android_kernel_samsung_msm8976/drivers/leds/leds-aw2013.c

657 lines
16 KiB
C

/*
* Copyright (c) 2015, The Linux Foundation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 and
* only version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
*/
#include <linux/delay.h>
#include <linux/i2c.h>
#include <linux/init.h>
#include <linux/leds.h>
#include <linux/module.h>
#include <linux/mutex.h>
#include <linux/slab.h>
#include <linux/regulator/consumer.h>
#include <linux/leds-aw2013.h>
/* register address */
#define AW_REG_RESET 0x00
#define AW_REG_GLOBAL_CONTROL 0x01
#define AW_REG_LED_STATUS 0x02
#define AW_REG_LED_ENABLE 0x30
#define AW_REG_LED_CONFIG_BASE 0x31
#define AW_REG_LED_BRIGHTNESS_BASE 0x34
#define AW_REG_TIMESET0_BASE 0x37
#define AW_REG_TIMESET1_BASE 0x38
/* register bits */
#define AW2013_CHIPID 0x33
#define AW_LED_MOUDLE_ENABLE_MASK 0x01
#define AW_LED_FADE_OFF_MASK 0x40
#define AW_LED_FADE_ON_MASK 0x20
#define AW_LED_BREATHE_MODE_MASK 0x10
#define AW_LED_RESET_MASK 0x55
#define AW_LED_RESET_DELAY 8
#define AW2013_VDD_MIN_UV 2600000
#define AW2013_VDD_MAX_UV 3300000
#define AW2013_VI2C_MIN_UV 1800000
#define AW2013_VI2C_MAX_UV 1800000
#define MAX_RISE_TIME_MS 7
#define MAX_HOLD_TIME_MS 5
#define MAX_FALL_TIME_MS 7
#define MAX_OFF_TIME_MS 5
struct aw2013_led {
struct i2c_client *client;
struct led_classdev cdev;
struct aw2013_platform_data *pdata;
struct work_struct brightness_work;
struct mutex lock;
struct regulator *vdd;
struct regulator *vcc;
int num_leds;
int id;
bool poweron;
};
static int aw2013_write(struct aw2013_led *led, u8 reg, u8 val)
{
return i2c_smbus_write_byte_data(led->client, reg, val);
}
static int aw2013_read(struct aw2013_led *led, u8 reg, u8 *val)
{
s32 ret;
ret = i2c_smbus_read_byte_data(led->client, reg);
if (ret < 0)
return ret;
*val = ret;
return 0;
}
static int aw2013_power_on(struct aw2013_led *led, bool on)
{
int rc;
if (on) {
rc = regulator_enable(led->vdd);
if (rc) {
dev_err(&led->client->dev,
"Regulator vdd enable failed rc=%d\n", rc);
return rc;
}
rc = regulator_enable(led->vcc);
if (rc) {
dev_err(&led->client->dev,
"Regulator vcc enable failed rc=%d\n", rc);
goto fail_enable_reg;
}
led->poweron = true;
} else {
rc = regulator_disable(led->vdd);
if (rc) {
dev_err(&led->client->dev,
"Regulator vdd disable failed rc=%d\n", rc);
return rc;
}
rc = regulator_disable(led->vcc);
if (rc) {
dev_err(&led->client->dev,
"Regulator vcc disable failed rc=%d\n", rc);
goto fail_disable_reg;
}
led->poweron = false;
}
return rc;
fail_enable_reg:
rc = regulator_disable(led->vdd);
if (rc)
dev_err(&led->client->dev,
"Regulator vdd disable failed rc=%d\n", rc);
return rc;
fail_disable_reg:
rc = regulator_enable(led->vdd);
if (rc)
dev_err(&led->client->dev,
"Regulator vdd enable failed rc=%d\n", rc);
return rc;
}
static int aw2013_power_init(struct aw2013_led *led, bool on)
{
int rc;
if (on) {
led->vdd = regulator_get(&led->client->dev, "vdd");
if (IS_ERR(led->vdd)) {
rc = PTR_ERR(led->vdd);
dev_err(&led->client->dev,
"Regulator get failed vdd rc=%d\n", rc);
return rc;
}
if (regulator_count_voltages(led->vdd) > 0) {
rc = regulator_set_voltage(led->vdd, AW2013_VDD_MIN_UV,
AW2013_VDD_MAX_UV);
if (rc) {
dev_err(&led->client->dev,
"Regulator set_vtg failed vdd rc=%d\n",
rc);
goto reg_vdd_put;
}
}
led->vcc = regulator_get(&led->client->dev, "vcc");
if (IS_ERR(led->vcc)) {
rc = PTR_ERR(led->vcc);
dev_err(&led->client->dev,
"Regulator get failed vcc rc=%d\n", rc);
goto reg_vdd_set_vtg;
}
if (regulator_count_voltages(led->vcc) > 0) {
rc = regulator_set_voltage(led->vcc, AW2013_VI2C_MIN_UV,
AW2013_VI2C_MAX_UV);
if (rc) {
dev_err(&led->client->dev,
"Regulator set_vtg failed vcc rc=%d\n", rc);
goto reg_vcc_put;
}
}
} else {
if (regulator_count_voltages(led->vdd) > 0)
regulator_set_voltage(led->vdd, 0, AW2013_VDD_MAX_UV);
regulator_put(led->vdd);
if (regulator_count_voltages(led->vcc) > 0)
regulator_set_voltage(led->vcc, 0, AW2013_VI2C_MAX_UV);
regulator_put(led->vcc);
}
return 0;
reg_vcc_put:
regulator_put(led->vcc);
reg_vdd_set_vtg:
if (regulator_count_voltages(led->vdd) > 0)
regulator_set_voltage(led->vdd, 0, AW2013_VDD_MAX_UV);
reg_vdd_put:
regulator_put(led->vdd);
return rc;
}
static void aw2013_brightness_work(struct work_struct *work)
{
struct aw2013_led *led = container_of(work, struct aw2013_led,
brightness_work);
u8 val;
mutex_lock(&led->pdata->led->lock);
/* enable regulators if they are disabled */
if (!led->pdata->led->poweron) {
if (aw2013_power_on(led->pdata->led, true)) {
dev_err(&led->pdata->led->client->dev, "power on failed");
mutex_unlock(&led->pdata->led->lock);
return;
}
}
if (led->cdev.brightness > 0) {
if (led->cdev.brightness > led->cdev.max_brightness)
led->cdev.brightness = led->cdev.max_brightness;
aw2013_write(led, AW_REG_GLOBAL_CONTROL,
AW_LED_MOUDLE_ENABLE_MASK);
aw2013_write(led, AW_REG_LED_CONFIG_BASE + led->id,
led->pdata->max_current);
aw2013_write(led, AW_REG_LED_BRIGHTNESS_BASE + led->id,
led->cdev.brightness);
aw2013_read(led, AW_REG_LED_ENABLE, &val);
aw2013_write(led, AW_REG_LED_ENABLE, val | (1 << led->id));
} else {
aw2013_read(led, AW_REG_LED_ENABLE, &val);
aw2013_write(led, AW_REG_LED_ENABLE, val & (~(1 << led->id)));
}
aw2013_read(led, AW_REG_LED_ENABLE, &val);
/*
* If value in AW_REG_LED_ENABLE is 0, it means the RGB leds are
* all off. So we need to power it off.
*/
if (val == 0) {
if (aw2013_power_on(led->pdata->led, false)) {
dev_err(&led->pdata->led->client->dev,
"power off failed");
mutex_unlock(&led->pdata->led->lock);
return;
}
}
mutex_unlock(&led->pdata->led->lock);
}
static void aw2013_led_blink_set(struct aw2013_led *led, unsigned long blinking)
{
u8 val;
/* enable regulators if they are disabled */
if (!led->pdata->led->poweron) {
if (aw2013_power_on(led->pdata->led, true)) {
dev_err(&led->pdata->led->client->dev, "power on failed");
return;
}
}
led->cdev.brightness = blinking ? led->cdev.max_brightness : 0;
if (blinking > 0) {
aw2013_write(led, AW_REG_GLOBAL_CONTROL,
AW_LED_MOUDLE_ENABLE_MASK);
aw2013_write(led, AW_REG_LED_CONFIG_BASE + led->id,
AW_LED_FADE_OFF_MASK | AW_LED_FADE_ON_MASK |
AW_LED_BREATHE_MODE_MASK | led->pdata->max_current);
aw2013_write(led, AW_REG_LED_BRIGHTNESS_BASE + led->id,
led->cdev.brightness);
aw2013_write(led, AW_REG_TIMESET0_BASE + led->id * 3,
led->pdata->rise_time_ms << 4 |
led->pdata->hold_time_ms);
aw2013_write(led, AW_REG_TIMESET1_BASE + led->id * 3,
led->pdata->fall_time_ms << 4 |
led->pdata->off_time_ms);
aw2013_read(led, AW_REG_LED_ENABLE, &val);
aw2013_write(led, AW_REG_LED_ENABLE, val | (1 << led->id));
} else {
aw2013_read(led, AW_REG_LED_ENABLE, &val);
aw2013_write(led, AW_REG_LED_ENABLE, val & (~(1 << led->id)));
}
aw2013_read(led, AW_REG_LED_ENABLE, &val);
/*
* If value in AW_REG_LED_ENABLE is 0, it means the RGB leds are
* all off. So we need to power it off.
*/
if (val == 0) {
if (aw2013_power_on(led->pdata->led, false)) {
dev_err(&led->pdata->led->client->dev,
"power off failed");
return;
}
}
}
static void aw2013_set_brightness(struct led_classdev *cdev,
enum led_brightness brightness)
{
struct aw2013_led *led = container_of(cdev, struct aw2013_led, cdev);
led->cdev.brightness = brightness;
schedule_work(&led->brightness_work);
}
static ssize_t aw2013_store_blink(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t len)
{
unsigned long blinking;
struct led_classdev *led_cdev = dev_get_drvdata(dev);
struct aw2013_led *led =
container_of(led_cdev, struct aw2013_led, cdev);
ssize_t ret = -EINVAL;
ret = kstrtoul(buf, 10, &blinking);
if (ret)
return ret;
mutex_lock(&led->pdata->led->lock);
aw2013_led_blink_set(led, blinking);
mutex_unlock(&led->pdata->led->lock);
return len;
}
static ssize_t aw2013_led_time_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct led_classdev *led_cdev = dev_get_drvdata(dev);
struct aw2013_led *led =
container_of(led_cdev, struct aw2013_led, cdev);
return snprintf(buf, PAGE_SIZE, "%d %d %d %d\n",
led->pdata->rise_time_ms, led->pdata->hold_time_ms,
led->pdata->fall_time_ms, led->pdata->off_time_ms);
}
static ssize_t aw2013_led_time_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t len)
{
struct led_classdev *led_cdev = dev_get_drvdata(dev);
struct aw2013_led *led =
container_of(led_cdev, struct aw2013_led, cdev);
int rc, rise_time_ms, hold_time_ms, fall_time_ms, off_time_ms;
rc = sscanf(buf, "%d %d %d %d",
&rise_time_ms, &hold_time_ms,
&fall_time_ms, &off_time_ms);
mutex_lock(&led->pdata->led->lock);
led->pdata->rise_time_ms = (rise_time_ms > MAX_RISE_TIME_MS) ?
MAX_RISE_TIME_MS : rise_time_ms;
led->pdata->hold_time_ms = (hold_time_ms > MAX_HOLD_TIME_MS) ?
MAX_HOLD_TIME_MS : hold_time_ms;
led->pdata->fall_time_ms = (fall_time_ms > MAX_FALL_TIME_MS) ?
MAX_FALL_TIME_MS : fall_time_ms;
led->pdata->off_time_ms = (off_time_ms > MAX_OFF_TIME_MS) ?
MAX_OFF_TIME_MS : off_time_ms;
aw2013_led_blink_set(led, 1);
mutex_unlock(&led->pdata->led->lock);
return len;
}
static DEVICE_ATTR(blink, 0664, NULL, aw2013_store_blink);
static DEVICE_ATTR(led_time, 0664, aw2013_led_time_show, aw2013_led_time_store);
static struct attribute *aw2013_led_attributes[] = {
&dev_attr_blink.attr,
&dev_attr_led_time.attr,
NULL,
};
static struct attribute_group aw2013_led_attr_group = {
.attrs = aw2013_led_attributes
};
static int aw_2013_check_chipid(struct aw2013_led *led)
{
u8 val;
aw2013_write(led, AW_REG_RESET, AW_LED_RESET_MASK);
usleep(AW_LED_RESET_DELAY);
aw2013_read(led, AW_REG_RESET, &val);
if (val == AW2013_CHIPID)
return 0;
else
return -EINVAL;
}
static int aw2013_led_err_handle(struct aw2013_led *led_array,
int parsed_leds)
{
int i;
/*
* If probe fails, cannot free resource of all LEDs, only free
* resources of LEDs which have allocated these resource really.
*/
for (i = 0; i < parsed_leds; i++) {
sysfs_remove_group(&led_array[i].cdev.dev->kobj,
&aw2013_led_attr_group);
led_classdev_unregister(&led_array[i].cdev);
cancel_work_sync(&led_array[i].brightness_work);
devm_kfree(&led_array->client->dev, led_array[i].pdata);
led_array[i].pdata = NULL;
}
return i;
}
static int aw2013_led_parse_child_node(struct aw2013_led *led_array,
struct device_node *node)
{
struct aw2013_led *led;
struct device_node *temp;
struct aw2013_platform_data *pdata;
int rc = 0, parsed_leds = 0;
for_each_child_of_node(node, temp) {
led = &led_array[parsed_leds];
led->client = led_array->client;
pdata = devm_kzalloc(&led->client->dev,
sizeof(struct aw2013_platform_data),
GFP_KERNEL);
if (!pdata) {
dev_err(&led->client->dev,
"Failed to allocate memory\n");
goto free_err;
}
pdata->led = led_array;
led->pdata = pdata;
rc = of_property_read_string(temp, "aw2013,name",
&led->cdev.name);
if (rc < 0) {
dev_err(&led->client->dev,
"Failure reading led name, rc = %d\n", rc);
goto free_pdata;
}
rc = of_property_read_u32(temp, "aw2013,id",
&led->id);
if (rc < 0) {
dev_err(&led->client->dev,
"Failure reading id, rc = %d\n", rc);
goto free_pdata;
}
rc = of_property_read_u32(temp, "aw2013,max-brightness",
&led->cdev.max_brightness);
if (rc < 0) {
dev_err(&led->client->dev,
"Failure reading max-brightness, rc = %d\n",
rc);
goto free_pdata;
}
rc = of_property_read_u32(temp, "aw2013,max-current",
&led->pdata->max_current);
if (rc < 0) {
dev_err(&led->client->dev,
"Failure reading max-current, rc = %d\n", rc);
goto free_pdata;
}
rc = of_property_read_u32(temp, "aw2013,rise-time-ms",
&led->pdata->rise_time_ms);
if (rc < 0) {
dev_err(&led->client->dev,
"Failure reading rise-time-ms, rc = %d\n", rc);
goto free_pdata;
}
rc = of_property_read_u32(temp, "aw2013,hold-time-ms",
&led->pdata->hold_time_ms);
if (rc < 0) {
dev_err(&led->client->dev,
"Failure reading hold-time-ms, rc = %d\n", rc);
goto free_pdata;
}
rc = of_property_read_u32(temp, "aw2013,fall-time-ms",
&led->pdata->fall_time_ms);
if (rc < 0) {
dev_err(&led->client->dev,
"Failure reading fall-time-ms, rc = %d\n", rc);
goto free_pdata;
}
rc = of_property_read_u32(temp, "aw2013,off-time-ms",
&led->pdata->off_time_ms);
if (rc < 0) {
dev_err(&led->client->dev,
"Failure reading off-time-ms, rc = %d\n", rc);
goto free_pdata;
}
INIT_WORK(&led->brightness_work, aw2013_brightness_work);
led->cdev.brightness_set = aw2013_set_brightness;
rc = led_classdev_register(&led->client->dev, &led->cdev);
if (rc) {
dev_err(&led->client->dev,
"unable to register led %d,rc=%d\n",
led->id, rc);
goto free_pdata;
}
rc = sysfs_create_group(&led->cdev.dev->kobj,
&aw2013_led_attr_group);
if (rc) {
dev_err(&led->client->dev, "led sysfs rc: %d\n", rc);
goto free_class;
}
parsed_leds++;
}
return 0;
free_class:
aw2013_led_err_handle(led_array, parsed_leds);
led_classdev_unregister(&led_array[parsed_leds].cdev);
cancel_work_sync(&led_array[parsed_leds].brightness_work);
devm_kfree(&led->client->dev, led_array[parsed_leds].pdata);
led_array[parsed_leds].pdata = NULL;
return rc;
free_pdata:
aw2013_led_err_handle(led_array, parsed_leds);
devm_kfree(&led->client->dev, led_array[parsed_leds].pdata);
return rc;
free_err:
aw2013_led_err_handle(led_array, parsed_leds);
return rc;
}
static int aw2013_led_probe(struct i2c_client *client,
const struct i2c_device_id *id)
{
struct aw2013_led *led_array;
struct device_node *node;
int ret, num_leds = 0;
node = client->dev.of_node;
if (node == NULL)
return -EINVAL;
num_leds = of_get_child_count(node);
if (!num_leds)
return -EINVAL;
led_array = devm_kzalloc(&client->dev,
(sizeof(struct aw2013_led) * num_leds), GFP_KERNEL);
if (!led_array) {
dev_err(&client->dev, "Unable to allocate memory\n");
return -ENOMEM;
}
led_array->client = client;
led_array->num_leds = num_leds;
mutex_init(&led_array->lock);
ret = aw_2013_check_chipid(led_array);
if (ret) {
dev_err(&client->dev, "Check chip id error\n");
goto free_led_arry;
}
ret = aw2013_led_parse_child_node(led_array, node);
if (ret) {
dev_err(&client->dev, "parsed node error\n");
goto free_led_arry;
}
i2c_set_clientdata(client, led_array);
ret = aw2013_power_init(led_array, true);
if (ret) {
dev_err(&client->dev, "power init failed");
goto fail_parsed_node;
}
return 0;
fail_parsed_node:
aw2013_led_err_handle(led_array, num_leds);
free_led_arry:
mutex_destroy(&led_array->lock);
devm_kfree(&client->dev, led_array);
led_array = NULL;
return ret;
}
static int aw2013_led_remove(struct i2c_client *client)
{
struct aw2013_led *led_array = i2c_get_clientdata(client);
int i, parsed_leds = led_array->num_leds;
for (i = 0; i < parsed_leds; i++) {
sysfs_remove_group(&led_array[i].cdev.dev->kobj,
&aw2013_led_attr_group);
led_classdev_unregister(&led_array[i].cdev);
cancel_work_sync(&led_array[i].brightness_work);
devm_kfree(&client->dev, led_array[i].pdata);
led_array[i].pdata = NULL;
}
mutex_destroy(&led_array->lock);
devm_kfree(&client->dev, led_array);
led_array = NULL;
return 0;
}
static const struct i2c_device_id aw2013_led_id[] = {
{"aw2013_led", 0},
{},
};
MODULE_DEVICE_TABLE(i2c, aw2013_led_id);
static struct of_device_id aw2013_match_table[] = {
{ .compatible = "awinic,aw2013",},
{ },
};
static struct i2c_driver aw2013_led_driver = {
.probe = aw2013_led_probe,
.remove = aw2013_led_remove,
.driver = {
.name = "aw2013_led",
.owner = THIS_MODULE,
.of_match_table = of_match_ptr(aw2013_match_table),
},
.id_table = aw2013_led_id,
};
static int __init aw2013_led_init(void)
{
return i2c_add_driver(&aw2013_led_driver);
}
module_init(aw2013_led_init);
static void __exit aw2013_led_exit(void)
{
i2c_del_driver(&aw2013_led_driver);
}
module_exit(aw2013_led_exit);
MODULE_DESCRIPTION("AWINIC aw2013 LED driver");
MODULE_LICENSE("GPL v2");