Go to file
Ian Maund 068b0551a9 This is the 3.10.73 stable release
-----BEGIN PGP SIGNATURE-----
 Version: GnuPG v2
 
 iQIcBAABCAAGBQJVFBE+AAoJEDjbvchgkmk+oTkP/j2ipSvgXghFEipZbOJUQkqC
 fa8elfoF7riTKpKOuDtDU2WI1ttCGYs5gmTNpd4KaEt23eJOQgVqIpV8GhAkW5Af
 NVyGhjF3dXNqpBkxnyuIkk5OLrNKGRNS2xpz1U254iGObYrK+tr62IzGPxEcPAhX
 Y+58xPVSjLtNdTJW3YLT3DohUbnbHG6Br9geI1IHtlxg1oDiTxtnX2FmOFzzDpP5
 qu8gnPIekg/+1EE46nEiq0C59AwC3aCzNxwlYe1Kd41SY3LUFF1eZMzmOnnwyI5K
 3FslAzT6x/sOmGJFTYrKjFA4GKsW67xHVkB/hp/Mu768RqxiQCxV4kgmPsAFLbXb
 D5qbNwr3i0iQ/9AaD7h8HJkxC/KHmszMux00L/mgZ3SGdGMEIBxHg+oP8+nP8V6C
 WfXKSWA94dpdRyULEfWdnKnUnp2860C7kt7ASTkOl8rIgU8HgaRqeu+U/KPM2ovD
 ZJtXPVB5UXCRuVAhZwbvvrLOY8UMZTnv2auAaeLYG8YptcvGeN5Z398/8qdV/z7c
 A9kOsgebs74X+lR3rbVgSDPQaq2AEiuIvtX77SfmrWXBXGmc99i9+PikuFggRprz
 cJm5bCM9DaHu/3b77X9Fwl7vnpReB0zPHiwTdH/p7OPMf5m1uQt7SqegC6btLPHs
 iYgjLd4oW+6uiV/2X1Vx
 =L+mC
 -----END PGP SIGNATURE-----

Merge commit 'v3.10.73' into msm-3.10

This merge brings us up to date with upstream kernel.org tag v3.10.73.
As part of the conflict resolution, changes introduced by commit 72684eae7
("arm64: Fix up /proc/cpuinfo") have been intentionally dropped, as they
conflict with Android changes msm-3.10 kernel to solve the problems
in a different way. Since userspace readers of this file may depend on
the existing msm-3.10 implementation, it's left as-is for now. The
commit may later be introduced if it is found to not impact userspaces
paired with this kernel.

* commit 'v3.10.73' (264 commits):
  Linux 3.10.73
  target: Allow Write Exclusive non-reservation holders to READ
  target: Allow AllRegistrants to re-RESERVE existing reservation
  target: Fix R_HOLDER bit usage for AllRegistrants
  target/pscsi: Fix NULL pointer dereference in get_device_type
  iscsi-target: Avoid early conn_logout_comp for iser connections
  target: Fix reference leak in target_get_sess_cmd() error path
  ARM: at91: pm: fix at91rm9200 standby
  ipvs: rerouting to local clients is not needed anymore
  ipvs: add missing ip_vs_pe_put in sync code
  powerpc/smp: Wait until secondaries are active & online
  x86/vdso: Fix the build on GCC5
  x86/fpu: Drop_fpu() should not assume that tsk equals current
  x86/fpu: Avoid math_state_restore() without used_math() in __restore_xstate_sig()
  crypto: aesni - fix memory usage in GCM decryption
  libsas: Fix Kernel Crash in smp_execute_task
  xen-pciback: limit guest control of command register
  nilfs2: fix deadlock of segment constructor during recovery
  regulator: core: Fix enable GPIO reference counting
  regulator: Only enable disabled regulators on resume
  ALSA: hda - Treat stereo-to-mono mix properly
  ALSA: hda - Add workaround for MacBook Air 5,2 built-in mic
  ALSA: hda - Set single_adc_amp flag for CS420x codecs
  ALSA: hda - Don't access stereo amps for mono channel widgets
  ALSA: hda - Fix built-in mic on Compaq Presario CQ60
  ALSA: control: Add sanity checks for user ctl id name string
  spi: pl022: Fix race in giveback() leading to driver lock-up
  tpm/ibmvtpm: Additional LE support for tpm_ibmvtpm_send
  workqueue: fix hang involving racing cancel[_delayed]_work_sync()'s for PREEMPT_NONE
  can: add missing initialisations in CAN related skbuffs
  Change email address for 8250_pci
  virtio_console: init work unconditionally
  fuse: notify: don't move pages
  fuse: set stolen page uptodate
  drm/radeon: drop setting UPLL to sleep mode
  drm/radeon: do a posting read in rs600_set_irq
  drm/radeon: do a posting read in si_set_irq
  drm/radeon: do a posting read in r600_set_irq
  drm/radeon: do a posting read in r100_set_irq
  drm/radeon: do a posting read in evergreen_set_irq
  drm/radeon: fix DRM_IOCTL_RADEON_CS oops
  tcp: make connect() mem charging friendly
  net: compat: Update get_compat_msghdr() to match copy_msghdr_from_user() behaviour
  tcp: fix tcp fin memory accounting
  Revert "net: cx82310_eth: use common match macro"
  rxrpc: bogus MSG_PEEK test in rxrpc_recvmsg()
  caif: fix MSG_OOB test in caif_seqpkt_recvmsg()
  inet_diag: fix possible overflow in inet_diag_dump_one_icsk()
  rds: avoid potential stack overflow
  net: sysctl_net_core: check SNDBUF and RCVBUF for min length
  sparc64: Fix several bugs in memmove().
  sparc: Touch NMI watchdog when walking cpus and calling printk
  sparc: perf: Make counting mode actually work
  sparc: perf: Remove redundant perf_pmu_{en|dis}able calls
  sparc: semtimedop() unreachable due to comparison error
  sparc32: destroy_context() and switch_mm() needs to disable interrupts.
  Linux 3.10.72
  ath5k: fix spontaneus AR5312 freezes
  ACPI / video: Load the module even if ACPI is disabled
  drm/radeon: fix 1 RB harvest config setup for TN/RL
  Drivers: hv: vmbus: incorrect device name is printed when child device is unregistered
  HID: fixup the conflicting keyboard mappings quirk
  HID: input: fix confusion on conflicting mappings
  staging: comedi: cb_pcidas64: fix incorrect AI range code handling
  dm snapshot: fix a possible invalid memory access on unload
  dm: fix a race condition in dm_get_md
  dm io: reject unsupported DISCARD requests with EOPNOTSUPP
  dm mirror: do not degrade the mirror on discard error
  staging: comedi: comedi_compat32.c: fix COMEDI_CMD copy back
  clk: sunxi: Support factor clocks with N factor starting not from 0
  fixed invalid assignment of 64bit mask to host dma_boundary for scatter gather segment boundary limit.
  nilfs2: fix potential memory overrun on inode
  IB/qib: Do not write EEPROM
  sg: fix read() error reporting
  ALSA: hda - Add pin configs for ASUS mobo with IDT 92HD73XX codec
  ALSA: pcm: Don't leave PREPARED state after draining
  tty: fix up atime/mtime mess, take four
  sunrpc: fix braino in ->poll()
  procfs: fix race between symlink removals and traversals
  debugfs: leave freeing a symlink body until inode eviction
  autofs4 copy_dev_ioctl(): keep the value of ->size we'd used for allocation
  USB: serial: fix potential use-after-free after failed probe
  TTY: fix tty_wait_until_sent on 64-bit machines
  USB: serial: fix infinite wait_until_sent timeout
  net: irda: fix wait_until_sent poll timeout
  xhci: fix reporting of 0-sized URBs in control endpoint
  xhci: Allocate correct amount of scratchpad buffers
  usb: ftdi_sio: Add jtag quirk support for Cyber Cortex AV boards
  USB: usbfs: don't leak kernel data in siginfo
  USB: serial: cp210x: Adding Seletek device id's
  KVM: MIPS: Fix trace event to save PC directly
  KVM: emulate: fix CMPXCHG8B on 32-bit hosts
  Btrfs:__add_inode_ref: out of bounds memory read when looking for extended ref.
  Btrfs: fix data loss in the fast fsync path
  btrfs: fix lost return value due to variable shadowing
  iio: imu: adis16400: Fix sign extension
  x86/asm/entry/64: Remove a bogus 'ret_from_fork' optimization
  PM / QoS: remove duplicate call to pm_qos_update_target
  target: Check for LBA + sectors wrap-around in sbc_parse_cdb
  mm/memory.c: actually remap enough memory
  mm/compaction: fix wrong order check in compact_finished()
  mm/nommu.c: fix arithmetic overflow in __vm_enough_memory()
  mm/mmap.c: fix arithmetic overflow in __vm_enough_memory()
  mm/hugetlb: add migration entry check in __unmap_hugepage_range
  team: don't traverse port list using rcu in team_set_mac_address
  udp: only allow UFO for packets from SOCK_DGRAM sockets
  usb: plusb: Add support for National Instruments host-to-host cable
  macvtap: make sure neighbour code can push ethernet header
  net: compat: Ignore MSG_CMSG_COMPAT in compat_sys_{send, recv}msg
  team: fix possible null pointer dereference in team_handle_frame
  net: reject creation of netdev names with colons
  ematch: Fix auto-loading of ematch modules.
  net: phy: Fix verification of EEE support in phy_init_eee
  ipv4: ip_check_defrag should not assume that skb_network_offset is zero
  ipv4: ip_check_defrag should correctly check return value of skb_copy_bits
  gen_stats.c: Duplicate xstats buffer for later use
  rtnetlink: call ->dellink on failure when ->newlink exists
  ipv6: fix ipv6_cow_metrics for non DST_HOST case
  rtnetlink: ifla_vf_policy: fix misuses of NLA_BINARY
  Linux 3.10.71
  libceph: fix double __remove_osd() problem
  libceph: change from BUG to WARN for __remove_osd() asserts
  libceph: assert both regular and lingering lists in __remove_osd()
  MIPS: Export FP functions used by lose_fpu(1) for KVM
  x86, mm/ASLR: Fix stack randomization on 64-bit systems
  blk-throttle: check stats_cpu before reading it from sysfs
  jffs2: fix handling of corrupted summary length
  md/raid1: fix read balance when a drive is write-mostly.
  md/raid5: Fix livelock when array is both resyncing and degraded.
  metag: Fix KSTK_EIP() and KSTK_ESP() macros
  gpio: tps65912: fix wrong container_of arguments
  arm64: compat Fix siginfo_t -> compat_siginfo_t conversion on big endian
  hx4700: regulator: declare full constraints
  KVM: x86: update masterclock values on TSC writes
  KVM: MIPS: Don't leak FPU/DSP to guest
  ARC: fix page address calculation if PAGE_OFFSET != LINUX_LINK_BASE
  ntp: Fixup adjtimex freq validation on 32-bit systems
  kdb: fix incorrect counts in KDB summary command output
  ARM: pxa: add regulator_has_full_constraints to poodle board file
  ARM: pxa: add regulator_has_full_constraints to corgi board file
  vt: provide notifications on selection changes
  usb: core: buffer: smallest buffer should start at ARCH_DMA_MINALIGN
  USB: fix use-after-free bug in usb_hcd_unlink_urb()
  USB: cp210x: add ID for RUGGEDCOM USB Serial Console
  tty: Prevent untrappable signals from malicious program
  axonram: Fix bug in direct_access
  cfq-iosched: fix incorrect filing of rt async cfqq
  cfq-iosched: handle failure of cfq group allocation
  iscsi-target: Drop problematic active_ts_list usage
  NFSv4.1: Fix a kfree() of uninitialised pointers in decode_cb_sequence_args
  Added Little Endian support to vtpm module
  tpm/tpm_i2c_stm_st33: Fix potential bug in tpm_stm_i2c_send
  tpm: Fix NULL return in tpm_ibmvtpm_get_desired_dma
  tpm_tis: verify interrupt during init
  ARM: 8284/1: sa1100: clear RCSR_SMR on resume
  tracing: Fix unmapping loop in tracing_mark_write
  MIPS: KVM: Deliver guest interrupts after local_irq_disable()
  nfs: don't call blocking operations while !TASK_RUNNING
  mmc: sdhci-pxav3: fix setting of pdata->clk_delay_cycles
  power_supply: 88pm860x: Fix leaked power supply on probe fail
  ALSA: hdspm - Constrain periods to 2 on older cards
  ALSA: off by one bug in snd_riptide_joystick_probe()
  lmedm04: Fix usb_submit_urb BOGUS urb xfer, pipe 1 != type 3 in interrupt urb
  cpufreq: speedstep-smi: enable interrupts when waiting
  PCI: Fix infinite loop with ROM image of size 0
  PCI: Generate uppercase hex for modalias var in uevent
  HID: i2c-hid: Limit reads to wMaxInputLength bytes for input events
  iwlwifi: mvm: always use mac color zero
  iwlwifi: mvm: fix failure path when power_update fails in add_interface
  iwlwifi: mvm: validate tid and sta_id in ba_notif
  iwlwifi: pcie: disable the SCD_BASE_ADDR when we resume from WoWLAN
  fsnotify: fix handling of renames in audit
  xfs: set superblock buffer type correctly
  xfs: inode unlink does not set AGI buffer type
  xfs: ensure buffer types are set correctly
  Bluetooth: ath3k: workaround the compatibility issue with xHCI controller
  Linux 3.10.70
  rbd: drop an unsafe assertion
  media/rc: Send sync space information on the lirc device
  net: sctp: fix passing wrong parameter header to param_type2af in sctp_process_param
  ppp: deflate: never return len larger than output buffer
  ipv4: tcp: get rid of ugly unicast_sock
  tcp: ipv4: initialize unicast_sock sk_pacing_rate
  bridge: dont send notification when skb->len == 0 in rtnl_bridge_notify
  ipv6: replacing a rt6_info needs to purge possible propagated rt6_infos too
  ping: Fix race in free in receive path
  udp_diag: Fix socket skipping within chain
  ipv4: try to cache dst_entries which would cause a redirect
  net: sctp: fix slab corruption from use after free on INIT collisions
  netxen: fix netxen_nic_poll() logic
  ipv6: stop sending PTB packets for MTU < 1280
  net: rps: fix cpu unplug
  ip: zero sockaddr returned on error queue
  Linux 3.10.69
  crypto: crc32c - add missing crypto module alias
  x86,kvm,vmx: Preserve CR4 across VM entry
  kvm: vmx: handle invvpid vm exit gracefully
  smpboot: Add missing get_online_cpus() in smpboot_register_percpu_thread()
  ALSA: ak411x: Fix stall in work callback
  ASoC: sgtl5000: add delay before first I2C access
  ASoC: atmel_ssc_dai: fix start event for I2S mode
  lib/checksum.c: fix build for generic csum_tcpudp_nofold
  ext4: prevent bugon on race between write/fcntl
  arm64: Fix up /proc/cpuinfo
  nilfs2: fix deadlock of segment constructor over I_SYNC flag
  lib/checksum.c: fix carry in csum_tcpudp_nofold
  mm: pagewalk: call pte_hole() for VM_PFNMAP during walk_page_range
  MIPS: Fix kernel lockup or crash after CPU offline/online
  MIPS: IRQ: Fix disable_irq on CPU IRQs
  PCI: Add NEC variants to Stratus ftServer PCIe DMI check
  gpio: sysfs: fix memory leak in gpiod_sysfs_set_active_low
  gpio: sysfs: fix memory leak in gpiod_export_link
  Linux 3.10.68
  target: Drop arbitrary maximum I/O size limit
  iser-target: Fix implicit termination of connections
  iser-target: Handle ADDR_CHANGE event for listener cm_id
  iser-target: Fix connected_handler + teardown flow race
  iser-target: Parallelize CM connection establishment
  iser-target: Fix flush + disconnect completion handling
  iscsi,iser-target: Initiate termination only once
  vhost-scsi: Add missing virtio-scsi -> TCM attribute conversion
  tcm_loop: Fix wrong I_T nexus association
  vhost-scsi: Take configfs group dependency during VHOST_SCSI_SET_ENDPOINT
  ib_isert: Add max_send_sge=2 minimum for control PDU responses
  IB/isert: Adjust CQ size to HW limits
  workqueue: fix subtle pool management issue which can stall whole worker_pool
  gpio: squelch a compiler warning
  efi-pstore: Make efi-pstore return a unique id
  pstore/ram: avoid atomic accesses for ioremapped regions
  pstore: Fix NULL pointer fault if get NULL prz in ramoops_get_next_prz
  pstore: skip zero size persistent ram buffer in traverse
  pstore: clarify clearing of _read_cnt in ramoops_context
  pstore: d_alloc_name() doesn't return an ERR_PTR
  pstore: Fail to unlink if a driver has not defined pstore_erase
  ARM: 8109/1: mm: Modify pte_write and pmd_write logic for LPAE
  ARM: 8108/1: mm: Introduce {pte,pmd}_isset and {pte,pmd}_isclear
  ARM: DMA: ensure that old section mappings are flushed from the TLB
  ARM: 7931/1: Correct virt_addr_valid
  ARM: fix asm/memory.h build error
  ARM: 7867/1: include: asm: use 'int' instead of 'unsigned long' for 'oldval' in atomic_cmpxchg().
  ARM: 7866/1: include: asm: use 'long long' instead of 'u64' within atomic.h
  ARM: lpae: fix definition of PTE_HWTABLE_PTRS
  ARM: fix type of PHYS_PFN_OFFSET to unsigned long
  ARM: LPAE: use phys_addr_t in alloc_init_pud()
  ARM: LPAE: use signed arithmetic for mask definitions
  ARM: mm: correct pte_same behaviour for LPAE.
  ARM: 7829/1: Add ".text.unlikely" and ".text.hot" to arm unwind tables
  drivers: net: cpsw: discard dual emac default vlan configuration
  regulator: core: fix race condition in regulator_put()
  spi/pxa2xx: Clear cur_chip pointer before starting next message
  dm cache: fix missing ERR_PTR returns and handling
  dm thin: don't allow messages to be sent to a pool target in READ_ONLY or FAIL mode
  nl80211: fix per-station group key get/del and memory leak
  NFSv4.1: Fix an Oops in nfs41_walk_client_list
  nfs: fix dio deadlock when O_DIRECT flag is flipped
  Input: i8042 - add noloop quirk for Medion Akoya E7225 (MD98857)
  ALSA: seq-dummy: remove deadlock-causing events on close
  powerpc/xmon: Fix another endiannes issue in RTAS call from xmon
  can: kvaser_usb: Fix state handling upon BUS_ERROR events
  can: kvaser_usb: Retry the first bulk transfer on -ETIMEDOUT
  can: kvaser_usb: Send correct context to URB completion
  can: kvaser_usb: Do not sleep in atomic context
  ASoC: wm8960: Fix capture sample rate from 11250 to 11025
  spi: dw-mid: fix FIFO size

Signed-off-by: Ian Maund <imaund@codeaurora.org>
2015-04-24 18:14:57 -07:00
Documentation This is the 3.10.67 stable release 2015-04-24 18:04:40 -07:00
android/configs android: base-cfg: enable ARMV7_COMPAT 2015-03-19 14:52:37 -07:00
arch This is the 3.10.73 stable release 2015-04-24 18:14:57 -07:00
block This is the 3.10.73 stable release 2015-04-24 18:14:57 -07:00
crypto This is the 3.10.73 stable release 2015-04-24 18:14:57 -07:00
drivers This is the 3.10.73 stable release 2015-04-24 18:14:57 -07:00
firmware
fs This is the 3.10.73 stable release 2015-04-24 18:14:57 -07:00
include This is the 3.10.73 stable release 2015-04-24 18:14:57 -07:00
init This is the 3.10.67 stable release 2015-04-24 18:04:40 -07:00
ipc ipc: always handle a new value of auto_msgmni 2014-11-21 09:22:54 -08:00
kernel This is the 3.10.73 stable release 2015-04-24 18:14:57 -07:00
lib This is the 3.10.73 stable release 2015-04-24 18:14:57 -07:00
mm This is the 3.10.73 stable release 2015-04-24 18:14:57 -07:00
net This is the 3.10.73 stable release 2015-04-24 18:14:57 -07:00
samples
scripts This is the 3.10.67 stable release 2015-04-24 18:04:40 -07:00
security This is the 3.10.67 stable release 2015-04-24 18:04:40 -07:00
sound This is the 3.10.73 stable release 2015-04-24 18:14:57 -07:00
tools This is the 3.10.67 stable release 2015-04-24 18:04:40 -07:00
usr
virt/kvm This is the 3.10.67 stable release 2015-04-24 18:04:40 -07:00
.gitignore
.mailmap
AndroidKernel.mk AndroidKernel.mk: Use a compressed image (Image.gz) for aarch64 2015-03-12 02:36:10 -04:00
COPYING
CREDITS
Kbuild
Kconfig
MAINTAINERS rcu: Move RCU-related source code to kernel/rcu directory 2015-04-01 12:35:20 -07:00
Makefile This is the 3.10.73 stable release 2015-04-24 18:14:57 -07:00
README
REPORTING-BUGS

README

        Linux kernel release 3.x <http://kernel.org/>

These are the release notes for Linux version 3.  Read them carefully,
as they tell you what this is all about, explain how to install the
kernel, and what to do if something goes wrong. 

WHAT IS LINUX?

  Linux is a clone of the operating system Unix, written from scratch by
  Linus Torvalds with assistance from a loosely-knit team of hackers across
  the Net. It aims towards POSIX and Single UNIX Specification compliance.

  It has all the features you would expect in a modern fully-fledged Unix,
  including true multitasking, virtual memory, shared libraries, demand
  loading, shared copy-on-write executables, proper memory management,
  and multistack networking including IPv4 and IPv6.

  It is distributed under the GNU General Public License - see the
  accompanying COPYING file for more details. 

ON WHAT HARDWARE DOES IT RUN?

  Although originally developed first for 32-bit x86-based PCs (386 or higher),
  today Linux also runs on (at least) the Compaq Alpha AXP, Sun SPARC and
  UltraSPARC, Motorola 68000, PowerPC, PowerPC64, ARM, Hitachi SuperH, Cell,
  IBM S/390, MIPS, HP PA-RISC, Intel IA-64, DEC VAX, AMD x86-64, AXIS CRIS,
  Xtensa, Tilera TILE, AVR32 and Renesas M32R architectures.

  Linux is easily portable to most general-purpose 32- or 64-bit architectures
  as long as they have a paged memory management unit (PMMU) and a port of the
  GNU C compiler (gcc) (part of The GNU Compiler Collection, GCC). Linux has
  also been ported to a number of architectures without a PMMU, although
  functionality is then obviously somewhat limited.
  Linux has also been ported to itself. You can now run the kernel as a
  userspace application - this is called UserMode Linux (UML).

DOCUMENTATION:

 - There is a lot of documentation available both in electronic form on
   the Internet and in books, both Linux-specific and pertaining to
   general UNIX questions.  I'd recommend looking into the documentation
   subdirectories on any Linux FTP site for the LDP (Linux Documentation
   Project) books.  This README is not meant to be documentation on the
   system: there are much better sources available.

 - There are various README files in the Documentation/ subdirectory:
   these typically contain kernel-specific installation notes for some 
   drivers for example. See Documentation/00-INDEX for a list of what
   is contained in each file.  Please read the Changes file, as it
   contains information about the problems, which may result by upgrading
   your kernel.

 - The Documentation/DocBook/ subdirectory contains several guides for
   kernel developers and users.  These guides can be rendered in a
   number of formats:  PostScript (.ps), PDF, HTML, & man-pages, among others.
   After installation, "make psdocs", "make pdfdocs", "make htmldocs",
   or "make mandocs" will render the documentation in the requested format.

INSTALLING the kernel source:

 - If you install the full sources, put the kernel tarball in a
   directory where you have permissions (eg. your home directory) and
   unpack it:

     gzip -cd linux-3.X.tar.gz | tar xvf -

   or

     bzip2 -dc linux-3.X.tar.bz2 | tar xvf -

   Replace "X" with the version number of the latest kernel.

   Do NOT use the /usr/src/linux area! This area has a (usually
   incomplete) set of kernel headers that are used by the library header
   files.  They should match the library, and not get messed up by
   whatever the kernel-du-jour happens to be.

 - You can also upgrade between 3.x releases by patching.  Patches are
   distributed in the traditional gzip and the newer bzip2 format.  To
   install by patching, get all the newer patch files, enter the
   top level directory of the kernel source (linux-3.X) and execute:

     gzip -cd ../patch-3.x.gz | patch -p1

   or

     bzip2 -dc ../patch-3.x.bz2 | patch -p1

   Replace "x" for all versions bigger than the version "X" of your current
   source tree, _in_order_, and you should be ok.  You may want to remove
   the backup files (some-file-name~ or some-file-name.orig), and make sure
   that there are no failed patches (some-file-name# or some-file-name.rej).
   If there are, either you or I have made a mistake.

   Unlike patches for the 3.x kernels, patches for the 3.x.y kernels
   (also known as the -stable kernels) are not incremental but instead apply
   directly to the base 3.x kernel.  For example, if your base kernel is 3.0
   and you want to apply the 3.0.3 patch, you must not first apply the 3.0.1
   and 3.0.2 patches. Similarly, if you are running kernel version 3.0.2 and
   want to jump to 3.0.3, you must first reverse the 3.0.2 patch (that is,
   patch -R) _before_ applying the 3.0.3 patch. You can read more on this in
   Documentation/applying-patches.txt

   Alternatively, the script patch-kernel can be used to automate this
   process.  It determines the current kernel version and applies any
   patches found.

     linux/scripts/patch-kernel linux

   The first argument in the command above is the location of the
   kernel source.  Patches are applied from the current directory, but
   an alternative directory can be specified as the second argument.

 - Make sure you have no stale .o files and dependencies lying around:

     cd linux
     make mrproper

   You should now have the sources correctly installed.

SOFTWARE REQUIREMENTS

   Compiling and running the 3.x kernels requires up-to-date
   versions of various software packages.  Consult
   Documentation/Changes for the minimum version numbers required
   and how to get updates for these packages.  Beware that using
   excessively old versions of these packages can cause indirect
   errors that are very difficult to track down, so don't assume that
   you can just update packages when obvious problems arise during
   build or operation.

BUILD directory for the kernel:

   When compiling the kernel, all output files will per default be
   stored together with the kernel source code.
   Using the option "make O=output/dir" allow you to specify an alternate
   place for the output files (including .config).
   Example:

     kernel source code: /usr/src/linux-3.X
     build directory:    /home/name/build/kernel

   To configure and build the kernel, use:

     cd /usr/src/linux-3.X
     make O=/home/name/build/kernel menuconfig
     make O=/home/name/build/kernel
     sudo make O=/home/name/build/kernel modules_install install

   Please note: If the 'O=output/dir' option is used, then it must be
   used for all invocations of make.

CONFIGURING the kernel:

   Do not skip this step even if you are only upgrading one minor
   version.  New configuration options are added in each release, and
   odd problems will turn up if the configuration files are not set up
   as expected.  If you want to carry your existing configuration to a
   new version with minimal work, use "make oldconfig", which will
   only ask you for the answers to new questions.

 - Alternative configuration commands are:

     "make config"      Plain text interface.

     "make menuconfig"  Text based color menus, radiolists & dialogs.

     "make nconfig"     Enhanced text based color menus.

     "make xconfig"     X windows (Qt) based configuration tool.

     "make gconfig"     X windows (Gtk) based configuration tool.

     "make oldconfig"   Default all questions based on the contents of
                        your existing ./.config file and asking about
                        new config symbols.

     "make silentoldconfig"
                        Like above, but avoids cluttering the screen
                        with questions already answered.
                        Additionally updates the dependencies.

     "make olddefconfig"
                        Like above, but sets new symbols to their default
                        values without prompting.

     "make defconfig"   Create a ./.config file by using the default
                        symbol values from either arch/$ARCH/defconfig
                        or arch/$ARCH/configs/${PLATFORM}_defconfig,
                        depending on the architecture.

     "make ${PLATFORM}_defconfig"
                        Create a ./.config file by using the default
                        symbol values from
                        arch/$ARCH/configs/${PLATFORM}_defconfig.
                        Use "make help" to get a list of all available
                        platforms of your architecture.

     "make allyesconfig"
                        Create a ./.config file by setting symbol
                        values to 'y' as much as possible.

     "make allmodconfig"
                        Create a ./.config file by setting symbol
                        values to 'm' as much as possible.

     "make allnoconfig" Create a ./.config file by setting symbol
                        values to 'n' as much as possible.

     "make randconfig"  Create a ./.config file by setting symbol
                        values to random values.

     "make localmodconfig" Create a config based on current config and
                           loaded modules (lsmod). Disables any module
                           option that is not needed for the loaded modules.

                           To create a localmodconfig for another machine,
                           store the lsmod of that machine into a file
                           and pass it in as a LSMOD parameter.

                   target$ lsmod > /tmp/mylsmod
                   target$ scp /tmp/mylsmod host:/tmp

                   host$ make LSMOD=/tmp/mylsmod localmodconfig

                           The above also works when cross compiling.

     "make localyesconfig" Similar to localmodconfig, except it will convert
                           all module options to built in (=y) options.

   You can find more information on using the Linux kernel config tools
   in Documentation/kbuild/kconfig.txt.

 - NOTES on "make config":

    - Having unnecessary drivers will make the kernel bigger, and can
      under some circumstances lead to problems: probing for a
      nonexistent controller card may confuse your other controllers

    - Compiling the kernel with "Processor type" set higher than 386
      will result in a kernel that does NOT work on a 386.  The
      kernel will detect this on bootup, and give up.

    - A kernel with math-emulation compiled in will still use the
      coprocessor if one is present: the math emulation will just
      never get used in that case.  The kernel will be slightly larger,
      but will work on different machines regardless of whether they
      have a math coprocessor or not.

    - The "kernel hacking" configuration details usually result in a
      bigger or slower kernel (or both), and can even make the kernel
      less stable by configuring some routines to actively try to
      break bad code to find kernel problems (kmalloc()).  Thus you
      should probably answer 'n' to the questions for "development",
      "experimental", or "debugging" features.

COMPILING the kernel:

 - Make sure you have at least gcc 3.2 available.
   For more information, refer to Documentation/Changes.

   Please note that you can still run a.out user programs with this kernel.

 - Do a "make" to create a compressed kernel image. It is also
   possible to do "make install" if you have lilo installed to suit the
   kernel makefiles, but you may want to check your particular lilo setup first.

   To do the actual install, you have to be root, but none of the normal
   build should require that. Don't take the name of root in vain.

 - If you configured any of the parts of the kernel as `modules', you
   will also have to do "make modules_install".

 - Verbose kernel compile/build output:

   Normally, the kernel build system runs in a fairly quiet mode (but not
   totally silent).  However, sometimes you or other kernel developers need
   to see compile, link, or other commands exactly as they are executed.
   For this, use "verbose" build mode.  This is done by inserting
   "V=1" in the "make" command.  E.g.:

     make V=1 all

   To have the build system also tell the reason for the rebuild of each
   target, use "V=2".  The default is "V=0".

 - Keep a backup kernel handy in case something goes wrong.  This is 
   especially true for the development releases, since each new release
   contains new code which has not been debugged.  Make sure you keep a
   backup of the modules corresponding to that kernel, as well.  If you
   are installing a new kernel with the same version number as your
   working kernel, make a backup of your modules directory before you
   do a "make modules_install".

   Alternatively, before compiling, use the kernel config option
   "LOCALVERSION" to append a unique suffix to the regular kernel version.
   LOCALVERSION can be set in the "General Setup" menu.

 - In order to boot your new kernel, you'll need to copy the kernel
   image (e.g. .../linux/arch/i386/boot/bzImage after compilation)
   to the place where your regular bootable kernel is found. 

 - Booting a kernel directly from a floppy without the assistance of a
   bootloader such as LILO, is no longer supported.

   If you boot Linux from the hard drive, chances are you use LILO, which
   uses the kernel image as specified in the file /etc/lilo.conf.  The
   kernel image file is usually /vmlinuz, /boot/vmlinuz, /bzImage or
   /boot/bzImage.  To use the new kernel, save a copy of the old image
   and copy the new image over the old one.  Then, you MUST RERUN LILO
   to update the loading map!! If you don't, you won't be able to boot
   the new kernel image.

   Reinstalling LILO is usually a matter of running /sbin/lilo. 
   You may wish to edit /etc/lilo.conf to specify an entry for your
   old kernel image (say, /vmlinux.old) in case the new one does not
   work.  See the LILO docs for more information. 

   After reinstalling LILO, you should be all set.  Shutdown the system,
   reboot, and enjoy!

   If you ever need to change the default root device, video mode,
   ramdisk size, etc.  in the kernel image, use the 'rdev' program (or
   alternatively the LILO boot options when appropriate).  No need to
   recompile the kernel to change these parameters. 

 - Reboot with the new kernel and enjoy. 

IF SOMETHING GOES WRONG:

 - If you have problems that seem to be due to kernel bugs, please check
   the file MAINTAINERS to see if there is a particular person associated
   with the part of the kernel that you are having trouble with. If there
   isn't anyone listed there, then the second best thing is to mail
   them to me (torvalds@linux-foundation.org), and possibly to any other
   relevant mailing-list or to the newsgroup.

 - In all bug-reports, *please* tell what kernel you are talking about,
   how to duplicate the problem, and what your setup is (use your common
   sense).  If the problem is new, tell me so, and if the problem is
   old, please try to tell me when you first noticed it.

 - If the bug results in a message like

     unable to handle kernel paging request at address C0000010
     Oops: 0002
     EIP:   0010:XXXXXXXX
     eax: xxxxxxxx   ebx: xxxxxxxx   ecx: xxxxxxxx   edx: xxxxxxxx
     esi: xxxxxxxx   edi: xxxxxxxx   ebp: xxxxxxxx
     ds: xxxx  es: xxxx  fs: xxxx  gs: xxxx
     Pid: xx, process nr: xx
     xx xx xx xx xx xx xx xx xx xx

   or similar kernel debugging information on your screen or in your
   system log, please duplicate it *exactly*.  The dump may look
   incomprehensible to you, but it does contain information that may
   help debugging the problem.  The text above the dump is also
   important: it tells something about why the kernel dumped code (in
   the above example, it's due to a bad kernel pointer). More information
   on making sense of the dump is in Documentation/oops-tracing.txt

 - If you compiled the kernel with CONFIG_KALLSYMS you can send the dump
   as is, otherwise you will have to use the "ksymoops" program to make
   sense of the dump (but compiling with CONFIG_KALLSYMS is usually preferred).
   This utility can be downloaded from
   ftp://ftp.<country>.kernel.org/pub/linux/utils/kernel/ksymoops/ .
   Alternatively, you can do the dump lookup by hand:

 - In debugging dumps like the above, it helps enormously if you can
   look up what the EIP value means.  The hex value as such doesn't help
   me or anybody else very much: it will depend on your particular
   kernel setup.  What you should do is take the hex value from the EIP
   line (ignore the "0010:"), and look it up in the kernel namelist to
   see which kernel function contains the offending address.

   To find out the kernel function name, you'll need to find the system
   binary associated with the kernel that exhibited the symptom.  This is
   the file 'linux/vmlinux'.  To extract the namelist and match it against
   the EIP from the kernel crash, do:

     nm vmlinux | sort | less

   This will give you a list of kernel addresses sorted in ascending
   order, from which it is simple to find the function that contains the
   offending address.  Note that the address given by the kernel
   debugging messages will not necessarily match exactly with the
   function addresses (in fact, that is very unlikely), so you can't
   just 'grep' the list: the list will, however, give you the starting
   point of each kernel function, so by looking for the function that
   has a starting address lower than the one you are searching for but
   is followed by a function with a higher address you will find the one
   you want.  In fact, it may be a good idea to include a bit of
   "context" in your problem report, giving a few lines around the
   interesting one. 

   If you for some reason cannot do the above (you have a pre-compiled
   kernel image or similar), telling me as much about your setup as
   possible will help.  Please read the REPORTING-BUGS document for details.

 - Alternatively, you can use gdb on a running kernel. (read-only; i.e. you
   cannot change values or set break points.) To do this, first compile the
   kernel with -g; edit arch/i386/Makefile appropriately, then do a "make
   clean". You'll also need to enable CONFIG_PROC_FS (via "make config").

   After you've rebooted with the new kernel, do "gdb vmlinux /proc/kcore".
   You can now use all the usual gdb commands. The command to look up the
   point where your system crashed is "l *0xXXXXXXXX". (Replace the XXXes
   with the EIP value.)

   gdb'ing a non-running kernel currently fails because gdb (wrongly)
   disregards the starting offset for which the kernel is compiled.