android_kernel_samsung_msm8976/drivers/devfreq/armbw-pm.c
Jacob Stevens 9d10806fb6 PM / devfreq: Add ARM PMU support for bw_hwmon governor
The ARM PMU supports monitoring bus access from each CPU. It also has the
ability to raise an IRQ when the counters overflow. This allows for it to
be used with the bw_hwmon governor to scale the CPU BW requests by
monitoring on the actual bus access traffic.

Change-Id: I0594a6acb846acdc11a18744033636951f22e387
Signed-off-by: Jacob Stevens <jstevens@codeaurora.org>
2014-07-16 09:23:31 -07:00

466 lines
10 KiB
C

/*
* Copyright (c) 2014, The Linux Foundation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 and
* only version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#define pr_fmt(fmt) "armbw-pm: " fmt
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/io.h>
#include <linux/delay.h>
#include <linux/err.h>
#include <linux/errno.h>
#include <linux/interrupt.h>
#include <linux/platform_device.h>
#include <linux/of.h>
#include <linux/of_irq.h>
#include <linux/slab.h>
#include <linux/irq.h>
#include <linux/cpu_pm.h>
#include <linux/cpu.h>
#include "governor.h"
#include "governor_bw_hwmon.h"
#define DEFINE_CP15_READ(name, op1, n, m, op2) \
static u32 read_##name(void) \
{ \
u32 val; \
asm volatile ("mrc p15, " #op1 ", %0, c" #n ", c" #m ", " #op2 \
: "=r" (val)); \
return val; \
}
#define DEFINE_CP15_WRITE(name, op1, n, m, op2) \
static void write_##name(u32 val) \
{ \
asm volatile ("mcr p15, " #op1 ", %0, c" #n ", c" #m", "#op2 \
: : "r" (val)); \
}
#define DEFINE_CP15_RW(name, op1, n, m, op2) \
DEFINE_CP15_READ(name, op1, n, m, op2) \
DEFINE_CP15_WRITE(name, op1, n, m, op2)
DEFINE_CP15_WRITE(pmselr, 0, 9, 12, 5)
DEFINE_CP15_WRITE(pmcntenset, 0, 9, 12, 1)
DEFINE_CP15_WRITE(pmcntenclr, 0, 9, 12, 2)
DEFINE_CP15_RW(pmovsr, 0, 9, 12, 3)
DEFINE_CP15_WRITE(pmxevtyper, 0, 9, 13, 1)
DEFINE_CP15_RW(pmxevcntr, 0, 9, 13, 2)
DEFINE_CP15_WRITE(pmintenset, 0, 9, 14, 1)
DEFINE_CP15_WRITE(pmintenclr, 0, 9, 14, 2)
DEFINE_CP15_WRITE(pmcr, 0, 9, 12, 0)
struct bwmon_data {
int cpu;
u32 saved_evcntr;
unsigned long count;
u32 prev_rw_start_val;
u32 limit;
};
static DEFINE_SPINLOCK(bw_lock);
static struct bw_hwmon *globalhw;
static struct work_struct irqwork;
static int bw_irq;
static DEFINE_PER_CPU(struct bwmon_data, gov_data);
static int use_cnt;
static DEFINE_MUTEX(use_lock);
static struct workqueue_struct *bw_wq;
static u32 bytes_per_beat;
#define RW_NUM 0x19
#define RW_MON 0
static void mon_enable(void *info)
{
/* Clear previous overflow state for given counter*/
write_pmovsr(BIT(RW_MON));
/* Enable event counter n */
write_pmcntenset(BIT(RW_MON));
}
static void mon_disable(void *info)
{
write_pmcntenclr(BIT(RW_MON));
}
static void mon_irq_enable(void *info)
{
write_pmintenset(BIT(RW_MON));
}
static void mon_irq_disable(void *info)
{
write_pmintenclr(BIT(RW_MON));
}
static void mon_set_counter(void *count)
{
write_pmxevcntr(*(u32 *) count);
}
static void mon_bw_init(void *evcntrval)
{
u32 count;
if (!evcntrval)
count = 0xFFFFFFFF;
else
count = *(u32 *) evcntrval;
write_pmcr(BIT(0));
write_pmselr(RW_MON);
write_pmxevtyper(RW_NUM);
write_pmxevcntr(count);
}
static void percpu_bwirq_enable(void *info)
{
enable_percpu_irq(bw_irq, IRQ_TYPE_EDGE_RISING);
}
static void percpu_bwirq_disable(void *info)
{
disable_percpu_irq(bw_irq);
}
static irqreturn_t mon_intr_handler(int irq, void *dev_id)
{
queue_work(bw_wq, &irqwork);
return IRQ_HANDLED;
}
static void bwmon_work(struct work_struct *work)
{
update_bw_hwmon(globalhw);
}
static unsigned int beats_to_mbps(long long beats, unsigned int us)
{
beats *= USEC_PER_SEC;
beats *= bytes_per_beat;
do_div(beats, us);
beats = DIV_ROUND_UP_ULL(beats, SZ_1M);
return beats;
}
static unsigned int mbps_to_beats(unsigned long mbps, unsigned int ms,
unsigned int tolerance_percent)
{
mbps *= (100 + tolerance_percent) * ms;
mbps /= 100;
mbps = DIV_ROUND_UP(mbps, MSEC_PER_SEC);
mbps = mult_frac(mbps, SZ_1M, bytes_per_beat);
return mbps;
}
static long mon_get_bw_count(u32 start_val)
{
u32 overflow, count;
count = read_pmxevcntr();
overflow = read_pmovsr();
if (overflow & BIT(RW_MON))
return 0xFFFFFFFF - start_val + count;
else
return count - start_val;
}
static void get_beat_count(void *arg)
{
int cpu = smp_processor_id();
struct bwmon_data *data = &per_cpu(gov_data, cpu);
mon_disable(NULL);
data->count = mon_get_bw_count(data->prev_rw_start_val);
}
static unsigned long measure_bw_and_set_irq(struct bw_hwmon *hw,
unsigned int tol, unsigned int us)
{
unsigned long bw = 0;
unsigned long tempbw;
int cpu;
struct bwmon_data *data;
unsigned int sample_ms = hw->df->profile->polling_ms;
spin_lock(&bw_lock);
on_each_cpu(get_beat_count, NULL, true);
for_each_possible_cpu(cpu) {
data = &per_cpu(gov_data, cpu);
tempbw = beats_to_mbps(data->count, us);
data->limit = mbps_to_beats(tempbw, sample_ms, tol);
data->prev_rw_start_val = 0xFFFFFFFF - data->limit;
if (cpu_online(cpu))
smp_call_function_single(cpu, mon_set_counter,
&(data->prev_rw_start_val), true);
bw += tempbw;
data->count = 0;
}
on_each_cpu(mon_enable, NULL, true);
spin_unlock(&bw_lock);
return bw;
}
static void save_hotplugstate(void)
{
int cpu = smp_processor_id();
struct bwmon_data *data;
data = &per_cpu(gov_data, cpu);
percpu_bwirq_disable(NULL);
mon_disable(NULL);
data->saved_evcntr = read_pmxevcntr();
data->count = mon_get_bw_count(data->prev_rw_start_val);
}
static void restore_hotplugstate(void)
{
int cpu = smp_processor_id();
u32 count;
struct bwmon_data *data;
data = &per_cpu(gov_data, cpu);
percpu_bwirq_enable(NULL);
if (data->count != 0)
count = data->saved_evcntr;
else
count = data->prev_rw_start_val = 0xFFFFFFFF - data->limit;
mon_bw_init(&count);
mon_irq_enable(NULL);
mon_enable(NULL);
}
static void save_pmstate(void)
{
int cpu = smp_processor_id();
struct bwmon_data *data;
data = &per_cpu(gov_data, cpu);
mon_disable(NULL);
data->saved_evcntr = read_pmxevcntr();
}
static void restore_pmstate(void)
{
int cpu = smp_processor_id();
u32 count;
struct bwmon_data *data;
data = &per_cpu(gov_data, cpu);
count = data->saved_evcntr;
mon_bw_init(&count);
mon_irq_enable(NULL);
mon_enable(NULL);
}
static int pm_notif(struct notifier_block *nb, unsigned long action,
void *data)
{
switch (action) {
case CPU_PM_ENTER:
save_pmstate();
break;
case CPU_PM_ENTER_FAILED:
case CPU_PM_EXIT:
restore_pmstate();
break;
}
return NOTIFY_OK;
}
static struct notifier_block bwmon_cpu_pm_nb = {
.notifier_call = pm_notif,
};
static int hotplug_notif(struct notifier_block *nb, unsigned long action,
void *data)
{
switch (action) {
case CPU_DYING:
spin_lock(&bw_lock);
save_hotplugstate();
spin_unlock(&bw_lock);
break;
case CPU_STARTING:
spin_lock(&bw_lock);
restore_hotplugstate();
spin_unlock(&bw_lock);
break;
}
return NOTIFY_OK;
}
static struct notifier_block cpu_hotplug_nb = {
.notifier_call = hotplug_notif,
};
static int register_notifier(void)
{
int ret = 0;
mutex_lock(&use_lock);
if (use_cnt == 0) {
ret = cpu_pm_register_notifier(&bwmon_cpu_pm_nb);
if (ret)
goto out;
ret = register_cpu_notifier(&cpu_hotplug_nb);
if (ret) {
cpu_pm_unregister_notifier(&bwmon_cpu_pm_nb);
goto out;
}
}
use_cnt++;
out:
mutex_unlock(&use_lock);
return ret;
}
static void unregister_notifier(void)
{
mutex_lock(&use_lock);
if (use_cnt == 1) {
unregister_cpu_notifier(&cpu_hotplug_nb);
cpu_pm_unregister_notifier(&bwmon_cpu_pm_nb);
} else if (use_cnt == 0) {
pr_warn("Notifier ref count unbalanced\n");
goto out;
}
use_cnt--;
out:
mutex_unlock(&use_lock);
}
static void stop_bw_hwmon(struct bw_hwmon *hw)
{
unregister_notifier();
on_each_cpu(mon_disable, NULL, true);
on_each_cpu(mon_irq_disable, NULL, true);
on_each_cpu(percpu_bwirq_disable, NULL, true);
free_percpu_irq(bw_irq, &gov_data);
}
static int start_bw_hwmon(struct bw_hwmon *hw, unsigned long mbps)
{
u32 limit;
int cpu;
struct bwmon_data *data;
struct device *dev = hw->df->dev.parent;
int ret;
ret = request_percpu_irq(bw_irq, mon_intr_handler,
"bw_hwmon", &gov_data);
if (ret) {
dev_err(dev, "Unable to register interrupt handler!\n");
return ret;
}
get_online_cpus();
on_each_cpu(mon_bw_init, NULL, true);
on_each_cpu(mon_disable, NULL, true);
ret = register_notifier();
if (ret) {
pr_err("Unable to register notifier\n");
return ret;
}
limit = mbps_to_beats(mbps, hw->df->profile->polling_ms, 0);
limit /= num_online_cpus();
for_each_possible_cpu(cpu) {
data = &per_cpu(gov_data, cpu);
data->limit = limit;
data->prev_rw_start_val = 0xFFFFFFFF - data->limit;
}
INIT_WORK(&irqwork, bwmon_work);
on_each_cpu(percpu_bwirq_enable, NULL, true);
on_each_cpu(mon_irq_enable, NULL, true);
on_each_cpu(mon_enable, NULL, true);
put_online_cpus();
return 0;
}
static int armbw_pm_driver_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct bw_hwmon *bw;
int ret;
bw = devm_kzalloc(dev, sizeof(*bw), GFP_KERNEL);
if (!bw)
return -ENOMEM;
bw->dev = dev;
bw_irq = platform_get_irq(pdev, 0);
if (bw_irq < 0) {
pr_err("Unable to get IRQ number\n");
return bw_irq;
}
ret = of_property_read_u32(dev->of_node, "qcom,bytes-per-beat",
&bytes_per_beat);
if (ret) {
pr_err("Unable to read bytes per beat\n");
return ret;
}
bw->start_hwmon = &start_bw_hwmon;
bw->stop_hwmon = &stop_bw_hwmon;
bw->meas_bw_and_set_irq = &measure_bw_and_set_irq;
globalhw = bw;
ret = register_bw_hwmon(dev, bw);
if (ret) {
pr_err("CPUBW hwmon registration failed\n");
return ret;
}
return 0;
}
static struct of_device_id match_table[] = {
{ .compatible = "qcom,armbw-pm" },
{}
};
static struct platform_driver armbw_pm_driver = {
.probe = armbw_pm_driver_probe,
.driver = {
.name = "armbw-pm",
.of_match_table = match_table,
.owner = THIS_MODULE,
},
};
static int __init armbw_pm_init(void)
{
bw_wq = alloc_workqueue("armbw-pm-bwmon", WQ_HIGHPRI, 2);
return platform_driver_register(&armbw_pm_driver);
}
module_init(armbw_pm_init);
static void __exit armbw_pm_exit(void)
{
platform_driver_unregister(&armbw_pm_driver);
destroy_workqueue(bw_wq);
}
module_exit(armbw_pm_exit);