android_kernel_samsung_msm8976/arch/powerpc/platforms/iseries/pci.c
Stephen Rothwell 0d177df15d [PATCH] powerpc: move iSeries PCI devices to the device tree
Move the probing of PCI devices to setup.c and put them all into the
flattened device tree.  The later probing is now done by traversing the
device tree.

Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Paul Mackerras <paulus@samba.org>
2006-05-24 16:08:56 +10:00

691 lines
18 KiB
C

/*
* Copyright (C) 2001 Allan Trautman, IBM Corporation
*
* iSeries specific routines for PCI.
*
* Based on code from pci.c and iSeries_pci.c 32bit
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include <linux/kernel.h>
#include <linux/list.h>
#include <linux/string.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/ide.h>
#include <linux/pci.h>
#include <asm/io.h>
#include <asm/irq.h>
#include <asm/prom.h>
#include <asm/machdep.h>
#include <asm/pci-bridge.h>
#include <asm/iommu.h>
#include <asm/abs_addr.h>
#include <asm/iseries/hv_call_xm.h>
#include <asm/iseries/mf.h>
#include <asm/iseries/iommu.h>
#include <asm/ppc-pci.h>
#include "irq.h"
#include "pci.h"
#include "call_pci.h"
/*
* Forward declares of prototypes.
*/
static struct device_node *find_Device_Node(int bus, int devfn);
LIST_HEAD(iSeries_Global_Device_List);
static int Pci_Retry_Max = 3; /* Only retry 3 times */
static int Pci_Error_Flag = 1; /* Set Retry Error on. */
static struct pci_ops iSeries_pci_ops;
/*
* Table defines
* Each Entry size is 4 MB * 1024 Entries = 4GB I/O address space.
*/
#define IOMM_TABLE_MAX_ENTRIES 1024
#define IOMM_TABLE_ENTRY_SIZE 0x0000000000400000UL
#define BASE_IO_MEMORY 0xE000000000000000UL
static unsigned long max_io_memory = BASE_IO_MEMORY;
static long current_iomm_table_entry;
/*
* Lookup Tables.
*/
static struct device_node *iomm_table[IOMM_TABLE_MAX_ENTRIES];
static u8 iobar_table[IOMM_TABLE_MAX_ENTRIES];
static const char pci_io_text[] = "iSeries PCI I/O";
static DEFINE_SPINLOCK(iomm_table_lock);
/*
* iomm_table_allocate_entry
*
* Adds pci_dev entry in address translation table
*
* - Allocates the number of entries required in table base on BAR
* size.
* - Allocates starting at BASE_IO_MEMORY and increases.
* - The size is round up to be a multiple of entry size.
* - CurrentIndex is incremented to keep track of the last entry.
* - Builds the resource entry for allocated BARs.
*/
static void iomm_table_allocate_entry(struct pci_dev *dev, int bar_num)
{
struct resource *bar_res = &dev->resource[bar_num];
long bar_size = pci_resource_len(dev, bar_num);
/*
* No space to allocate, quick exit, skip Allocation.
*/
if (bar_size == 0)
return;
/*
* Set Resource values.
*/
spin_lock(&iomm_table_lock);
bar_res->name = pci_io_text;
bar_res->start = BASE_IO_MEMORY +
IOMM_TABLE_ENTRY_SIZE * current_iomm_table_entry;
bar_res->end = bar_res->start + bar_size - 1;
/*
* Allocate the number of table entries needed for BAR.
*/
while (bar_size > 0 ) {
iomm_table[current_iomm_table_entry] = dev->sysdata;
iobar_table[current_iomm_table_entry] = bar_num;
bar_size -= IOMM_TABLE_ENTRY_SIZE;
++current_iomm_table_entry;
}
max_io_memory = BASE_IO_MEMORY +
IOMM_TABLE_ENTRY_SIZE * current_iomm_table_entry;
spin_unlock(&iomm_table_lock);
}
/*
* allocate_device_bars
*
* - Allocates ALL pci_dev BAR's and updates the resources with the
* BAR value. BARS with zero length will have the resources
* The HvCallPci_getBarParms is used to get the size of the BAR
* space. It calls iomm_table_allocate_entry to allocate
* each entry.
* - Loops through The Bar resources(0 - 5) including the ROM
* is resource(6).
*/
static void allocate_device_bars(struct pci_dev *dev)
{
int bar_num;
for (bar_num = 0; bar_num <= PCI_ROM_RESOURCE; ++bar_num)
iomm_table_allocate_entry(dev, bar_num);
}
/*
* Log error information to system console.
* Filter out the device not there errors.
* PCI: EADs Connect Failed 0x18.58.10 Rc: 0x00xx
* PCI: Read Vendor Failed 0x18.58.10 Rc: 0x00xx
* PCI: Connect Bus Unit Failed 0x18.58.10 Rc: 0x00xx
*/
static void pci_Log_Error(char *Error_Text, int Bus, int SubBus,
int AgentId, int HvRc)
{
if (HvRc == 0x0302)
return;
printk(KERN_ERR "PCI: %s Failed: 0x%02X.%02X.%02X Rc: 0x%04X",
Error_Text, Bus, SubBus, AgentId, HvRc);
}
/*
* iSeries_pcibios_init
*
* Description:
* This function checks for all possible system PCI host bridges that connect
* PCI buses. The system hypervisor is queried as to the guest partition
* ownership status. A pci_controller is built for any bus which is partially
* owned or fully owned by this guest partition.
*/
void iSeries_pcibios_init(void)
{
struct pci_controller *phb;
struct device_node *node;
struct device_node *dn;
for_each_node_by_type(node, "pci") {
HvBusNumber bus;
u32 *busp;
busp = (u32 *)get_property(node, "bus-range", NULL);
if (busp == NULL)
continue;
bus = *busp;
printk("bus %d appears to exist\n", bus);
phb = pcibios_alloc_controller(node);
if (phb == NULL)
continue;
phb->pci_mem_offset = phb->local_number = bus;
phb->first_busno = bus;
phb->last_busno = bus;
phb->ops = &iSeries_pci_ops;
/* Find and connect the devices. */
for (dn = NULL; (dn = of_get_next_child(node, dn)) != NULL;) {
struct pci_dn *pdn;
u8 irq;
int err;
u32 *agent;
u32 *reg;
u32 *lsn;
reg = (u32 *)get_property(dn, "reg", NULL);
if (reg == NULL) {
printk(KERN_DEBUG "no reg property!\n");
continue;
}
busp = (u32 *)get_property(dn, "linux,subbus", NULL);
if (busp == NULL) {
printk(KERN_DEBUG "no subbus property!\n");
continue;
}
agent = (u32 *)get_property(dn, "linux,agent-id", NULL);
if (agent == NULL) {
printk(KERN_DEBUG "no agent-id\n");
continue;
}
lsn = (u32 *)get_property(dn,
"linux,logical-slot-number", NULL);
if (lsn == NULL) {
printk(KERN_DEBUG "no logical-slot-number\n");
continue;
}
irq = iSeries_allocate_IRQ(bus, 0, *busp);
err = HvCallXm_connectBusUnit(bus, *busp, *agent, irq);
if (err) {
pci_Log_Error("Connect Bus Unit",
bus, *busp, *agent, err);
continue;
}
err = HvCallPci_configStore8(bus, *busp, *agent,
PCI_INTERRUPT_LINE, irq);
if (err) {
pci_Log_Error("PciCfgStore Irq Failed!",
bus, *busp, *agent, err);
continue;
}
pdn = kzalloc(sizeof(*pdn), GFP_KERNEL);
if (pdn == NULL)
return;
dn->data = pdn;
pdn->node = dn;
pdn->busno = bus;
pdn->devfn = (reg[0] >> 8) & 0xff;
pdn->bussubno = *busp;
pdn->Irq = irq;
pdn->LogicalSlot = *lsn;
list_add_tail(&pdn->Device_List,
&iSeries_Global_Device_List);
}
}
}
/*
* iSeries_pci_final_fixup(void)
*/
void __init iSeries_pci_final_fixup(void)
{
struct pci_dev *pdev = NULL;
struct device_node *node;
int DeviceCount = 0;
/* Fix up at the device node and pci_dev relationship */
mf_display_src(0xC9000100);
printk("pcibios_final_fixup\n");
for_each_pci_dev(pdev) {
node = find_Device_Node(pdev->bus->number, pdev->devfn);
printk("pci dev %p (%x.%x), node %p\n", pdev,
pdev->bus->number, pdev->devfn, node);
if (node != NULL) {
++DeviceCount;
pdev->sysdata = (void *)node;
PCI_DN(node)->pcidev = pdev;
allocate_device_bars(pdev);
iSeries_Device_Information(pdev, DeviceCount);
iommu_devnode_init_iSeries(node);
} else
printk("PCI: Device Tree not found for 0x%016lX\n",
(unsigned long)pdev);
pdev->irq = PCI_DN(node)->Irq;
}
iSeries_activate_IRQs();
mf_display_src(0xC9000200);
}
void pcibios_fixup_bus(struct pci_bus *PciBus)
{
}
void pcibios_fixup_resources(struct pci_dev *pdev)
{
}
/*
* I/0 Memory copy MUST use mmio commands on iSeries
* To do; For performance, include the hv call directly
*/
void iSeries_memset_io(volatile void __iomem *dest, char c, size_t Count)
{
u8 ByteValue = c;
long NumberOfBytes = Count;
while (NumberOfBytes > 0) {
iSeries_Write_Byte(ByteValue, dest++);
-- NumberOfBytes;
}
}
EXPORT_SYMBOL(iSeries_memset_io);
void iSeries_memcpy_toio(volatile void __iomem *dest, void *source, size_t count)
{
char *src = source;
long NumberOfBytes = count;
while (NumberOfBytes > 0) {
iSeries_Write_Byte(*src++, dest++);
-- NumberOfBytes;
}
}
EXPORT_SYMBOL(iSeries_memcpy_toio);
void iSeries_memcpy_fromio(void *dest, const volatile void __iomem *src, size_t count)
{
char *dst = dest;
long NumberOfBytes = count;
while (NumberOfBytes > 0) {
*dst++ = iSeries_Read_Byte(src++);
-- NumberOfBytes;
}
}
EXPORT_SYMBOL(iSeries_memcpy_fromio);
/*
* Look down the chain to find the matching Device Device
*/
static struct device_node *find_Device_Node(int bus, int devfn)
{
struct pci_dn *pdn;
list_for_each_entry(pdn, &iSeries_Global_Device_List, Device_List) {
if ((bus == pdn->busno) && (devfn == pdn->devfn))
return pdn->node;
}
return NULL;
}
#if 0
/*
* Returns the device node for the passed pci_dev
* Sanity Check Node PciDev to passed pci_dev
* If none is found, returns a NULL which the client must handle.
*/
static struct device_node *get_Device_Node(struct pci_dev *pdev)
{
struct device_node *node;
node = pdev->sysdata;
if (node == NULL || PCI_DN(node)->pcidev != pdev)
node = find_Device_Node(pdev->bus->number, pdev->devfn);
return node;
}
#endif
/*
* Config space read and write functions.
* For now at least, we look for the device node for the bus and devfn
* that we are asked to access. It may be possible to translate the devfn
* to a subbus and deviceid more directly.
*/
static u64 hv_cfg_read_func[4] = {
HvCallPciConfigLoad8, HvCallPciConfigLoad16,
HvCallPciConfigLoad32, HvCallPciConfigLoad32
};
static u64 hv_cfg_write_func[4] = {
HvCallPciConfigStore8, HvCallPciConfigStore16,
HvCallPciConfigStore32, HvCallPciConfigStore32
};
/*
* Read PCI config space
*/
static int iSeries_pci_read_config(struct pci_bus *bus, unsigned int devfn,
int offset, int size, u32 *val)
{
struct device_node *node = find_Device_Node(bus->number, devfn);
u64 fn;
struct HvCallPci_LoadReturn ret;
if (node == NULL)
return PCIBIOS_DEVICE_NOT_FOUND;
if (offset > 255) {
*val = ~0;
return PCIBIOS_BAD_REGISTER_NUMBER;
}
fn = hv_cfg_read_func[(size - 1) & 3];
HvCall3Ret16(fn, &ret, iseries_ds_addr(node), offset, 0);
if (ret.rc != 0) {
*val = ~0;
return PCIBIOS_DEVICE_NOT_FOUND; /* or something */
}
*val = ret.value;
return 0;
}
/*
* Write PCI config space
*/
static int iSeries_pci_write_config(struct pci_bus *bus, unsigned int devfn,
int offset, int size, u32 val)
{
struct device_node *node = find_Device_Node(bus->number, devfn);
u64 fn;
u64 ret;
if (node == NULL)
return PCIBIOS_DEVICE_NOT_FOUND;
if (offset > 255)
return PCIBIOS_BAD_REGISTER_NUMBER;
fn = hv_cfg_write_func[(size - 1) & 3];
ret = HvCall4(fn, iseries_ds_addr(node), offset, val, 0);
if (ret != 0)
return PCIBIOS_DEVICE_NOT_FOUND;
return 0;
}
static struct pci_ops iSeries_pci_ops = {
.read = iSeries_pci_read_config,
.write = iSeries_pci_write_config
};
/*
* Check Return Code
* -> On Failure, print and log information.
* Increment Retry Count, if exceeds max, panic partition.
*
* PCI: Device 23.90 ReadL I/O Error( 0): 0x1234
* PCI: Device 23.90 ReadL Retry( 1)
* PCI: Device 23.90 ReadL Retry Successful(1)
*/
static int CheckReturnCode(char *TextHdr, struct device_node *DevNode,
int *retry, u64 ret)
{
if (ret != 0) {
struct pci_dn *pdn = PCI_DN(DevNode);
(*retry)++;
printk("PCI: %s: Device 0x%04X:%02X I/O Error(%2d): 0x%04X\n",
TextHdr, pdn->busno, pdn->devfn,
*retry, (int)ret);
/*
* Bump the retry and check for retry count exceeded.
* If, Exceeded, panic the system.
*/
if (((*retry) > Pci_Retry_Max) &&
(Pci_Error_Flag > 0)) {
mf_display_src(0xB6000103);
panic_timeout = 0;
panic("PCI: Hardware I/O Error, SRC B6000103, "
"Automatic Reboot Disabled.\n");
}
return -1; /* Retry Try */
}
return 0;
}
/*
* Translate the I/O Address into a device node, bar, and bar offset.
* Note: Make sure the passed variable end up on the stack to avoid
* the exposure of being device global.
*/
static inline struct device_node *xlate_iomm_address(
const volatile void __iomem *IoAddress,
u64 *dsaptr, u64 *BarOffsetPtr)
{
unsigned long OrigIoAddr;
unsigned long BaseIoAddr;
unsigned long TableIndex;
struct device_node *DevNode;
OrigIoAddr = (unsigned long __force)IoAddress;
if ((OrigIoAddr < BASE_IO_MEMORY) || (OrigIoAddr >= max_io_memory))
return NULL;
BaseIoAddr = OrigIoAddr - BASE_IO_MEMORY;
TableIndex = BaseIoAddr / IOMM_TABLE_ENTRY_SIZE;
DevNode = iomm_table[TableIndex];
if (DevNode != NULL) {
int barnum = iobar_table[TableIndex];
*dsaptr = iseries_ds_addr(DevNode) | (barnum << 24);
*BarOffsetPtr = BaseIoAddr % IOMM_TABLE_ENTRY_SIZE;
} else
panic("PCI: Invalid PCI IoAddress detected!\n");
return DevNode;
}
/*
* Read MM I/O Instructions for the iSeries
* On MM I/O error, all ones are returned and iSeries_pci_IoError is cal
* else, data is returned in big Endian format.
*
* iSeries_Read_Byte = Read Byte ( 8 bit)
* iSeries_Read_Word = Read Word (16 bit)
* iSeries_Read_Long = Read Long (32 bit)
*/
u8 iSeries_Read_Byte(const volatile void __iomem *IoAddress)
{
u64 BarOffset;
u64 dsa;
int retry = 0;
struct HvCallPci_LoadReturn ret;
struct device_node *DevNode =
xlate_iomm_address(IoAddress, &dsa, &BarOffset);
if (DevNode == NULL) {
static unsigned long last_jiffies;
static int num_printed;
if ((jiffies - last_jiffies) > 60 * HZ) {
last_jiffies = jiffies;
num_printed = 0;
}
if (num_printed++ < 10)
printk(KERN_ERR "iSeries_Read_Byte: invalid access at IO address %p\n", IoAddress);
return 0xff;
}
do {
HvCall3Ret16(HvCallPciBarLoad8, &ret, dsa, BarOffset, 0);
} while (CheckReturnCode("RDB", DevNode, &retry, ret.rc) != 0);
return (u8)ret.value;
}
EXPORT_SYMBOL(iSeries_Read_Byte);
u16 iSeries_Read_Word(const volatile void __iomem *IoAddress)
{
u64 BarOffset;
u64 dsa;
int retry = 0;
struct HvCallPci_LoadReturn ret;
struct device_node *DevNode =
xlate_iomm_address(IoAddress, &dsa, &BarOffset);
if (DevNode == NULL) {
static unsigned long last_jiffies;
static int num_printed;
if ((jiffies - last_jiffies) > 60 * HZ) {
last_jiffies = jiffies;
num_printed = 0;
}
if (num_printed++ < 10)
printk(KERN_ERR "iSeries_Read_Word: invalid access at IO address %p\n", IoAddress);
return 0xffff;
}
do {
HvCall3Ret16(HvCallPciBarLoad16, &ret, dsa,
BarOffset, 0);
} while (CheckReturnCode("RDW", DevNode, &retry, ret.rc) != 0);
return swab16((u16)ret.value);
}
EXPORT_SYMBOL(iSeries_Read_Word);
u32 iSeries_Read_Long(const volatile void __iomem *IoAddress)
{
u64 BarOffset;
u64 dsa;
int retry = 0;
struct HvCallPci_LoadReturn ret;
struct device_node *DevNode =
xlate_iomm_address(IoAddress, &dsa, &BarOffset);
if (DevNode == NULL) {
static unsigned long last_jiffies;
static int num_printed;
if ((jiffies - last_jiffies) > 60 * HZ) {
last_jiffies = jiffies;
num_printed = 0;
}
if (num_printed++ < 10)
printk(KERN_ERR "iSeries_Read_Long: invalid access at IO address %p\n", IoAddress);
return 0xffffffff;
}
do {
HvCall3Ret16(HvCallPciBarLoad32, &ret, dsa,
BarOffset, 0);
} while (CheckReturnCode("RDL", DevNode, &retry, ret.rc) != 0);
return swab32((u32)ret.value);
}
EXPORT_SYMBOL(iSeries_Read_Long);
/*
* Write MM I/O Instructions for the iSeries
*
* iSeries_Write_Byte = Write Byte (8 bit)
* iSeries_Write_Word = Write Word(16 bit)
* iSeries_Write_Long = Write Long(32 bit)
*/
void iSeries_Write_Byte(u8 data, volatile void __iomem *IoAddress)
{
u64 BarOffset;
u64 dsa;
int retry = 0;
u64 rc;
struct device_node *DevNode =
xlate_iomm_address(IoAddress, &dsa, &BarOffset);
if (DevNode == NULL) {
static unsigned long last_jiffies;
static int num_printed;
if ((jiffies - last_jiffies) > 60 * HZ) {
last_jiffies = jiffies;
num_printed = 0;
}
if (num_printed++ < 10)
printk(KERN_ERR "iSeries_Write_Byte: invalid access at IO address %p\n", IoAddress);
return;
}
do {
rc = HvCall4(HvCallPciBarStore8, dsa, BarOffset, data, 0);
} while (CheckReturnCode("WWB", DevNode, &retry, rc) != 0);
}
EXPORT_SYMBOL(iSeries_Write_Byte);
void iSeries_Write_Word(u16 data, volatile void __iomem *IoAddress)
{
u64 BarOffset;
u64 dsa;
int retry = 0;
u64 rc;
struct device_node *DevNode =
xlate_iomm_address(IoAddress, &dsa, &BarOffset);
if (DevNode == NULL) {
static unsigned long last_jiffies;
static int num_printed;
if ((jiffies - last_jiffies) > 60 * HZ) {
last_jiffies = jiffies;
num_printed = 0;
}
if (num_printed++ < 10)
printk(KERN_ERR "iSeries_Write_Word: invalid access at IO address %p\n", IoAddress);
return;
}
do {
rc = HvCall4(HvCallPciBarStore16, dsa, BarOffset, swab16(data), 0);
} while (CheckReturnCode("WWW", DevNode, &retry, rc) != 0);
}
EXPORT_SYMBOL(iSeries_Write_Word);
void iSeries_Write_Long(u32 data, volatile void __iomem *IoAddress)
{
u64 BarOffset;
u64 dsa;
int retry = 0;
u64 rc;
struct device_node *DevNode =
xlate_iomm_address(IoAddress, &dsa, &BarOffset);
if (DevNode == NULL) {
static unsigned long last_jiffies;
static int num_printed;
if ((jiffies - last_jiffies) > 60 * HZ) {
last_jiffies = jiffies;
num_printed = 0;
}
if (num_printed++ < 10)
printk(KERN_ERR "iSeries_Write_Long: invalid access at IO address %p\n", IoAddress);
return;
}
do {
rc = HvCall4(HvCallPciBarStore32, dsa, BarOffset, swab32(data), 0);
} while (CheckReturnCode("WWL", DevNode, &retry, rc) != 0);
}
EXPORT_SYMBOL(iSeries_Write_Long);