android_kernel_samsung_msm8976/fs/sync.c

627 lines
17 KiB
C

/*
* High-level sync()-related operations
*/
#include <linux/kernel.h>
#include <linux/file.h>
#include <linux/fs.h>
#include <linux/slab.h>
#include <linux/export.h>
#include <linux/namei.h>
#include <linux/sched.h>
#include <linux/writeback.h>
#include <linux/syscalls.h>
#include <linux/linkage.h>
#include <linux/pagemap.h>
#include <linux/quotaops.h>
#include <linux/backing-dev.h>
#include "internal.h"
#define VALID_FLAGS (SYNC_FILE_RANGE_WAIT_BEFORE|SYNC_FILE_RANGE_WRITE| \
SYNC_FILE_RANGE_WAIT_AFTER)
/* Interruptible sync for Samsung Mobile Device */
#ifdef CONFIG_INTERRUPTIBLE_SYNC
#include <linux/workqueue.h>
#include <linux/suspend.h>
#include <linux/delay.h>
//#define CONFIG_INTR_SYNC_DEBUG
#ifdef CONFIG_INTR_SYNC_DEBUG
#define dbg_print printk
#else
#define dbg_print(...)
#endif
enum {
INTR_SYNC_STATE_IDLE = 0,
INTR_SYNC_STATE_QUEUED,
INTR_SYNC_STATE_RUNNING,
INTR_SYNC_STATE_MAX
};
struct interruptible_sync_work {
int id;
int ret;
unsigned int waiter;
unsigned int state;
unsigned long version;
spinlock_t lock;
struct completion done;
struct work_struct work;
};
/* Initially, intr_sync_work has zero pending */
static struct interruptible_sync_work intr_sync_work[2];
/* Last work start time */
static atomic_t running_work_idx;
/* intr_sync_wq will be created when intr_sync() is called at first time.
* And it is alive till system shutdown */
static struct workqueue_struct *intr_sync_wq;
/* It prevents double allocation of intr_sync_wq */
static DEFINE_MUTEX(intr_sync_wq_lock);
static inline struct interruptible_sync_work *INTR_SYNC_WORK(struct work_struct *work)
{
return container_of(work, struct interruptible_sync_work, work);
}
static void do_intr_sync(struct work_struct *work)
{
struct interruptible_sync_work *sync_work = INTR_SYNC_WORK(work);
int ret = 0;
unsigned int waiter;
spin_lock(&sync_work->lock);
atomic_set(&running_work_idx, sync_work->id);
sync_work->state = INTR_SYNC_STATE_RUNNING;
waiter = sync_work->waiter;
spin_unlock(&sync_work->lock);
dbg_print("\nintr_sync: %s: call sys_sync on work[%d]-%ld\n",
__func__, sync_work->id, sync_work->version);
/* if no one waits, do not call sync() */
if (waiter) {
ret = sys_sync();
dbg_print("\nintr_sync: %s: done sys_sync on work[%d]-%ld\n",
__func__, sync_work->id, sync_work->version);
} else {
dbg_print("\nintr_sync: %s: cancel,no_wait on work[%d]-%ld\n",
__func__, sync_work->id, sync_work->version);
}
spin_lock(&sync_work->lock);
sync_work->version++;
sync_work->ret = ret;
sync_work->state = INTR_SYNC_STATE_IDLE;
complete_all(&sync_work->done);
spin_unlock(&sync_work->lock);
}
/* wakeup functions that depend on PM facilities
*
* struct intr_wakeup_data : wrapper structure for variables for PM
* each thread has own instance of it
* __prepare_wakeup_event() : prepare and check intr_wakeup_data
* __check_wakeup_event() : check wakeup-event with intr_wakeup_data
*/
struct intr_wakeup_data {
unsigned int cnt;
};
static inline int __prepare_wakeup_event(struct intr_wakeup_data *wd)
{
if (pm_get_wakeup_count(&wd->cnt, false))
return 0;
pr_info("intr_sync: detected wakeup events before sync\n");
pm_print_active_wakeup_sources();
return -EBUSY;
}
static inline int __check_wakeup_event(struct intr_wakeup_data *wd)
{
unsigned int cnt, no_inpr;
no_inpr = pm_get_wakeup_count(&cnt, false);
if (no_inpr && (cnt == wd->cnt))
return 0;
pr_info("intr_sync: detected wakeup events(no_inpr: %u cnt: %u->%u)\n",
no_inpr, wd->cnt, cnt);
pm_print_active_wakeup_sources();
return -EBUSY;
}
/* Interruptible Sync
*
* intr_sync() is same function as sys_sync() except that it can wakeup.
* It's possible because of inter_syncd workqueue.
*
* If system gets wakeup event while sync_work is running,
* just return -EBUSY, otherwise 0.
*
* If intr_sync() is called again while sync_work is running, it will enqueue
* idle sync_work to work_queue and wait the completion of it.
* If there is not idle sync_work but queued one, it just increases waiter by 1,
* and waits the completion of queued sync_work.
*
* If you want to know returned value of sys_sync(),
* you can get it from the argument, sync_ret
*/
int intr_sync(int *sync_ret)
{
int ret;
enqueue_sync_wait:
/* If the workqueue exists, try to enqueue work and wait */
if (likely(intr_sync_wq)) {
struct interruptible_sync_work *sync_work;
struct intr_wakeup_data wd;
int work_idx;
int work_ver;
find_idle:
work_idx = !atomic_read(&running_work_idx);
sync_work = &intr_sync_work[work_idx];
/* Prepare intr_wakeup_data and check wakeup event:
* If a wakeup-event is detected, wake up right now
*/
if (__prepare_wakeup_event(&wd)) {
dbg_print("intr_sync: detect wakeup event "
"before waiting work[%d]\n", work_idx);
return -EBUSY;
}
dbg_print("\nintr_sync: try to wait work[%d]\n", work_idx);
spin_lock(&sync_work->lock);
work_ver = sync_work->version;
if (sync_work->state == INTR_SYNC_STATE_RUNNING) {
spin_unlock(&sync_work->lock);
dbg_print("intr_sync: work[%d] is already running, "
"find idle work\n", work_idx);
goto find_idle;
}
sync_work->waiter++;
if (sync_work->state == INTR_SYNC_STATE_IDLE) {
dbg_print("intr_sync: enqueue work[%d]\n", work_idx);
sync_work->state = INTR_SYNC_STATE_QUEUED;
INIT_COMPLETION(sync_work->done);
queue_work(intr_sync_wq, &sync_work->work);
}
spin_unlock(&sync_work->lock);
do {
/* Check wakeup event first before waiting:
* If a wakeup-event is detected, wake up right now
*/
if (__check_wakeup_event(&wd)) {
spin_lock(&sync_work->lock);
sync_work->waiter--;
spin_unlock(&sync_work->lock);
dbg_print("intr_sync: detect wakeup event "
"while waiting work[%d]\n", work_idx);
return -EBUSY;
}
// dbg_print("intr_sync: waiting work[%d]\n", work_idx);
/* Return 0 if timed out, or positive if completed. */
ret = wait_for_completion_io_timeout(
&sync_work->done, HZ/10);
/* A work that we are waiting for has done. */
if ((ret > 0) || (sync_work->version != work_ver))
break;
// dbg_print("intr_sync: timeout work[%d]\n", work_idx);
} while (1);
spin_lock(&sync_work->lock);
sync_work->waiter--;
if (sync_ret)
*sync_ret = sync_work->ret;
spin_unlock(&sync_work->lock);
dbg_print("intr_sync: sync work[%d] is done with ret(%d)\n",
work_idx, sync_work->ret);
return 0;
}
/* check whether a workqueue exists or not under locked state.
* Create new one if a workqueue is not created yet.
*/
mutex_lock(&intr_sync_wq_lock);
if (likely(!intr_sync_wq)) {
intr_sync_work[0].id = 0;
intr_sync_work[1].id = 1;
INIT_WORK(&intr_sync_work[0].work, do_intr_sync);
INIT_WORK(&intr_sync_work[1].work, do_intr_sync);
spin_lock_init(&intr_sync_work[0].lock);
spin_lock_init(&intr_sync_work[1].lock);
init_completion(&intr_sync_work[0].done);
init_completion(&intr_sync_work[1].done);
intr_sync_wq = alloc_ordered_workqueue("intr_syncd", WQ_MEM_RECLAIM);
dbg_print("\nintr_sync: try to allocate intr_sync_queue\n");
}
mutex_unlock(&intr_sync_wq_lock);
/* try to enqueue work again if the workqueue is created successfully */
if (likely(intr_sync_wq))
goto enqueue_sync_wait;
printk("\nintr_sync: allocation failed, just call sync()\n");
ret = sys_sync();
if (sync_ret)
*sync_ret = ret;
return 0;
}
#else /* CONFIG_INTERRUPTIBLE_SYNC */
int intr_sync(int *sync_ret)
{
int ret = sys_sync();
if (sync_ret)
*sync_ret = ret;
return 0;
}
#endif /* CONFIG_INTERRUPTIBLE_SYNC */
/*
* Do the filesystem syncing work. For simple filesystems
* writeback_inodes_sb(sb) just dirties buffers with inodes so we have to
* submit IO for these buffers via __sync_blockdev(). This also speeds up the
* wait == 1 case since in that case write_inode() functions do
* sync_dirty_buffer() and thus effectively write one block at a time.
*/
static int __sync_filesystem(struct super_block *sb, int wait)
{
if (wait)
sync_inodes_sb(sb);
else
writeback_inodes_sb(sb, WB_REASON_SYNC);
if (sb->s_op->sync_fs)
sb->s_op->sync_fs(sb, wait);
return __sync_blockdev(sb->s_bdev, wait);
}
/*
* Write out and wait upon all dirty data associated with this
* superblock. Filesystem data as well as the underlying block
* device. Takes the superblock lock.
*/
int sync_filesystem(struct super_block *sb)
{
int ret;
/*
* We need to be protected against the filesystem going from
* r/o to r/w or vice versa.
*/
WARN_ON(!rwsem_is_locked(&sb->s_umount));
/*
* No point in syncing out anything if the filesystem is read-only.
*/
if (sb->s_flags & MS_RDONLY)
return 0;
ret = __sync_filesystem(sb, 0);
if (ret < 0)
return ret;
return __sync_filesystem(sb, 1);
}
EXPORT_SYMBOL_GPL(sync_filesystem);
static void sync_inodes_one_sb(struct super_block *sb, void *arg)
{
if (!(sb->s_flags & MS_RDONLY))
sync_inodes_sb(sb);
}
static void sync_fs_one_sb(struct super_block *sb, void *arg)
{
if (!(sb->s_flags & MS_RDONLY) && sb->s_op->sync_fs)
sb->s_op->sync_fs(sb, *(int *)arg);
}
static void fdatawrite_one_bdev(struct block_device *bdev, void *arg)
{
filemap_fdatawrite(bdev->bd_inode->i_mapping);
}
static void fdatawait_one_bdev(struct block_device *bdev, void *arg)
{
filemap_fdatawait(bdev->bd_inode->i_mapping);
}
/*
* Sync everything. We start by waking flusher threads so that most of
* writeback runs on all devices in parallel. Then we sync all inodes reliably
* which effectively also waits for all flusher threads to finish doing
* writeback. At this point all data is on disk so metadata should be stable
* and we tell filesystems to sync their metadata via ->sync_fs() calls.
* Finally, we writeout all block devices because some filesystems (e.g. ext2)
* just write metadata (such as inodes or bitmaps) to block device page cache
* and do not sync it on their own in ->sync_fs().
*/
SYSCALL_DEFINE0(sync)
{
int nowait = 0, wait = 1;
wakeup_flusher_threads(0, WB_REASON_SYNC);
iterate_supers(sync_inodes_one_sb, NULL);
iterate_supers(sync_fs_one_sb, &nowait);
iterate_supers(sync_fs_one_sb, &wait);
iterate_bdevs(fdatawrite_one_bdev, NULL);
iterate_bdevs(fdatawait_one_bdev, NULL);
if (unlikely(laptop_mode))
laptop_sync_completion();
return 0;
}
static void do_sync_work(struct work_struct *work)
{
int nowait = 0;
/*
* Sync twice to reduce the possibility we skipped some inodes / pages
* because they were temporarily locked
*/
iterate_supers(sync_inodes_one_sb, &nowait);
iterate_supers(sync_fs_one_sb, &nowait);
iterate_bdevs(fdatawrite_one_bdev, NULL);
iterate_supers(sync_inodes_one_sb, &nowait);
iterate_supers(sync_fs_one_sb, &nowait);
iterate_bdevs(fdatawrite_one_bdev, NULL);
printk("Emergency Sync complete\n");
kfree(work);
}
void emergency_sync(void)
{
struct work_struct *work;
work = kmalloc(sizeof(*work), GFP_ATOMIC);
if (work) {
INIT_WORK(work, do_sync_work);
schedule_work(work);
}
}
/*
* sync a single super
*/
SYSCALL_DEFINE1(syncfs, int, fd)
{
struct fd f = fdget(fd);
struct super_block *sb;
int ret;
if (!f.file)
return -EBADF;
sb = f.file->f_dentry->d_sb;
down_read(&sb->s_umount);
ret = sync_filesystem(sb);
up_read(&sb->s_umount);
fdput(f);
return ret;
}
/**
* vfs_fsync_range - helper to sync a range of data & metadata to disk
* @file: file to sync
* @start: offset in bytes of the beginning of data range to sync
* @end: offset in bytes of the end of data range (inclusive)
* @datasync: perform only datasync
*
* Write back data in range @start..@end and metadata for @file to disk. If
* @datasync is set only metadata needed to access modified file data is
* written.
*/
int vfs_fsync_range(struct file *file, loff_t start, loff_t end, int datasync)
{
if (!file->f_op || !file->f_op->fsync)
return -EINVAL;
return file->f_op->fsync(file, start, end, datasync);
}
EXPORT_SYMBOL(vfs_fsync_range);
/**
* vfs_fsync - perform a fsync or fdatasync on a file
* @file: file to sync
* @datasync: only perform a fdatasync operation
*
* Write back data and metadata for @file to disk. If @datasync is
* set only metadata needed to access modified file data is written.
*/
int vfs_fsync(struct file *file, int datasync)
{
return vfs_fsync_range(file, 0, LLONG_MAX, datasync);
}
EXPORT_SYMBOL(vfs_fsync);
static int do_fsync(unsigned int fd, int datasync)
{
struct fd f = fdget(fd);
int ret = -EBADF;
if (f.file) {
ret = vfs_fsync(f.file, datasync);
fdput(f);
}
return ret;
}
SYSCALL_DEFINE1(fsync, unsigned int, fd)
{
return do_fsync(fd, 0);
}
SYSCALL_DEFINE1(fdatasync, unsigned int, fd)
{
return do_fsync(fd, 1);
}
/**
* generic_write_sync - perform syncing after a write if file / inode is sync
* @file: file to which the write happened
* @pos: offset where the write started
* @count: length of the write
*
* This is just a simple wrapper about our general syncing function.
*/
int generic_write_sync(struct file *file, loff_t pos, loff_t count)
{
if (!(file->f_flags & O_DSYNC) && !IS_SYNC(file->f_mapping->host))
return 0;
return vfs_fsync_range(file, pos, pos + count - 1,
(file->f_flags & __O_SYNC) ? 0 : 1);
}
EXPORT_SYMBOL(generic_write_sync);
/*
* sys_sync_file_range() permits finely controlled syncing over a segment of
* a file in the range offset .. (offset+nbytes-1) inclusive. If nbytes is
* zero then sys_sync_file_range() will operate from offset out to EOF.
*
* The flag bits are:
*
* SYNC_FILE_RANGE_WAIT_BEFORE: wait upon writeout of all pages in the range
* before performing the write.
*
* SYNC_FILE_RANGE_WRITE: initiate writeout of all those dirty pages in the
* range which are not presently under writeback. Note that this may block for
* significant periods due to exhaustion of disk request structures.
*
* SYNC_FILE_RANGE_WAIT_AFTER: wait upon writeout of all pages in the range
* after performing the write.
*
* Useful combinations of the flag bits are:
*
* SYNC_FILE_RANGE_WAIT_BEFORE|SYNC_FILE_RANGE_WRITE: ensures that all pages
* in the range which were dirty on entry to sys_sync_file_range() are placed
* under writeout. This is a start-write-for-data-integrity operation.
*
* SYNC_FILE_RANGE_WRITE: start writeout of all dirty pages in the range which
* are not presently under writeout. This is an asynchronous flush-to-disk
* operation. Not suitable for data integrity operations.
*
* SYNC_FILE_RANGE_WAIT_BEFORE (or SYNC_FILE_RANGE_WAIT_AFTER): wait for
* completion of writeout of all pages in the range. This will be used after an
* earlier SYNC_FILE_RANGE_WAIT_BEFORE|SYNC_FILE_RANGE_WRITE operation to wait
* for that operation to complete and to return the result.
*
* SYNC_FILE_RANGE_WAIT_BEFORE|SYNC_FILE_RANGE_WRITE|SYNC_FILE_RANGE_WAIT_AFTER:
* a traditional sync() operation. This is a write-for-data-integrity operation
* which will ensure that all pages in the range which were dirty on entry to
* sys_sync_file_range() are committed to disk.
*
*
* SYNC_FILE_RANGE_WAIT_BEFORE and SYNC_FILE_RANGE_WAIT_AFTER will detect any
* I/O errors or ENOSPC conditions and will return those to the caller, after
* clearing the EIO and ENOSPC flags in the address_space.
*
* It should be noted that none of these operations write out the file's
* metadata. So unless the application is strictly performing overwrites of
* already-instantiated disk blocks, there are no guarantees here that the data
* will be available after a crash.
*/
SYSCALL_DEFINE4(sync_file_range, int, fd, loff_t, offset, loff_t, nbytes,
unsigned int, flags)
{
int ret;
struct fd f;
struct address_space *mapping;
loff_t endbyte; /* inclusive */
umode_t i_mode;
ret = -EINVAL;
if (flags & ~VALID_FLAGS)
goto out;
endbyte = offset + nbytes;
if ((s64)offset < 0)
goto out;
if ((s64)endbyte < 0)
goto out;
if (endbyte < offset)
goto out;
if (sizeof(pgoff_t) == 4) {
if (offset >= (0x100000000ULL << PAGE_CACHE_SHIFT)) {
/*
* The range starts outside a 32 bit machine's
* pagecache addressing capabilities. Let it "succeed"
*/
ret = 0;
goto out;
}
if (endbyte >= (0x100000000ULL << PAGE_CACHE_SHIFT)) {
/*
* Out to EOF
*/
nbytes = 0;
}
}
if (nbytes == 0)
endbyte = LLONG_MAX;
else
endbyte--; /* inclusive */
ret = -EBADF;
f = fdget(fd);
if (!f.file)
goto out;
i_mode = file_inode(f.file)->i_mode;
ret = -ESPIPE;
if (!S_ISREG(i_mode) && !S_ISBLK(i_mode) && !S_ISDIR(i_mode) &&
!S_ISLNK(i_mode))
goto out_put;
mapping = f.file->f_mapping;
if (!mapping) {
ret = -EINVAL;
goto out_put;
}
ret = 0;
if (flags & SYNC_FILE_RANGE_WAIT_BEFORE) {
ret = filemap_fdatawait_range(mapping, offset, endbyte);
if (ret < 0)
goto out_put;
}
if (flags & SYNC_FILE_RANGE_WRITE) {
ret = filemap_fdatawrite_range(mapping, offset, endbyte);
if (ret < 0)
goto out_put;
}
if (flags & SYNC_FILE_RANGE_WAIT_AFTER)
ret = filemap_fdatawait_range(mapping, offset, endbyte);
out_put:
fdput(f);
out:
return ret;
}
/* It would be nice if people remember that not all the world's an i386
when they introduce new system calls */
SYSCALL_DEFINE4(sync_file_range2, int, fd, unsigned int, flags,
loff_t, offset, loff_t, nbytes)
{
return sys_sync_file_range(fd, offset, nbytes, flags);
}