android_kernel_samsung_msm8976/security/selinux/ss/avtab.c
Eric Paris cee74f47a6 SELinux: allow userspace to read policy back out of the kernel
There is interest in being able to see what the actual policy is that was
loaded into the kernel.  The patch creates a new selinuxfs file
/selinux/policy which can be read by userspace.  The actual policy that is
loaded into the kernel will be written back out to userspace.

Signed-off-by: Eric Paris <eparis@redhat.com>
Signed-off-by: James Morris <jmorris@namei.org>
2010-10-21 10:12:58 +11:00

556 lines
13 KiB
C

/*
* Implementation of the access vector table type.
*
* Author : Stephen Smalley, <sds@epoch.ncsc.mil>
*/
/* Updated: Frank Mayer <mayerf@tresys.com> and Karl MacMillan <kmacmillan@tresys.com>
*
* Added conditional policy language extensions
*
* Copyright (C) 2003 Tresys Technology, LLC
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, version 2.
*
* Updated: Yuichi Nakamura <ynakam@hitachisoft.jp>
* Tuned number of hash slots for avtab to reduce memory usage
*/
#include <linux/kernel.h>
#include <linux/slab.h>
#include <linux/errno.h>
#include "avtab.h"
#include "policydb.h"
static struct kmem_cache *avtab_node_cachep;
static inline int avtab_hash(struct avtab_key *keyp, u16 mask)
{
return ((keyp->target_class + (keyp->target_type << 2) +
(keyp->source_type << 9)) & mask);
}
static struct avtab_node*
avtab_insert_node(struct avtab *h, int hvalue,
struct avtab_node *prev, struct avtab_node *cur,
struct avtab_key *key, struct avtab_datum *datum)
{
struct avtab_node *newnode;
newnode = kmem_cache_zalloc(avtab_node_cachep, GFP_KERNEL);
if (newnode == NULL)
return NULL;
newnode->key = *key;
newnode->datum = *datum;
if (prev) {
newnode->next = prev->next;
prev->next = newnode;
} else {
newnode->next = h->htable[hvalue];
h->htable[hvalue] = newnode;
}
h->nel++;
return newnode;
}
static int avtab_insert(struct avtab *h, struct avtab_key *key, struct avtab_datum *datum)
{
int hvalue;
struct avtab_node *prev, *cur, *newnode;
u16 specified = key->specified & ~(AVTAB_ENABLED|AVTAB_ENABLED_OLD);
if (!h || !h->htable)
return -EINVAL;
hvalue = avtab_hash(key, h->mask);
for (prev = NULL, cur = h->htable[hvalue];
cur;
prev = cur, cur = cur->next) {
if (key->source_type == cur->key.source_type &&
key->target_type == cur->key.target_type &&
key->target_class == cur->key.target_class &&
(specified & cur->key.specified))
return -EEXIST;
if (key->source_type < cur->key.source_type)
break;
if (key->source_type == cur->key.source_type &&
key->target_type < cur->key.target_type)
break;
if (key->source_type == cur->key.source_type &&
key->target_type == cur->key.target_type &&
key->target_class < cur->key.target_class)
break;
}
newnode = avtab_insert_node(h, hvalue, prev, cur, key, datum);
if (!newnode)
return -ENOMEM;
return 0;
}
/* Unlike avtab_insert(), this function allow multiple insertions of the same
* key/specified mask into the table, as needed by the conditional avtab.
* It also returns a pointer to the node inserted.
*/
struct avtab_node *
avtab_insert_nonunique(struct avtab *h, struct avtab_key *key, struct avtab_datum *datum)
{
int hvalue;
struct avtab_node *prev, *cur;
u16 specified = key->specified & ~(AVTAB_ENABLED|AVTAB_ENABLED_OLD);
if (!h || !h->htable)
return NULL;
hvalue = avtab_hash(key, h->mask);
for (prev = NULL, cur = h->htable[hvalue];
cur;
prev = cur, cur = cur->next) {
if (key->source_type == cur->key.source_type &&
key->target_type == cur->key.target_type &&
key->target_class == cur->key.target_class &&
(specified & cur->key.specified))
break;
if (key->source_type < cur->key.source_type)
break;
if (key->source_type == cur->key.source_type &&
key->target_type < cur->key.target_type)
break;
if (key->source_type == cur->key.source_type &&
key->target_type == cur->key.target_type &&
key->target_class < cur->key.target_class)
break;
}
return avtab_insert_node(h, hvalue, prev, cur, key, datum);
}
struct avtab_datum *avtab_search(struct avtab *h, struct avtab_key *key)
{
int hvalue;
struct avtab_node *cur;
u16 specified = key->specified & ~(AVTAB_ENABLED|AVTAB_ENABLED_OLD);
if (!h || !h->htable)
return NULL;
hvalue = avtab_hash(key, h->mask);
for (cur = h->htable[hvalue]; cur; cur = cur->next) {
if (key->source_type == cur->key.source_type &&
key->target_type == cur->key.target_type &&
key->target_class == cur->key.target_class &&
(specified & cur->key.specified))
return &cur->datum;
if (key->source_type < cur->key.source_type)
break;
if (key->source_type == cur->key.source_type &&
key->target_type < cur->key.target_type)
break;
if (key->source_type == cur->key.source_type &&
key->target_type == cur->key.target_type &&
key->target_class < cur->key.target_class)
break;
}
return NULL;
}
/* This search function returns a node pointer, and can be used in
* conjunction with avtab_search_next_node()
*/
struct avtab_node*
avtab_search_node(struct avtab *h, struct avtab_key *key)
{
int hvalue;
struct avtab_node *cur;
u16 specified = key->specified & ~(AVTAB_ENABLED|AVTAB_ENABLED_OLD);
if (!h || !h->htable)
return NULL;
hvalue = avtab_hash(key, h->mask);
for (cur = h->htable[hvalue]; cur; cur = cur->next) {
if (key->source_type == cur->key.source_type &&
key->target_type == cur->key.target_type &&
key->target_class == cur->key.target_class &&
(specified & cur->key.specified))
return cur;
if (key->source_type < cur->key.source_type)
break;
if (key->source_type == cur->key.source_type &&
key->target_type < cur->key.target_type)
break;
if (key->source_type == cur->key.source_type &&
key->target_type == cur->key.target_type &&
key->target_class < cur->key.target_class)
break;
}
return NULL;
}
struct avtab_node*
avtab_search_node_next(struct avtab_node *node, int specified)
{
struct avtab_node *cur;
if (!node)
return NULL;
specified &= ~(AVTAB_ENABLED|AVTAB_ENABLED_OLD);
for (cur = node->next; cur; cur = cur->next) {
if (node->key.source_type == cur->key.source_type &&
node->key.target_type == cur->key.target_type &&
node->key.target_class == cur->key.target_class &&
(specified & cur->key.specified))
return cur;
if (node->key.source_type < cur->key.source_type)
break;
if (node->key.source_type == cur->key.source_type &&
node->key.target_type < cur->key.target_type)
break;
if (node->key.source_type == cur->key.source_type &&
node->key.target_type == cur->key.target_type &&
node->key.target_class < cur->key.target_class)
break;
}
return NULL;
}
void avtab_destroy(struct avtab *h)
{
int i;
struct avtab_node *cur, *temp;
if (!h || !h->htable)
return;
for (i = 0; i < h->nslot; i++) {
cur = h->htable[i];
while (cur) {
temp = cur;
cur = cur->next;
kmem_cache_free(avtab_node_cachep, temp);
}
h->htable[i] = NULL;
}
kfree(h->htable);
h->htable = NULL;
h->nslot = 0;
h->mask = 0;
}
int avtab_init(struct avtab *h)
{
h->htable = NULL;
h->nel = 0;
return 0;
}
int avtab_alloc(struct avtab *h, u32 nrules)
{
u16 mask = 0;
u32 shift = 0;
u32 work = nrules;
u32 nslot = 0;
if (nrules == 0)
goto avtab_alloc_out;
while (work) {
work = work >> 1;
shift++;
}
if (shift > 2)
shift = shift - 2;
nslot = 1 << shift;
if (nslot > MAX_AVTAB_HASH_BUCKETS)
nslot = MAX_AVTAB_HASH_BUCKETS;
mask = nslot - 1;
h->htable = kcalloc(nslot, sizeof(*(h->htable)), GFP_KERNEL);
if (!h->htable)
return -ENOMEM;
avtab_alloc_out:
h->nel = 0;
h->nslot = nslot;
h->mask = mask;
printk(KERN_DEBUG "SELinux: %d avtab hash slots, %d rules.\n",
h->nslot, nrules);
return 0;
}
void avtab_hash_eval(struct avtab *h, char *tag)
{
int i, chain_len, slots_used, max_chain_len;
unsigned long long chain2_len_sum;
struct avtab_node *cur;
slots_used = 0;
max_chain_len = 0;
chain2_len_sum = 0;
for (i = 0; i < h->nslot; i++) {
cur = h->htable[i];
if (cur) {
slots_used++;
chain_len = 0;
while (cur) {
chain_len++;
cur = cur->next;
}
if (chain_len > max_chain_len)
max_chain_len = chain_len;
chain2_len_sum += chain_len * chain_len;
}
}
printk(KERN_DEBUG "SELinux: %s: %d entries and %d/%d buckets used, "
"longest chain length %d sum of chain length^2 %llu\n",
tag, h->nel, slots_used, h->nslot, max_chain_len,
chain2_len_sum);
}
static uint16_t spec_order[] = {
AVTAB_ALLOWED,
AVTAB_AUDITDENY,
AVTAB_AUDITALLOW,
AVTAB_TRANSITION,
AVTAB_CHANGE,
AVTAB_MEMBER
};
int avtab_read_item(struct avtab *a, void *fp, struct policydb *pol,
int (*insertf)(struct avtab *a, struct avtab_key *k,
struct avtab_datum *d, void *p),
void *p)
{
__le16 buf16[4];
u16 enabled;
__le32 buf32[7];
u32 items, items2, val, vers = pol->policyvers;
struct avtab_key key;
struct avtab_datum datum;
int i, rc;
unsigned set;
memset(&key, 0, sizeof(struct avtab_key));
memset(&datum, 0, sizeof(struct avtab_datum));
if (vers < POLICYDB_VERSION_AVTAB) {
rc = next_entry(buf32, fp, sizeof(u32));
if (rc) {
printk(KERN_ERR "SELinux: avtab: truncated entry\n");
return rc;
}
items2 = le32_to_cpu(buf32[0]);
if (items2 > ARRAY_SIZE(buf32)) {
printk(KERN_ERR "SELinux: avtab: entry overflow\n");
return -EINVAL;
}
rc = next_entry(buf32, fp, sizeof(u32)*items2);
if (rc) {
printk(KERN_ERR "SELinux: avtab: truncated entry\n");
return rc;
}
items = 0;
val = le32_to_cpu(buf32[items++]);
key.source_type = (u16)val;
if (key.source_type != val) {
printk(KERN_ERR "SELinux: avtab: truncated source type\n");
return -EINVAL;
}
val = le32_to_cpu(buf32[items++]);
key.target_type = (u16)val;
if (key.target_type != val) {
printk(KERN_ERR "SELinux: avtab: truncated target type\n");
return -EINVAL;
}
val = le32_to_cpu(buf32[items++]);
key.target_class = (u16)val;
if (key.target_class != val) {
printk(KERN_ERR "SELinux: avtab: truncated target class\n");
return -EINVAL;
}
val = le32_to_cpu(buf32[items++]);
enabled = (val & AVTAB_ENABLED_OLD) ? AVTAB_ENABLED : 0;
if (!(val & (AVTAB_AV | AVTAB_TYPE))) {
printk(KERN_ERR "SELinux: avtab: null entry\n");
return -EINVAL;
}
if ((val & AVTAB_AV) &&
(val & AVTAB_TYPE)) {
printk(KERN_ERR "SELinux: avtab: entry has both access vectors and types\n");
return -EINVAL;
}
for (i = 0; i < ARRAY_SIZE(spec_order); i++) {
if (val & spec_order[i]) {
key.specified = spec_order[i] | enabled;
datum.data = le32_to_cpu(buf32[items++]);
rc = insertf(a, &key, &datum, p);
if (rc)
return rc;
}
}
if (items != items2) {
printk(KERN_ERR "SELinux: avtab: entry only had %d items, expected %d\n", items2, items);
return -EINVAL;
}
return 0;
}
rc = next_entry(buf16, fp, sizeof(u16)*4);
if (rc) {
printk(KERN_ERR "SELinux: avtab: truncated entry\n");
return rc;
}
items = 0;
key.source_type = le16_to_cpu(buf16[items++]);
key.target_type = le16_to_cpu(buf16[items++]);
key.target_class = le16_to_cpu(buf16[items++]);
key.specified = le16_to_cpu(buf16[items++]);
if (!policydb_type_isvalid(pol, key.source_type) ||
!policydb_type_isvalid(pol, key.target_type) ||
!policydb_class_isvalid(pol, key.target_class)) {
printk(KERN_ERR "SELinux: avtab: invalid type or class\n");
return -EINVAL;
}
set = 0;
for (i = 0; i < ARRAY_SIZE(spec_order); i++) {
if (key.specified & spec_order[i])
set++;
}
if (!set || set > 1) {
printk(KERN_ERR "SELinux: avtab: more than one specifier\n");
return -EINVAL;
}
rc = next_entry(buf32, fp, sizeof(u32));
if (rc) {
printk(KERN_ERR "SELinux: avtab: truncated entry\n");
return rc;
}
datum.data = le32_to_cpu(*buf32);
if ((key.specified & AVTAB_TYPE) &&
!policydb_type_isvalid(pol, datum.data)) {
printk(KERN_ERR "SELinux: avtab: invalid type\n");
return -EINVAL;
}
return insertf(a, &key, &datum, p);
}
static int avtab_insertf(struct avtab *a, struct avtab_key *k,
struct avtab_datum *d, void *p)
{
return avtab_insert(a, k, d);
}
int avtab_read(struct avtab *a, void *fp, struct policydb *pol)
{
int rc;
__le32 buf[1];
u32 nel, i;
rc = next_entry(buf, fp, sizeof(u32));
if (rc < 0) {
printk(KERN_ERR "SELinux: avtab: truncated table\n");
goto bad;
}
nel = le32_to_cpu(buf[0]);
if (!nel) {
printk(KERN_ERR "SELinux: avtab: table is empty\n");
rc = -EINVAL;
goto bad;
}
rc = avtab_alloc(a, nel);
if (rc)
goto bad;
for (i = 0; i < nel; i++) {
rc = avtab_read_item(a, fp, pol, avtab_insertf, NULL);
if (rc) {
if (rc == -ENOMEM)
printk(KERN_ERR "SELinux: avtab: out of memory\n");
else if (rc == -EEXIST)
printk(KERN_ERR "SELinux: avtab: duplicate entry\n");
goto bad;
}
}
rc = 0;
out:
return rc;
bad:
avtab_destroy(a);
goto out;
}
int avtab_write_item(struct policydb *p, struct avtab_node *cur, void *fp)
{
__le16 buf16[4];
__le32 buf32[1];
int rc;
buf16[0] = cpu_to_le16(cur->key.source_type);
buf16[1] = cpu_to_le16(cur->key.target_type);
buf16[2] = cpu_to_le16(cur->key.target_class);
buf16[3] = cpu_to_le16(cur->key.specified);
rc = put_entry(buf16, sizeof(u16), 4, fp);
if (rc)
return rc;
buf32[0] = cpu_to_le32(cur->datum.data);
rc = put_entry(buf32, sizeof(u32), 1, fp);
if (rc)
return rc;
return 0;
}
int avtab_write(struct policydb *p, struct avtab *a, void *fp)
{
unsigned int i;
int rc = 0;
struct avtab_node *cur;
__le32 buf[1];
buf[0] = cpu_to_le32(a->nel);
rc = put_entry(buf, sizeof(u32), 1, fp);
if (rc)
return rc;
for (i = 0; i < a->nslot; i++) {
for (cur = a->htable[i]; cur; cur = cur->next) {
rc = avtab_write_item(p, cur, fp);
if (rc)
return rc;
}
}
return rc;
}
void avtab_cache_init(void)
{
avtab_node_cachep = kmem_cache_create("avtab_node",
sizeof(struct avtab_node),
0, SLAB_PANIC, NULL);
}
void avtab_cache_destroy(void)
{
kmem_cache_destroy(avtab_node_cachep);
}