android_kernel_samsung_msm8976/drivers/usb/gadget/u_ether.c

2157 lines
53 KiB
C

/*
* u_ether.c -- Ethernet-over-USB link layer utilities for Gadget stack
*
* Copyright (C) 2003-2005,2008 David Brownell
* Copyright (C) 2003-2004 Robert Schwebel, Benedikt Spranger
* Copyright (C) 2008 Nokia Corporation
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*/
/* #define VERBOSE_DEBUG */
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/gfp.h>
#include <linux/device.h>
#include <linux/ctype.h>
#include <linux/if_arp.h>
#include <linux/etherdevice.h>
#include <linux/ethtool.h>
#include <linux/if_vlan.h>
#include <linux/msm_rmnet.h>
#include <linux/debugfs.h>
#include <linux/seq_file.h>
#include <linux/notifier.h>
#include <linux/cpufreq.h>
#include "u_ether.h"
/*
* This component encapsulates the Ethernet link glue needed to provide
* one (!) network link through the USB gadget stack, normally "usb0".
*
* The control and data models are handled by the function driver which
* connects to this code; such as CDC Ethernet (ECM or EEM),
* "CDC Subset", or RNDIS. That includes all descriptor and endpoint
* management.
*
* Link level addressing is handled by this component using module
* parameters; if no such parameters are provided, random link level
* addresses are used. Each end of the link uses one address. The
* host end address is exported in various ways, and is often recorded
* in configuration databases.
*
* The driver which assembles each configuration using such a link is
* responsible for ensuring that each configuration includes at most one
* instance of is network link. (The network layer provides ways for
* this single "physical" link to be used by multiple virtual links.)
*/
#define UETH__VERSION "29-May-2008"
static struct workqueue_struct *uether_wq;
static struct workqueue_struct *uether_tx_wq;
static int tx_start_threshold = 1500;
module_param(tx_start_threshold, uint, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(tx_start_threshold,
"Threashold to start stopped network queue");
static int tx_stop_threshold = 2000;
module_param(tx_stop_threshold, uint, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(tx_stop_threshold,
"Threashold to stop network queue");
static unsigned int min_cpu_freq;
module_param(min_cpu_freq, uint, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(min_cpu_freq,
"to set minimum cpu frquency to when ethernet ifc is active");
/* this refers to max number sgs per transfer
* which includes headers/data packets
*/
#define DL_MAX_PKTS_PER_XFER 20
enum ifc_state {
ETH_UNDEFINED,
ETH_STOP,
ETH_START,
};
struct eth_dev {
/* lock is held while accessing port_usb
*/
spinlock_t lock;
struct gether *port_usb;
struct net_device *net;
struct usb_gadget *gadget;
spinlock_t req_lock; /* guard {rx,tx}_reqs */
struct list_head tx_reqs, rx_reqs;
unsigned tx_qlen;
/* Minimum number of TX USB request queued to UDC */
#define MAX_TX_REQ_WITH_NO_INT 5
int no_tx_req_used;
int tx_skb_hold_count;
u32 tx_req_bufsize;
struct sk_buff_head tx_skb_q;
struct sk_buff_head rx_frames;
unsigned header_len;
unsigned int ul_max_pkts_per_xfer;
unsigned int dl_max_pkts_per_xfer;
uint32_t dl_max_xfer_size;
bool rx_trigger_enabled;
struct sk_buff *(*wrap)(struct gether *, struct sk_buff *skb);
int (*unwrap)(struct gether *,
struct sk_buff *skb,
struct sk_buff_head *list);
struct work_struct work;
struct work_struct rx_work;
struct work_struct tx_work;
unsigned long todo;
unsigned long flags;
unsigned short rx_needed_headroom;
#define WORK_RX_MEMORY 0
bool zlp;
u8 host_mac[ETH_ALEN];
/* stats */
unsigned long tx_throttle;
unsigned long rx_throttle;
unsigned int tx_aggr_cnt[DL_MAX_PKTS_PER_XFER];
unsigned int tx_pkts_rcvd;
unsigned int tx_bytes_rcvd;
unsigned int loop_brk_cnt;
struct dentry *uether_dent;
enum ifc_state state;
struct notifier_block cpufreq_notifier;
struct work_struct cpu_policy_w;
bool sg_enabled;
};
/* when sg is enabled, sg_ctx is used to track skb each usb request will
* xfer
*/
struct sg_ctx {
struct sk_buff_head skbs;
};
static void uether_debugfs_init(struct eth_dev *dev, const char *n);
static void uether_debugfs_exit(struct eth_dev *dev);
/*-------------------------------------------------------------------------*/
#define RX_EXTRA 20 /* bytes guarding against rx overflows */
#define DEFAULT_QLEN 2 /* double buffering by default */
static unsigned qmult = 20;
module_param(qmult, uint, S_IRUGO|S_IWUSR);
MODULE_PARM_DESC(qmult, "queue length multiplier at high/super speed");
/*
* Usually downlink rates are higher than uplink rates and it
* deserve higher number of requests. For CAT-6 data rates of
* 300Mbps (~30 packets per milli-sec) 40 usb request may not
* be sufficient. At this rate and with interrupt moderation
* of interconnect, data can be very bursty. tx_qmult is the
* additional multipler on qmult.
*/
static unsigned tx_qmult = 1;
module_param(tx_qmult, uint, S_IRUGO|S_IWUSR);
MODULE_PARM_DESC(tx_qmult, "Additional queue length multiplier for tx");
/* for dual-speed hardware, use deeper queues at high/super speed */
static inline int qlen(struct usb_gadget *gadget)
{
if (gadget_is_dualspeed(gadget) && (gadget->speed == USB_SPEED_HIGH ||
gadget->speed == USB_SPEED_SUPER))
return qmult * DEFAULT_QLEN;
else
return DEFAULT_QLEN;
}
/*-------------------------------------------------------------------------*/
#define U_ETHER_RX_PENDING_TSHOLD 500
static unsigned int u_ether_rx_pending_thld = U_ETHER_RX_PENDING_TSHOLD;
module_param(u_ether_rx_pending_thld, uint, S_IRUGO | S_IWUSR);
/* REVISIT there must be a better way than having two sets
* of debug calls ...
*/
#undef DBG
#undef VDBG
#undef ERROR
#undef INFO
#define xprintk(d, level, fmt, args...) \
printk(level "%s: " fmt , (d)->net->name , ## args)
#ifdef DEBUG
#undef DEBUG
#define DBG(dev, fmt, args...) \
xprintk(dev , KERN_DEBUG , fmt , ## args)
#else
#define DBG(dev, fmt, args...) \
do { } while (0)
#endif /* DEBUG */
#ifdef VERBOSE_DEBUG
#define VDBG DBG
#else
#define VDBG(dev, fmt, args...) \
do { } while (0)
#endif /* DEBUG */
#define ERROR(dev, fmt, args...) \
xprintk(dev , KERN_ERR , fmt , ## args)
#define INFO(dev, fmt, args...) \
xprintk(dev , KERN_INFO , fmt , ## args)
/*-------------------------------------------------------------------------*/
/* NETWORK DRIVER HOOKUP (to the layer above this driver) */
static int ueth_change_mtu(struct net_device *net, int new_mtu)
{
struct eth_dev *dev = netdev_priv(net);
unsigned long flags;
int status = 0;
/* don't change MTU on "live" link (peer won't know) */
spin_lock_irqsave(&dev->lock, flags);
if (dev->port_usb)
status = -EBUSY;
else if (new_mtu <= ETH_HLEN || new_mtu > ETH_FRAME_LEN)
status = -ERANGE;
else
net->mtu = new_mtu;
spin_unlock_irqrestore(&dev->lock, flags);
return status;
}
static int ueth_change_mtu_ip(struct net_device *net, int new_mtu)
{
struct eth_dev *dev = netdev_priv(net);
unsigned long flags;
int status = 0;
spin_lock_irqsave(&dev->lock, flags);
if (new_mtu <= 0)
status = -EINVAL;
else
net->mtu = new_mtu;
DBG(dev, "[%s] MTU change: old=%d new=%d\n", net->name,
net->mtu, new_mtu);
spin_unlock_irqrestore(&dev->lock, flags);
return status;
}
static void eth_get_drvinfo(struct net_device *net, struct ethtool_drvinfo *p)
{
struct eth_dev *dev = netdev_priv(net);
strlcpy(p->driver, "g_ether", sizeof(p->driver));
strlcpy(p->version, UETH__VERSION, sizeof(p->version));
strlcpy(p->fw_version, dev->gadget->name, sizeof(p->fw_version));
strlcpy(p->bus_info, dev_name(&dev->gadget->dev), sizeof(p->bus_info));
}
/* REVISIT can also support:
* - WOL (by tracking suspends and issuing remote wakeup)
* - msglevel (implies updated messaging)
* - ... probably more ethtool ops
*/
static const struct ethtool_ops ops = {
.get_drvinfo = eth_get_drvinfo,
.get_link = ethtool_op_get_link,
};
static void defer_kevent(struct eth_dev *dev, int flag)
{
if (test_and_set_bit(flag, &dev->todo))
return;
if (!schedule_work(&dev->work))
ERROR(dev, "kevent %d may have been dropped\n", flag);
else
DBG(dev, "kevent %d scheduled\n", flag);
}
static void rx_complete(struct usb_ep *ep, struct usb_request *req);
static void tx_complete(struct usb_ep *ep, struct usb_request *req);
static int
rx_submit(struct eth_dev *dev, struct usb_request *req, gfp_t gfp_flags)
{
struct sk_buff *skb;
int retval = -ENOMEM;
size_t size = 0;
struct usb_ep *out;
unsigned long flags;
unsigned short reserve_headroom = 0;
spin_lock_irqsave(&dev->lock, flags);
if (dev->port_usb)
out = dev->port_usb->out_ep;
else
out = NULL;
if (!out) {
spin_unlock_irqrestore(&dev->lock, flags);
return -ENOTCONN;
}
/* Padding up to RX_EXTRA handles minor disagreements with host.
* Normally we use the USB "terminate on short read" convention;
* so allow up to (N*maxpacket), since that memory is normally
* already allocated. Some hardware doesn't deal well with short
* reads (e.g. DMA must be N*maxpacket), so for now don't trim a
* byte off the end (to force hardware errors on overflow).
*
* RNDIS uses internal framing, and explicitly allows senders to
* pad to end-of-packet. That's potentially nice for speed, but
* means receivers can't recover lost synch on their own (because
* new packets don't only start after a short RX).
*/
size += sizeof(struct ethhdr) + dev->net->mtu + RX_EXTRA;
size += dev->port_usb->header_len;
size += out->maxpacket - 1;
size -= size % out->maxpacket;
if (dev->ul_max_pkts_per_xfer)
size *= dev->ul_max_pkts_per_xfer;
if (dev->port_usb->is_fixed)
size = max_t(size_t, size, dev->port_usb->fixed_out_len);
spin_unlock_irqrestore(&dev->lock, flags);
if (dev->rx_needed_headroom)
reserve_headroom = ALIGN(dev->rx_needed_headroom, 4);
pr_debug("%s: size: %zu + %d(hr)", __func__, size, reserve_headroom);
skb = alloc_skb(size + reserve_headroom, gfp_flags);
if (skb == NULL) {
DBG(dev, "no rx skb\n");
goto enomem;
}
/* Some platforms perform better when IP packets are aligned,
* but on at least one, checksumming fails otherwise. Note:
* RNDIS headers involve variable numbers of LE32 values.
*/
skb_reserve(skb, reserve_headroom);
req->buf = skb->data;
req->length = size;
req->context = skb;
retval = usb_ep_queue(out, req, gfp_flags);
if (retval == -ENOMEM)
enomem:
defer_kevent(dev, WORK_RX_MEMORY);
if (retval) {
DBG(dev, "rx submit --> %d\n", retval);
if (skb)
dev_kfree_skb_any(skb);
}
return retval;
}
static void rx_complete(struct usb_ep *ep, struct usb_request *req)
{
struct sk_buff *skb = req->context;
struct eth_dev *dev = ep->driver_data;
int status = req->status;
bool queue = 0;
switch (status) {
/* normal completion */
case 0:
skb_put(skb, req->actual);
if (dev->unwrap) {
unsigned long flags;
spin_lock_irqsave(&dev->lock, flags);
if (dev->port_usb) {
status = dev->unwrap(dev->port_usb,
skb,
&dev->rx_frames);
if (status == -EINVAL)
dev->net->stats.rx_errors++;
else if (status == -EOVERFLOW)
dev->net->stats.rx_over_errors++;
} else {
dev_kfree_skb_any(skb);
status = -ENOTCONN;
}
spin_unlock_irqrestore(&dev->lock, flags);
} else {
skb_queue_tail(&dev->rx_frames, skb);
}
if (!status)
queue = 1;
break;
/* software-driven interface shutdown */
case -ECONNRESET: /* unlink */
case -ESHUTDOWN: /* disconnect etc */
VDBG(dev, "rx shutdown, code %d\n", status);
goto quiesce;
/* for hardware automagic (such as pxa) */
case -ECONNABORTED: /* endpoint reset */
DBG(dev, "rx %s reset\n", ep->name);
defer_kevent(dev, WORK_RX_MEMORY);
quiesce:
dev_kfree_skb_any(skb);
goto clean;
/* data overrun */
case -EOVERFLOW:
dev->net->stats.rx_over_errors++;
/* FALLTHROUGH */
default:
queue = 1;
dev_kfree_skb_any(skb);
dev->net->stats.rx_errors++;
DBG(dev, "rx status %d\n", status);
break;
}
clean:
if (queue && dev->rx_frames.qlen <= u_ether_rx_pending_thld) {
if (rx_submit(dev, req, GFP_ATOMIC) < 0) {
spin_lock(&dev->req_lock);
list_add(&req->list, &dev->rx_reqs);
spin_unlock(&dev->req_lock);
}
} else {
/* rx buffers draining is delayed,defer further queuing to wq */
if (queue)
dev->rx_throttle++;
spin_lock(&dev->req_lock);
list_add(&req->list, &dev->rx_reqs);
spin_unlock(&dev->req_lock);
}
if (queue)
queue_work(uether_wq, &dev->rx_work);
}
static int prealloc(struct list_head *list,
struct usb_ep *ep, unsigned n,
bool sg_supported, int hlen)
{
unsigned i;
struct usb_request *req;
bool usb_in;
struct sg_ctx *sg_ctx;
if (!n)
return -ENOMEM;
/* queue/recycle up to N requests */
i = n;
list_for_each_entry(req, list, list) {
if (i-- == 0)
goto extra;
}
if (ep->desc->bEndpointAddress & USB_DIR_IN)
usb_in = true;
else
usb_in = false;
while (i--) {
req = usb_ep_alloc_request(ep, GFP_ATOMIC);
if (!req)
return list_empty(list) ? -ENOMEM : 0;
/* update completion handler */
if (usb_in) {
req->complete = tx_complete;
if (!sg_supported)
goto add_list;
req->sg = kmalloc(
DL_MAX_PKTS_PER_XFER *
sizeof(struct scatterlist),
GFP_ATOMIC);
if (!req->sg)
goto extra;
sg_ctx = kmalloc(sizeof(*sg_ctx), GFP_ATOMIC);
if (!sg_ctx)
goto extra;
req->context = sg_ctx;
req->buf = kzalloc(DL_MAX_PKTS_PER_XFER * hlen,
GFP_ATOMIC);
} else {
req->complete = rx_complete;
}
add_list:
list_add(&req->list, list);
}
return 0;
extra:
/* free extras */
for (;;) {
struct list_head *next;
next = req->list.next;
list_del(&req->list);
if (sg_supported) {
kfree(req->sg);
kfree(req->context);
kfree(req->buf);
}
usb_ep_free_request(ep, req);
if (next == list)
break;
req = container_of(next, struct usb_request, list);
}
return 0;
}
static int alloc_requests(struct eth_dev *dev, struct gether *link, unsigned n)
{
int status;
spin_lock(&dev->req_lock);
status = prealloc(&dev->tx_reqs, link->in_ep, n * tx_qmult,
dev->sg_enabled,
dev->header_len);
if (status < 0)
goto fail;
status = prealloc(&dev->rx_reqs, link->out_ep, n,
dev->sg_enabled,
dev->header_len);
if (status < 0)
goto fail;
goto done;
fail:
DBG(dev, "can't alloc requests\n");
done:
spin_unlock(&dev->req_lock);
return status;
}
static void rx_fill(struct eth_dev *dev, gfp_t gfp_flags)
{
struct usb_request *req;
unsigned long flags;
int req_cnt = 0;
/* fill unused rxq slots with some skb */
spin_lock_irqsave(&dev->req_lock, flags);
while (!list_empty(&dev->rx_reqs)) {
/* break the nexus of continuous completion and re-submission*/
if (++req_cnt > qlen(dev->gadget))
break;
req = container_of(dev->rx_reqs.next,
struct usb_request, list);
list_del_init(&req->list);
spin_unlock_irqrestore(&dev->req_lock, flags);
if (rx_submit(dev, req, gfp_flags) < 0) {
spin_lock_irqsave(&dev->req_lock, flags);
list_add(&req->list, &dev->rx_reqs);
spin_unlock_irqrestore(&dev->req_lock, flags);
defer_kevent(dev, WORK_RX_MEMORY);
return;
}
spin_lock_irqsave(&dev->req_lock, flags);
}
spin_unlock_irqrestore(&dev->req_lock, flags);
}
static __be16 ether_ip_type_trans(struct sk_buff *skb,
struct net_device *dev)
{
__be16 protocol = 0;
skb->dev = dev;
switch (skb->data[0] & 0xf0) {
case 0x40:
protocol = htons(ETH_P_IP);
break;
case 0x60:
protocol = htons(ETH_P_IPV6);
break;
default:
if ((skb->data[0] & 0x40) == 0x00)
protocol = htons(ETH_P_MAP);
else
pr_debug_ratelimited("[%s] L3 protocol decode error: 0x%02x",
dev->name, skb->data[0] & 0xf0);
}
return protocol;
}
static void process_rx_w(struct work_struct *work)
{
struct eth_dev *dev = container_of(work, struct eth_dev, rx_work);
struct sk_buff *skb;
int status = 0;
if (!dev->port_usb)
return;
set_wake_up_idle(true);
while ((skb = skb_dequeue(&dev->rx_frames))) {
if (status < 0
|| ETH_HLEN > skb->len
|| (skb->len > ETH_FRAME_LEN &&
test_bit(RMNET_MODE_LLP_ETH, &dev->flags))) {
#ifdef CONFIG_USB_NCM_SUPPORT_MTU_CHANGE
/*
Need to revisit net->mtu does not include header size incase of changed MTU
*/
if(!strcmp(dev->port_usb->func.name,"ncm")) {
if (status < 0
|| ETH_HLEN > skb->len
|| skb->len > (dev->net->mtu + ETH_HLEN)) {
printk(KERN_ERR "usb: %s drop incase of NCM rx length %d\n",__func__,skb->len);
} else {
printk(KERN_ERR "usb: %s Dont drop incase of NCM rx length %d\n",__func__,skb->len);
goto process_frame;
}
}
#endif
dev->net->stats.rx_errors++;
dev->net->stats.rx_length_errors++;
#ifndef CONFIG_USB_NCM_SUPPORT_MTU_CHANGE
DBG(dev, "rx length %d\n", skb->len);
#else
printk(KERN_ERR "usb: %s Drop rx length %d\n",__func__,skb->len);
#endif
dev_kfree_skb_any(skb);
continue;
}
#ifdef CONFIG_USB_NCM_SUPPORT_MTU_CHANGE
process_frame:
#endif
if (test_bit(RMNET_MODE_LLP_IP, &dev->flags))
skb->protocol = ether_ip_type_trans(skb, dev->net);
else
skb->protocol = eth_type_trans(skb, dev->net);
dev->net->stats.rx_packets++;
dev->net->stats.rx_bytes += skb->len;
status = netif_rx_ni(skb);
}
set_wake_up_idle(false);
if (netif_running(dev->net))
rx_fill(dev, GFP_KERNEL);
}
static void eth_work(struct work_struct *work)
{
struct eth_dev *dev = container_of(work, struct eth_dev, work);
if (test_and_clear_bit(WORK_RX_MEMORY, &dev->todo)) {
if (netif_running(dev->net))
rx_fill(dev, GFP_KERNEL);
}
if (dev->todo)
DBG(dev, "work done, flags = 0x%lx\n", dev->todo);
}
static void tx_complete(struct usb_ep *ep, struct usb_request *req)
{
struct sk_buff *skb;
struct eth_dev *dev;
struct net_device *net;
struct usb_request *new_req;
struct usb_ep *in;
int n = 1;
int length;
int retval;
if (!ep->driver_data) {
usb_ep_free_request(ep, req);
return;
}
dev = ep->driver_data;
net = dev->net;
if (!dev->port_usb) {
usb_ep_free_request(ep, req);
return;
}
switch (req->status) {
default:
dev->net->stats.tx_errors++;
VDBG(dev, "tx err %d\n", req->status);
/* FALLTHROUGH */
case -ECONNRESET: /* unlink */
case -ESHUTDOWN: /* disconnect etc */
break;
case 0:
/*
* Remove the header length, before updating tx_bytes in
* net->stats, since when packet is received from network layer
* this header is not added. So this will now give the exact
* number of bytes sent to the host.
*/
if (req->num_sgs)
req->actual -= (req->num_sgs/2) * dev->header_len;
if (!req->zero)
dev->net->stats.tx_bytes += req->actual-1;
else
dev->net->stats.tx_bytes += req->actual;
}
if (req->num_sgs) {
struct sg_ctx *sg_ctx = req->context;
n = skb_queue_len(&sg_ctx->skbs);
dev->tx_aggr_cnt[n-1]++;
/* sg_ctx is only accessible here, can use lock-free version */
__skb_queue_purge(&sg_ctx->skbs);
}
dev->net->stats.tx_packets += n;
spin_lock(&dev->req_lock);
if (req->num_sgs) {
if (!req->status)
queue_work(uether_tx_wq, &dev->tx_work);
list_add_tail(&req->list, &dev->tx_reqs);
spin_unlock(&dev->req_lock);
return;
}
if (dev->port_usb->multi_pkt_xfer && !req->context) {
dev->no_tx_req_used--;
req->length = 0;
in = dev->port_usb->in_ep;
/* Do not process further if no_interrupt is set */
if (!req->no_interrupt && !list_empty(&dev->tx_reqs)) {
new_req = container_of(dev->tx_reqs.next,
struct usb_request, list);
list_del(&new_req->list);
spin_unlock(&dev->req_lock);
if (new_req->length > 0) {
length = new_req->length;
/* NCM requires no zlp if transfer is
* dwNtbInMaxSize */
if (dev->port_usb->is_fixed &&
length == dev->port_usb->fixed_in_len &&
(length % in->maxpacket) == 0)
new_req->zero = 0;
else
new_req->zero = 1;
/* use zlp framing on tx for strict CDC-Ether
* conformance, though any robust network rx
* path ignores extra padding. and some hardware
* doesn't like to write zlps.
*/
if (new_req->zero && !dev->zlp &&
(length % in->maxpacket) == 0) {
new_req->zero = 0;
length++;
}
/* set when tx completion interrupt needed */
spin_lock(&dev->req_lock);
dev->tx_qlen++;
if (dev->tx_qlen == MAX_TX_REQ_WITH_NO_INT) {
new_req->no_interrupt = 0;
dev->tx_qlen = 0;
} else {
new_req->no_interrupt = 1;
}
spin_unlock(&dev->req_lock);
new_req->length = length;
retval = usb_ep_queue(in, new_req, GFP_ATOMIC);
switch (retval) {
default:
#ifndef CONFIG_USB_NCM_SUPPORT_MTU_CHANGE
DBG(dev, "tx queue err %d\n", retval);
#else
printk(KERN_ERR"usb:%s tx queue err %d\n",__func__, retval);
#endif
new_req->length = 0;
spin_lock(&dev->req_lock);
list_add_tail(&new_req->list,
&dev->tx_reqs);
spin_unlock(&dev->req_lock);
break;
case 0:
spin_lock(&dev->req_lock);
dev->no_tx_req_used++;
spin_unlock(&dev->req_lock);
net->trans_start = jiffies;
}
} else {
spin_lock(&dev->req_lock);
/*
* Put the idle request at the back of the
* queue. The xmit function will put the
* unfinished request at the beginning of the
* queue.
*/
list_add_tail(&new_req->list, &dev->tx_reqs);
spin_unlock(&dev->req_lock);
}
} else {
spin_unlock(&dev->req_lock);
}
} else {
skb = req->context;
/* Is aggregation already enabled and buffers allocated ? */
if (dev->port_usb->multi_pkt_xfer && dev->tx_req_bufsize) {
req->buf = kzalloc(dev->tx_req_bufsize
+ dev->gadget->extra_buf_alloc, GFP_ATOMIC);
req->context = NULL;
} else {
req->buf = NULL;
}
spin_unlock(&dev->req_lock);
dev_kfree_skb_any(skb);
}
/* put the completed req back to tx_reqs tail pool */
spin_lock(&dev->req_lock);
list_add_tail(&req->list, &dev->tx_reqs);
spin_unlock(&dev->req_lock);
if (netif_carrier_ok(dev->net))
netif_wake_queue(dev->net);
}
static inline int is_promisc(u16 cdc_filter)
{
return cdc_filter & USB_CDC_PACKET_TYPE_PROMISCUOUS;
}
static int alloc_tx_buffer(struct eth_dev *dev)
{
struct list_head *act;
struct usb_request *req;
dev->tx_req_bufsize = (dev->dl_max_pkts_per_xfer *
(dev->net->mtu
+ sizeof(struct ethhdr)
/* size of rndis_packet_msg_type */
+ 44
+ 22));
list_for_each(act, &dev->tx_reqs) {
req = container_of(act, struct usb_request, list);
if (!req->buf) {
req->buf = kzalloc(dev->tx_req_bufsize
+ dev->gadget->extra_buf_alloc, GFP_ATOMIC);
if (!req->buf)
goto free_buf;
}
/* req->context is not used for multi_pkt_xfers */
req->context = NULL;
}
return 0;
free_buf:
/* tx_req_bufsize = 0 retries mem alloc on next eth_start_xmit */
dev->tx_req_bufsize = 0;
list_for_each(act, &dev->tx_reqs) {
req = container_of(act, struct usb_request, list);
kfree(req->buf);
req->buf = NULL;
}
return -ENOMEM;
}
static void process_tx_w(struct work_struct *w)
{
struct eth_dev *dev = container_of(w, struct eth_dev, tx_work);
struct net_device *net = NULL;
struct sk_buff *skb = NULL;
struct sg_ctx *sg_ctx;
struct usb_request *req;
struct usb_ep *in = NULL;
int ret, count, hlen = 0, hdr_offset;
uint32_t max_size = 0;
uint32_t max_num_pkts = 1;
unsigned long flags;
bool header_on = false;
int req_cnt = 0;
bool port_usb_active;
spin_lock_irqsave(&dev->lock, flags);
if (dev->port_usb) {
in = dev->port_usb->in_ep;
max_size = dev->dl_max_xfer_size;
max_num_pkts = dev->dl_max_pkts_per_xfer;
if (!max_num_pkts)
max_num_pkts = 1;
hlen = dev->header_len;
net = dev->net;
}
spin_unlock_irqrestore(&dev->lock, flags);
spin_lock_irqsave(&dev->req_lock, flags);
while (in && !list_empty(&dev->tx_reqs) &&
(skb = skb_dequeue(&dev->tx_skb_q))) {
req = list_first_entry(&dev->tx_reqs, struct usb_request,
list);
list_del(&req->list);
spin_unlock_irqrestore(&dev->req_lock, flags);
req->num_sgs = 0;
req->zero = 1;
req->length = 0;
sg_ctx = req->context;
skb_queue_head_init(&sg_ctx->skbs);
sg_init_table(req->sg, DL_MAX_PKTS_PER_XFER);
hdr_offset = 0;
count = 1;
do {
/* spinlock can be avoided if buffer can passed
* wrap callback argument. However, it requires
* changes to all existing clients
*/
spin_lock_irqsave(&dev->lock, flags);
if (!dev->port_usb) {
spin_unlock_irqrestore(&dev->lock, flags);
skb_queue_purge(&sg_ctx->skbs);
kfree(req->sg);
kfree(req->context);
kfree(req->buf);
usb_ep_free_request(in, req);
return;
}
if (hlen && dev->wrap) {
dev->port_usb->header = req->buf + hdr_offset;
skb = dev->wrap(dev->port_usb, skb);
header_on = true;
}
spin_unlock_irqrestore(&dev->lock, flags);
if (header_on) {
sg_set_buf(&req->sg[req->num_sgs],
req->buf + hdr_offset, hlen);
req->num_sgs++;
hdr_offset += hlen;
req->length += hlen;
}
/* skb processing */
sg_set_buf(&req->sg[req->num_sgs], skb->data, skb->len);
req->num_sgs++;
req->length += skb->len;
skb_queue_tail(&sg_ctx->skbs, skb);
skb = skb_dequeue(&dev->tx_skb_q);
if (!skb)
break;
if ((req->length + skb->len + hlen) >= max_size ||
count >= max_num_pkts) {
skb_queue_head(&dev->tx_skb_q, skb);
break;
}
count++;
} while (true);
sg_mark_end(&req->sg[req->num_sgs - 1]);
spin_lock_irqsave(&dev->lock, flags);
if (dev->port_usb) {
in = dev->port_usb->in_ep;
port_usb_active = 1;
} else {
port_usb_active = 0;
}
spin_unlock_irqrestore(&dev->lock, flags);
if (!port_usb_active) {
__skb_queue_purge(&sg_ctx->skbs);
kfree(req->sg);
kfree(req->context);
kfree(req->buf);
usb_ep_free_request(in, req);
return;
}
ret = usb_ep_queue(in, req, GFP_KERNEL);
spin_lock_irqsave(&dev->req_lock, flags);
switch (ret) {
default:
dev->net->stats.tx_dropped +=
skb_queue_len(&sg_ctx->skbs);
__skb_queue_purge(&sg_ctx->skbs);
list_add_tail(&req->list, &dev->tx_reqs);
break;
case 0:
net->trans_start = jiffies;
}
/* break the loop after processing 10 packets
* otherwise wd may kick in
*/
if (ret || ++req_cnt > 10) {
dev->loop_brk_cnt++;
break;
}
if (dev->tx_skb_q.qlen < tx_start_threshold)
netif_start_queue(net);
}
spin_unlock_irqrestore(&dev->req_lock, flags);
}
static netdev_tx_t eth_start_xmit(struct sk_buff *skb,
struct net_device *net)
{
struct eth_dev *dev = netdev_priv(net);
int length = skb->len;
int retval;
struct usb_request *req = NULL;
unsigned long flags;
struct usb_ep *in = NULL;
u16 cdc_filter = 0;
bool multi_pkt_xfer = false;
spin_lock_irqsave(&dev->lock, flags);
if (dev->port_usb) {
in = dev->port_usb->in_ep;
cdc_filter = dev->port_usb->cdc_filter;
multi_pkt_xfer = dev->port_usb->multi_pkt_xfer;
}
spin_unlock_irqrestore(&dev->lock, flags);
if (!in) {
dev_kfree_skb_any(skb);
return NETDEV_TX_OK;
}
/* apply outgoing CDC or RNDIS filters only for ETH packets */
if (!test_bit(RMNET_MODE_LLP_IP, &dev->flags) &&
!is_promisc(cdc_filter)) {
u8 *dest = skb->data;
if (is_multicast_ether_addr(dest)) {
u16 type;
/* ignores USB_CDC_PACKET_TYPE_MULTICAST and host
* SET_ETHERNET_MULTICAST_FILTERS requests
*/
if (is_broadcast_ether_addr(dest))
type = USB_CDC_PACKET_TYPE_BROADCAST;
else
type = USB_CDC_PACKET_TYPE_ALL_MULTICAST;
if (!(cdc_filter & type)) {
dev_kfree_skb_any(skb);
return NETDEV_TX_OK;
}
}
/* ignores USB_CDC_PACKET_TYPE_DIRECTED */
}
dev->tx_pkts_rcvd++;
dev->tx_bytes_rcvd += skb->len;
if (dev->sg_enabled) {
skb_queue_tail(&dev->tx_skb_q, skb);
if (dev->tx_skb_q.qlen > tx_stop_threshold) {
dev->tx_throttle++;
netif_stop_queue(net);
}
queue_work(uether_tx_wq, &dev->tx_work);
return NETDEV_TX_OK;
}
/*
* No buffer copies needed, unless the network stack did it
* or the hardware can't use skb buffers or there's not enough
* enough space for extra headers we need.
*/
spin_lock_irqsave(&dev->lock, flags);
if (dev->wrap && dev->port_usb)
skb = dev->wrap(dev->port_usb, skb);
spin_unlock_irqrestore(&dev->lock, flags);
if (!skb) {
dev->net->stats.tx_dropped++;
/* no error code for dropped packets */
return NETDEV_TX_OK;
}
/* Allocate memory for tx_reqs to support multi packet transfer */
spin_lock_irqsave(&dev->req_lock, flags);
if (multi_pkt_xfer && !dev->tx_req_bufsize) {
retval = alloc_tx_buffer(dev);
if (retval < 0) {
spin_unlock_irqrestore(&dev->req_lock, flags);
return -ENOMEM;
}
}
/*
* this freelist can be empty if an interrupt triggered disconnect()
* and reconfigured the gadget (shutting down this queue) after the
* network stack decided to xmit but before we got the spinlock.
*/
if (list_empty(&dev->tx_reqs)) {
spin_unlock_irqrestore(&dev->req_lock, flags);
return NETDEV_TX_BUSY;
}
req = container_of(dev->tx_reqs.next, struct usb_request, list);
list_del(&req->list);
/* temporarily stop TX queue when the freelist empties */
if (list_empty(&dev->tx_reqs)) {
/*
* tx_throttle gives info about number of times u_ether
* asked network layer to stop queueing packets to it
* when transmit resources are unavailable
*/
dev->tx_throttle++;
netif_stop_queue(net);
}
spin_unlock_irqrestore(&dev->req_lock, flags);
if (multi_pkt_xfer) {
pr_debug("req->length:%d header_len:%u\n"
"skb->len:%d skb->data_len:%d\n",
req->length, dev->header_len,
skb->len, skb->data_len);
/* Add RNDIS Header */
memcpy(req->buf + req->length, dev->port_usb->header,
dev->header_len);
/* Increment req length by header size */
req->length += dev->header_len;
/* Copy received IP data from SKB */
memcpy(req->buf + req->length, skb->data, skb->len);
/* Increment req length by skb data length */
req->length += skb->len;
length = req->length;
dev_kfree_skb_any(skb);
spin_lock_irqsave(&dev->req_lock, flags);
dev->tx_skb_hold_count++;
if (dev->tx_skb_hold_count < dev->dl_max_pkts_per_xfer) {
/*
* should allow aggregation only, if the number of
* requests queued more than the tx requests that can
* be queued with no interrupt flag set sequentially.
* Otherwise, packets may be blocked forever.
*/
if (dev->no_tx_req_used > MAX_TX_REQ_WITH_NO_INT) {
list_add(&req->list, &dev->tx_reqs);
spin_unlock_irqrestore(&dev->req_lock, flags);
goto success;
}
}
dev->no_tx_req_used++;
dev->tx_skb_hold_count = 0;
spin_unlock_irqrestore(&dev->req_lock, flags);
} else {
length = skb->len;
req->buf = skb->data;
req->context = skb;
}
/* NCM requires no zlp if transfer is dwNtbInMaxSize */
if (dev->port_usb->is_fixed &&
length == dev->port_usb->fixed_in_len &&
(length % in->maxpacket) == 0)
req->zero = 0;
else
req->zero = 1;
/* use zlp framing on tx for strict CDC-Ether conformance,
* though any robust network rx path ignores extra padding.
* and some hardware doesn't like to write zlps.
*/
if (req->zero && !dev->zlp && (length % in->maxpacket) == 0) {
req->zero = 0;
length++;
}
req->length = length;
/* throttle high/super speed IRQ rate back slightly */
if (gadget_is_dualspeed(dev->gadget) &&
(dev->gadget->speed == USB_SPEED_HIGH ||
dev->gadget->speed == USB_SPEED_SUPER)) {
spin_lock_irqsave(&dev->req_lock, flags);
dev->tx_qlen++;
if (dev->tx_qlen == MAX_TX_REQ_WITH_NO_INT) {
req->no_interrupt = 0;
dev->tx_qlen = 0;
} else {
req->no_interrupt = 1;
}
spin_unlock_irqrestore(&dev->req_lock, flags);
} else {
req->no_interrupt = 0;
}
retval = usb_ep_queue(in, req, GFP_ATOMIC);
switch (retval) {
default:
DBG(dev, "tx queue err %d\n", retval);
break;
case 0:
net->trans_start = jiffies;
}
if (retval) {
if (!multi_pkt_xfer)
dev_kfree_skb_any(skb);
else
req->length = 0;
dev->net->stats.tx_dropped++;
spin_lock_irqsave(&dev->req_lock, flags);
if (list_empty(&dev->tx_reqs))
netif_start_queue(net);
list_add_tail(&req->list, &dev->tx_reqs);
spin_unlock_irqrestore(&dev->req_lock, flags);
}
success:
return NETDEV_TX_OK;
}
/*-------------------------------------------------------------------------*/
static void eth_start(struct eth_dev *dev, gfp_t gfp_flags)
{
DBG(dev, "%s\n", __func__);
/* fill the rx queue */
rx_fill(dev, gfp_flags);
/* and open the tx floodgates */
dev->tx_qlen = 0;
netif_wake_queue(dev->net);
}
static int eth_open(struct net_device *net)
{
struct eth_dev *dev = netdev_priv(net);
struct gether *link;
bool wait_for_rx_trigger;
int i;
DBG(dev, "%s\n", __func__);
spin_lock_irq(&dev->lock);
link = dev->port_usb;
spin_unlock_irq(&dev->lock);
wait_for_rx_trigger = dev->rx_trigger_enabled && link &&
!link->rx_triggered;
if (netif_carrier_ok(dev->net) && !wait_for_rx_trigger)
eth_start(dev, GFP_KERNEL);
dev->state = ETH_START;
for_each_online_cpu(i)
cpufreq_update_policy(i);
spin_lock_irq(&dev->lock);
if (link && link->open)
link->open(link);
spin_unlock_irq(&dev->lock);
return 0;
}
static int eth_stop(struct net_device *net)
{
struct eth_dev *dev = netdev_priv(net);
unsigned long flags;
int i;
enum ifc_state prev_state;
VDBG(dev, "%s\n", __func__);
netif_stop_queue(net);
DBG(dev, "stop stats: rx/tx %ld/%ld, errs %ld/%ld\n",
dev->net->stats.rx_packets, dev->net->stats.tx_packets,
dev->net->stats.rx_errors, dev->net->stats.tx_errors
);
/* ensure there are no more active requests */
spin_lock_irqsave(&dev->lock, flags);
if (dev->port_usb) {
struct gether *link = dev->port_usb;
const struct usb_endpoint_descriptor *in;
const struct usb_endpoint_descriptor *out;
if (link->close)
link->close(link);
/* NOTE: we have no abort-queue primitive we could use
* to cancel all pending I/O. Instead, we disable then
* reenable the endpoints ... this idiom may leave toggle
* wrong, but that's a self-correcting error.
*
* REVISIT: we *COULD* just let the transfers complete at
* their own pace; the network stack can handle old packets.
* For the moment we leave this here, since it works.
*/
in = link->in_ep->desc;
out = link->out_ep->desc;
usb_ep_disable(link->in_ep);
usb_ep_disable(link->out_ep);
if (netif_carrier_ok(net)) {
if (config_ep_by_speed(dev->gadget, &link->func,
link->in_ep) ||
config_ep_by_speed(dev->gadget, &link->func,
link->out_ep)) {
link->in_ep->desc = NULL;
link->out_ep->desc = NULL;
return -EINVAL;
}
DBG(dev, "host still using in/out endpoints\n");
link->in_ep->desc = in;
link->out_ep->desc = out;
usb_ep_enable(link->in_ep);
usb_ep_enable(link->out_ep);
}
}
spin_unlock_irqrestore(&dev->lock, flags);
prev_state = dev->state;
dev->state = ETH_STOP;
/* if previous state is eth_start, update cpufreq policy to normal */
if (prev_state == ETH_START)
for_each_online_cpu(i)
cpufreq_update_policy(i);
return 0;
}
/*-------------------------------------------------------------------------*/
#ifndef CONFIG_USB_ANDROID_SAMSUNG_COMPOSITE
static u8 host_ethaddr[ETH_ALEN];
#endif
/* initial value, changed by "ifconfig usb0 hw ether xx:xx:xx:xx:xx:xx" */
static char *dev_addr;
module_param(dev_addr, charp, S_IRUGO);
MODULE_PARM_DESC(dev_addr, "Device Ethernet Address");
/* this address is invisible to ifconfig */
static char *host_addr;
module_param(host_addr, charp, S_IRUGO);
MODULE_PARM_DESC(host_addr, "Host Ethernet Address");
static int get_ether_addr(const char *str, u8 *dev_addr)
{
if (str) {
unsigned i;
for (i = 0; i < 6; i++) {
unsigned char num;
if ((*str == '.') || (*str == ':'))
str++;
num = hex_to_bin(*str++) << 4;
num |= hex_to_bin(*str++);
dev_addr [i] = num;
}
if (is_valid_ether_addr(dev_addr))
return 0;
}
eth_random_addr(dev_addr);
return 1;
}
static int ether_ioctl(struct net_device *, struct ifreq *, int);
#ifndef CONFIG_USB_ANDROID_SAMSUNG_COMPOSITE
static int get_host_ether_addr(u8 *str, u8 *dev_addr)
{
memcpy(dev_addr, str, ETH_ALEN);
if (is_valid_ether_addr(dev_addr))
return 0;
random_ether_addr(dev_addr);
memcpy(str, dev_addr, ETH_ALEN);
return 1;
}
#endif
static const struct net_device_ops eth_netdev_ops = {
.ndo_open = eth_open,
.ndo_stop = eth_stop,
.ndo_start_xmit = eth_start_xmit,
.ndo_do_ioctl = ether_ioctl,
.ndo_change_mtu = ueth_change_mtu,
.ndo_set_mac_address = eth_mac_addr,
.ndo_validate_addr = eth_validate_addr,
};
static const struct net_device_ops eth_netdev_ops_ip = {
.ndo_open = eth_open,
.ndo_stop = eth_stop,
.ndo_start_xmit = eth_start_xmit,
.ndo_do_ioctl = ether_ioctl,
.ndo_change_mtu = ueth_change_mtu_ip,
.ndo_set_mac_address = 0,
.ndo_validate_addr = 0,
};
static int rmnet_ioctl_extended(struct net_device *dev, struct ifreq *ifr)
{
struct rmnet_ioctl_extended_s ext_cmd;
struct eth_dev *eth_dev = netdev_priv(dev);
int rc = 0;
rc = copy_from_user(&ext_cmd, ifr->ifr_ifru.ifru_data,
sizeof(struct rmnet_ioctl_extended_s));
if (rc) {
DBG("%s(): copy_from_user() failed\n", __func__);
return rc;
}
switch (ext_cmd.extended_ioctl) {
case RMNET_IOCTL_GET_SUPPORTED_FEATURES:
ext_cmd.u.data = 0;
break;
case RMNET_IOCTL_SET_MRU:
if (netif_running(dev))
return -EBUSY;
/* 16K max */
if ((size_t)ext_cmd.u.data > 0x4000)
return -EINVAL;
if (eth_dev->port_usb) {
eth_dev->port_usb->is_fixed = true;
eth_dev->port_usb->fixed_out_len =
(size_t) ext_cmd.u.data;
DBG("[%s] rmnet_ioctl(): SET MRU to %u\n", dev->name,
eth_dev->mru);
} else {
pr_err("[%s]: %s: SET MRU failed. Cable disconnected\n",
dev->name, __func__);
return -ENODEV;
}
break;
case RMNET_IOCTL_GET_MRU:
if (eth_dev->port_usb) {
ext_cmd.u.data = eth_dev->port_usb->is_fixed ?
eth_dev->port_usb->fixed_out_len :
dev->mtu;
} else {
pr_err("[%s]: %s: GET MRU failed. Cable disconnected\n",
dev->name, __func__);
return -ENODEV;
}
break;
case RMNET_IOCTL_GET_DRIVER_NAME:
strlcpy(ext_cmd.u.if_name, dev->name,
sizeof(ext_cmd.u.if_name));
break;
default:
break;
}
rc = copy_to_user(ifr->ifr_ifru.ifru_data, &ext_cmd,
sizeof(struct rmnet_ioctl_extended_s));
if (rc)
DBG("%s(): copy_to_user() failed\n", __func__);
return rc;
}
static int ether_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
{
struct eth_dev *eth_dev = netdev_priv(dev);
void __user *addr = (void __user *) ifr->ifr_ifru.ifru_data;
int prev_mtu = dev->mtu;
u32 state, old_opmode;
int rc = -EFAULT;
old_opmode = eth_dev->flags;
/* Process IOCTL command */
switch (cmd) {
case RMNET_IOCTL_SET_LLP_ETHERNET: /*Set Ethernet protocol*/
/* Perform Ethernet config only if in IP mode currently*/
if (test_bit(RMNET_MODE_LLP_IP, &eth_dev->flags)) {
ether_setup(dev);
dev->mtu = prev_mtu;
dev->netdev_ops = &eth_netdev_ops;
clear_bit(RMNET_MODE_LLP_IP, &eth_dev->flags);
set_bit(RMNET_MODE_LLP_ETH, &eth_dev->flags);
DBG(eth_dev, "[%s] ioctl(): set Ethernet proto mode\n",
dev->name);
}
if (test_bit(RMNET_MODE_LLP_ETH, &eth_dev->flags))
rc = 0;
break;
case RMNET_IOCTL_SET_LLP_IP: /* Set RAWIP protocol*/
/* Perform IP config only if in Ethernet mode currently*/
if (test_bit(RMNET_MODE_LLP_ETH, &eth_dev->flags)) {
/* Undo config done in ether_setup() */
dev->header_ops = 0; /* No header */
dev->type = ARPHRD_RAWIP;
dev->hard_header_len = 0;
dev->mtu = prev_mtu;
dev->addr_len = 0;
dev->flags &= ~(IFF_BROADCAST | IFF_MULTICAST);
dev->netdev_ops = &eth_netdev_ops_ip;
clear_bit(RMNET_MODE_LLP_ETH, &eth_dev->flags);
set_bit(RMNET_MODE_LLP_IP, &eth_dev->flags);
DBG(eth_dev, "[%s] ioctl(): set IP protocol mode\n",
dev->name);
}
if (test_bit(RMNET_MODE_LLP_IP, &eth_dev->flags))
rc = 0;
break;
case RMNET_IOCTL_GET_LLP: /* Get link protocol state */
state = eth_dev->flags & (RMNET_MODE_LLP_ETH
| RMNET_MODE_LLP_IP);
if (copy_to_user(addr, &state, sizeof(state)))
break;
rc = 0;
break;
case RMNET_IOCTL_SET_RX_HEADROOM: /* Set RX headroom */
if (copy_from_user(&eth_dev->rx_needed_headroom, addr,
sizeof(eth_dev->rx_needed_headroom)))
break;
DBG(eth_dev, "[%s] ioctl(): set RX HEADROOM: %x\n",
dev->name, eth_dev->rx_needed_headroom);
rc = 0;
break;
case RMNET_IOCTL_EXTENDED:
rc = rmnet_ioctl_extended(dev, ifr);
break;
default:
pr_err("[%s] error: ioctl called for unsupported cmd[%d]",
dev->name, cmd);
rc = -EINVAL;
}
DBG(eth_dev, "[%s] %s: cmd=0x%x opmode old=0x%08x new=0x%08lx\n",
dev->name, __func__, cmd, old_opmode, eth_dev->flags);
return rc;
}
static struct device_type gadget_type = {
.name = "gadget",
};
static int gether_cpufreq_notifier_cb(struct notifier_block *nfb,
unsigned long event, void *data)
{
struct cpufreq_policy *policy = data;
unsigned int cpu = policy->cpu;
struct eth_dev *dev = container_of(nfb, struct eth_dev,
cpufreq_notifier);
if (!min_cpu_freq)
return NOTIFY_OK;
switch (event) {
case CPUFREQ_ADJUST:
pr_debug("%s: cpu:%u\n", __func__, cpu);
if (dev->state == ETH_START)
cpufreq_verify_within_limits(policy,
min_cpu_freq, UINT_MAX);
break;
}
return NOTIFY_OK;
}
static void update_cpu_policy_w(struct work_struct *work)
{
int i;
for_each_online_cpu(i)
cpufreq_update_policy(i);
}
/**
* gether_setup_name - initialize one ethernet-over-usb link
* @g: gadget to associated with these links
* @ethaddr: NULL, or a buffer in which the ethernet address of the
* host side of the link is recorded
* @netname: name for network device (for example, "usb")
* Context: may sleep
*
* This sets up the single network link that may be exported by a
* gadget driver using this framework. The link layer addresses are
* set up using module parameters.
*
* Returns negative errno, or zero on success
*/
struct eth_dev *gether_setup_name(struct usb_gadget *g, u8 ethaddr[ETH_ALEN],
const char *netname)
{
struct eth_dev *dev;
struct net_device *net;
int status;
net = alloc_etherdev(sizeof *dev);
if (!net)
return ERR_PTR(-ENOMEM);
dev = netdev_priv(net);
spin_lock_init(&dev->lock);
spin_lock_init(&dev->req_lock);
INIT_WORK(&dev->work, eth_work);
INIT_WORK(&dev->rx_work, process_rx_w);
INIT_WORK(&dev->tx_work, process_tx_w);
INIT_LIST_HEAD(&dev->tx_reqs);
INIT_LIST_HEAD(&dev->rx_reqs);
INIT_WORK(&dev->cpu_policy_w, update_cpu_policy_w);
skb_queue_head_init(&dev->rx_frames);
skb_queue_head_init(&dev->tx_skb_q);
/* network device setup */
dev->net = net;
snprintf(net->name, sizeof(net->name), "%s%%d", netname);
if (get_ether_addr(dev_addr, net->dev_addr))
dev_warn(&g->dev,
"using random %s ethernet address\n", "self");
#ifdef CONFIG_USB_ANDROID_SAMSUNG_COMPOSITE
if (ethaddr != NULL) {
memcpy(dev->host_mac, ethaddr, ETH_ALEN);
printk(KERN_DEBUG "usb: set unique host mac\n");
}
#else
if (get_host_ether_addr(host_ethaddr, dev->host_mac))
dev_warn(&g->dev, "using random %s ethernet address\n", "host");
else
dev_warn(&g->dev, "using previous %s ethernet address\n", "host");
if (ethaddr)
memcpy(ethaddr, dev->host_mac, ETH_ALEN);
#endif
net->netdev_ops = &eth_netdev_ops;
SET_ETHTOOL_OPS(net, &ops);
/* set operation mode to eth by default */
set_bit(RMNET_MODE_LLP_ETH, &dev->flags);
dev->gadget = g;
SET_NETDEV_DEV(net, &g->dev);
SET_NETDEV_DEVTYPE(net, &gadget_type);
status = register_netdev(net);
if (status < 0) {
dev_dbg(&g->dev, "register_netdev failed, %d\n", status);
free_netdev(net);
dev = ERR_PTR(status);
} else {
INFO(dev, "MAC %pM\n", net->dev_addr);
INFO(dev, "HOST MAC %pM\n", dev->host_mac);
/* two kinds of host-initiated state changes:
* - iff DATA transfer is active, carrier is "on"
* - tx queueing enabled if open *and* carrier is "on"
*/
netif_carrier_off(net);
uether_debugfs_init(dev, netname);
dev->cpufreq_notifier.notifier_call =
gether_cpufreq_notifier_cb;
cpufreq_register_notifier(&dev->cpufreq_notifier,
CPUFREQ_POLICY_NOTIFIER);
}
return dev;
}
/**
* gether_cleanup - remove Ethernet-over-USB device
* Context: may sleep
*
* This is called to free all resources allocated by @gether_setup().
*/
void gether_cleanup(struct eth_dev *dev)
{
int i;
if (!dev)
return;
/* make sure cpu boost is set to normal again */
dev->state = ETH_UNDEFINED;
cancel_work_sync(&dev->cpu_policy_w);
for_each_online_cpu(i)
cpufreq_update_policy(i);
cpufreq_unregister_notifier(&dev->cpufreq_notifier,
CPUFREQ_POLICY_NOTIFIER);
uether_debugfs_exit(dev);
unregister_netdev(dev->net);
flush_work(&dev->work);
free_netdev(dev->net);
}
void gether_update_dl_max_xfer_size(struct gether *link, uint32_t s)
{
struct eth_dev *dev = link->ioport;
unsigned long flags;
spin_lock_irqsave(&dev->lock, flags);
dev->dl_max_xfer_size = s;
spin_unlock_irqrestore(&dev->lock, flags);
}
void gether_enable_sg(struct gether *link, bool enable)
{
struct eth_dev *dev = link->ioport;
dev->sg_enabled = enable ? dev->gadget->sg_supported : false;
}
void gether_update_dl_max_pkts_per_xfer(struct gether *link, uint32_t n)
{
struct eth_dev *dev = link->ioport;
unsigned long flags;
if (n > DL_MAX_PKTS_PER_XFER)
n = DL_MAX_PKTS_PER_XFER;
spin_lock_irqsave(&dev->lock, flags);
dev->dl_max_pkts_per_xfer = n;
spin_unlock_irqrestore(&dev->lock, flags);
}
/**
* gether_connect - notify network layer that USB link is active
* @link: the USB link, set up with endpoints, descriptors matching
* current device speed, and any framing wrapper(s) set up.
* Context: irqs blocked
*
* This is called to activate endpoints and let the network layer know
* the connection is active ("carrier detect"). It may cause the I/O
* queues to open and start letting network packets flow, but will in
* any case activate the endpoints so that they respond properly to the
* USB host.
*
* Verify net_device pointer returned using IS_ERR(). If it doesn't
* indicate some error code (negative errno), ep->driver_data values
* have been overwritten.
*/
struct net_device *gether_connect(struct gether *link)
{
struct eth_dev *dev = link->ioport;
int result = 0;
bool wait_for_rx_trigger;
if (!dev)
return ERR_PTR(-EINVAL);
/* if scatter/gather or sg is supported then headers can be part of
* req->buf which is allocated later
*/
if (!dev->sg_enabled) {
link->header = kzalloc(sizeof(struct rndis_packet_msg_type),
GFP_ATOMIC);
if (!link->header) {
pr_err("RNDIS header memory allocation failed.\n");
result = -ENOMEM;
goto fail;
}
}
link->in_ep->driver_data = dev;
result = usb_ep_enable(link->in_ep);
if (result != 0) {
DBG(dev, "enable %s --> %d\n",
link->in_ep->name, result);
goto fail0;
}
link->out_ep->driver_data = dev;
result = usb_ep_enable(link->out_ep);
if (result != 0) {
DBG(dev, "enable %s --> %d\n",
link->out_ep->name, result);
goto fail1;
}
dev->header_len = link->header_len;
dev->unwrap = link->unwrap;
dev->wrap = link->wrap;
dev->ul_max_pkts_per_xfer = link->ul_max_pkts_per_xfer;
dev->dl_max_pkts_per_xfer = link->dl_max_pkts_per_xfer;
dev->dl_max_xfer_size = link->dl_max_xfer_size;
dev->rx_trigger_enabled = link->rx_trigger_enabled;
if (result == 0)
result = alloc_requests(dev, link, qlen(dev->gadget));
if (result == 0) {
dev->zlp = link->is_zlp_ok;
DBG(dev, "qlen %d\n", qlen(dev->gadget));
spin_lock(&dev->lock);
dev->tx_skb_hold_count = 0;
dev->no_tx_req_used = 0;
dev->tx_req_bufsize = 0;
dev->port_usb = link;
if (netif_running(dev->net)) {
if (link->open)
link->open(link);
} else {
if (link->close)
link->close(link);
}
spin_unlock(&dev->lock);
netif_carrier_on(dev->net);
wait_for_rx_trigger = dev->rx_trigger_enabled &&
!link->rx_triggered;
if (netif_running(dev->net) && !wait_for_rx_trigger)
eth_start(dev, GFP_ATOMIC);
/* on error, disable any endpoints */
} else {
(void) usb_ep_disable(link->out_ep);
fail1:
(void) usb_ep_disable(link->in_ep);
}
/* caller is responsible for cleanup on error */
if (result < 0) {
fail0:
kfree(link->header);
fail:
return ERR_PTR(result);
}
return dev->net;
}
/**
* gether_disconnect - notify network layer that USB link is inactive
* @link: the USB link, on which gether_connect() was called
* Context: irqs blocked
*
* This is called to deactivate endpoints and let the network layer know
* the connection went inactive ("no carrier").
*
* On return, the state is as if gether_connect() had never been called.
* The endpoints are inactive, and accordingly without active USB I/O.
* Pointers to endpoint descriptors and endpoint private data are nulled.
*/
void gether_disconnect(struct gether *link)
{
struct eth_dev *dev = link->ioport;
struct usb_request *req;
struct sk_buff *skb;
if (!dev)
return;
DBG(dev, "%s\n", __func__);
dev->state = ETH_UNDEFINED;
queue_work(uether_wq, &dev->cpu_policy_w);
netif_stop_queue(dev->net);
netif_carrier_off(dev->net);
/* disable endpoints, forcing (synchronous) completion
* of all pending i/o. then free the request objects
* and forget about the endpoints.
*/
usb_ep_disable(link->in_ep);
spin_lock(&dev->req_lock);
while (!list_empty(&dev->tx_reqs)) {
req = container_of(dev->tx_reqs.next,
struct usb_request, list);
list_del(&req->list);
spin_unlock(&dev->req_lock);
if (link->multi_pkt_xfer ||
dev->sg_enabled) {
kfree(req->buf);
req->buf = NULL;
}
if (dev->sg_enabled) {
kfree(req->context);
kfree(req->sg);
}
usb_ep_free_request(link->in_ep, req);
spin_lock(&dev->req_lock);
}
/* Free rndis header buffer memory */
if (!dev->sg_enabled)
kfree(link->header);
link->header = NULL;
spin_unlock(&dev->req_lock);
skb_queue_purge(&dev->tx_skb_q);
link->in_ep->driver_data = NULL;
link->in_ep->desc = NULL;
usb_ep_disable(link->out_ep);
spin_lock(&dev->req_lock);
while (!list_empty(&dev->rx_reqs)) {
req = container_of(dev->rx_reqs.next,
struct usb_request, list);
list_del(&req->list);
spin_unlock(&dev->req_lock);
usb_ep_free_request(link->out_ep, req);
spin_lock(&dev->req_lock);
}
spin_unlock(&dev->req_lock);
spin_lock(&dev->rx_frames.lock);
while ((skb = __skb_dequeue(&dev->rx_frames)))
dev_kfree_skb_any(skb);
spin_unlock(&dev->rx_frames.lock);
link->out_ep->driver_data = NULL;
link->out_ep->desc = NULL;
pr_debug("%s(): tx_throttle count= %lu", __func__,
dev->tx_throttle);
/* reset tx_throttle count */
dev->tx_throttle = 0;
dev->rx_throttle = 0;
/* finish forgetting about this USB link episode */
dev->header_len = 0;
dev->unwrap = NULL;
dev->wrap = NULL;
dev->rx_trigger_enabled = 0;
spin_lock(&dev->lock);
dev->port_usb = NULL;
spin_unlock(&dev->lock);
}
int gether_up(struct gether *link)
{
struct eth_dev *dev = link->ioport;
if (dev && netif_carrier_ok(dev->net))
eth_start(dev, GFP_KERNEL);
return 0;
}
static int uether_stat_show(struct seq_file *s, void *unused)
{
struct eth_dev *dev = s->private;
int ret = 0;
int i;
if (dev) {
seq_printf(s, "rx_throttle = %lu\n",
dev->rx_throttle);
seq_printf(s, "tx_qlen=%u tx_throttle = %lu\n aggr count:",
dev->tx_skb_q.qlen,
dev->tx_throttle);
for (i = 0; i < DL_MAX_PKTS_PER_XFER; i++)
seq_printf(s, "%u\t", dev->tx_aggr_cnt[i]);
seq_printf(s, "\nloop_brk_cnt = %u\n tx_pkts_rcvd=%u\n",
dev->loop_brk_cnt,
dev->tx_pkts_rcvd);
}
return ret;
}
static int uether_open(struct inode *inode, struct file *file)
{
return single_open(file, uether_stat_show, inode->i_private);
}
static ssize_t uether_stat_reset(struct file *file,
const char __user *ubuf, size_t count, loff_t *ppos)
{
struct seq_file *s = file->private_data;
struct eth_dev *dev = s->private;
unsigned long flags;
spin_lock_irqsave(&dev->lock, flags);
/* Reset tx_throttle */
dev->tx_throttle = 0;
dev->rx_throttle = 0;
spin_unlock_irqrestore(&dev->lock, flags);
return count;
}
const struct file_operations uether_stats_ops = {
.open = uether_open,
.read = seq_read,
.write = uether_stat_reset,
};
static int uether_bytes_rcvd_show(struct seq_file *s, void *unused)
{
struct eth_dev *dev = s->private;
if (dev)
seq_printf(s, "%u\n", dev->tx_bytes_rcvd);
return 0;
}
static int uether_bytes_rcvd_open(struct inode *inode, struct file *file)
{
return single_open(file, uether_bytes_rcvd_show, inode->i_private);
}
static ssize_t uether_bytes_rcvd_reset(struct file *file,
const char __user *ubuf, size_t count, loff_t *ppos)
{
struct seq_file *s = file->private_data;
struct eth_dev *dev = s->private;
dev->tx_bytes_rcvd = 0;
return count;
}
const struct file_operations uether_bytes_rcvd_ops = {
.open = uether_bytes_rcvd_open,
.read = seq_read,
.write = uether_bytes_rcvd_reset,
};
static void uether_debugfs_init(struct eth_dev *dev, const char *name)
{
struct dentry *uether_dent;
struct dentry *uether_dfile;
uether_dent = debugfs_create_dir(name, 0);
if (IS_ERR(uether_dent))
return;
dev->uether_dent = uether_dent;
uether_dfile = debugfs_create_file("status", S_IRUGO | S_IWUSR,
uether_dent, dev, &uether_stats_ops);
if (!uether_dfile || IS_ERR(uether_dfile))
debugfs_remove(uether_dent);
uether_dfile = debugfs_create_file("tx_bytes_rcvd", S_IRUGO | S_IWUSR,
uether_dent, dev, &uether_bytes_rcvd_ops);
if (!uether_dfile || IS_ERR(uether_dfile))
debugfs_remove_recursive(uether_dent);
}
static void uether_debugfs_exit(struct eth_dev *dev)
{
debugfs_remove_recursive(dev->uether_dent);
}
static int __init gether_init(void)
{
uether_wq = create_singlethread_workqueue("uether");
if (!uether_wq) {
pr_err("%s: Unable to create workqueue: uether\n", __func__);
return -ENOMEM;
}
uether_tx_wq = alloc_workqueue("uether_tx",
WQ_CPU_INTENSIVE | WQ_UNBOUND, 1);
if (!uether_tx_wq) {
destroy_workqueue(uether_wq);
pr_err("%s: Unable to create workqueue: uether\n", __func__);
return -ENOMEM;
}
return 0;
}
module_init(gether_init);
static void __exit gether_exit(void)
{
destroy_workqueue(uether_tx_wq);
destroy_workqueue(uether_wq);
}
module_exit(gether_exit);
MODULE_DESCRIPTION("ethernet over USB driver");
MODULE_LICENSE("GPL v2");