android_kernel_samsung_msm8976/drivers/spmi/qpnp-int.c

715 lines
17 KiB
C

/* Copyright (c) 2012-2016, The Linux Foundation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 and
* only version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#define pr_fmt(fmt) "%s: " fmt, __func__
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/err.h>
#include <linux/module.h>
#include <linux/list.h>
#include <linux/of.h>
#include <linux/of_address.h>
#include <linux/of_irq.h>
#include <linux/irqdomain.h>
#include <linux/interrupt.h>
#include <linux/spmi.h>
#include <linux/radix-tree.h>
#include <linux/slab.h>
#include <linux/printk.h>
#include <linux/ratelimit.h>
#include <linux/irqchip/qpnp-int.h>
#include <linux/wakeup_reason.h>
#include <asm/irq.h>
/* 16 slave_ids, 256 per_ids per slave, and 8 ints per per_id */
#define QPNPINT_NR_IRQS (16 * 256 * 8)
/* This value is guaranteed not to be valid for private data */
#define QPNPINT_INVALID_DATA 0x80000000
#ifdef CONFIG_SEC_PM_DEBUG
enum {
MSM_QPNP_INT_DBG_DISABLED = 0,
MSM_QPNP_INT_DBG_SHOW_IRQ = BIT(0),
};
int msm_qpnp_int_debug_mask = MSM_QPNP_INT_DBG_DISABLED;
module_param_named(
debug_mask, msm_qpnp_int_debug_mask, int, S_IRUGO | S_IWUSR | S_IWGRP
);
#endif
enum qpnpint_regs {
QPNPINT_REG_RT_STS = 0x10,
QPNPINT_REG_SET_TYPE = 0x11,
QPNPINT_REG_POLARITY_HIGH = 0x12,
QPNPINT_REG_POLARITY_LOW = 0x13,
QPNPINT_REG_LATCHED_CLR = 0x14,
QPNPINT_REG_EN_SET = 0x15,
QPNPINT_REG_EN_CLR = 0x16,
QPNPINT_REG_LATCHED_STS = 0x18,
};
struct q_perip_data {
uint8_t type; /* bitmap */
uint8_t pol_high; /* bitmap */
uint8_t pol_low; /* bitmap */
uint8_t int_en; /* bitmap */
uint8_t use_count;
spinlock_t lock;
};
struct q_irq_data {
uint32_t priv_d; /* data to optimize arbiter interactions */
struct q_chip_data *chip_d;
struct q_perip_data *per_d;
uint8_t mask_shift;
uint8_t spmi_slave;
uint16_t spmi_offset;
};
struct q_chip_data {
int bus_nr;
struct irq_domain *domain;
struct qpnp_local_int *cb;
struct spmi_controller *spmi_ctrl;
struct radix_tree_root per_tree;
struct list_head list;
};
static LIST_HEAD(qpnpint_chips);
static DEFINE_MUTEX(qpnpint_chips_mutex);
#define QPNPINT_MAX_BUSSES 4
struct q_chip_data *chip_lookup[QPNPINT_MAX_BUSSES];
/**
* qpnpint_encode_hwirq - translate between qpnp_irq_spec and
* hwirq representation.
*
* slave_offset = (addr->slave * 256 * 8);
* perip_offset = slave_offset + (addr->perip * 8);
* return perip_offset + addr->irq;
*/
static inline int qpnpint_encode_hwirq(struct qpnp_irq_spec *spec)
{
uint32_t hwirq;
if (spec->slave > 15 || spec->irq > 7)
return -EINVAL;
hwirq = (spec->slave << 11);
hwirq |= (spec->per << 3);
hwirq |= spec->irq;
return hwirq;
}
/**
* qpnpint_decode_hwirq - translate between hwirq and
* qpnp_irq_spec representation.
*/
static inline int qpnpint_decode_hwirq(unsigned long hwirq,
struct qpnp_irq_spec *spec)
{
if (hwirq > 65535)
return -EINVAL;
spec->slave = (hwirq >> 11) & 0xF;
spec->per = (hwirq >> 3) & 0xFF;
spec->irq = hwirq & 0x7;
return 0;
}
static int qpnpint_spmi_read(struct q_irq_data *irq_d, uint8_t reg,
void *buf, uint32_t len)
{
struct q_chip_data *chip_d = irq_d->chip_d;
if (!chip_d->spmi_ctrl)
return -ENODEV;
return spmi_ext_register_readl(chip_d->spmi_ctrl, irq_d->spmi_slave,
irq_d->spmi_offset + reg, buf, len);
}
static int qpnpint_spmi_write(struct q_irq_data *irq_d, uint8_t reg,
void *buf, uint32_t len)
{
struct q_chip_data *chip_d = irq_d->chip_d;
int rc;
if (!chip_d->spmi_ctrl)
return -ENODEV;
rc = spmi_ext_register_writel(chip_d->spmi_ctrl, irq_d->spmi_slave,
irq_d->spmi_offset + reg, buf, len);
return rc;
}
static int qpnpint_arbiter_op(struct irq_data *d,
struct q_irq_data *irq_d,
int (*arb_op)(struct spmi_controller *,
struct qpnp_irq_spec *,
uint32_t))
{
struct q_chip_data *chip_d = irq_d->chip_d;
struct qpnp_irq_spec q_spec;
int rc;
if (!arb_op)
return 0;
if (!chip_d->cb->register_priv_data) {
pr_warn_ratelimited("No ability to register arbiter registration data\n");
return -ENODEV;
}
rc = qpnpint_decode_hwirq(d->hwirq, &q_spec);
if (rc) {
pr_err_ratelimited("%s: decode failed on hwirq %lu\n",
__func__, d->hwirq);
return rc;
}
if (irq_d->priv_d == QPNPINT_INVALID_DATA) {
rc = chip_d->cb->register_priv_data(chip_d->spmi_ctrl,
&q_spec, &irq_d->priv_d);
if (rc) {
pr_err_ratelimited(
"%s: decode failed on hwirq %lu rc = %d\n",
__func__, d->hwirq, rc);
return rc;
}
}
arb_op(chip_d->spmi_ctrl, &q_spec, irq_d->priv_d);
return 0;
}
static void qpnpint_irq_ack(struct irq_data *d)
{
struct q_irq_data *irq_d = irq_data_get_irq_chip_data(d);
int rc;
pr_debug("hwirq %lu irq: %d\n", d->hwirq, d->irq);
rc = qpnpint_spmi_write(irq_d, QPNPINT_REG_LATCHED_CLR,
&irq_d->mask_shift, 1);
if (rc) {
pr_err_ratelimited("spmi write failure on irq %d, rc=%d\n",
d->irq, rc);
return;
}
}
static void qpnpint_irq_mask(struct irq_data *d)
{
struct q_irq_data *irq_d = irq_data_get_irq_chip_data(d);
struct q_chip_data *chip_d = irq_d->chip_d;
struct q_perip_data *per_d = irq_d->per_d;
int rc;
uint8_t prev_int_en;
pr_debug("hwirq %lu irq: %d\n", d->hwirq, d->irq);
if (!chip_d->cb) {
pr_warn_ratelimited("No arbiter on bus=%u slave=%u offset=%u\n",
chip_d->bus_nr, irq_d->spmi_slave,
irq_d->spmi_offset);
return;
}
spin_lock(&per_d->lock);
prev_int_en = per_d->int_en;
per_d->int_en &= ~irq_d->mask_shift;
if (prev_int_en && !(per_d->int_en)) {
/*
* no interrupt on this peripheral is enabled
* ask the arbiter to ignore this peripheral
*/
qpnpint_arbiter_op(d, irq_d, chip_d->cb->mask);
}
spin_unlock(&per_d->lock);
rc = qpnpint_spmi_write(irq_d, QPNPINT_REG_EN_CLR,
(u8 *)&irq_d->mask_shift, 1);
if (rc) {
pr_err_ratelimited("spmi failure on irq %d\n", d->irq);
return;
}
pr_debug("done hwirq %lu irq: %d\n", d->hwirq, d->irq);
}
static void qpnpint_irq_mask_ack(struct irq_data *d)
{
pr_debug("hwirq %lu irq: %d\n", d->hwirq, d->irq);
qpnpint_irq_mask(d);
qpnpint_irq_ack(d);
}
static void qpnpint_irq_unmask(struct irq_data *d)
{
struct q_irq_data *irq_d = irq_data_get_irq_chip_data(d);
struct q_chip_data *chip_d = irq_d->chip_d;
struct q_perip_data *per_d = irq_d->per_d;
int rc;
uint8_t buf[2];
uint8_t prev_int_en;
pr_debug("hwirq %lu irq: %d\n", d->hwirq, d->irq);
if (!chip_d->cb) {
pr_warn_ratelimited("No arbiter on bus=%u slave=%u offset=%u\n",
chip_d->bus_nr, irq_d->spmi_slave,
irq_d->spmi_offset);
return;
}
spin_lock(&per_d->lock);
prev_int_en = per_d->int_en;
per_d->int_en |= irq_d->mask_shift;
if (!prev_int_en && per_d->int_en) {
/*
* no interrupt prior to this call was enabled for the
* peripheral. Ask the arbiter to enable interrupts for
* this peripheral
*/
qpnpint_arbiter_op(d, irq_d, chip_d->cb->unmask);
}
spin_unlock(&per_d->lock);
/* Check the current state of the interrupt enable bit. */
rc = qpnpint_spmi_read(irq_d, QPNPINT_REG_EN_SET, buf, 1);
if (rc) {
pr_err("SPMI read failure for IRQ %d, rc=%d\n", d->irq, rc);
return;
}
if (!(buf[0] & irq_d->mask_shift)) {
/*
* Since the interrupt is currently disabled, write to both the
* LATCHED_CLR and EN_SET registers so that a spurious interrupt
* cannot be triggered when the interrupt is enabled.
*/
buf[0] = irq_d->mask_shift;
buf[1] = irq_d->mask_shift;
rc = qpnpint_spmi_write(irq_d, QPNPINT_REG_LATCHED_CLR, buf, 2);
if (rc) {
pr_err("SPMI write failure for IRQ %d, rc=%d\n", d->irq,
rc);
return;
}
}
}
static int qpnpint_irq_set_type(struct irq_data *d, unsigned int flow_type)
{
struct q_irq_data *irq_d = irq_data_get_irq_chip_data(d);
struct q_perip_data *per_d = irq_d->per_d;
int rc;
u8 buf[3];
pr_debug("hwirq %lu irq: %d flow: 0x%x\n", d->hwirq,
d->irq, flow_type);
per_d->pol_high &= ~irq_d->mask_shift;
per_d->pol_low &= ~irq_d->mask_shift;
if (flow_type & (IRQF_TRIGGER_RISING | IRQF_TRIGGER_FALLING)) {
per_d->type |= irq_d->mask_shift; /* edge trig */
if (flow_type & IRQF_TRIGGER_RISING)
per_d->pol_high |= irq_d->mask_shift;
if (flow_type & IRQF_TRIGGER_FALLING)
per_d->pol_low |= irq_d->mask_shift;
} else {
if ((flow_type & IRQF_TRIGGER_HIGH) &&
(flow_type & IRQF_TRIGGER_LOW))
return -EINVAL;
per_d->type &= ~irq_d->mask_shift; /* level trig */
if (flow_type & IRQF_TRIGGER_HIGH)
per_d->pol_high |= irq_d->mask_shift;
else
per_d->pol_low |= irq_d->mask_shift;
}
buf[0] = per_d->type;
buf[1] = per_d->pol_high;
buf[2] = per_d->pol_low;
rc = qpnpint_spmi_write(irq_d, QPNPINT_REG_SET_TYPE, &buf, 3);
if (rc) {
pr_err("spmi failure on irq %d\n", d->irq);
return rc;
}
if (flow_type & IRQ_TYPE_EDGE_BOTH)
__irq_set_handler_locked(d->irq, handle_edge_irq);
else
__irq_set_handler_locked(d->irq, handle_level_irq);
return 0;
}
static int qpnpint_irq_read_line(struct irq_data *d)
{
struct q_irq_data *irq_d = irq_data_get_irq_chip_data(d);
int rc;
u8 buf;
pr_debug("hwirq %lu irq: %d\n", d->hwirq, d->irq);
rc = qpnpint_spmi_read(irq_d, QPNPINT_REG_RT_STS, &buf, 1);
if (rc) {
pr_err("spmi failure on irq %d\n", d->irq);
return rc;
}
return (buf & irq_d->mask_shift) ? 1 : 0;
}
static int qpnpint_irq_set_wake(struct irq_data *d, unsigned int on)
{
return 0;
}
static struct irq_chip qpnpint_chip = {
.name = "qpnp-int",
.irq_ack = qpnpint_irq_ack,
.irq_mask = qpnpint_irq_mask,
.irq_mask_ack = qpnpint_irq_mask_ack,
.irq_unmask = qpnpint_irq_unmask,
.irq_set_type = qpnpint_irq_set_type,
.irq_read_line = qpnpint_irq_read_line,
.irq_set_wake = qpnpint_irq_set_wake,
.flags = IRQCHIP_MASK_ON_SUSPEND,
};
static int qpnpint_init_irq_data(struct q_chip_data *chip_d,
struct q_irq_data *irq_d,
unsigned long hwirq)
{
struct qpnp_irq_spec q_spec;
int rc;
irq_d->mask_shift = 1 << (hwirq & 0x7);
rc = qpnpint_decode_hwirq(hwirq, &q_spec);
if (rc < 0)
return rc;
irq_d->spmi_slave = q_spec.slave;
irq_d->spmi_offset = q_spec.per << 8;
irq_d->chip_d = chip_d;
irq_d->priv_d = QPNPINT_INVALID_DATA;
if (chip_d->cb && chip_d->cb->register_priv_data) {
rc = chip_d->cb->register_priv_data(chip_d->spmi_ctrl, &q_spec,
&irq_d->priv_d);
if (rc)
return rc;
}
irq_d->per_d->use_count++;
return 0;
}
static struct q_irq_data *qpnpint_alloc_irq_data(
struct q_chip_data *chip_d,
unsigned long hwirq)
{
struct q_irq_data *irq_d;
struct q_perip_data *per_d;
int rc;
irq_d = kzalloc(sizeof(struct q_irq_data), GFP_KERNEL);
if (!irq_d)
return ERR_PTR(-ENOMEM);
/**
* The Peripheral Tree is keyed from the slave + per_id. We're
* ignoring the irq bits here since this peripheral structure
* should be common for all irqs on the same peripheral.
*/
per_d = radix_tree_lookup(&chip_d->per_tree, (hwirq & ~0x7));
if (!per_d) {
per_d = kzalloc(sizeof(struct q_perip_data), GFP_KERNEL);
if (!per_d) {
rc = -ENOMEM;
goto alloc_fail;
}
spin_lock_init(&per_d->lock);
rc = radix_tree_preload(GFP_KERNEL);
if (rc)
goto alloc_fail;
rc = radix_tree_insert(&chip_d->per_tree,
(hwirq & ~0x7), per_d);
if (rc)
goto alloc_fail;
radix_tree_preload_end();
}
irq_d->per_d = per_d;
return irq_d;
alloc_fail:
kfree(per_d);
kfree(irq_d);
return ERR_PTR(rc);
}
static int qpnpint_irq_domain_dt_translate(struct irq_domain *d,
struct device_node *controller,
const u32 *intspec, unsigned int intsize,
unsigned long *out_hwirq,
unsigned int *out_type)
{
struct qpnp_irq_spec addr;
int ret;
pr_debug("intspec[0] 0x%x intspec[1] 0x%x intspec[2] 0x%x\n",
intspec[0], intspec[1], intspec[2]);
if (d->of_node != controller)
return -EINVAL;
if (intsize != 3)
return -EINVAL;
addr.irq = intspec[2] & 0x7;
addr.per = intspec[1] & 0xFF;
addr.slave = intspec[0] & 0xF;
ret = qpnpint_encode_hwirq(&addr);
if (ret < 0) {
pr_err("invalid intspec\n");
return ret;
}
*out_hwirq = ret;
*out_type = IRQ_TYPE_NONE;
pr_debug("out_hwirq = %lu\n", *out_hwirq);
return 0;
}
static void qpnpint_free_irq_data(struct q_irq_data *irq_d)
{
if (irq_d->per_d->use_count == 1)
kfree(irq_d->per_d);
else
irq_d->per_d->use_count--;
kfree(irq_d);
}
static int qpnpint_irq_domain_map(struct irq_domain *d,
unsigned int virq, irq_hw_number_t hwirq)
{
struct q_chip_data *chip_d = d->host_data;
struct q_irq_data *irq_d;
int rc;
pr_debug("hwirq = %lu\n", hwirq);
if (hwirq < 0 || hwirq >= QPNPINT_NR_IRQS) {
pr_err("hwirq %lu out of bounds\n", hwirq);
return -EINVAL;
}
irq_d = qpnpint_alloc_irq_data(chip_d, hwirq);
if (IS_ERR(irq_d)) {
pr_err("failed to alloc irq data for hwirq %lu\n", hwirq);
return PTR_ERR(irq_d);
}
rc = qpnpint_init_irq_data(chip_d, irq_d, hwirq);
if (rc) {
pr_err("failed to init irq data for hwirq %lu\n", hwirq);
goto map_err;
}
irq_set_chip_and_handler(virq,
&qpnpint_chip,
handle_level_irq);
irq_set_chip_data(virq, irq_d);
#ifdef CONFIG_ARM
set_irq_flags(virq, IRQF_VALID);
#else
irq_set_noprobe(virq);
#endif
return 0;
map_err:
qpnpint_free_irq_data(irq_d);
return rc;
}
void qpnpint_irq_domain_unmap(struct irq_domain *d, unsigned int virq)
{
struct q_irq_data *irq_d = irq_get_chip_data(virq);
if (WARN_ON(!irq_d))
return;
qpnpint_free_irq_data(irq_d);
}
const struct irq_domain_ops qpnpint_irq_domain_ops = {
.map = qpnpint_irq_domain_map,
.unmap = qpnpint_irq_domain_unmap,
.xlate = qpnpint_irq_domain_dt_translate,
};
int qpnpint_register_controller(struct device_node *node,
struct spmi_controller *ctrl,
struct qpnp_local_int *li_cb)
{
struct q_chip_data *chip_d;
if (!node || !ctrl || ctrl->nr >= QPNPINT_MAX_BUSSES)
return -EINVAL;
list_for_each_entry(chip_d, &qpnpint_chips, list)
if (node == chip_d->domain->of_node) {
chip_d->cb = kmemdup(li_cb,
sizeof(*li_cb), GFP_ATOMIC);
if (!chip_d->cb)
return -ENOMEM;
chip_d->spmi_ctrl = ctrl;
chip_lookup[ctrl->nr] = chip_d;
return 0;
}
return -ENOENT;
}
EXPORT_SYMBOL(qpnpint_register_controller);
int qpnpint_unregister_controller(struct device_node *node)
{
struct q_chip_data *chip_d;
if (!node)
return -EINVAL;
list_for_each_entry(chip_d, &qpnpint_chips, list)
if (node == chip_d->domain->of_node) {
kfree(chip_d->cb);
chip_d->cb = NULL;
if (chip_d->spmi_ctrl)
chip_lookup[chip_d->spmi_ctrl->nr] = NULL;
chip_d->spmi_ctrl = NULL;
return 0;
}
return -ENOENT;
}
EXPORT_SYMBOL(qpnpint_unregister_controller);
#ifdef CONFIG_SEC_PM
extern char last_resume_kernel_reason[];
extern int last_resume_kernel_reason_len;
#endif
static int __qpnpint_handle_irq(struct spmi_controller *spmi_ctrl,
struct qpnp_irq_spec *spec,
bool show)
{
struct irq_domain *domain;
unsigned long hwirq, busno;
int irq;
if (!spec || !spmi_ctrl)
return -EINVAL;
pr_debug("spec slave = %u per = %u irq = %u\n",
spec->slave, spec->per, spec->irq);
busno = spmi_ctrl->nr;
if (busno >= QPNPINT_MAX_BUSSES)
return -EINVAL;
hwirq = qpnpint_encode_hwirq(spec);
if (hwirq < 0) {
pr_err("invalid irq spec passed\n");
return -EINVAL;
}
domain = chip_lookup[busno]->domain;
irq = irq_find_mapping(domain, hwirq);
if (show) {
struct irq_desc *desc;
const char *name = "null";
desc = irq_to_desc(irq);
if (desc == NULL)
name = "stray irq";
else if (desc->action && desc->action->name)
name = desc->action->name;
#ifdef CONFIG_SEC_PM
printk("Resume caused by IRQ %d(PIN %lu) %s [0x%01x, 0x%02x,0x%01x]\n",
irq, hwirq, name, spec->slave, spec->per, spec->irq);
last_resume_kernel_reason_len +=
sprintf(last_resume_kernel_reason + last_resume_kernel_reason_len,
"%d,%lu,%s|", irq, hwirq, name);
#else
pr_warn("%d triggered [0x%01x, 0x%02x,0x%01x] %s\n",
irq, spec->slave, spec->per, spec->irq, name);
#endif
} else {
generic_handle_irq(irq);
}
return 0;
}
int qpnpint_handle_irq(struct spmi_controller *spmi_ctrl,
struct qpnp_irq_spec *spec)
{
return __qpnpint_handle_irq(spmi_ctrl, spec, false);
}
EXPORT_SYMBOL(qpnpint_handle_irq);
int qpnpint_show_irq(struct spmi_controller *spmi_ctrl,
struct qpnp_irq_spec *spec)
{
return __qpnpint_handle_irq(spmi_ctrl, spec, true);
}
EXPORT_SYMBOL(qpnpint_show_irq);
int __init qpnpint_of_init(struct device_node *node, struct device_node *parent)
{
struct q_chip_data *chip_d;
chip_d = kzalloc(sizeof(struct q_chip_data), GFP_KERNEL);
if (!chip_d)
return -ENOMEM;
chip_d->domain = irq_domain_add_tree(node,
&qpnpint_irq_domain_ops, chip_d);
if (!chip_d->domain) {
pr_err("Unable to allocate irq_domain\n");
kfree(chip_d);
return -ENOMEM;
}
INIT_RADIX_TREE(&chip_d->per_tree, GFP_ATOMIC);
list_add(&chip_d->list, &qpnpint_chips);
return 0;
}
EXPORT_SYMBOL(qpnpint_of_init);