android_kernel_samsung_msm8976/drivers/phy/phy-qcom-ufs-qmp-28nm.c

334 lines
9.3 KiB
C

/*
* Copyright (c) 2013-2014, Linux Foundation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 and
* only version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
*/
#include <linux/io.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/time.h>
#include <linux/clk.h>
#include <linux/of.h>
#include <linux/iopoll.h>
#include <linux/platform_device.h>
#include <linux/msm-bus.h>
#include <linux/phy/phy.h>
#include <linux/phy/phy-qcom-ufs.h>
#include "phy-qcom-ufs-qmp-28nm.h"
#define UFS_PHY_NAME "ufs_qcom_phy_qmp_28nm"
static
void ufs_qcom_phy_qmp_28nm_power_control(struct ufs_qcom_phy *phy, bool val)
{
if (val) {
writel_relaxed(0x1, phy->mmio + UFS_PHY_POWER_DOWN_CONTROL);
/*
* Before any transactions involving PHY, ensure PHY knows
* that it's analog rail is powered ON. This also ensures
* that PHY is out of power collapse before enabling the
* SIGDET.
*/
mb();
if (phy->quirks & UFS_QCOM_PHY_DIS_SIGDET_BEFORE_PWR_COLLAPSE) {
writel_relaxed(0xC0,
phy->mmio + QSERDES_RX_SIGDET_CNTRL(0));
writel_relaxed(0xC0,
phy->mmio + QSERDES_RX_SIGDET_CNTRL(1));
/*
* make sure that SIGDET is enabled before proceeding
* further.
*/
mb();
}
} else {
if (phy->quirks &
UFS_QCOM_PHY_DIS_SIGDET_BEFORE_PWR_COLLAPSE) {
writel_relaxed(0x0,
phy->mmio + QSERDES_RX_SIGDET_CNTRL(0));
writel_relaxed(0x0,
phy->mmio + QSERDES_RX_SIGDET_CNTRL(1));
/*
* Ensure that SIGDET is disabled before PHY power
* collapse
*/
mb();
}
writel_relaxed(0x0, phy->mmio + UFS_PHY_POWER_DOWN_CONTROL);
/*
* ensure that PHY knows its PHY analog rail is going
* to be powered down
*/
mb();
}
}
static
void ufs_qcom_phy_qmp_28nm_advertise_quirks(struct ufs_qcom_phy *phy_common)
{
phy_common->quirks = UFS_QCOM_PHY_QUIRK_CFG_RESTORE
| UFS_QCOM_PHY_DIS_SIGDET_BEFORE_PWR_COLLAPSE;
}
static int ufs_qcom_phy_qmp_28nm_init(struct phy *generic_phy)
{
struct ufs_qcom_phy_qmp_28nm *phy = phy_get_drvdata(generic_phy);
struct ufs_qcom_phy *phy_common = &phy->common_cfg;
int err = 0;
err = ufs_qcom_phy_init_clks(generic_phy, phy_common);
if (err) {
dev_err(phy_common->dev, "%s: ufs_qcom_phy_init_clks() failed %d\n",
__func__, err);
goto out;
}
err = ufs_qcom_phy_init_vregulators(generic_phy, phy_common);
if (err) {
dev_err(phy_common->dev, "%s: ufs_qcom_phy_init_vregulators() failed %d\n",
__func__, err);
goto out;
}
ufs_qcom_phy_qmp_28nm_advertise_quirks(phy_common);
out:
return err;
}
static int ufs_qcom_phy_qmp_28nm_calibrate(struct ufs_qcom_phy *ufs_qcom_phy)
{
struct ufs_qcom_phy_calibration *tbl_A, *tbl_B;
int tbl_size_A, tbl_size_B;
int rate = UFS_QCOM_LIMIT_HS_RATE;
u8 major = ufs_qcom_phy->host_ctrl_rev_major;
u16 minor = ufs_qcom_phy->host_ctrl_rev_minor;
u16 step = ufs_qcom_phy->host_ctrl_rev_step;
int err;
if ((major == 0x1) && (minor == 0x001) && (step == 0x0000)) {
tbl_size_A = ARRAY_SIZE(phy_cal_table_ctrl_1_1_0_rate_A);
tbl_A = phy_cal_table_ctrl_1_1_0_rate_A;
} else if ((major == 0x1) && (minor == 0x001) && (step == 0x0001)) {
tbl_size_A = ARRAY_SIZE(phy_cal_table_ctrl_1_1_1_rate_A);
tbl_A = phy_cal_table_ctrl_1_1_1_rate_A;
}
tbl_B = phy_cal_table_rate_B;
tbl_size_B = ARRAY_SIZE(phy_cal_table_rate_B);
err = ufs_qcom_phy_calibrate(ufs_qcom_phy, tbl_A, tbl_size_A,
tbl_B, tbl_size_B, rate);
if (err)
dev_err(ufs_qcom_phy->dev, "%s: ufs_qcom_phy_calibrate() failed %d\n",
__func__, err);
return err;
}
static
u32 ufs_qcom_phy_qmp_28nm_read_attr(struct ufs_qcom_phy *phy_common, u32 attr)
{
u32 l0, l1;
writel_relaxed(attr, phy_common->mmio + UFS_PHY_RMMI_ATTRID);
/* Read attribute value for both lanes */
writel_relaxed((UFS_PHY_RMMI_CFGRD_L0 | UFS_PHY_RMMI_CFGRD_L1),
phy_common->mmio + UFS_PHY_RMMI_ATTR_CTRL);
l0 = readl_relaxed(phy_common->mmio + UFS_PHY_RMMI_ATTRRDVAL_L0_STATUS);
l1 = readl_relaxed(phy_common->mmio + UFS_PHY_RMMI_ATTRRDVAL_L1_STATUS);
/* Both lanes should have the same value for same attribute type */
if (unlikely(l0 != l1))
dev_warn(phy_common->dev, "%s: attr 0x%x values are not same for Lane-0 and Lane-1, l0=0x%x, l1=0x%x",
__func__, attr, l0, l1);
/* must clear now */
writel_relaxed(0x00, phy_common->mmio + UFS_PHY_RMMI_ATTR_CTRL);
return l0;
}
static void
ufs_qcom_phy_qmp_28nm_write_attr(struct ufs_qcom_phy *phy_common,
u32 attr, u32 val)
{
writel_relaxed(attr, phy_common->mmio + UFS_PHY_RMMI_ATTRID);
writel_relaxed(val, phy_common->mmio + UFS_PHY_RMMI_ATTRWRVAL);
/* update attribute for both lanes */
writel_relaxed((UFS_PHY_RMMI_CFGWR_L0 | UFS_PHY_RMMI_CFGWR_L1),
phy_common->mmio + UFS_PHY_RMMI_ATTR_CTRL);
if (is_mphy_tx_attr(attr))
writel_relaxed((UFS_PHY_RMMI_TX_CFGUPDT_L0 |
UFS_PHY_RMMI_TX_CFGUPDT_L1),
phy_common->mmio + UFS_PHY_RMMI_ATTR_CTRL);
else
writel_relaxed((UFS_PHY_RMMI_RX_CFGUPDT_L0 |
UFS_PHY_RMMI_RX_CFGUPDT_L1),
phy_common->mmio + UFS_PHY_RMMI_ATTR_CTRL);
writel_relaxed(0x00, phy_common->mmio + UFS_PHY_RMMI_ATTR_CTRL);
}
static
void ufs_qcom_phy_qmp_28nm_save_configuration(struct ufs_qcom_phy *phy_common)
{
int i;
for (i = 0; i < ARRAY_SIZE(cached_phy_regs); i++)
cached_phy_regs[i].cfg_value =
readl_relaxed(phy_common->mmio +
cached_phy_regs[i].reg_offset);
for (i = 0; i < ARRAY_SIZE(cached_phy_attr); i++)
cached_phy_attr[i].value =
ufs_qcom_phy_qmp_28nm_read_attr(phy_common,
cached_phy_attr[i].att);
}
static void
ufs_qcom_phy_qmp_28nm_restore_configuration(struct ufs_qcom_phy *phy_common)
{
int i;
for (i = 0; i < ARRAY_SIZE(cached_phy_attr); i++)
ufs_qcom_phy_qmp_28nm_write_attr(phy_common,
cached_phy_attr[i].att, cached_phy_attr[i].value);
}
static
void ufs_qcom_phy_qmp_28nm_set_tx_lane_enable(struct ufs_qcom_phy *phy, u32 val)
{
writel_relaxed(val & UFS_PHY_TX_LANE_ENABLE_MASK,
phy->mmio + UFS_PHY_TX_LANE_ENABLE);
mb();
}
static inline void ufs_qcom_phy_qmp_28nm_start_serdes(struct ufs_qcom_phy *phy)
{
u32 tmp;
tmp = readl_relaxed(phy->mmio + UFS_PHY_PHY_START);
tmp &= ~MASK_SERDES_START;
tmp |= (1 << OFFSET_SERDES_START);
writel_relaxed(tmp, phy->mmio + UFS_PHY_PHY_START);
mb();
}
static int ufs_qcom_phy_qmp_28nm_is_pcs_ready(struct ufs_qcom_phy *phy_common)
{
int err = 0;
u32 val;
err = readl_poll_timeout(phy_common->mmio + UFS_PHY_PCS_READY_STATUS,
val, (val & MASK_PCS_READY), 10, 1000000);
if (err)
dev_err(phy_common->dev, "%s: phy init failed, %d\n",
__func__, err);
return err;
}
struct phy_ops ufs_qcom_phy_qmp_28nm_phy_ops = {
.init = ufs_qcom_phy_qmp_28nm_init,
.exit = ufs_qcom_phy_exit,
.power_on = ufs_qcom_phy_power_on,
.power_off = ufs_qcom_phy_power_off,
.owner = THIS_MODULE,
};
struct ufs_qcom_phy_specific_ops phy_28nm_ops = {
.calibrate_phy = ufs_qcom_phy_qmp_28nm_calibrate,
.start_serdes = ufs_qcom_phy_qmp_28nm_start_serdes,
.save_configuration = ufs_qcom_phy_qmp_28nm_save_configuration,
.restore_configuration = ufs_qcom_phy_qmp_28nm_restore_configuration,
.is_physical_coding_sublayer_ready = ufs_qcom_phy_qmp_28nm_is_pcs_ready,
.set_tx_lane_enable = ufs_qcom_phy_qmp_28nm_set_tx_lane_enable,
.power_control = ufs_qcom_phy_qmp_28nm_power_control,
};
static int ufs_qcom_phy_qmp_28nm_probe(struct platform_device *pdev)
{
struct ufs_qcom_phy_qmp_28nm *phy;
struct device *dev = &pdev->dev;
int err = 0;
struct phy *generic_phy;
phy = devm_kzalloc(dev, sizeof(*phy), GFP_KERNEL);
if (!phy) {
err = -ENOMEM;
dev_err(dev, "%s: failed to allocate phy\n", __func__);
goto out;
}
phy->common_cfg.cached_regs =
(struct ufs_qcom_phy_calibration *)cached_phy_regs;
phy->common_cfg.cached_regs_table_size =
ARRAY_SIZE(cached_phy_regs);
generic_phy = ufs_qcom_phy_generic_probe(pdev, &phy->common_cfg,
&ufs_qcom_phy_qmp_28nm_phy_ops, &phy_28nm_ops);
if (!generic_phy) {
dev_err(dev, "%s: ufs_qcom_phy_generic_probe() failed\n",
__func__);
err = -EIO;
goto out;
}
phy_set_drvdata(generic_phy, phy);
strlcpy(phy->common_cfg.name, UFS_PHY_NAME,
sizeof(phy->common_cfg.name));
out:
return err;
}
static int ufs_qcom_phy_qmp_28nm_remove(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct phy *generic_phy = to_phy(dev);
struct ufs_qcom_phy *ufs_qcom_phy = get_ufs_qcom_phy(generic_phy);
int err = 0;
err = ufs_qcom_phy_remove(generic_phy, ufs_qcom_phy);
if (err)
dev_err(dev, "%s: ufs_qcom_phy_remove failed = %d\n",
__func__, err);
return err;
}
static const struct of_device_id ufs_qcom_phy_qmp_28nm_of_match[] = {
{.compatible = "qcom,ufs-phy-qmp-28nm"},
{},
};
MODULE_DEVICE_TABLE(of, ufs_qcom_phy_qmp_28nm_of_match);
static struct platform_driver ufs_qcom_phy_qmp_28nm_driver = {
.probe = ufs_qcom_phy_qmp_28nm_probe,
.remove = ufs_qcom_phy_qmp_28nm_remove,
.driver = {
.of_match_table = ufs_qcom_phy_qmp_28nm_of_match,
.name = "ufs_qcom_phy_qmp_28nm",
.owner = THIS_MODULE,
},
};
module_platform_driver(ufs_qcom_phy_qmp_28nm_driver);
MODULE_DESCRIPTION("Universal Flash Storage (UFS) QCOM PHY QMP 28nm");
MODULE_LICENSE("GPL v2");