android_kernel_samsung_msm8976/drivers/char/ftape/lowlevel/fdc-io.c
David Howells 7d12e780e0 IRQ: Maintain regs pointer globally rather than passing to IRQ handlers
Maintain a per-CPU global "struct pt_regs *" variable which can be used instead
of passing regs around manually through all ~1800 interrupt handlers in the
Linux kernel.

The regs pointer is used in few places, but it potentially costs both stack
space and code to pass it around.  On the FRV arch, removing the regs parameter
from all the genirq function results in a 20% speed up of the IRQ exit path
(ie: from leaving timer_interrupt() to leaving do_IRQ()).

Where appropriate, an arch may override the generic storage facility and do
something different with the variable.  On FRV, for instance, the address is
maintained in GR28 at all times inside the kernel as part of general exception
handling.

Having looked over the code, it appears that the parameter may be handed down
through up to twenty or so layers of functions.  Consider a USB character
device attached to a USB hub, attached to a USB controller that posts its
interrupts through a cascaded auxiliary interrupt controller.  A character
device driver may want to pass regs to the sysrq handler through the input
layer which adds another few layers of parameter passing.

I've build this code with allyesconfig for x86_64 and i386.  I've runtested the
main part of the code on FRV and i386, though I can't test most of the drivers.
I've also done partial conversion for powerpc and MIPS - these at least compile
with minimal configurations.

This will affect all archs.  Mostly the changes should be relatively easy.
Take do_IRQ(), store the regs pointer at the beginning, saving the old one:

	struct pt_regs *old_regs = set_irq_regs(regs);

And put the old one back at the end:

	set_irq_regs(old_regs);

Don't pass regs through to generic_handle_irq() or __do_IRQ().

In timer_interrupt(), this sort of change will be necessary:

	-	update_process_times(user_mode(regs));
	-	profile_tick(CPU_PROFILING, regs);
	+	update_process_times(user_mode(get_irq_regs()));
	+	profile_tick(CPU_PROFILING);

I'd like to move update_process_times()'s use of get_irq_regs() into itself,
except that i386, alone of the archs, uses something other than user_mode().

Some notes on the interrupt handling in the drivers:

 (*) input_dev() is now gone entirely.  The regs pointer is no longer stored in
     the input_dev struct.

 (*) finish_unlinks() in drivers/usb/host/ohci-q.c needs checking.  It does
     something different depending on whether it's been supplied with a regs
     pointer or not.

 (*) Various IRQ handler function pointers have been moved to type
     irq_handler_t.

Signed-Off-By: David Howells <dhowells@redhat.com>
(cherry picked from 1b16e7ac850969f38b375e511e3fa2f474a33867 commit)
2006-10-05 15:10:12 +01:00

1349 lines
37 KiB
C

/*
* Copyright (C) 1993-1996 Bas Laarhoven,
* (C) 1996-1997 Claus-Justus Heine.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; see the file COPYING. If not, write to
the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
*
* $Source: /homes/cvs/ftape-stacked/ftape/lowlevel/fdc-io.c,v $
* $Revision: 1.7.4.2 $
* $Date: 1997/11/16 14:48:17 $
*
* This file contains the low-level floppy disk interface code
* for the QIC-40/80/3010/3020 floppy-tape driver "ftape" for
* Linux.
*/
#include <linux/errno.h>
#include <linux/sched.h>
#include <linux/ioport.h>
#include <linux/interrupt.h>
#include <linux/kernel.h>
#include <asm/system.h>
#include <asm/io.h>
#include <asm/dma.h>
#include <asm/irq.h>
#include <linux/ftape.h>
#include <linux/qic117.h>
#include "../lowlevel/ftape-tracing.h"
#include "../lowlevel/fdc-io.h"
#include "../lowlevel/fdc-isr.h"
#include "../lowlevel/ftape-io.h"
#include "../lowlevel/ftape-rw.h"
#include "../lowlevel/ftape-ctl.h"
#include "../lowlevel/ftape-calibr.h"
#include "../lowlevel/fc-10.h"
/* Global vars.
*/
static int ftape_motor;
volatile int ftape_current_cylinder = -1;
volatile fdc_mode_enum fdc_mode = fdc_idle;
fdc_config_info fdc;
DECLARE_WAIT_QUEUE_HEAD(ftape_wait_intr);
unsigned int ft_fdc_base = CONFIG_FT_FDC_BASE;
unsigned int ft_fdc_irq = CONFIG_FT_FDC_IRQ;
unsigned int ft_fdc_dma = CONFIG_FT_FDC_DMA;
unsigned int ft_fdc_threshold = CONFIG_FT_FDC_THR; /* bytes */
unsigned int ft_fdc_rate_limit = CONFIG_FT_FDC_MAX_RATE; /* bits/sec */
int ft_probe_fc10 = CONFIG_FT_PROBE_FC10;
int ft_mach2 = CONFIG_FT_MACH2;
/* Local vars.
*/
static spinlock_t fdc_io_lock;
static unsigned int fdc_calibr_count;
static unsigned int fdc_calibr_time;
static int fdc_status;
volatile __u8 fdc_head; /* FDC head from sector id */
volatile __u8 fdc_cyl; /* FDC track from sector id */
volatile __u8 fdc_sect; /* FDC sector from sector id */
static int fdc_data_rate = 500; /* data rate (Kbps) */
static int fdc_rate_code; /* data rate code (0 == 500 Kbps) */
static int fdc_seek_rate = 2; /* step rate (msec) */
static void (*do_ftape) (void);
static int fdc_fifo_state; /* original fifo setting - fifo enabled */
static int fdc_fifo_thr; /* original fifo setting - threshold */
static int fdc_lock_state; /* original lock setting - locked */
static int fdc_fifo_locked; /* has fifo && lock set ? */
static __u8 fdc_precomp; /* default precomp. value (nsec) */
static __u8 fdc_prec_code; /* fdc precomp. select code */
static char ftape_id[] = "ftape"; /* used by request irq and free irq */
static int fdc_set_seek_rate(int seek_rate);
void fdc_catch_stray_interrupts(int count)
{
unsigned long flags;
spin_lock_irqsave(&fdc_io_lock, flags);
if (count == 0) {
ft_expected_stray_interrupts = 0;
} else {
ft_expected_stray_interrupts += count;
}
spin_unlock_irqrestore(&fdc_io_lock, flags);
}
/* Wait during a timeout period for a given FDC status.
* If usecs == 0 then just test status, else wait at least for usecs.
* Returns -ETIME on timeout. Function must be calibrated first !
*/
static int fdc_wait(unsigned int usecs, __u8 mask, __u8 state)
{
int count_1 = (fdc_calibr_count * usecs +
fdc_calibr_count - 1) / fdc_calibr_time;
do {
fdc_status = inb_p(fdc.msr);
if ((fdc_status & mask) == state) {
return 0;
}
} while (count_1-- >= 0);
return -ETIME;
}
int fdc_ready_wait(unsigned int usecs)
{
return fdc_wait(usecs, FDC_DATA_READY | FDC_BUSY, FDC_DATA_READY);
}
/* Why can't we just use udelay()?
*/
static void fdc_usec_wait(unsigned int usecs)
{
fdc_wait(usecs, 0, 1); /* will always timeout ! */
}
static int fdc_ready_out_wait(unsigned int usecs)
{
fdc_usec_wait(FT_RQM_DELAY); /* wait for valid RQM status */
return fdc_wait(usecs, FDC_DATA_OUT_READY, FDC_DATA_OUT_READY);
}
void fdc_wait_calibrate(void)
{
ftape_calibrate("fdc_wait",
fdc_usec_wait, &fdc_calibr_count, &fdc_calibr_time);
}
/* Wait for a (short) while for the FDC to become ready
* and transfer the next command byte.
* Return -ETIME on timeout on getting ready (depends on hardware!).
*/
static int fdc_write(const __u8 data)
{
fdc_usec_wait(FT_RQM_DELAY); /* wait for valid RQM status */
if (fdc_wait(150, FDC_DATA_READY_MASK, FDC_DATA_IN_READY) < 0) {
return -ETIME;
} else {
outb(data, fdc.fifo);
return 0;
}
}
/* Wait for a (short) while for the FDC to become ready
* and transfer the next result byte.
* Return -ETIME if timeout on getting ready (depends on hardware!).
*/
static int fdc_read(__u8 * data)
{
fdc_usec_wait(FT_RQM_DELAY); /* wait for valid RQM status */
if (fdc_wait(150, FDC_DATA_READY_MASK, FDC_DATA_OUT_READY) < 0) {
return -ETIME;
} else {
*data = inb(fdc.fifo);
return 0;
}
}
/* Output a cmd_len long command string to the FDC.
* The FDC should be ready to receive a new command or
* an error (EBUSY or ETIME) will occur.
*/
int fdc_command(const __u8 * cmd_data, int cmd_len)
{
int result = 0;
unsigned long flags;
int count = cmd_len;
int retry = 0;
#ifdef TESTING
static unsigned int last_time;
unsigned int time;
#endif
TRACE_FUN(ft_t_any);
fdc_usec_wait(FT_RQM_DELAY); /* wait for valid RQM status */
spin_lock_irqsave(&fdc_io_lock, flags);
if (!in_interrupt())
/* Yes, I know, too much comments inside this function
* ...
*
* Yet another bug in the original driver. All that
* havoc is caused by the fact that the isr() sends
* itself a command to the floppy tape driver (pause,
* micro step pause). Now, the problem is that
* commands are transmitted via the fdc_seek
* command. But: the fdc performs seeks in the
* background i.e. it doesn't signal busy while
* sending the step pulses to the drive. Therefore the
* non-interrupt level driver has no chance to tell
* whether the isr() just has issued a seek. Therefore
* we HAVE TO have a look at the ft_hide_interrupt
* flag: it signals the non-interrupt level part of
* the driver that it has to wait for the fdc until it
* has completet seeking.
*
* THIS WAS PRESUMABLY THE REASON FOR ALL THAT
* "fdc_read timeout" errors, I HOPE :-)
*/
if (ft_hide_interrupt) {
restore_flags(flags);
TRACE(ft_t_info,
"Waiting for the isr() completing fdc_seek()");
if (fdc_interrupt_wait(2 * FT_SECOND) < 0) {
TRACE(ft_t_warn,
"Warning: timeout waiting for isr() seek to complete");
}
if (ft_hide_interrupt || !ft_seek_completed) {
/* There cannot be another
* interrupt. The isr() only stops
* the tape and the next interrupt
* won't come until we have send our
* command to the drive.
*/
TRACE_ABORT(-EIO, ft_t_bug,
"BUG? isr() is still seeking?\n"
KERN_INFO "hide: %d\n"
KERN_INFO "seek: %d",
ft_hide_interrupt,
ft_seek_completed);
}
fdc_usec_wait(FT_RQM_DELAY); /* wait for valid RQM status */
spin_lock_irqsave(&fdc_io_lock, flags);
}
fdc_status = inb(fdc.msr);
if ((fdc_status & FDC_DATA_READY_MASK) != FDC_DATA_IN_READY) {
spin_unlock_irqrestore(&fdc_io_lock, flags);
TRACE_ABORT(-EBUSY, ft_t_err, "fdc not ready");
}
fdc_mode = *cmd_data; /* used by isr */
#ifdef TESTING
if (fdc_mode == FDC_SEEK) {
time = ftape_timediff(last_time, ftape_timestamp());
if (time < 6000) {
TRACE(ft_t_bug,"Warning: short timeout between seek commands: %d",
time);
}
}
#endif
if (!in_interrupt()) {
/* shouldn't be cleared if called from isr
*/
ft_interrupt_seen = 0;
}
while (count) {
result = fdc_write(*cmd_data);
if (result < 0) {
TRACE(ft_t_fdc_dma,
"fdc_mode = %02x, status = %02x at index %d",
(int) fdc_mode, (int) fdc_status,
cmd_len - count);
if (++retry <= 3) {
TRACE(ft_t_warn, "fdc_write timeout, retry");
} else {
TRACE(ft_t_err, "fdc_write timeout, fatal");
/* recover ??? */
break;
}
} else {
--count;
++cmd_data;
}
}
#ifdef TESTING
if (fdc_mode == FDC_SEEK) {
last_time = ftape_timestamp();
}
#endif
spin_unlock_irqrestore(&fdc_io_lock, flags);
TRACE_EXIT result;
}
/* Input a res_len long result string from the FDC.
* The FDC should be ready to send the result or an error
* (EBUSY or ETIME) will occur.
*/
int fdc_result(__u8 * res_data, int res_len)
{
int result = 0;
unsigned long flags;
int count = res_len;
int retry = 0;
TRACE_FUN(ft_t_any);
spin_lock_irqsave(&fdc_io_lock, flags);
fdc_status = inb(fdc.msr);
if ((fdc_status & FDC_DATA_READY_MASK) != FDC_DATA_OUT_READY) {
TRACE(ft_t_err, "fdc not ready");
result = -EBUSY;
} else while (count) {
if (!(fdc_status & FDC_BUSY)) {
spin_unlock_irqrestore(&fdc_io_lock, flags);
TRACE_ABORT(-EIO, ft_t_err, "premature end of result phase");
}
result = fdc_read(res_data);
if (result < 0) {
TRACE(ft_t_fdc_dma,
"fdc_mode = %02x, status = %02x at index %d",
(int) fdc_mode,
(int) fdc_status,
res_len - count);
if (++retry <= 3) {
TRACE(ft_t_warn, "fdc_read timeout, retry");
} else {
TRACE(ft_t_err, "fdc_read timeout, fatal");
/* recover ??? */
break;
++retry;
}
} else {
--count;
++res_data;
}
}
spin_unlock_irqrestore(&fdc_io_lock, flags);
fdc_usec_wait(FT_RQM_DELAY); /* allow FDC to negate BSY */
TRACE_EXIT result;
}
/* Handle command and result phases for
* commands without data phase.
*/
static int fdc_issue_command(const __u8 * out_data, int out_count,
__u8 * in_data, int in_count)
{
TRACE_FUN(ft_t_any);
if (out_count > 0) {
TRACE_CATCH(fdc_command(out_data, out_count),);
}
/* will take 24 - 30 usec for fdc_sense_drive_status and
* fdc_sense_interrupt_status commands.
* 35 fails sometimes (5/9/93 SJL)
* On a loaded system it incidentally takes longer than
* this for the fdc to get ready ! ?????? WHY ??????
* So until we know what's going on use a very long timeout.
*/
TRACE_CATCH(fdc_ready_out_wait(500 /* usec */),);
if (in_count > 0) {
TRACE_CATCH(fdc_result(in_data, in_count),
TRACE(ft_t_err, "result phase aborted"));
}
TRACE_EXIT 0;
}
/* Wait for FDC interrupt with timeout (in milliseconds).
* Signals are blocked so the wait will not be aborted.
* Note: interrupts must be enabled ! (23/05/93 SJL)
*/
int fdc_interrupt_wait(unsigned int time)
{
DECLARE_WAITQUEUE(wait,current);
sigset_t old_sigmask;
static int resetting;
long timeout;
TRACE_FUN(ft_t_fdc_dma);
if (waitqueue_active(&ftape_wait_intr)) {
TRACE_ABORT(-EIO, ft_t_err, "error: nested call");
}
/* timeout time will be up to USPT microseconds too long ! */
timeout = (1000 * time + FT_USPT - 1) / FT_USPT;
spin_lock_irq(&current->sighand->siglock);
old_sigmask = current->blocked;
sigfillset(&current->blocked);
recalc_sigpending();
spin_unlock_irq(&current->sighand->siglock);
set_current_state(TASK_INTERRUPTIBLE);
add_wait_queue(&ftape_wait_intr, &wait);
while (!ft_interrupt_seen && timeout)
timeout = schedule_timeout_interruptible(timeout);
spin_lock_irq(&current->sighand->siglock);
current->blocked = old_sigmask;
recalc_sigpending();
spin_unlock_irq(&current->sighand->siglock);
remove_wait_queue(&ftape_wait_intr, &wait);
/* the following IS necessary. True: as well
* wake_up_interruptible() as the schedule() set TASK_RUNNING
* when they wakeup a task, BUT: it may very well be that
* ft_interrupt_seen is already set to 1 when we enter here
* in which case schedule() gets never called, and
* TASK_RUNNING never set. This has the funny effect that we
* execute all the code until we leave kernel space, but then
* the task is stopped (a task CANNOT be preempted while in
* kernel mode. Sending a pair of SIGSTOP/SIGCONT to the
* tasks wakes it up again. Funny! :-)
*/
current->state = TASK_RUNNING;
if (ft_interrupt_seen) { /* woken up by interrupt */
ft_interrupt_seen = 0;
TRACE_EXIT 0;
}
/* Original comment:
* In first instance, next statement seems unnecessary since
* it will be cleared in fdc_command. However, a small part of
* the software seems to rely on this being cleared here
* (ftape_close might fail) so stick to it until things get fixed !
*/
/* My deeply sought of knowledge:
* Behold NO! It is obvious. fdc_reset() doesn't call fdc_command()
* but nevertheless uses fdc_interrupt_wait(). OF COURSE this needs to
* be reset here.
*/
ft_interrupt_seen = 0; /* clear for next call */
if (!resetting) {
resetting = 1; /* break infinite recursion if reset fails */
TRACE(ft_t_any, "cleanup reset");
fdc_reset();
resetting = 0;
}
TRACE_EXIT (signal_pending(current)) ? -EINTR : -ETIME;
}
/* Start/stop drive motor. Enable DMA mode.
*/
void fdc_motor(int motor)
{
int unit = ft_drive_sel;
int data = unit | FDC_RESET_NOT | FDC_DMA_MODE;
TRACE_FUN(ft_t_any);
ftape_motor = motor;
if (ftape_motor) {
data |= FDC_MOTOR_0 << unit;
TRACE(ft_t_noise, "turning motor %d on", unit);
} else {
TRACE(ft_t_noise, "turning motor %d off", unit);
}
if (ft_mach2) {
outb_p(data, fdc.dor2);
} else {
outb_p(data, fdc.dor);
}
ftape_sleep(10 * FT_MILLISECOND);
TRACE_EXIT;
}
static void fdc_update_dsr(void)
{
TRACE_FUN(ft_t_any);
TRACE(ft_t_flow, "rate = %d Kbps, precomp = %d ns",
fdc_data_rate, fdc_precomp);
if (fdc.type >= i82077) {
outb_p((fdc_rate_code & 0x03) | fdc_prec_code, fdc.dsr);
} else {
outb_p(fdc_rate_code & 0x03, fdc.ccr);
}
TRACE_EXIT;
}
void fdc_set_write_precomp(int precomp)
{
TRACE_FUN(ft_t_any);
TRACE(ft_t_noise, "New precomp: %d nsec", precomp);
fdc_precomp = precomp;
/* write precompensation can be set in multiples of 41.67 nsec.
* round the parameter to the nearest multiple and convert it
* into a fdc setting. Note that 0 means default to the fdc,
* 7 is used instead of that.
*/
fdc_prec_code = ((fdc_precomp + 21) / 42) << 2;
if (fdc_prec_code == 0 || fdc_prec_code > (6 << 2)) {
fdc_prec_code = 7 << 2;
}
fdc_update_dsr();
TRACE_EXIT;
}
/* Reprogram the 82078 registers to use Data Rate Table 1 on all drives.
*/
static void fdc_set_drive_specs(void)
{
__u8 cmd[] = { FDC_DRIVE_SPEC, 0x00, 0x00, 0x00, 0x00, 0xc0};
int result;
TRACE_FUN(ft_t_any);
TRACE(ft_t_flow, "Setting of drive specs called");
if (fdc.type >= i82078_1) {
cmd[1] = (0 << 5) | (2 << 2);
cmd[2] = (1 << 5) | (2 << 2);
cmd[3] = (2 << 5) | (2 << 2);
cmd[4] = (3 << 5) | (2 << 2);
result = fdc_command(cmd, NR_ITEMS(cmd));
if (result < 0) {
TRACE(ft_t_err, "Setting of drive specs failed");
}
}
TRACE_EXIT;
}
/* Select clock for fdc, must correspond with tape drive setting !
* This also influences the fdc timing so we must adjust some values.
*/
int fdc_set_data_rate(int rate)
{
int bad_rate = 0;
TRACE_FUN(ft_t_any);
/* Select clock for fdc, must correspond with tape drive setting !
* This also influences the fdc timing so we must adjust some values.
*/
TRACE(ft_t_fdc_dma, "new rate = %d", rate);
switch (rate) {
case 250:
fdc_rate_code = fdc_data_rate_250;
break;
case 500:
fdc_rate_code = fdc_data_rate_500;
break;
case 1000:
if (fdc.type < i82077) {
bad_rate = 1;
} else {
fdc_rate_code = fdc_data_rate_1000;
}
break;
case 2000:
if (fdc.type < i82078_1) {
bad_rate = 1;
} else {
fdc_rate_code = fdc_data_rate_2000;
}
break;
default:
bad_rate = 1;
}
if (bad_rate) {
TRACE_ABORT(-EIO,
ft_t_fdc_dma, "%d is not a valid data rate", rate);
}
fdc_data_rate = rate;
fdc_update_dsr();
fdc_set_seek_rate(fdc_seek_rate); /* clock changed! */
ftape_udelay(1000);
TRACE_EXIT 0;
}
/* keep the unit select if keep_select is != 0,
*/
static void fdc_dor_reset(int keep_select)
{
__u8 fdc_ctl = ft_drive_sel;
if (keep_select != 0) {
fdc_ctl |= FDC_DMA_MODE;
if (ftape_motor) {
fdc_ctl |= FDC_MOTOR_0 << ft_drive_sel;
}
}
ftape_udelay(10); /* ??? but seems to be necessary */
if (ft_mach2) {
outb_p(fdc_ctl & 0x0f, fdc.dor);
outb_p(fdc_ctl, fdc.dor2);
} else {
outb_p(fdc_ctl, fdc.dor);
}
fdc_usec_wait(10); /* delay >= 14 fdc clocks */
if (keep_select == 0) {
fdc_ctl = 0;
}
fdc_ctl |= FDC_RESET_NOT;
if (ft_mach2) {
outb_p(fdc_ctl & 0x0f, fdc.dor);
outb_p(fdc_ctl, fdc.dor2);
} else {
outb_p(fdc_ctl, fdc.dor);
}
}
/* Reset the floppy disk controller. Leave the ftape_unit selected.
*/
void fdc_reset(void)
{
int st0;
int i;
int dummy;
unsigned long flags;
TRACE_FUN(ft_t_any);
spin_lock_irqsave(&fdc_io_lock, flags);
fdc_dor_reset(1); /* keep unit selected */
fdc_mode = fdc_idle;
/* maybe the spin_lock_irq* pair is not necessary, BUT:
* the following line MUST be here. Otherwise fdc_interrupt_wait()
* won't wait. Note that fdc_reset() is called from
* ftape_dumb_stop() when the fdc is busy transferring data. In this
* case fdc_isr() MOST PROBABLY sets ft_interrupt_seen, and tries
* to get the result bytes from the fdc etc. CLASH.
*/
ft_interrupt_seen = 0;
/* Program data rate
*/
fdc_update_dsr(); /* restore data rate and precomp */
spin_unlock_irqrestore(&fdc_io_lock, flags);
/*
* Wait for first polling cycle to complete
*/
if (fdc_interrupt_wait(1 * FT_SECOND) < 0) {
TRACE(ft_t_err, "no drive polling interrupt!");
} else { /* clear all disk-changed statuses */
for (i = 0; i < 4; ++i) {
if(fdc_sense_interrupt_status(&st0, &dummy) != 0) {
TRACE(ft_t_err, "sense failed for %d", i);
}
if (i == ft_drive_sel) {
ftape_current_cylinder = dummy;
}
}
TRACE(ft_t_noise, "drive polling completed");
}
/*
* SPECIFY COMMAND
*/
fdc_set_seek_rate(fdc_seek_rate);
/*
* DRIVE SPECIFICATION COMMAND (if fdc type known)
*/
if (fdc.type >= i82078_1) {
fdc_set_drive_specs();
}
TRACE_EXIT;
}
#if !defined(CLK_48MHZ)
# define CLK_48MHZ 1
#endif
/* When we're done, put the fdc into reset mode so that the regular
* floppy disk driver will figure out that something is wrong and
* initialize the controller the way it wants.
*/
void fdc_disable(void)
{
__u8 cmd1[] = {FDC_CONFIGURE, 0x00, 0x00, 0x00};
__u8 cmd2[] = {FDC_LOCK};
__u8 cmd3[] = {FDC_UNLOCK};
__u8 stat[1];
TRACE_FUN(ft_t_flow);
if (!fdc_fifo_locked) {
fdc_reset();
TRACE_EXIT;
}
if (fdc_issue_command(cmd3, 1, stat, 1) < 0 || stat[0] != 0x00) {
fdc_dor_reset(0);
TRACE_ABORT(/**/, ft_t_bug,
"couldn't unlock fifo, configuration remains changed");
}
fdc_fifo_locked = 0;
if (CLK_48MHZ && fdc.type >= i82078) {
cmd1[0] |= FDC_CLK48_BIT;
}
cmd1[2] = ((fdc_fifo_state) ? 0 : 0x20) + (fdc_fifo_thr - 1);
if (fdc_command(cmd1, NR_ITEMS(cmd1)) < 0) {
fdc_dor_reset(0);
TRACE_ABORT(/**/, ft_t_bug,
"couldn't reconfigure fifo to old state");
}
if (fdc_lock_state &&
fdc_issue_command(cmd2, 1, stat, 1) < 0) {
fdc_dor_reset(0);
TRACE_ABORT(/**/, ft_t_bug, "couldn't lock old state again");
}
TRACE(ft_t_noise, "fifo restored: %sabled, thr. %d, %slocked",
fdc_fifo_state ? "en" : "dis",
fdc_fifo_thr, (fdc_lock_state) ? "" : "not ");
fdc_dor_reset(0);
TRACE_EXIT;
}
/* Specify FDC seek-rate (milliseconds)
*/
static int fdc_set_seek_rate(int seek_rate)
{
/* set step rate, dma mode, and minimal head load and unload times
*/
__u8 in[3] = { FDC_SPECIFY, 1, (1 << 1)};
fdc_seek_rate = seek_rate;
in[1] |= (16 - (fdc_data_rate * fdc_seek_rate) / 500) << 4;
return fdc_command(in, 3);
}
/* Sense drive status: get unit's drive status (ST3)
*/
int fdc_sense_drive_status(int *st3)
{
__u8 out[2];
__u8 in[1];
TRACE_FUN(ft_t_any);
out[0] = FDC_SENSED;
out[1] = ft_drive_sel;
TRACE_CATCH(fdc_issue_command(out, 2, in, 1),);
*st3 = in[0];
TRACE_EXIT 0;
}
/* Sense Interrupt Status command:
* should be issued at the end of each seek.
* get ST0 and current cylinder.
*/
int fdc_sense_interrupt_status(int *st0, int *current_cylinder)
{
__u8 out[1];
__u8 in[2];
TRACE_FUN(ft_t_any);
out[0] = FDC_SENSEI;
TRACE_CATCH(fdc_issue_command(out, 1, in, 2),);
*st0 = in[0];
*current_cylinder = in[1];
TRACE_EXIT 0;
}
/* step to track
*/
int fdc_seek(int track)
{
__u8 out[3];
int st0, pcn;
#ifdef TESTING
unsigned int time;
#endif
TRACE_FUN(ft_t_any);
out[0] = FDC_SEEK;
out[1] = ft_drive_sel;
out[2] = track;
#ifdef TESTING
time = ftape_timestamp();
#endif
/* We really need this command to work !
*/
ft_seek_completed = 0;
TRACE_CATCH(fdc_command(out, 3),
fdc_reset();
TRACE(ft_t_noise, "destination was: %d, resetting FDC...",
track));
/* Handle interrupts until ft_seek_completed or timeout.
*/
for (;;) {
TRACE_CATCH(fdc_interrupt_wait(2 * FT_SECOND),);
if (ft_seek_completed) {
TRACE_CATCH(fdc_sense_interrupt_status(&st0, &pcn),);
if ((st0 & ST0_SEEK_END) == 0) {
TRACE_ABORT(-EIO, ft_t_err,
"no seek-end after seek completion !??");
}
break;
}
}
#ifdef TESTING
time = ftape_timediff(time, ftape_timestamp()) / abs(track - ftape_current_cylinder);
if ((time < 900 || time > 3100) && abs(track - ftape_current_cylinder) > 5) {
TRACE(ft_t_warn, "Wrong FDC STEP interval: %d usecs (%d)",
time, track - ftape_current_cylinder);
}
#endif
/* Verify whether we issued the right tape command.
*/
/* Verify that we seek to the proper track. */
if (pcn != track) {
TRACE_ABORT(-EIO, ft_t_err, "bad seek..");
}
ftape_current_cylinder = track;
TRACE_EXIT 0;
}
static int perpend_mode; /* set if fdc is in perpendicular mode */
static int perpend_off(void)
{
__u8 perpend[] = {FDC_PERPEND, 0x00};
TRACE_FUN(ft_t_any);
if (perpend_mode) {
/* Turn off perpendicular mode */
perpend[1] = 0x80;
TRACE_CATCH(fdc_command(perpend, 2),
TRACE(ft_t_err,"Perpendicular mode exit failed!"));
perpend_mode = 0;
}
TRACE_EXIT 0;
}
static int handle_perpend(int segment_id)
{
__u8 perpend[] = {FDC_PERPEND, 0x00};
TRACE_FUN(ft_t_any);
/* When writing QIC-3020 tapes, turn on perpendicular mode
* if tape is moving in forward direction (even tracks).
*/
if (ft_qic_std == QIC_TAPE_QIC3020 &&
((segment_id / ft_segments_per_track) & 1) == 0) {
/* FIXME: some i82077 seem to support perpendicular mode as
* well.
*/
#if 0
if (fdc.type < i82077AA) {}
#else
if (fdc.type < i82077 && ft_data_rate < 1000) {
#endif
/* fdc does not support perpendicular mode: complain
*/
TRACE_ABORT(-EIO, ft_t_err,
"Your FDC does not support QIC-3020.");
}
perpend[1] = 0x03 /* 0x83 + (0x4 << ft_drive_sel) */ ;
TRACE_CATCH(fdc_command(perpend, 2),
TRACE(ft_t_err,"Perpendicular mode entry failed!"));
TRACE(ft_t_flow, "Perpendicular mode set");
perpend_mode = 1;
TRACE_EXIT 0;
}
TRACE_EXIT perpend_off();
}
static inline void fdc_setup_dma(char mode,
volatile void *addr, unsigned int count)
{
/* Program the DMA controller.
*/
disable_dma(fdc.dma);
clear_dma_ff(fdc.dma);
set_dma_mode(fdc.dma, mode);
set_dma_addr(fdc.dma, virt_to_bus((void*)addr));
set_dma_count(fdc.dma, count);
enable_dma(fdc.dma);
}
/* Setup fdc and dma for formatting the next segment
*/
int fdc_setup_formatting(buffer_struct * buff)
{
unsigned long flags;
__u8 out[6] = {
FDC_FORMAT, 0x00, 3, 4 * FT_SECTORS_PER_SEGMENT, 0x00, 0x6b
};
TRACE_FUN(ft_t_any);
TRACE_CATCH(handle_perpend(buff->segment_id),);
/* Program the DMA controller.
*/
TRACE(ft_t_fdc_dma,
"phys. addr. = %lx", virt_to_bus((void*) buff->ptr));
spin_lock_irqsave(&fdc_io_lock, flags);
fdc_setup_dma(DMA_MODE_WRITE, buff->ptr, FT_SECTORS_PER_SEGMENT * 4);
/* Issue FDC command to start reading/writing.
*/
out[1] = ft_drive_sel;
out[4] = buff->gap3;
TRACE_CATCH(fdc_setup_error = fdc_command(out, sizeof(out)),
restore_flags(flags); fdc_mode = fdc_idle);
spin_unlock_irqrestore(&fdc_io_lock, flags);
TRACE_EXIT 0;
}
/* Setup Floppy Disk Controller and DMA to read or write the next cluster
* of good sectors from or to the current segment.
*/
int fdc_setup_read_write(buffer_struct * buff, __u8 operation)
{
unsigned long flags;
__u8 out[9];
int dma_mode;
TRACE_FUN(ft_t_any);
switch(operation) {
case FDC_VERIFY:
if (fdc.type < i82077) {
operation = FDC_READ;
}
case FDC_READ:
case FDC_READ_DELETED:
dma_mode = DMA_MODE_READ;
TRACE(ft_t_fdc_dma, "xfer %d sectors to 0x%p",
buff->sector_count, buff->ptr);
TRACE_CATCH(perpend_off(),);
break;
case FDC_WRITE_DELETED:
TRACE(ft_t_noise, "deleting segment %d", buff->segment_id);
case FDC_WRITE:
dma_mode = DMA_MODE_WRITE;
/* When writing QIC-3020 tapes, turn on perpendicular mode
* if tape is moving in forward direction (even tracks).
*/
TRACE_CATCH(handle_perpend(buff->segment_id),);
TRACE(ft_t_fdc_dma, "xfer %d sectors from 0x%p",
buff->sector_count, buff->ptr);
break;
default:
TRACE_ABORT(-EIO,
ft_t_bug, "bug: invalid operation parameter");
}
TRACE(ft_t_fdc_dma, "phys. addr. = %lx",virt_to_bus((void*)buff->ptr));
spin_lock_irqsave(&fdc_io_lock, flags);
if (operation != FDC_VERIFY) {
fdc_setup_dma(dma_mode, buff->ptr,
FT_SECTOR_SIZE * buff->sector_count);
}
/* Issue FDC command to start reading/writing.
*/
out[0] = operation;
out[1] = ft_drive_sel;
out[2] = buff->cyl;
out[3] = buff->head;
out[4] = buff->sect + buff->sector_offset;
out[5] = 3; /* Sector size of 1K. */
out[6] = out[4] + buff->sector_count - 1; /* last sector */
out[7] = 109; /* Gap length. */
out[8] = 0xff; /* No limit to transfer size. */
TRACE(ft_t_fdc_dma, "C: 0x%02x, H: 0x%02x, R: 0x%02x, cnt: 0x%02x",
out[2], out[3], out[4], out[6] - out[4] + 1);
spin_unlock_irqrestore(&fdc_io_lock, flags);
TRACE_CATCH(fdc_setup_error = fdc_command(out, 9),fdc_mode = fdc_idle);
TRACE_EXIT 0;
}
int fdc_fifo_threshold(__u8 threshold,
int *fifo_state, int *lock_state, int *fifo_thr)
{
const __u8 cmd0[] = {FDC_DUMPREGS};
__u8 cmd1[] = {FDC_CONFIGURE, 0, (0x0f & (threshold - 1)), 0};
const __u8 cmd2[] = {FDC_LOCK};
const __u8 cmd3[] = {FDC_UNLOCK};
__u8 reg[10];
__u8 stat;
int i;
int result;
TRACE_FUN(ft_t_any);
if (CLK_48MHZ && fdc.type >= i82078) {
cmd1[0] |= FDC_CLK48_BIT;
}
/* Dump fdc internal registers for examination
*/
TRACE_CATCH(fdc_command(cmd0, NR_ITEMS(cmd0)),
TRACE(ft_t_warn, "dumpreg cmd failed, fifo unchanged"));
/* Now read fdc internal registers from fifo
*/
for (i = 0; i < (int)NR_ITEMS(reg); ++i) {
fdc_read(&reg[i]);
TRACE(ft_t_fdc_dma, "Register %d = 0x%02x", i, reg[i]);
}
if (fifo_state && lock_state && fifo_thr) {
*fifo_state = (reg[8] & 0x20) == 0;
*lock_state = reg[7] & 0x80;
*fifo_thr = 1 + (reg[8] & 0x0f);
}
TRACE(ft_t_noise,
"original fifo state: %sabled, threshold %d, %slocked",
((reg[8] & 0x20) == 0) ? "en" : "dis",
1 + (reg[8] & 0x0f), (reg[7] & 0x80) ? "" : "not ");
/* If fdc is already locked, unlock it first ! */
if (reg[7] & 0x80) {
fdc_ready_wait(100);
TRACE_CATCH(fdc_issue_command(cmd3, NR_ITEMS(cmd3), &stat, 1),
TRACE(ft_t_bug, "FDC unlock command failed, "
"configuration unchanged"));
}
fdc_fifo_locked = 0;
/* Enable fifo and set threshold at xx bytes to allow a
* reasonably large latency and reduce number of dma bursts.
*/
fdc_ready_wait(100);
if ((result = fdc_command(cmd1, NR_ITEMS(cmd1))) < 0) {
TRACE(ft_t_bug, "configure cmd failed, fifo unchanged");
}
/* Now lock configuration so reset will not change it
*/
if(fdc_issue_command(cmd2, NR_ITEMS(cmd2), &stat, 1) < 0 ||
stat != 0x10) {
TRACE_ABORT(-EIO, ft_t_bug,
"FDC lock command failed, stat = 0x%02x", stat);
}
fdc_fifo_locked = 1;
TRACE_EXIT result;
}
static int fdc_fifo_enable(void)
{
TRACE_FUN(ft_t_any);
if (fdc_fifo_locked) {
TRACE_ABORT(0, ft_t_warn, "Fifo not enabled because locked");
}
TRACE_CATCH(fdc_fifo_threshold(ft_fdc_threshold /* bytes */,
&fdc_fifo_state,
&fdc_lock_state,
&fdc_fifo_thr),);
TRACE_CATCH(fdc_fifo_threshold(ft_fdc_threshold /* bytes */,
NULL, NULL, NULL),);
TRACE_EXIT 0;
}
/* Determine fd controller type
*/
static __u8 fdc_save_state[2];
static int fdc_probe(void)
{
__u8 cmd[1];
__u8 stat[16]; /* must be able to hold dumpregs & save results */
int i;
TRACE_FUN(ft_t_any);
/* Try to find out what kind of fd controller we have to deal with
* Scheme borrowed from floppy driver:
* first try if FDC_DUMPREGS command works
* (this indicates that we have a 82072 or better)
* then try the FDC_VERSION command (82072 doesn't support this)
* then try the FDC_UNLOCK command (some older 82077's don't support this)
* then try the FDC_PARTID command (82078's support this)
*/
cmd[0] = FDC_DUMPREGS;
if (fdc_issue_command(cmd, 1, stat, 1) != 0) {
TRACE_ABORT(no_fdc, ft_t_bug, "No FDC found");
}
if (stat[0] == 0x80) {
/* invalid command: must be pre 82072 */
TRACE_ABORT(i8272,
ft_t_warn, "Type 8272A/765A compatible FDC found");
}
fdc_result(&stat[1], 9);
fdc_save_state[0] = stat[7];
fdc_save_state[1] = stat[8];
cmd[0] = FDC_VERSION;
if (fdc_issue_command(cmd, 1, stat, 1) < 0 || stat[0] == 0x80) {
TRACE_ABORT(i8272, ft_t_warn, "Type 82072 FDC found");
}
if (*stat != 0x90) {
TRACE_ABORT(i8272, ft_t_warn, "Unknown FDC found");
}
cmd[0] = FDC_UNLOCK;
if(fdc_issue_command(cmd, 1, stat, 1) < 0 || stat[0] != 0x00) {
TRACE_ABORT(i8272, ft_t_warn,
"Type pre-1991 82077 FDC found, "
"treating it like a 82072");
}
if (fdc_save_state[0] & 0x80) { /* was locked */
cmd[0] = FDC_LOCK; /* restore lock */
(void)fdc_issue_command(cmd, 1, stat, 1);
TRACE(ft_t_warn, "FDC is already locked");
}
/* Test for a i82078 FDC */
cmd[0] = FDC_PARTID;
if (fdc_issue_command(cmd, 1, stat, 1) < 0 || stat[0] == 0x80) {
/* invalid command: not a i82078xx type FDC */
for (i = 0; i < 4; ++i) {
outb_p(i, fdc.tdr);
if ((inb_p(fdc.tdr) & 0x03) != i) {
TRACE_ABORT(i82077,
ft_t_warn, "Type 82077 FDC found");
}
}
TRACE_ABORT(i82077AA, ft_t_warn, "Type 82077AA FDC found");
}
/* FDC_PARTID cmd succeeded */
switch (stat[0] >> 5) {
case 0x0:
/* i82078SL or i82078-1. The SL part cannot run at
* 2Mbps (the SL and -1 dies are identical; they are
* speed graded after production, according to Intel).
* Some SL's can be detected by doing a SAVE cmd and
* look at bit 7 of the first byte (the SEL3V# bit).
* If it is 0, the part runs off 3Volts, and hence it
* is a SL.
*/
cmd[0] = FDC_SAVE;
if(fdc_issue_command(cmd, 1, stat, 16) < 0) {
TRACE(ft_t_err, "FDC_SAVE failed. Dunno why");
/* guess we better claim the fdc to be a i82078 */
TRACE_ABORT(i82078,
ft_t_warn,
"Type i82078 FDC (i suppose) found");
}
if ((stat[0] & FDC_SEL3V_BIT)) {
/* fdc running off 5Volts; Pray that it's a i82078-1
*/
TRACE_ABORT(i82078_1, ft_t_warn,
"Type i82078-1 or 5Volt i82078SL FDC found");
}
TRACE_ABORT(i82078, ft_t_warn,
"Type 3Volt i82078SL FDC (1Mbps) found");
case 0x1:
case 0x2: /* S82078B */
/* The '78B isn't '78 compatible. Detect it as a '77AA */
TRACE_ABORT(i82077AA, ft_t_warn, "Type i82077AA FDC found");
case 0x3: /* NSC PC8744 core; used in several super-IO chips */
TRACE_ABORT(i82077AA,
ft_t_warn, "Type 82077AA compatible FDC found");
default:
TRACE(ft_t_warn, "A previously undetected FDC found");
TRACE_ABORT(i82077AA, ft_t_warn,
"Treating it as a 82077AA. Please report partid= %d",
stat[0]);
} /* switch(stat[ 0] >> 5) */
TRACE_EXIT no_fdc;
}
static int fdc_request_regions(void)
{
TRACE_FUN(ft_t_flow);
if (ft_mach2 || ft_probe_fc10) {
if (!request_region(fdc.sra, 8, "fdc (ft)")) {
#ifndef BROKEN_FLOPPY_DRIVER
TRACE_EXIT -EBUSY;
#else
TRACE(ft_t_warn,
"address 0x%03x occupied (by floppy driver?), using it anyway", fdc.sra);
#endif
}
} else {
if (!request_region(fdc.sra, 6, "fdc (ft)")) {
#ifndef BROKEN_FLOPPY_DRIVER
TRACE_EXIT -EBUSY;
#else
TRACE(ft_t_warn,
"address 0x%03x occupied (by floppy driver?), using it anyway", fdc.sra);
#endif
}
if (!request_region(fdc.sra + 7, 1, "fdc (ft)")) {
#ifndef BROKEN_FLOPPY_DRIVER
release_region(fdc.sra, 6);
TRACE_EXIT -EBUSY;
#else
TRACE(ft_t_warn,
"address 0x%03x occupied (by floppy driver?), using it anyway", fdc.sra + 7);
#endif
}
}
TRACE_EXIT 0;
}
void fdc_release_regions(void)
{
TRACE_FUN(ft_t_flow);
if (fdc.sra != 0) {
if (fdc.dor2 != 0) {
release_region(fdc.sra, 8);
} else {
release_region(fdc.sra, 6);
release_region(fdc.dir, 1);
}
}
TRACE_EXIT;
}
static int fdc_config_regs(unsigned int fdc_base,
unsigned int fdc_irq,
unsigned int fdc_dma)
{
TRACE_FUN(ft_t_flow);
fdc.irq = fdc_irq;
fdc.dma = fdc_dma;
fdc.sra = fdc_base;
fdc.srb = fdc_base + 1;
fdc.dor = fdc_base + 2;
fdc.tdr = fdc_base + 3;
fdc.msr = fdc.dsr = fdc_base + 4;
fdc.fifo = fdc_base + 5;
fdc.dir = fdc.ccr = fdc_base + 7;
fdc.dor2 = (ft_mach2 || ft_probe_fc10) ? fdc_base + 6 : 0;
TRACE_CATCH(fdc_request_regions(), fdc.sra = 0);
TRACE_EXIT 0;
}
static int fdc_config(void)
{
static int already_done;
TRACE_FUN(ft_t_any);
if (already_done) {
TRACE_CATCH(fdc_request_regions(),);
*(fdc.hook) = fdc_isr; /* hook our handler in */
TRACE_EXIT 0;
}
if (ft_probe_fc10) {
int fc_type;
TRACE_CATCH(fdc_config_regs(ft_fdc_base,
ft_fdc_irq, ft_fdc_dma),);
fc_type = fc10_enable();
if (fc_type != 0) {
TRACE(ft_t_warn, "FC-%c0 controller found", '0' + fc_type);
fdc.type = fc10;
fdc.hook = &do_ftape;
*(fdc.hook) = fdc_isr; /* hook our handler in */
already_done = 1;
TRACE_EXIT 0;
} else {
TRACE(ft_t_warn, "FC-10/20 controller not found");
fdc_release_regions();
fdc.type = no_fdc;
ft_probe_fc10 = 0;
ft_fdc_base = 0x3f0;
ft_fdc_irq = 6;
ft_fdc_dma = 2;
}
}
TRACE(ft_t_warn, "fdc base: 0x%x, irq: %d, dma: %d",
ft_fdc_base, ft_fdc_irq, ft_fdc_dma);
TRACE_CATCH(fdc_config_regs(ft_fdc_base, ft_fdc_irq, ft_fdc_dma),);
fdc.hook = &do_ftape;
*(fdc.hook) = fdc_isr; /* hook our handler in */
already_done = 1;
TRACE_EXIT 0;
}
static irqreturn_t ftape_interrupt(int irq, void *dev_id)
{
void (*handler) (void) = *fdc.hook;
int handled = 0;
TRACE_FUN(ft_t_any);
*fdc.hook = NULL;
if (handler) {
handled = 1;
handler();
} else {
TRACE(ft_t_bug, "Unexpected ftape interrupt");
}
TRACE_EXIT IRQ_RETVAL(handled);
}
static int fdc_grab_irq_and_dma(void)
{
TRACE_FUN(ft_t_any);
if (fdc.hook == &do_ftape) {
/* Get fast interrupt handler.
*/
if (request_irq(fdc.irq, ftape_interrupt,
IRQF_DISABLED, "ft", ftape_id)) {
TRACE_ABORT(-EIO, ft_t_bug,
"Unable to grab IRQ%d for ftape driver",
fdc.irq);
}
if (request_dma(fdc.dma, ftape_id)) {
free_irq(fdc.irq, ftape_id);
TRACE_ABORT(-EIO, ft_t_bug,
"Unable to grab DMA%d for ftape driver",
fdc.dma);
}
}
if (ft_fdc_base != 0x3f0 && (ft_fdc_dma == 2 || ft_fdc_irq == 6)) {
/* Using same dma channel or irq as standard fdc, need
* to disable the dma-gate on the std fdc. This
* couldn't be done in the floppy driver as some
* laptops are using the dma-gate to enter a low power
* or even suspended state :-(
*/
outb_p(FDC_RESET_NOT, 0x3f2);
TRACE(ft_t_noise, "DMA-gate on standard fdc disabled");
}
TRACE_EXIT 0;
}
int fdc_release_irq_and_dma(void)
{
TRACE_FUN(ft_t_any);
if (fdc.hook == &do_ftape) {
disable_dma(fdc.dma); /* just in case... */
free_dma(fdc.dma);
free_irq(fdc.irq, ftape_id);
}
if (ft_fdc_base != 0x3f0 && (ft_fdc_dma == 2 || ft_fdc_irq == 6)) {
/* Using same dma channel as standard fdc, need to
* disable the dma-gate on the std fdc. This couldn't
* be done in the floppy driver as some laptops are
* using the dma-gate to enter a low power or even
* suspended state :-(
*/
outb_p(FDC_RESET_NOT | FDC_DMA_MODE, 0x3f2);
TRACE(ft_t_noise, "DMA-gate on standard fdc enabled again");
}
TRACE_EXIT 0;
}
int fdc_init(void)
{
TRACE_FUN(ft_t_any);
/* find a FDC to use */
TRACE_CATCH(fdc_config(),);
TRACE_CATCH(fdc_grab_irq_and_dma(), fdc_release_regions());
ftape_motor = 0;
fdc_catch_stray_interrupts(0); /* clear number of awainted
* stray interrupte
*/
fdc_catch_stray_interrupts(1); /* one always comes (?) */
TRACE(ft_t_flow, "resetting fdc");
fdc_set_seek_rate(2); /* use nominal QIC step rate */
fdc_reset(); /* init fdc & clear track counters */
if (fdc.type == no_fdc) { /* no FC-10 or FC-20 found */
fdc.type = fdc_probe();
fdc_reset(); /* update with new knowledge */
}
if (fdc.type == no_fdc) {
fdc_release_irq_and_dma();
fdc_release_regions();
TRACE_EXIT -ENXIO;
}
if (fdc.type >= i82077) {
if (fdc_fifo_enable() < 0) {
TRACE(ft_t_warn, "couldn't enable fdc fifo !");
} else {
TRACE(ft_t_flow, "fdc fifo enabled and locked");
}
}
TRACE_EXIT 0;
}