge->i2c, 0x53, temp1);
s2mu005_write_reg_byte(fuelgauge->i2c, 0x52, v_52);
}
static void s2mu005_reset_fg(struct s2mu005_fuelgauge_data *fuelgauge)
{
int i;
u8 temp = 0;
/* step 0: [Surge test] initialize register of FG */
s2mu005_write_reg_byte(fuelgauge->i2c, 0x0F, fuelgauge->info.batcap[0]);
s2mu005_write_reg_byte(fuelgauge->i2c, 0x0E, fuelgauge->info.batcap[1]);
s2mu005_write_reg_byte(fuelgauge->i2c, 0x11, fuelgauge->info.batcap[2]);
s2mu005_write_reg_byte(fuelgauge->i2c, 0x10, fuelgauge->info.batcap[3]);
for(i = 0x92; i <= 0xe9; i++) {
s2mu005_write_reg_byte(fuelgauge->i2c, i, fuelgauge->info.battery_table3[i - 0x92]);
}
for(i = 0xea; i <= 0xff; i++) {
s2mu005_write_reg_byte(fuelgauge->i2c, i, fuelgauge->info.battery_table4[i - 0xea]);
}
s2mu005_write_reg_byte(fuelgauge->i2c, 0x21, 0x13);
s2mu005_write_reg_byte(fuelgauge->i2c, 0x14, 0x40);
if(fuelgauge->revision >= 2) {
s2mu005_read_reg_byte(fuelgauge->i2c, 0x45, &temp);
temp &= 0xF0;
temp |= 0x08;
s2mu005_write_reg_byte(fuelgauge->i2c, 0x45, temp);
s2mu005_write_reg_byte(fuelgauge->i2c, 0x44, 0x00);
} else {
s2mu005_read_reg_byte(fuelgauge->i2c, 0x45, &temp);
temp &= 0xF0;
temp |= 0x07;
s2mu005_write_reg_byte(fuelgauge->i2c, 0x45, temp);
s2mu005_write_reg_byte(fuelgauge->i2c, 0x44, 0xCC);
}
s2mu005_read_reg_byte(fuelgauge->i2c, 0x27, &temp);
temp |= 0x10;
s2mu005_write_reg_byte(fuelgauge->i2c, 0x27, temp);
if(fuelgauge->revision >= 2) {
s2mu005_write_reg_byte(fuelgauge->i2c, 0x4B, 0x0B);
s2mu005_write_reg_byte(fuelgauge->i2c, 0x4A, 0x10);
s2mu005_read_reg_byte(fuelgauge->i2c, 0x03, &temp);
temp |= 0x40;
s2mu005_write_reg_byte(fuelgauge->i2c, 0x03, temp);
}
else {
s2mu005_write_reg_byte(fuelgauge->i2c, 0x4B, 0x09);
s2mu005_read_reg_byte(fuelgauge->i2c, 0x27, &temp);
temp |= 0x0F;
s2mu005_write_reg_byte(fuelgauge->i2c, 0x27, temp);
s2mu005_read_reg_byte(fuelgauge->i2c, 0x26, &temp);
temp |= 0xFE;
s2mu005_write_reg_byte(fuelgauge->i2c, 0x26, temp);
s2mu005_write_reg_byte(fuelgauge->i2c, 0x4A, 0xFF);
s2mu005_read_reg_byte(fuelgauge->i2c, 0x26, &temp);
temp &= 0xFE;
s2mu005_write_reg_byte(fuelgauge->i2c, 0x26, temp);
}
s2mu005_write_reg_byte(fuelgauge->i2c, 0x40, 0x04);
WA_0_issue_at_init(fuelgauge);
pr_err("%s: Reset FG completed\n", __func__);
}
static void s2mu005_restart_gauging(struct s2mu005_fuelgauge_data *fuelgauge)
{
pr_err("%s: Re-calculate SOC and voltage\n", __func__);
//s2mu005_write_reg_byte(fuelgauge->i2c, 0x1f, 0x01);
s2mu005_write_reg_byte(fuelgauge->i2c, 0x21, 0x13);
s2mu005_write_reg_byte(fuelgauge->i2c, 0x1E, 0x0F);
msleep(200);
}
static void s2mu005_init_regs(struct s2mu005_fuelgauge_data *fuelgauge)
{
u8 temp = 0;
pr_err("%s: s2mu005 fuelgauge initialize\n", __func__);
/* Reduce top-off current difference between
* Power on charging and Power off charging
*/
s2mu005_read_reg_byte(fuelgauge->i2c, 0x27, &temp);
temp |= 0x10;
s2mu005_write_reg_byte(fuelgauge->i2c, 0x27, temp);
if(fuelgauge->revision < 2) {
/* Sampling time set 500ms */
s2mu005_read_reg_byte(fuelgauge->i2c, 0x45, &temp);
temp &= 0x3F;
temp |= 0x0;
s2mu005_write_reg_byte(fuelgauge->i2c, 0x45, temp);
}
}
static void s2mu005_alert_init(struct s2mu005_fuelgauge_data *fuelgauge)
{
u8 data[2];
/* VBAT Threshold setting: 3.55V */
data[0] = 0x00 & 0x0f;
/* SOC Threshold setting */
data[0] = data[0] | (fuelgauge->pdata->fuel_alert_soc << 4);
data[1] = 0x00;
s2mu005_write_reg(fuelgauge->i2c, S2MU005_REG_IRQ_LVL, data);
}
static bool s2mu005_check_status(struct i2c_client *client)
{
u8 data[2];
bool ret = false;
/* check if Smn was generated */
if (s2mu005_read_reg(client, S2MU005_REG_STATUS, data) < 0)
return ret;
dev_dbg(&client->dev, "%s: status to (%02x%02x)\n",
__func__, data[1], data[0]);
if (data[1] & (0x1 << 1))
return true;
else
return false;
}
static int s2mu005_set_temperature(struct s2mu005_fuelgauge_data *fuelgauge,
int temperature)
{
/*
* s5mu005 include temperature sensor so,
* do not need to set temperature value.
*/
return temperature;
}
static int s2mu005_temperature_compensation(struct s2mu005_fuelgauge_data *fuelgauge, int temp)
{
int temp_comp;
int low = 0;
int high = 0;
int mid = 0;
if (fuelgauge->temp_table[0].adc >= temp) {
temp_comp = fuelgauge->temp_table[0].data;
goto temp_by_goto;
} else if (fuelgauge->temp_table[fuelgauge->temp_table_size - 1].adc <= temp) {
temp_comp = fuelgauge->temp_table[fuelgauge->temp_table_size - 1].data;
goto temp_by_goto;
}
high = fuelgauge->temp_table_size - 1;
while (low <= high) {
mid = (low + high) / 2;
if (fuelgauge->temp_table[mid].adc > temp)
high = mid - 1;
else if (fuelgauge->temp_table[mid].adc < temp)
low = mid + 1;
else {
temp_comp = fuelgauge->temp_table[mid].data;
goto temp_by_goto;
}
}
temp_comp = fuelgauge->temp_table[high].data;
temp_comp += ((fuelgauge->temp_table[low].data - fuelgauge->temp_table[high].data) *
(temp - fuelgauge->temp_table[high].adc)) /
(fuelgauge->temp_table[low].adc - fuelgauge->temp_table[high].adc);
temp_by_goto:
pr_info("%s: Comp_Temp(%d), Temp(%d)\n",
__func__, temp_comp, temp);
return temp_comp;
}
static int s2mu005_get_temperature(struct s2mu005_fuelgauge_data *fuelgauge)
{
u8 data[2];
u16 compliment;
int temperature = 0;
int temp_value;
/*
* use monitor regiser.
* monitor register default setting is temperature
*/
mutex_lock(&fuelgauge->fg_lock);
s2mu005_write_reg_byte(fuelgauge->i2c, S2MU005_REG_MONOUT_SEL, 0x10);
msleep(10);
if (s2mu005_read_reg(fuelgauge->i2c, S2MU005_REG_MONOUT, data) < 0)
goto err;
pr_info("%s temp data = 0x%x 0x%x\n", __func__, data[0], data[1]);
mutex_unlock(&fuelgauge->fg_lock);
compliment = (data[1] << 8) | (data[0]);
/* data[] store 2's compliment format number */
if (compliment & (0x1 << 15)) {
/* Negative */
temperature = -1 * ((~compliment & 0xFFFF) + 1);
} else {
temperature = compliment & 0x7FFF;
}
temperature = ((temperature * 100) >> 8)/10;
dev_info(&fuelgauge->i2c->dev, "%s: temperature (%d)\n",
__func__, temperature);
if(fuelgauge->temperature_compensation) {
temp_value = s2mu005_temperature_compensation(fuelgauge, temperature);
return temp_value;
} else {
return temperature;
}
err:
mutex_unlock(&fuelgauge->fg_lock);
return -ERANGE;
}
static int s2mu005_get_rawsoc(struct s2mu005_fuelgauge_data *fuelgauge)
{
u8 data[2], check_data[2];
u16 compliment;
int rsoc, i;
u8 por_state = 0;
u8 temp = 0;
u8 reg = S2MU005_REG_RSOC;
int fg_reset = 0;
union power_supply_propval value;
int avg_current = 0, avg_vbat = 0, vbat = 0, curr = 0;
int ocv_pwroff = 0, ocv_100 = 0;
int target_soc = 0, soc_100 = 0;
//bkj - rempcap logging
int rsoc1;
s2mu005_read_reg_byte(fuelgauge->i2c, 0x1F, &por_state);
if(por_state & 0x10) {
value.intval = 0;
psy_do_property("s2mu005-charger", set, POWER_SUPPLY_PROP_CHARGING_ENABLED, value);
dev_info(&fuelgauge->i2c->dev, "%s: FG reset\n", __func__);
s2mu005_reset_fg(fuelgauge);
por_state &= ~0x10;
s2mu005_write_reg_byte(fuelgauge->i2c, 0x1F, por_state);
fg_reset = 1;
}
mutex_lock(&fuelgauge->fg_lock);
if(fuelgauge->revision >= 2)
reg = S2MU005_REG_RSOC;
else {
if(fuelgauge->mode == CURRENT_MODE)
reg = S2MU005_REG_RSOC;
else {
s2mu005_write_reg_byte(fuelgauge->i2c, 0x0C, 0x03);
reg = S2MU005_REG_MONOUT;
}
}
for (i = 0; i < 50; i++) {
if (s2mu005_read_reg(fuelgauge->i2c, reg, data) < 0)
goto err;
if (s2mu005_read_reg(fuelgauge->i2c, reg, check_data) < 0)
goto err;
dev_dbg(&fuelgauge->i2c->dev, "[DEBUG]%s: data0 (%d) data1 (%d) \n", __func__, data[0], data[1]);
if ((data[0] == check_data[0]) && (data[1] == check_data[1]))
break;
}
mutex_unlock(&fuelgauge->fg_lock);
if (fg_reset) {
value.intval = 1;
psy_do_property("s2mu005-charger", set, POWER_SUPPLY_PROP_CHARGE_ENABLED, value);
psy_do_property("s2mu005-charger", set, POWER_SUPPLY_PROP_CHARGING_ENABLED, value);
}
compliment = (data[1] << 8) | (data[0]);
/* data[] store 2's compliment format number */
if (compliment & (0x1 << 15)) {
/* Negative */
rsoc = ((~compliment) & 0xFFFF) + 1;
rsoc = (rsoc * (-10000)) / (0x1 << 14);
} else {
rsoc = compliment & 0x7FFF;
rsoc = ((rsoc * 10000) / (0x1 << 14));
}
if (fg_reset)
fuelgauge->diff_soc = fuelgauge->info.soc - rsoc;
dev_info(&fuelgauge->i2c->dev, "%s: current_soc (%d), previous soc (%d), diff (%d), FG_mode(%d)\n",
__func__, rsoc, fuelgauge->info.soc, fuelgauge->diff_soc, fuelgauge->mode);
fuelgauge->info.soc = rsoc + fuelgauge->diff_soc;
if(fuelgauge->revision >= 2) {
if(fuelgauge->info.soc <= 300) {
if(fuelgauge->mode == CURRENT_MODE) { /* switch to VOLTAGE_MODE */
fuelgauge->mode = LOW_SOC_VOLTAGE_MODE;
s2mu005_write_reg_byte(fuelgauge->i2c, 0x4A, 0xFF);
dev_info(&fuelgauge->i2c->dev, "%s: FG is in low soc voltage mode\n", __func__);
}
}
else if (fuelgauge->info.soc > 325) {
if(fuelgauge->mode == LOW_SOC_VOLTAGE_MODE) {
fuelgauge->mode = CURRENT_MODE;
s2mu005_write_reg_byte(fuelgauge->i2c, 0x4A, 0x10);
dev_info(&fuelgauge->i2c->dev, "%s: FG is in current mode\n", __func__);
}
}
psy_do_property("battery", get, POWER_SUPPLY_PROP_CAPACITY, value);
dev_info(&fuelgauge->i2c->dev, "%s: UI SOC = %d\n", __func__, value.intval);
if (value.intval >= 98) {
if(fuelgauge->mode == CURRENT_MODE) { /* switch to VOLTAGE_MODE */
fuelgauge->mode = HIGH_SOC_VOLTAGE_MODE;
s2mu005_write_reg_byte(fuelgauge->i2c, 0x4A, 0xFF);
dev_info(&fuelgauge->i2c->dev, "%s: FG is in high soc voltage mode\n", __func__);
}
}
else if (value.intval < 97) {
if(fuelgauge->mode == HIGH_SOC_VOLTAGE_MODE) {
fuelgauge->mode = CURRENT_MODE;
s2mu005_write_reg_byte(fuelgauge->i2c, 0x4A, 0x10);
dev_info(&fuelgauge->i2c->dev, "%s: FG is in current mode\n", __func__);
}
}
}
else {
if(!fuelgauge->is_charging && fuelgauge->info.soc <= 300) {
if(fuelgauge->mode == CURRENT_MODE) { /* switch to VOLTAGE_MODE */
fuelgauge->mode = LOW_SOC_VOLTAGE_MODE;
value.intval = fuelgauge->mode;
psy_do_property("s2mu005-charger", set, POWER_SUPPLY_PROP_SCOPE, value);
s2mu005_read_reg_byte(fuelgauge->i2c, 0x26, &temp);
temp |= 0x01;
s2mu005_write_reg_byte(fuelgauge->i2c, 0x26, temp);
s2mu005_read_reg_byte(fuelgauge->i2c, 0x4B, &temp);
temp |= 0x02;
s2mu005_write_reg_byte(fuelgauge->i2c, 0x4B, temp);
s2mu005_read_reg_byte(fuelgauge->i2c, 0x45, &temp);
temp &= 0xF0;
s2mu005_write_reg_byte(fuelgauge->i2c, 0x45, temp);
s2mu005_write_reg_byte(fuelgauge->i2c, 0x44, 0x00);
fuelgauge->vm_soc = fuelgauge->info.soc;
dev_info(&fuelgauge->i2c->dev, "%s: FG is in low soc voltage mode: %d\n",
__func__, fuelgauge->vm_soc);
}
} else if (fuelgauge->is_charging && fuelgauge->info.soc >= fuelgauge->vm_soc) {
if(fuelgauge->mode == LOW_SOC_VOLTAGE_MODE) {
fuelgauge->mode = CURRENT_MODE;
value.intval = fuelgauge->mode;
psy_do_property("s2mu005-charger", set, POWER_SUPPLY_PROP_SCOPE, value);
s2mu005_read_reg_byte(fuelgauge->i2c, 0x4B, &temp);
temp &= ~0x02;
s2mu005_write_reg_byte(fuelgauge->i2c, 0x4B, temp);
s2mu005_read_reg_byte(fuelgauge->i2c, 0x26, &temp);
temp &= ~0x01;
s2mu005_write_reg_byte(fuelgauge->i2c, 0x26, temp);
s2mu005_read_reg_byte(fuelgauge->i2c, 0x45, &temp);
temp &= 0xF0;
temp |= 0x07;
s2mu005_write_reg_byte(fuelgauge->i2c, 0x45, temp);
s2mu005_write_reg_byte(fuelgauge->i2c, 0x44, 0xCC);
dev_info(&fuelgauge->i2c->dev, "%s: FG is in current mode\n", __func__);
}
}
}
avg_current = s2mu005_get_avgcurrent(fuelgauge);
avg_vbat = s2mu005_get_avgvbat(fuelgauge);
vbat = s2mu005_get_vbat(fuelgauge);
curr = s2mu005_get_current(fuelgauge);
if (!fuelgauge->is_charging && avg_vbat <= 3300) {
if (fuelgauge->mode == CURRENT_MODE) {
if (abs(avg_vbat - vbat) <= 20 && abs(avg_current - curr) <= 30) {
ocv_pwroff = avg_vbat - avg_current * 15 / 100;
target_soc = s2mu005_get_soc_from_ocv(fuelgauge, ocv_pwroff);
if (abs(target_soc - fuelgauge->info.soc) > 300) {
pr_info("%s : F/G reset Start\n", __func__);
WA_0_issue_at_init1(fuelgauge, ocv_pwroff);
}
}
} else {
if (abs(avg_vbat - vbat) <= 20) {
ocv_pwroff = avg_vbat;
target_soc = s2mu005_get_soc_from_ocv(fuelgauge, ocv_pwroff);
if (abs(target_soc - fuelgauge->info.soc) > 300) {
pr_info("%s : F/G reset Start\n", __func__);
WA_0_issue_at_init1(fuelgauge, ocv_pwroff);
}
}
}
}
if(fuelgauge->revision < 2) {
/* -------------- for enable/disable Current Sensing -------------- */
if(fuelgauge->mode == CURRENT_MODE) {
ocv_100 = avg_vbat - avg_current * 15 / 100;
soc_100 = s2mu005_get_soc_from_ocv(fuelgauge, ocv_100);
if (fuelgauge->is_charging && avg_current > 0 && fuelgauge->info.soc >= 10000 && fuelgauge->cc_on == true) {
fuelgauge->cc_on = false;
s2mu005_read_reg_byte(fuelgauge->i2c, 0x45, &temp);
temp &= 0xF0;
s2mu005_write_reg_byte(fuelgauge->i2c, 0x45, temp);
s2mu005_write_reg_byte(fuelgauge->i2c, 0x44, 0x00);
dev_dbg(&fuelgauge->i2c->dev, "[DEBUG]%s: stop CC, ocv_100: (%d), soc_100: (%d)\n", __func__, ocv_100, soc_100);
} else if((!fuelgauge->is_charging || (fuelgauge->is_charging && avg_current < 0))
&& (soc_100 < 10000) && fuelgauge->cc_on == false) {
fuelgauge->cc_on = true;
s2mu005_read_reg_byte(fuelgauge->i2c, 0x45, &temp);
temp &= 0xF0;
temp |= 0x07;
s2mu005_write_reg_byte(fuelgauge->i2c, 0x45, temp);
s2mu005_write_reg_byte(fuelgauge->i2c, 0x44, 0xCC);
dev_dbg(&fuelgauge->i2c->dev, "[DEBUG]%s: start CC, ocv_100: (%d), soc_100: (%d)\n", __func__, ocv_100, soc_100);
}
}
/* -------------- for enable/disable Current Sensing -------------- */
/* For debugging */
s2mu005_read_reg_byte(fuelgauge->i2c, 0x44, &temp);
pr_info("%s: Reg 0x44 : 0x%x\n", __func__, temp);
s2mu005_read_reg_byte(fuelgauge->i2c, 0x45, &temp);
pr_info("%s: Reg 0x45 : 0x%x\n", __func__, temp);
//bkj - rempcap logging
/* ------ read remaining capacity -------- */
if (fuelgauge->mode == CURRENT_MODE)
{
mutex_lock(&fuelgauge->fg_lock);
s2mu005_read_reg_byte(fuelgauge->i2c, 0x0C, &temp);
s2mu005_write_reg_byte(fuelgauge->i2c, 0x0C, 0x2A);
for (i = 0; i < 50; i++) {
if (s2mu005_read_reg(fuelgauge->i2c, S2MU005_REG_MONOUT, data) < 0)
goto err;
if (s2mu005_read_reg(fuelgauge->i2c, S2MU005_REG_MONOUT, check_data) < 0)
goto err;
dev_dbg(&fuelgauge->i2c->dev, "[DEBUG]%s: remaining capacity data0 (%d) data1 (%d)\n", __func__, data[0], data[1]);
if ((data[0] == check_data[0]) && (data[1] == check_data[1]))
break;
}
s2mu005_write_reg_byte(fuelgauge->i2c, 0x0C, temp);
mutex_unlock(&fuelgauge->fg_lock);
compliment = (data[1] << 8) | (data[0]);
/* data[] store 2's compliment format number */
if (compliment & (0x1 << 15)) {
/* Negative */
rsoc1 = ((~compliment) & 0xFFFF) + 1;
rsoc1 = (rsoc1 * (-1)) / (0x1 << 1);
} else {
rsoc1 = compliment & 0x7FFF;
rsoc1 = ((rsoc1 * 1) / (0x1 << 1));
}
pr_info("%s: remcap (%d) \n", __func__, rsoc1);
}
/* ------ read remaining capacity -------- */
}
return min(fuelgauge->info.soc, 10000);
err:
mutex_unlock(&fuelgauge->fg_lock);
return -EINVAL;
}
static int s2mu005_get_current(struct s2mu005_fuelgauge_data *fuelgauge)
{
u8 data[2];
u16 compliment;
int curr = 0;
if (s2mu005_read_reg(fuelgauge->i2c, S2MU005_REG_RCUR_CC, data) < 0)
return -EINVAL;
compliment = (data[1] << 8) | (data[0]);
dev_dbg(&fuelgauge->i2c->dev, "%s: rCUR_CC(0x%4x)\n", __func__, compliment);
if (compliment & (0x1 << 15)) { /* Charging */
curr = ((~compliment) & 0xFFFF) + 1;
curr = (curr * 1000) >> 12;
} else { /* dischaging */
curr = compliment & 0x7FFF;
curr = (curr * (-1000)) >> 12;
}
dev_info(&fuelgauge->i2c->dev, "%s: current (%d)mA\n", __func__, curr);
return curr;
}
#define TABLE_SIZE 22
static int s2mu005_get_ocv(struct s2mu005_fuelgauge_data *fuelgauge)
{
int *soc_arr;
int *ocv_arr;
int soc = fuelgauge->info.soc;
int ocv = 0;
int high_index = TABLE_SIZE - 1;
int low_index = 0;
int mid_index = 0;
soc_arr = fuelgauge->info.soc_arr_evt2;
ocv_arr = fuelgauge->info.ocv_arr_evt2;
if(soc <= soc_arr[TABLE_SIZE - 1]) {
ocv = ocv_arr[TABLE_SIZE - 1];
goto ocv_soc_mapping;
} else if (soc >= soc_arr[0]) {
ocv = ocv_arr[0];
goto ocv_soc_mapping;
}
while (low_index <= high_index) {
mid_index = (low_index + high_index) >> 1;
if(soc_arr[mid_index] > soc)
low_index = mid_index + 1;
else if(soc_arr[mid_index] < soc)
high_index = mid_index - 1;
else {
ocv = ocv_arr[mid_index];
goto ocv_soc_mapping;
}
}
ocv = ocv_arr[high_index];
ocv += ((ocv_arr[low_index] - ocv_arr[high_index]) *
(soc - soc_arr[high_index])) /
(soc_arr[low_index] - soc_arr[high_index]);
ocv_soc_mapping:
dev_info(&fuelgauge->i2c->dev, "%s: soc (%d), ocv (%d), EVT(%d)\n", __func__, soc, ocv, fuelgauge->revision);
return ocv;
}
static int s2mu005_get_avgcurrent(struct s2mu005_fuelgauge_data *fuelgauge)
{
u8 data[2];
u16 compliment;
int curr = 0;
mutex_lock(&fuelgauge->fg_lock);
s2mu005_write_reg_byte(fuelgauge->i2c, S2MU005_REG_MONOUT_SEL, 0x26);
if (s2mu005_read_reg(fuelgauge->i2c, S2MU005_REG_MONOUT, data) < 0)
goto err;
compliment = (data[1] << 8) | (data[0]);
dev_dbg(&fuelgauge->i2c->dev, "%s: MONOUT(0x%4x)\n", __func__, compliment);
if (compliment & (0x1 << 15)) { /* Charging */
curr = ((~compliment) & 0xFFFF) + 1;
curr = (curr * 1000) >> 12;
} else { /* dischaging */
curr = compliment & 0x7FFF;
curr = (curr * (-1000)) >> 12;
}
s2mu005_write_reg_byte(fuelgauge->i2c, S2MU005_REG_MONOUT_SEL, 0x10);
mutex_unlock(&fuelgauge->fg_lock);
dev_info(&fuelgauge->i2c->dev, "%s: avg current (%d)mA\n", __func__, curr);
dev_info(&fuelgauge->i2c->dev, "%s: SOC(%d)\n", __func__, fuelgauge->info.soc);
if ((fuelgauge->info.soc < 100) && (curr < 0) &&
fuelgauge->is_charging) {
curr = 1;
dev_info(&fuelgauge->i2c->dev, "%s: modified avg current (%d)mA\n", __func__, curr);
}
return curr;
err:
mutex_unlock(&fuelgauge->fg_lock);
return -EINVAL;
}
static int s2mu005_get_vbat(struct s2mu005_fuelgauge_data *fuelgauge)
{
u8 data[2];
u32 vbat = 0;
if (s2mu005_read_reg(fuelgauge->i2c, S2MU005_REG_RVBAT, data) < 0)
return -EINVAL;
dev_dbg(&fuelgauge->i2c->dev, "%s: data0 (%d) data1 (%d) \n", __func__, data[0], data[1]);
vbat = ((data[0] + (data[1] << 8)) * 1000) >> 13;
dev_info(&fuelgauge->i2c->dev, "%s: vbat (%d)\n", __func__, vbat);
return vbat;
}
static int s2mu005_get_avgvbat(struct s2mu005_fuelgauge_data *fuelgauge)
{
u8 data[2];
u32 new_vbat, old_vbat = 0;
int cnt;
for (cnt = 0; cnt < 5; cnt++) {
if (s2mu005_read_reg(fuelgauge->i2c, S2MU005_REG_RVBAT, data) < 0)
return -EINVAL;
new_vbat = ((data[0] + (data[1] << 8)) * 1000) >> 13;
if (cnt == 0)
old_vbat = new_vbat;
else
old_vbat = new_vbat / 2 + old_vbat / 2;
}
dev_info(&fuelgauge->i2c->dev, "%s: avgvbat (%d)\n", __func__, old_vbat);
return old_vbat;
}
/* if ret < 0, discharge */
static int sec_bat_check_discharge(int vcell)
{
static int cnt;
static int pre_vcell = 0;
if (pre_vcell == 0)
pre_vcell = vcell;
else if (pre_vcell > vcell)
cnt++;
else if (vcell >= 3400)
cnt = 0;
else
cnt--;
pre_vcell = vcell;
if (cnt >= 3)
return -1;
else
return 1;
}
/* judge power off or not by current_avg */
static int s2mu005_get_current_average(struct s2mu005_fuelgauge_data *fuelgauge)
{
union power_supply_propval value_bat;
int vcell, soc, curr_avg;
int check_discharge;
psy_do_property("battery", get,
POWER_SUPPLY_PROP_HEALTH, value_bat);
vcell = s2mu005_get_vbat(fuelgauge);
soc = s2mu005_get_rawsoc(fuelgauge) / 100;
check_discharge = sec_bat_check_discharge(vcell);
/* if 0% && under 3.4v && low power charging(1000mA), power off */
//if (!lpcharge && (soc <= 0) && (vcell < 3400) &&
if ((soc <= 0) && (vcell < 3400) &&
((check_discharge < 0) ||
((value_bat.intval == POWER_SUPPLY_HEALTH_OVERHEAT) ||
(value_bat.intval == POWER_SUPPLY_HEALTH_COLD)))) {
pr_info("%s: SOC(%d), Vnow(%d) \n",
__func__, soc, vcell);
curr_avg = -1;
} else {
curr_avg = 0;
}
return curr_avg;
}
/* capacity is 0.1% unit */
static void s2mu005_fg_get_scaled_capacity(
struct s2mu005_fuelgauge_data *fuelgauge,
union power_supply_propval *val)
{
val->intval = (val->intval < fuelgauge->pdata->capacity_min) ?
0 : ((val->intval - fuelgauge->pdata->capacity_min) * 1000 /
(fuelgauge->capacity_max - fuelgauge->pdata->capacity_min));
dev_info(&fuelgauge->i2c->dev,
"%s: scaled capacity (%d.%d)\n",
__func__, val->intval/10, val->intval%10);
}
/* capacity is integer */
static void s2mu005_fg_get_atomic_capacity(
struct s2mu005_fuelgauge_data *fuelgauge,
union power_supply_propval *val)
{
if (fuelgauge->pdata->capacity_calculation_type &
SEC_FUELGAUGE_CAPACITY_TYPE_ATOMIC) {
if (fuelgauge->capacity_old < val->intval)
val->intval = fuelgauge->capacity_old + 1;
else if (fuelgauge->capacity_old > val->intval)
val->intval = fuelgauge->capacity_old - 1;
}
/* keep SOC stable in abnormal status */
if (fuelgauge->pdata->capacity_calculation_type &
SEC_FUELGAUGE_CAPACITY_TYPE_SKIP_ABNORMAL) {
if (!fuelgauge->is_charging &&
fuelgauge->capacity_old < val->intval) {
dev_err(&fuelgauge->i2c->dev,
"%s: capacity (old %d : new %d)\n",
__func__, fuelgauge->capacity_old, val->intval);
val->intval = fuelgauge->capacity_old;
}
}
/* updated old capacity */
fuelgauge->capacity_old = val->intval;
}
static int s2mu005_fg_check_capacity_max(
struct s2mu005_fuelgauge_data *fuelgauge, int capacity_max)
{
int new_capacity_max = capacity_max;
if (new_capacity_max < (fuelgauge->pdata->capacity_max -
fuelgauge->pdata->capacity_max_margin - 10)) {
new_capacity_max =
(fuelgauge->pdata->capacity_max -
fuelgauge->pdata->capacity_max_margin);
dev_info(&fuelgauge->i2c->dev, "%s: set capacity max(%d --> %d)\n",
__func__, capacity_max, new_capacity_max);
} else if (new_capacity_max > (fuelgauge->pdata->capacity_max +
fuelgauge->pdata->capacity_max_margin)) {
new_capacity_max =
(fuelgauge->pdata->capacity_max +
fuelgauge->pdata->capacity_max_margin);
dev_info(&fuelgauge->i2c->dev, "%s: set capacity max(%d --> %d)\n",
__func__, capacity_max, new_capacity_max);
}
return new_capacity_max;
}
static int s2mu005_fg_calculate_dynamic_scale(
struct s2mu005_fuelgauge_data *fuelgauge, int capacity)
{
union power_supply_propval raw_soc_val;
raw_soc_val.intval = s2mu005_get_rawsoc(fuelgauge) / 10;
if (raw_soc_val.intval <
fuelgauge->pdata->capacity_max -
fuelgauge->pdata->capacity_max_margin) {
fuelgauge->capacity_max =
fuelgauge->pdata->capacity_max -
fuelgauge->pdata->capacity_max_margin;
dev_dbg(&fuelgauge->i2c->dev, "%s: capacity_max (%d)",
__func__, fuelgauge->capacity_max);
} else {
fuelgauge->capacity_max =
(raw_soc_val.intval >
fuelgauge->pdata->capacity_max +
fuelgauge->pdata->capacity_max_margin) ?
(fuelgauge->pdata->capacity_max +
fuelgauge->pdata->capacity_max_margin) :
raw_soc_val.intval;
dev_dbg(&fuelgauge->i2c->dev, "%s: raw soc (%d)",
__func__, fuelgauge->capacity_max);
}
if (capacity != 100) {
fuelgauge->capacity_max = s2mu005_fg_check_capacity_max(
fuelgauge, (fuelgauge->capacity_max * 100 / capacity));
} else {
fuelgauge->capacity_max =
(fuelgauge->capacity_max * 99 / 100);
}
/* update capacity_old for sec_fg_get_atomic_capacity algorithm */
fuelgauge->capacity_old = capacity;
dev_info(&fuelgauge->i2c->dev, "%s: %d is used for capacity_max\n",
__func__, fuelgauge->capacity_max);
return fuelgauge->capacity_max;
}
bool s2mu005_fuelgauge_fuelalert_init(struct i2c_client *client, int soc)
{
struct s2mu005_fuelgauge_data *fuelgauge = i2c_get_clientdata(client);
u8 data[2];
/* 1. Set s2mu005 alert configuration. */
s2mu005_alert_init(fuelgauge);
if (s2mu005_read_reg(client, S2MU005_REG_IRQ, data) < 0)
return -1;
/*Enable VBAT, SOC */
data[1] &= 0xfc;
/*Disable IDLE_ST, INIT)ST */
data[1] |= 0x0c;
s2mu005_write_reg(client, S2MU005_REG_IRQ, data);
dev_dbg(&client->dev, "%s: irq_reg(%02x%02x) irq(%d)\n",
__func__, data[1], data[0], fuelgauge->pdata->fg_irq);
return true;
}
bool s2mu005_fuelgauge_is_fuelalerted(struct s2mu005_fuelgauge_data *fuelgauge)
{
return s2mu005_check_status(fuelgauge->i2c);
}
bool s2mu005_hal_fg_fuelalert_process(void *irq_data, bool is_fuel_alerted)
{
struct s2mu005_fuelgauge_data *fuelgauge = irq_data;
int ret;
ret = i2c_smbus_write_byte_data(fuelgauge->i2c, S2MU005_REG_IRQ, 0x00);
if (ret < 0)
dev_err(&fuelgauge->i2c->dev, "%s: Error(%d)\n", __func__, ret);
return ret;
}
bool s2mu005_hal_fg_full_charged(struct i2c_client *client)
{
return true;
}
static int s2mu005_fg_get_property(struct power_supply *psy,
enum power_supply_property psp,
union power_supply_propval *val)
{
struct s2mu005_fuelgauge_data *fuelgauge =
container_of(psy, struct s2mu005_fuelgauge_data, psy_fg);
switch (psp) {
case POWER_SUPPLY_PROP_STATUS:
case POWER_SUPPLY_PROP_CHARGE_FULL:
case POWER_SUPPLY_PROP_ENERGY_NOW:
return -ENODATA;
/* Cell voltage (VCELL, mV) */
case POWER_SUPPLY_PROP_VOLTAGE_NOW:
val->intval = s2mu005_get_vbat(fuelgauge);
break;
/* Additional Voltage Information (mV) */
case POWER_SUPPLY_PROP_VOLTAGE_AVG:
switch (val->intval) {
case SEC_BATTERY_VOLTAGE_AVERAGE:
val->intval = s2mu005_get_avgvbat(fuelgauge);
break;
case SEC_BATTERY_VOLTAGE_OCV:
val->intval = s2mu005_get_ocv(fuelgauge);
break;
}
break;
/* Current (mA) */
case POWER_SUPPLY_PROP_CURRENT_NOW:
val->intval = s2mu005_get_current(fuelgauge);
break;
/* Average Current (mA) */
case POWER_SUPPLY_PROP_CURRENT_AVG:
if (fuelgauge->mode && fuelgauge->info.soc < 100)
val->intval = s2mu005_get_current_average(fuelgauge);
else
val->intval = s2mu005_get_avgcurrent(fuelgauge);
break;
case POWER_SUPPLY_PROP_CAPACITY:
if (val->intval == SEC_FUELGAUGE_CAPACITY_TYPE_RAW) {
val->intval = s2mu005_get_rawsoc(fuelgauge);
} else {
val->intval = s2mu005_get_rawsoc(fuelgauge) / 10;
if (fuelgauge->pdata->capacity_calculation_type &
(SEC_FUELGAUGE_CAPACITY_TYPE_SCALE |
SEC_FUELGAUGE_CAPACITY_TYPE_DYNAMIC_SCALE))
s2mu005_fg_get_scaled_capacity(fuelgauge, val);
/* capacity should be between 0% and 100%
* (0.1% degree)
*/
if (val->intval > 1000)
val->intval = 1000;
if (val->intval < 0)
val->intval = 0;
/* get only integer part */
val->intval /= 10;
/* check whether doing the wake_unlock */
if ((val->intval > fuelgauge->pdata->fuel_alert_soc) &&
fuelgauge->is_fuel_alerted) {
wake_unlock(&fuelgauge->fuel_alert_wake_lock);
s2mu005_fuelgauge_fuelalert_init(fuelgauge->i2c,
fuelgauge->pdata->fuel_alert_soc);
}
/* (Only for atomic capacity)
* In initial time, capacity_old is 0.
* and in resume from sleep,
* capacity_old is too different from actual soc.
* should update capacity_old
* by val->intval in booting or resume.
*/
if (fuelgauge->initial_update_of_soc) {
/* updated old capacity */
fuelgauge->capacity_old = val->intval;
fuelgauge->initial_update_of_soc = false;
break;
}
if (fuelgauge->pdata->capacity_calculation_type &
(SEC_FUELGAUGE_CAPACITY_TYPE_ATOMIC |
SEC_FUELGAUGE_CAPACITY_TYPE_SKIP_ABNORMAL))
s2mu005_fg_get_atomic_capacity(fuelgauge, val);
}
break;
/* Battery Temperature */
case POWER_SUPPLY_PROP_TEMP:
/* Target Temperature */
case POWER_SUPPLY_PROP_TEMP_AMBIENT:
val->intval = s2mu005_get_temperature(fuelgauge);
break;
case POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN:
val->intval = fuelgauge->capacity_max;
break;
case POWER_SUPPLY_PROP_SCOPE:
val->intval = fuelgauge->mode;
break;
case POWER_SUPPLY_PROP_INPUT_VOLTAGE_REGULATION:
{
u8 temp;
int pre_volt;
pre_volt = s2mu005_get_vbat(fuelgauge) / 10;
s2mu005_read_reg_byte(fuelgauge->i2c, 0x25, &temp);
temp &= 0xCF;
temp |= 0x10;
s2mu005_write_reg_byte(fuelgauge->i2c, 0x25, temp);
s2mu005_write_reg_byte(fuelgauge->i2c, 0x1E, 0x0F);
msleep(300);
val->intval = s2mu005_get_vbat(fuelgauge) / 10;
pr_info("%s : !!!!!! PRE VOLT(%d) || VOLT(%d) !!!!!!!!\n", __func__, pre_volt, val->intval);
break;
}
default:
return -EINVAL;
}
return 0;
}
static int s2mu005_fg_set_property(struct power_supply *psy,
enum power_supply_property psp,
const union power_supply_propval *val)
{
struct s2mu005_fuelgauge_data *fuelgauge =
container_of(psy, struct s2mu005_fuelgauge_data, psy_fg);
switch (psp) {
case POWER_SUPPLY_PROP_STATUS:
break;
case POWER_SUPPLY_PROP_CHARGE_FULL:
if (fuelgauge->pdata->capacity_calculation_type &
SEC_FUELGAUGE_CAPACITY_TYPE_DYNAMIC_SCALE) {
#if defined(CONFIG_PREVENT_SOC_JUMP)
s2mu005_fg_calculate_dynamic_scale(fuelgauge, val->intval);
#else
s2mu005_fg_calculate_dynamic_scale(fuelgauge, 100);
#endif
}
break;
case POWER_SUPPLY_PROP_ONLINE:
fuelgauge->cable_type = val->intval;
if (val->intval == POWER_SUPPLY_TYPE_BATTERY)
fuelgauge->is_charging = false;
else
fuelgauge->is_charging = true;
break;
case POWER_SUPPLY_PROP_CAPACITY:
if (val->intval == SEC_FUELGAUGE_CAPACITY_TYPE_RESET) {
fuelgauge->initial_update_of_soc = true;
s2mu005_restart_gauging(fuelgauge);
}
break;
case POWER_SUPPLY_PROP_TEMP:
case POWER_SUPPLY_PROP_TEMP_AMBIENT:
s2mu005_set_temperature(fuelgauge, val->intval);
break;
case POWER_SUPPLY_PROP_ENERGY_NOW:
#if 0
{
u8 temp = 0;
s2mu005_read_reg_byte(fuelgauge->i2c, 0x27, &temp);
if(val->intval) {
temp |= 0x80;
} else {
temp &= ~0x80;
}
s2mu005_write_reg_byte(fuelgauge->i2c, 0x27, temp);
}
#endif
break;
case POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN:
dev_info(&fuelgauge->i2c->dev,
"%s: capacity_max changed, %d -> %d\n",
__func__, fuelgauge->capacity_max, val->intval);
fuelgauge->capacity_max = s2mu005_fg_check_capacity_max(fuelgauge, val->intval);
fuelgauge->initial_update_of_soc = true;
break;
case POWER_SUPPLY_PROP_CHARGE_TYPE:
/* rt5033_fg_reset_capacity_by_jig_connection(fuelgauge->i2c); */
break;
case POWER_SUPPLY_PROP_CHARGE_EMPTY:
pr_info("%s: WA for battery 0 percent\n", __func__);
s2mu005_write_reg_byte(fuelgauge->i2c, 0x1F, 0x01);
break;
case POWER_SUPPLY_PROP_ENERGY_AVG:
pr_info("%s: WA for power off issue: val(%d)\n", __func__, val->intval);
if(val->intval)
s2mu005_write_reg_byte(fuelgauge->i2c, 0x41, 0x10); /* charger start */
else
s2mu005_write_reg_byte(fuelgauge->i2c, 0x41, 0x04); /* charger end */
break;
default:
return -EINVAL;
}
return 0;
}
static void s2mu005_fg_isr_work(struct work_struct *work)
{
struct s2mu005_fuelgauge_data *fuelgauge =
container_of(work, struct s2mu005_fuelgauge_data, isr_work.work);
u8 fg_alert_status = 0;
s2mu005_read_reg_byte(fuelgauge->i2c, S2MU005_REG_STATUS, &fg_alert_status);
dev_info(&fuelgauge->i2c->dev, "%s : fg_alert_status(0x%x)\n",
__func__, fg_alert_status);
fg_alert_status &= 0x03;
if (fg_alert_status & 0x01) {
pr_info("%s : Battery Level is very Low!\n", __func__);
}
if (fg_alert_status & 0x02) {
pr_info("%s : Battery Voltage is Very Low!\n", __func__);
}
if (!fg_alert_status) {
pr_info("%s : SOC or Volage is Good!\n", __func__);
wake_unlock(&fuelgauge->fuel_alert_wake_lock);
}
}
static irqreturn_t s2mu005_fg_irq_thread(int irq, void *irq_data)
{
struct s2mu005_fuelgauge_data *fuelgauge = irq_data;
u8 fg_irq = 0;
s2mu005_read_reg_byte(fuelgauge->i2c, S2MU005_REG_IRQ, &fg_irq);
dev_info(&fuelgauge->i2c->dev, "%s: fg_irq(0x%x)\n",
__func__, fg_irq);
wake_lock(&fuelgauge->fuel_alert_wake_lock);
schedule_delayed_work(&fuelgauge->isr_work, 0);
return IRQ_HANDLED;
}
#ifdef CONFIG_OF
static int s2mu005_fuelgauge_parse_dt(struct s2mu005_fuelgauge_data *fuelgauge)
{
struct device_node *np = of_find_node_by_name(NULL, "s2mu005-fuelgauge");
int ret;
int i, len;
const u32 *p;
/* reset, irq gpio info */
if (np == NULL) {
pr_err("%s np NULL\n", __func__);
} else {
fuelgauge->pdata->fg_irq = of_get_named_gpio(np, "fuelgauge,fuel_int", 0);
if (fuelgauge->pdata->fg_irq < 0)
pr_err("%s error reading fg_irq = %d\n",
__func__, fuelgauge->pdata->fg_irq);
ret = of_property_read_u32(np, "fuelgauge,capacity_max",
&fuelgauge->pdata->capacity_max);
if (ret < 0)
pr_err("%s error reading capacity_max %d\n", __func__, ret);
ret = of_property_read_u32(np, "fuelgauge,capacity_max_margin",
&fuelgauge->pdata->capacity_max_margin);
if (ret < 0)
pr_err("%s error reading capacity_max_margin %d\n", __func__, ret);
ret = of_property_read_u32(np, "fuelgauge,capacity_min",
&fuelgauge->pdata->capacity_min);
if (ret < 0)
pr_err("%s error reading capacity_min %d\n", __func__, ret);
ret = of_property_read_u32(np, "fuelgauge,capacity_calculation_type",
&fuelgauge->pdata->capacity_calculation_type);
if (ret < 0)
pr_err("%s error reading capacity_calculation_type %d\n",
__func__, ret);
ret = of_property_read_u32(np, "fuelgauge,fuel_alert_soc",
&fuelgauge->pdata->fuel_alert_soc);
if (ret < 0)
pr_err("%s error reading pdata->fuel_alert_soc %d\n",
__func__, ret);
fuelgauge->pdata->repeated_fuelalert = of_property_read_bool(np,
"fuelgauge,repeated_fuelalert");
fuelgauge->temperature_compensation = of_property_read_bool(np,
"fuelgauge,temperature_compensation");
if (fuelgauge->temperature_compensation) {
p = of_get_property(np, "fuelgauge,temp_table", &len);
if (!p)
return 1;
len = len / sizeof(u32);
fuelgauge->temp_table_size = len;
fuelgauge->temp_table =
kzalloc(sizeof(sec_bat_adc_table_data_t) * fuelgauge->temp_table_size, GFP_KERNEL);
for(i = 0; i < fuelgauge->temp_table_size; i++) {
u32 temp;
ret = of_property_read_u32_index(np,
"fuelgauge,temp_table", i, &temp);
fuelgauge->temp_table[i].adc = (int)temp;
ret = of_property_read_u32_index(np,
"fuelgauge,temp_comp_table", i, &temp);
fuelgauge->temp_table[i].data = (int)temp;
}
}
np = of_find_node_by_name(NULL, "battery");
if (!np) {
pr_err("%s np NULL\n", __func__);
} else {
ret = of_property_read_string(np,
"battery,fuelgauge_name",
(char const **)&fuelgauge->pdata->fuelgauge_name);
p = of_get_property(np,
"battery,input_current_limit", &len);
if (!p)
return 1;
len = len / sizeof(u32);
fuelgauge->pdata->charging_current =
kzalloc(sizeof(struct sec_charging_current) * len,
GFP_KERNEL);
for(i = 0; i < len; i++) {
ret = of_property_read_u32_index(np,
"battery,input_current_limit", i,
&fuelgauge->pdata->charging_current[i].input_current_limit);
ret = of_property_read_u32_index(np,
"battery,fast_charging_current", i,
&fuelgauge->pdata->charging_current[i].fast_charging_current);
ret = of_property_read_u32_index(np,
"battery,full_check_current_1st", i,
&fuelgauge->pdata->charging_current[i].full_check_current_1st);
ret = of_property_read_u32_index(np,
"battery,full_check_current_2nd", i,
&fuelgauge->pdata->charging_current[i].full_check_current_2nd);
}
}
/* get battery_params node */
np = of_find_node_by_name(NULL, "battery_params");
if (!np) {
pr_err("%s battery_params node NULL\n", __func__);
} else {
/* get battery_table */
ret = of_property_read_u32_array(np, "battery,battery_table1", fuelgauge->info.battery_table1, 88);
if (ret < 0) {
pr_err("%s error reading battery,battery_table1\n", __func__);
}
ret = of_property_read_u32_array(np, "battery,battery_table2", fuelgauge->info.battery_table2, 22);
if (ret < 0) {
pr_err("%s error reading battery,battery_table2\n", __func__);
}
ret = of_property_read_u32_array(np, "battery,battery_table3", fuelgauge->info.battery_table3, 88);
if (ret < 0) {
pr_err("%s error reading battery,battery_table3\n", __func__);
}
ret = of_property_read_u32_array(np, "battery,battery_table4", fuelgauge->info.battery_table4, 22);
if (ret < 0) {
pr_err("%s error reading battery,battery_table4\n", __func__);
}
ret = of_property_read_u32_array(np, "battery,batcap", fuelgauge->info.batcap, 4);
if (ret < 0) {
pr_err("%s error reading battery,batcap\n", __func__);
}
ret = of_property_read_u32_array(np, "battery,soc_arr_evt2", fuelgauge->info.soc_arr_evt2, 22);
if (ret < 0) {
pr_err("%s error reading battery,soc_arr_evt2\n", __func__);
}
ret = of_property_read_u32_array(np, "battery,ocv_arr_evt2", fuelgauge->info.ocv_arr_evt2, 22);
if (ret < 0) {
pr_err("%s error reading battery,ocv_arr_evt2\n", __func__);
}
}
}
return 0;
}
static struct of_device_id s2mu005_fuelgauge_match_table[] = {
{ .compatible = "samsung,s2mu005-fuelgauge",},
{},
};
#else
static int s2mu005_fuelgauge_parse_dt(struct s2mu005_fuelgauge_data *fuelgauge)
{
return -ENOSYS;
}
#define s2mu005_fuelgauge_match_table NULL
#endif /* CONFIG_OF */
static int s2mu005_fuelgauge_probe(struct i2c_client *client,
const struct i2c_device_id *id)
{
struct i2c_adapter *adapter = to_i2c_adapter(client->dev.parent);
struct s2mu005_fuelgauge_data *fuelgauge;
union power_supply_propval raw_soc_val;
int ret = 0;
u8 temp = 0;
pr_info("%s: S2MU005 Fuelgauge Driver Loading\n", __func__);
if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE))
return -EIO;
fuelgauge = kzalloc(sizeof(*fuelgauge), GFP_KERNEL);
if (!fuelgauge)
return -ENOMEM;
mutex_init(&fuelgauge->fg_lock);
fuelgauge->i2c = client;
if (client->dev.of_node) {
fuelgauge->pdata = devm_kzalloc(&client->dev, sizeof(*(fuelgauge->pdata)),
GFP_KERNEL);
if (!fuelgauge->pdata) {
dev_err(&client->dev, "Failed to allocate memory\n");
ret = -ENOMEM;
goto err_parse_dt_nomem;
}
ret = s2mu005_fuelgauge_parse_dt(fuelgauge);
if (ret < 0)
goto err_parse_dt;
} else {
fuelgauge->pdata = client->dev.platform_data;
}
i2c_set_clientdata(client, fuelgauge);
if (fuelgauge->pdata->fuelgauge_name == NULL)
fuelgauge->pdata->fuelgauge_name = "sec-fuelgauge";
fuelgauge->psy_fg.name = fuelgauge->pdata->fuelgauge_name;
fuelgauge->psy_fg.type = POWER_SUPPLY_TYPE_UNKNOWN;
fuelgauge->psy_fg.get_property = s2mu005_fg_get_property;
fuelgauge->psy_fg.set_property = s2mu005_fg_set_property;
fuelgauge->psy_fg.properties = s2mu005_fuelgauge_props;
fuelgauge->psy_fg.num_properties =
ARRAY_SIZE(s2mu005_fuelgauge_props);
/* 0x48[7:4]=0010 : EVT2 */
fuelgauge->revision = 0;
s2mu005_read_reg_byte(fuelgauge->i2c, 0x48, &temp);
fuelgauge->revision = (temp & 0xF0) >> 4;
pr_info("%s: S2MU005 Fuelgauge revision: %d, reg 0x48 = 0x%x\n", __func__, fuelgauge->revision, temp);
fuelgauge->capacity_max = fuelgauge->pdata->capacity_max;
fuelgauge->info.soc = 0;
fuelgauge->mode = CURRENT_MODE;
raw_soc_val.intval = s2mu005_get_rawsoc(fuelgauge);
raw_soc_val.intval = raw_soc_val.intval / 10;
if (raw_soc_val.intval > fuelgauge->capacity_max)
s2mu005_fg_calculate_dynamic_scale(fuelgauge, 100);
s2mu005_init_regs(fuelgauge);
ret = power_supply_register(&client->dev, &fuelgauge->psy_fg);
if (ret) {
pr_err("%s: Failed to Register psy_fg\n", __func__);
goto err_data_free;
}
if (fuelgauge->pdata->fuel_alert_soc >= 0) {
s2mu005_fuelgauge_fuelalert_init(fuelgauge->i2c,
fuelgauge->pdata->fuel_alert_soc);
wake_lock_init(&fuelgauge->fuel_alert_wake_lock,
WAKE_LOCK_SUSPEND, "fuel_alerted");
if (fuelgauge->pdata->fg_irq > 0) {
INIT_DELAYED_WORK(
&fuelgauge->isr_work, s2mu005_fg_isr_work);
fuelgauge->fg_irq = gpio_to_irq(fuelgauge->pdata->fg_irq);
dev_info(&client->dev,
"%s : fg_irq = %d\n", __func__, fuelgauge->fg_irq);
if (fuelgauge->fg_irq > 0) {
ret = request_threaded_irq(fuelgauge->fg_irq,
NULL, s2mu005_fg_irq_thread,
IRQF_TRIGGER_FALLING | IRQF_TRIGGER_RISING
| IRQF_ONESHOT,
"fuelgauge-irq", fuelgauge);
if (ret) {
dev_err(&client->dev,
"%s: Failed to Request IRQ\n", __func__);
goto err_supply_unreg;
}
ret = enable_irq_wake(fuelgauge->fg_irq);
if (ret < 0)
dev_err(&client->dev,
"%s: Failed to Enable Wakeup Source(%d)\n",
__func__, ret);
} else {
dev_err(&client->dev, "%s: Failed gpio_to_irq(%d)\n",
__func__, fuelgauge->fg_irq);
goto err_supply_unreg;
}
}
}
fuelgauge->initial_update_of_soc = true;
fuelgauge->cc_on = true;
pr_info("%s: S2MU005 Fuelgauge Driver Loaded\n", __func__);
return 0;
err_supply_unreg:
power_supply_unregister(&fuelgauge->psy_fg);
err_data_free:
if (client->dev.of_node)
kfree(fuelgauge->pdata);
err_parse_dt:
err_parse_dt_nomem:
mutex_destroy(&fuelgauge->fg_lock);
kfree(fuelgauge);
return ret;
}
static const struct i2c_device_id s2mu005_fuelgauge_id[] = {
{"s2mu005-fuelgauge", 0},
{}
};
static void s2mu005_fuelgauge_shutdown(struct i2c_client *client)
{
struct s2mu005_fuelgauge_data *fuelgauge = i2c_get_clientdata(client);
u8 temp = 0;
if(fuelgauge->revision < 2) {
s2mu005_read_reg_byte(fuelgauge->i2c, 0x45, &temp);
temp &= 0xF0;
s2mu005_write_reg_byte(fuelgauge->i2c, 0x45, temp);
s2mu005_write_reg_byte(fuelgauge->i2c, 0x44, 0x00);
}
}
static int s2mu005_fuelgauge_remove(struct i2c_client *client)
{
struct s2mu005_fuelgauge_data *fuelgauge = i2c_get_clientdata(client);
if (fuelgauge->pdata->fuel_alert_soc >= 0)
wake_lock_destroy(&fuelgauge->fuel_alert_wake_lock);
return 0;
}
#if defined CONFIG_PM
static int s2mu005_fuelgauge_suspend(struct device *dev)
{
struct s2mu005_fuelgauge_data *fuelgauge = dev_get_drvdata(dev);
u8 temp = 0;
if(fuelgauge->revision < 2) {
if (!fuelgauge->is_charging) {
if (fuelgauge->mode == CURRENT_MODE) {
s2mu005_read_reg_byte(fuelgauge->i2c, 0x45, &temp);
temp &= 0xF0;
temp |= 0x06;
s2mu005_write_reg_byte(fuelgauge->i2c, 0x45, temp);
s2mu005_write_reg_byte(fuelgauge->i2c, 0x44, 0xBD);
} else {
s2mu005_read_reg_byte(fuelgauge->i2c, 0x45, &temp);
temp &= 0xF0;
s2mu005_write_reg_byte(fuelgauge->i2c, 0x45, temp);
s2mu005_write_reg_byte(fuelgauge->i2c, 0x44, 0x00);
}
s2mu005_read_reg_byte(fuelgauge->i2c, 0x44, &temp);
pr_info("%s: Reg set suspend 0x44 : 0x%x\n",
__func__, temp);
s2mu005_read_reg_byte(fuelgauge->i2c, 0x45, &temp);
pr_info("%s: Reg set suspend 0x45 : 0x%x\n",
__func__, temp);
}
}
return 0;
}
static int s2mu005_fuelgauge_resume(struct device *dev)
{
struct s2mu005_fuelgauge_data *fuelgauge = dev_get_drvdata(dev);
static int avg_vbat[5] = {0, };
static int vbat[5] = {0, };
static int avg_current[5] = {100, 100, 100, 100, 100};
static int loop_count = 0;
int target_ocv = 0, target_soc = 0, temp_vol = 0, j = 0, k = 0;
u8 temp = 0;
if(fuelgauge->revision < 2) {
if (fuelgauge->mode == CURRENT_MODE) {
avg_current[loop_count] = s2mu005_get_avgcurrent(fuelgauge);
avg_vbat[loop_count] = s2mu005_get_avgvbat(fuelgauge);
vbat[loop_count] = s2mu005_get_vbat(fuelgauge);
if (loop_count++ >= 5) loop_count = 0;
for (j = 0; j < 5; j++) {
pr_info("%s: abs avergae current : %ld\n", __func__, abs(avg_current[j]));
if (abs(avg_current[j]) > 30)
break;
}
pr_info("%s: avg current count : %d\n", __func__, j);
if (j >= 5) {
for (k = 0; k < 5; k++) {
if (avg_vbat[k] > vbat[k])
temp_vol = avg_vbat[k];
else
temp_vol = vbat[k];
if (temp_vol > target_ocv)
target_ocv = temp_vol;
}
pr_info("%s: target ocv : %d\n", __func__, target_ocv);
/* work-around for restart */
fuelgauge->target_ocv = target_ocv; /* max( vbat[5], avgvbat[5] ) */
target_soc = s2mu005_get_soc_from_ocv(fuelgauge, fuelgauge->target_ocv);
if( abs(target_soc - fuelgauge->info.soc) > 300 )
WA_0_issue_at_init1(fuelgauge, fuelgauge->target_ocv);
}
}
if (!fuelgauge->is_charging) {
if (fuelgauge->mode == CURRENT_MODE) {
s2mu005_read_reg_byte(fuelgauge->i2c, 0x45, &temp);
temp &= 0xF0;
temp |= 0x07;
s2mu005_write_reg_byte(fuelgauge->i2c, 0x45, temp);
s2mu005_write_reg_byte(fuelgauge->i2c, 0x44, 0xCC);
} else {
s2mu005_read_reg_byte(fuelgauge->i2c, 0x45, &temp);
temp &= 0xF0;
s2mu005_write_reg_byte(fuelgauge->i2c, 0x45, temp);
s2mu005_write_reg_byte(fuelgauge->i2c, 0x44, 0x00);
}
}
s2mu005_read_reg_byte(fuelgauge->i2c, 0x44, &temp);
pr_info("%s: Reg set resume 0x44 : 0x%x\n",
__func__, temp);
s2mu005_read_reg_byte(fuelgauge->i2c, 0x45, &temp);
pr_info("%s: Reg set resume 0x45 : 0x%x\n",
__func__, temp);
}
fuelgauge->initial_update_of_soc = true;
return 0;
}
#else
#define s2mu005_fuelgauge_suspend NULL
#define s2mu005_fuelgauge_resume NULL
#endif
static SIMPLE_DEV_PM_OPS(s2mu005_fuelgauge_pm_ops, s2mu005_fuelgauge_suspend,
s2mu005_fuelgauge_resume);
static struct i2c_driver s2mu005_fuelgauge_driver = {
.driver = {
.name = "s2mu005-fuelgauge",
.owner = THIS_MODULE,
.pm = &s2mu005_fuelgauge_pm_ops,
.of_match_table = s2mu005_fuelgauge_match_table,
},
.probe = s2mu005_fuelgauge_probe,
.remove = s2mu005_fuelgauge_remove,
.shutdown = s2mu005_fuelgauge_shutdown,
.id_table = s2mu005_fuelgauge_id,
};
static int __init s2mu005_fuelgauge_init(void)
{
pr_info("%s: S2MU005 Fuelgauge Init\n", __func__);
return i2c_add_driver(&s2mu005_fuelgauge_driver);
}
static void __exit s2mu005_fuelgauge_exit(void)
{
i2c_del_driver(&s2mu005_fuelgauge_driver);
}
module_init(s2mu005_fuelgauge_init);
module_exit(s2mu005_fuelgauge_exit);
MODULE_DESCRIPTION("Samsung S2MU005 Fuel Gauge Driver");
MODULE_AUTHOR("Samsung Electronics");
MODULE_LICENSE("GPL");