mirror of
https://github.com/team-infusion-developers/android_kernel_samsung_msm8976.git
synced 2024-11-01 02:21:16 +00:00
a895524ae2
Fixes: "kernel: Change ASSIGN_ONCE(val, x) to WRITE_ONCE(x, val)"
556 lines
15 KiB
C
556 lines
15 KiB
C
/*
|
|
* Queue spinlock
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* (C) Copyright 2013-2014 Hewlett-Packard Development Company, L.P.
|
|
*
|
|
* Authors: Waiman Long <waiman.long@hp.com>
|
|
* Peter Zijlstra <pzijlstr@redhat.com>
|
|
*/
|
|
#include <linux/smp.h>
|
|
#include <linux/bug.h>
|
|
#include <linux/cpumask.h>
|
|
#include <linux/percpu.h>
|
|
#include <linux/hardirq.h>
|
|
#include <linux/mutex.h>
|
|
#include <asm/byteorder.h>
|
|
#include <asm/qspinlock.h>
|
|
|
|
/*
|
|
* The basic principle of a queue-based spinlock can best be understood
|
|
* by studying a classic queue-based spinlock implementation called the
|
|
* MCS lock. The paper below provides a good description for this kind
|
|
* of lock.
|
|
*
|
|
* http://www.cise.ufl.edu/tr/DOC/REP-1992-71.pdf
|
|
*
|
|
* This queue spinlock implementation is based on the MCS lock, however to make
|
|
* it fit the 4 bytes we assume spinlock_t to be, and preserve its existing
|
|
* API, we must modify it somehow.
|
|
*
|
|
* In particular; where the traditional MCS lock consists of a tail pointer
|
|
* (8 bytes) and needs the next pointer (another 8 bytes) of its own node to
|
|
* unlock the next pending (next->locked), we compress both these: {tail,
|
|
* next->locked} into a single u32 value.
|
|
*
|
|
* Since a spinlock disables recursion of its own context and there is a limit
|
|
* to the contexts that can nest; namely: task, softirq, hardirq, nmi. As there
|
|
* are at most 4 nesting levels, it can be encoded by a 2-bit number. Now
|
|
* we can encode the tail by combining the 2-bit nesting level with the cpu
|
|
* number. With one byte for the lock value and 3 bytes for the tail, only a
|
|
* 32-bit word is now needed. Even though we only need 1 bit for the lock,
|
|
* we extend it to a full byte to achieve better performance for architectures
|
|
* that support atomic byte write.
|
|
*
|
|
* We also change the first spinner to spin on the lock bit instead of its
|
|
* node; whereby avoiding the need to carry a node from lock to unlock, and
|
|
* preserving existing lock API. This also makes the unlock code simpler and
|
|
* faster.
|
|
*
|
|
* N.B. The current implementation only supports architectures that allow
|
|
* atomic operations on smaller 8-bit and 16-bit data types.
|
|
*
|
|
*/
|
|
|
|
#include "mcs_spinlock.h"
|
|
|
|
/*
|
|
* Per-CPU queue node structures; we can never have more than 4 nested
|
|
* contexts: task, softirq, hardirq, nmi.
|
|
*
|
|
* Exactly fits one 64-byte cacheline on a 64-bit architecture.
|
|
*/
|
|
static DEFINE_PER_CPU_ALIGNED(struct mcs_spinlock, mcs_nodes[4]);
|
|
|
|
/*
|
|
* We must be able to distinguish between no-tail and the tail at 0:0,
|
|
* therefore increment the cpu number by one.
|
|
* BluesMan: The idx = atomic counter (nesting depth)
|
|
*/
|
|
|
|
static inline u32 encode_tail(int cpu, int idx)
|
|
{
|
|
u32 tail;
|
|
|
|
#ifdef CONFIG_DEBUG_SPINLOCK
|
|
BUG_ON(idx > 3);
|
|
#endif
|
|
tail = (cpu + 1) << _Q_TAIL_CPU_OFFSET;
|
|
tail |= idx << _Q_TAIL_IDX_OFFSET; /* assume < 4 */
|
|
|
|
return tail;
|
|
}
|
|
|
|
static inline struct mcs_spinlock *decode_tail(u32 tail)
|
|
{
|
|
int cpu = (tail >> _Q_TAIL_CPU_OFFSET) - 1;
|
|
int idx = (tail & _Q_TAIL_IDX_MASK) >> _Q_TAIL_IDX_OFFSET;
|
|
|
|
return per_cpu_ptr(&mcs_nodes[idx], cpu);
|
|
}
|
|
|
|
#ifdef CONFIG_DEBUG_QUEUE_SPINLOCK
|
|
/*
|
|
* BluesMan: These functions are highly verbose and may cause
|
|
* system lock up or undefined behaviour if used in hot-paths
|
|
* You've been warned.
|
|
* Keep these disabled unless we need to debug something runtime.
|
|
*
|
|
*/
|
|
#if 0
|
|
static void trace_dump_this_mcs_node(struct mcs_spinlock *node)
|
|
{
|
|
if(NULL == node) {
|
|
trace_printk("This Node is NULL, nothing to go on\n");
|
|
return;
|
|
}
|
|
trace_printk("node = %pS\n",node);
|
|
trace_printk("node->next = %pS, node->locked = %d,\n",
|
|
node->next, node->locked);
|
|
trace_printk("node->count(nesting) = %d\n, node->tail = %d\n",
|
|
node->count, node->tail);
|
|
}
|
|
static void trace_dump_per_cpu_mcs_nodes(void)
|
|
{
|
|
unsigned int cpu, j;
|
|
struct mcs_spinlock *node, *tmp;
|
|
/* iterate through all cpus, regardless of their state */
|
|
for(cpu = 0; cpu < CONFIG_NR_CPUS; cpu++) {
|
|
for(j = 0; j < 4; j++) {
|
|
if(!cpu_online(cpu))
|
|
trace_printk("cpu %d is down\n", cpu);
|
|
node = per_cpu_ptr(&mcs_nodes[j], cpu);
|
|
trace_dump_this_mcs_node(node);
|
|
if(node->next != NULL) {
|
|
/* We have contenders */
|
|
tmp = node->next;
|
|
trace_printk("node[%d] has children\n",j);
|
|
do {
|
|
trace_dump_this_mcs_node(tmp);
|
|
}while((tmp = tmp->next) != NULL);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
#endif
|
|
|
|
#define _Q_LOCKED_PENDING_MASK (_Q_LOCKED_MASK | _Q_PENDING_MASK)
|
|
|
|
/*
|
|
* By using the whole 2nd least significant byte for the pending bit, we
|
|
* can allow better optimization of the lock acquisition for the pending
|
|
* bit holder.
|
|
*
|
|
* This internal structure is also used by the set_locked function which
|
|
* is not restricted to _Q_PENDING_BITS == 8.
|
|
*/
|
|
struct __qspinlock {
|
|
union {
|
|
atomic_t val;
|
|
#ifdef __LITTLE_ENDIAN
|
|
u8 locked;
|
|
struct {
|
|
u16 locked_pending;
|
|
u16 tail;
|
|
};
|
|
#else
|
|
struct {
|
|
u16 tail;
|
|
u16 locked_pending;
|
|
};
|
|
struct {
|
|
u8 reserved[3];
|
|
u8 locked;
|
|
};
|
|
#endif
|
|
};
|
|
};
|
|
|
|
#if _Q_PENDING_BITS == 8
|
|
/**
|
|
* clear_pending_set_locked - take ownership and clear the pending bit.
|
|
* @lock: Pointer to queue spinlock structure
|
|
* @val : Current value of the queue spinlock 32-bit word
|
|
*
|
|
* *,1,0 -> *,0,1
|
|
*
|
|
* Lock stealing is not allowed if this function is used.
|
|
*/
|
|
static __always_inline void
|
|
clear_pending_set_locked(struct qspinlock *lock, u32 val)
|
|
{
|
|
struct __qspinlock *l = (void *)lock;
|
|
|
|
WRITE_ONCE(l->locked_pending, _Q_LOCKED_VAL);
|
|
}
|
|
|
|
/*
|
|
* xchg_tail - Put in the new queue tail code word & retrieve previous one
|
|
* @lock : Pointer to queue spinlock structure
|
|
* @tail : The new queue tail code word
|
|
* Return: The previous queue tail code word
|
|
*
|
|
* xchg(lock, tail)
|
|
*
|
|
* p,*,* -> n,*,* ; prev = xchg(lock, node)
|
|
*/
|
|
static __always_inline u32 xchg_tail(struct qspinlock *lock, u32 tail)
|
|
{
|
|
struct __qspinlock *l = (void *)lock;
|
|
|
|
/* BluesMan: Debug print. */
|
|
/* pr_emerg("xchg_tail: sizeof l->tail = 0x%x, l->tail = 0x%x, tail = 0x%x\n",
|
|
sizeof(l->tail), l->tail, tail); */
|
|
|
|
return (u32)xchg(&l->tail, tail >> _Q_TAIL_OFFSET) << _Q_TAIL_OFFSET;
|
|
}
|
|
|
|
#else /* _Q_PENDING_BITS == 8 */
|
|
|
|
/**
|
|
* clear_pending_set_locked - take ownership and clear the pending bit.
|
|
* @lock: Pointer to queue spinlock structure
|
|
* @val : Current value of the queue spinlock 32-bit word
|
|
*
|
|
* *,1,0 -> *,0,1
|
|
*/
|
|
static __always_inline void
|
|
clear_pending_set_locked(struct qspinlock *lock, u32 val)
|
|
{
|
|
u32 new, old;
|
|
|
|
for (;;) {
|
|
new = (val & ~_Q_PENDING_MASK) | _Q_LOCKED_VAL;
|
|
|
|
old = atomic_cmpxchg(&lock->val, val, new);
|
|
if (old == val)
|
|
break;
|
|
|
|
val = old;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* xchg_tail - Put in the new queue tail code word & retrieve previous one
|
|
* @lock : Pointer to queue spinlock structure
|
|
* @tail : The new queue tail code word
|
|
* Return: The previous queue tail code word
|
|
*
|
|
* xchg(lock, tail)
|
|
*
|
|
* p,*,* -> n,*,* ; prev = xchg(lock, node)
|
|
*/
|
|
static __always_inline u32 xchg_tail(struct qspinlock *lock, u32 tail)
|
|
{
|
|
u32 old, new, val = atomic_read(&lock->val);
|
|
|
|
for (;;) {
|
|
new = (val & _Q_LOCKED_PENDING_MASK) | tail;
|
|
old = atomic_cmpxchg(&lock->val, val, new);
|
|
if (old == val)
|
|
break;
|
|
|
|
val = old;
|
|
}
|
|
return old;
|
|
}
|
|
#endif /* _Q_PENDING_BITS == 8 */
|
|
|
|
/**
|
|
* set_locked - Set the lock bit and own the lock
|
|
* @lock: Pointer to queue spinlock structure
|
|
*
|
|
* *,*,0 -> *,0,1
|
|
*/
|
|
static __always_inline void set_locked(struct qspinlock *lock)
|
|
{
|
|
struct __qspinlock *l = (void *)lock;
|
|
|
|
WRITE_ONCE(l->locked, _Q_LOCKED_VAL);
|
|
}
|
|
|
|
/**
|
|
* queue_spin_lock_slowpath - acquire the queue spinlock
|
|
* @lock: Pointer to queue spinlock structure
|
|
* @val: Current value of the queue spinlock 32-bit word
|
|
*
|
|
* (queue tail, pending bit, lock value)
|
|
*
|
|
* fast : slow : unlock
|
|
* : :
|
|
* uncontended (0,0,0) -:--> (0,0,1) ------------------------------:--> (*,*,0)
|
|
* : | ^--------.------. / :
|
|
* : v \ \ | :
|
|
* pending : (0,1,1) +--> (0,1,0) \ | :
|
|
* : | ^--' | | :
|
|
* : v | | :
|
|
* uncontended : (n,x,y) +--> (n,0,0) --' | :
|
|
* queue : | ^--' | :
|
|
* : v | :
|
|
* contended : (*,x,y) +--> (*,0,0) ---> (*,0,1) -' :
|
|
* queue : ^--' :
|
|
*/
|
|
void queue_spin_lock_slowpath(struct qspinlock *lock, u32 val)
|
|
{
|
|
struct mcs_spinlock *prev, *next, *node;
|
|
u32 new, old, tail;
|
|
int idx;
|
|
|
|
BUILD_BUG_ON(CONFIG_NR_CPUS >= (1U << _Q_TAIL_CPU_BITS));
|
|
|
|
/*
|
|
* wait for in-progress pending->locked hand-overs
|
|
*
|
|
* 0,1,0 -> 0,0,1
|
|
* BluesMan: _Q_PENDING_VAL = 1 << 8 = 256
|
|
*/
|
|
if (val == _Q_PENDING_VAL) { /* check for the 8th bit set */
|
|
while ((val = atomic_read(&lock->val)) == _Q_PENDING_VAL) {
|
|
#ifdef CONFIG_DEBUG_QUEUE_SPINLOCK
|
|
trace_printk("Waiting for pending->locked handover\n");
|
|
#endif
|
|
cpu_relax();
|
|
}
|
|
}
|
|
|
|
/*
|
|
* trylock || pending
|
|
*
|
|
* 0,0,0 -> 0,0,1 ; trylock
|
|
* 0,0,1 -> 0,1,1 ; pending
|
|
*/
|
|
for (;;) {
|
|
/*
|
|
* If we observe any contention; queue.
|
|
*
|
|
* This iS
|
|
* 1111 1111 1111 1111 1111 1111 0000 0000 state:
|
|
*
|
|
* bit fields are:
|
|
* 0 - 7 :: locked byte
|
|
* 8 - 15 :: pending bit (now, extended to a byte)
|
|
* 16 - 17 :: tail index
|
|
* 18 - 31 :: tail cpu (+1)
|
|
*
|
|
* If we have a cpu waiting + pending bit set already,
|
|
* just queue.
|
|
*
|
|
*/
|
|
if (val & ~_Q_LOCKED_MASK) {
|
|
#ifdef CONFIG_DEBUG_QUEUE_SPINLOCK
|
|
trace_printk("contention detected, will make MCS Q\n");
|
|
#endif
|
|
goto queue;
|
|
}
|
|
|
|
/*
|
|
* BluesMan: Here at this state, there is no contention for the
|
|
* lock but it is unavailable. So, we will be the first ones to
|
|
* get it once it is released. Hence, instead of building the
|
|
* queue, we will set the pending bit.
|
|
*/
|
|
|
|
new = _Q_LOCKED_VAL;
|
|
if (val == new) {
|
|
#ifdef CONFIG_DEBUG_QUEUE_SPINLOCK
|
|
trace_printk("we're 1st waiter, setting pending bit\n");
|
|
#endif
|
|
new |= _Q_PENDING_VAL;
|
|
}
|
|
|
|
/*
|
|
* BluesMan: Test code to dump
|
|
* if we're having 16 bits
|
|
*/
|
|
/* if(sizeof(&lock->val) == 2)
|
|
WARN_ON(1); */
|
|
|
|
/*
|
|
* BluesMan:
|
|
* actual setting of locked + pending bit to val
|
|
*/
|
|
old = atomic_cmpxchg(&lock->val, val, new);
|
|
if (old == val)
|
|
break;
|
|
|
|
val = old;
|
|
}
|
|
|
|
/*
|
|
* we won the trylock
|
|
*/
|
|
if (new == _Q_LOCKED_VAL) {
|
|
#ifdef CONFIG_DEBUG_QUEUE_SPINLOCK
|
|
trace_printk("we won the trylock, returning from slowpath\n");
|
|
#endif
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* we're pending, wait for the owner to go away.
|
|
*
|
|
* *,1,1 -> *,1,0
|
|
*
|
|
* this wait loop must be a load-acquire such that we match the
|
|
* store-release that clears the locked bit and create lock
|
|
* sequentiality; this is because not all clear_pending_set_locked()
|
|
* implementations imply full barriers.
|
|
*
|
|
* BluesMan: Here the first waiter spins on the main lock!
|
|
*/
|
|
while ((val = smp_load_acquire(&lock->val.counter)) &
|
|
_Q_LOCKED_MASK)
|
|
cpu_relax();
|
|
|
|
/*
|
|
* take ownership and clear the pending bit.
|
|
*
|
|
* *,1,0 -> *,0,1
|
|
*
|
|
* BluesMan: We were the first waiter and we've got the lock,
|
|
* rejoice!
|
|
*
|
|
*/
|
|
clear_pending_set_locked(lock, val);
|
|
#ifdef CONFIG_DEBUG_QUEUE_SPINLOCK
|
|
trace_printk("pending bit cleared, locked, returning from slowpath\n");
|
|
#endif
|
|
return;
|
|
|
|
/*
|
|
* End of pending bit optimistic spinning and beginning of MCS
|
|
* queuing.
|
|
*/
|
|
queue:
|
|
node = this_cpu_ptr(&mcs_nodes[0]);
|
|
/*
|
|
* BluesMan: increment nesting count
|
|
* However, idx still gets
|
|
* old count value though.
|
|
*/
|
|
idx = node->count++;
|
|
tail = encode_tail(smp_processor_id(), idx);
|
|
|
|
node += idx;
|
|
node->locked = 0;
|
|
node->next = NULL;
|
|
|
|
/*
|
|
* We touched a (possibly) cold cacheline in the per-cpu queue node;
|
|
* attempt the trylock once more in the hope someone let go while we
|
|
* weren't watching.
|
|
*/
|
|
if (queue_spin_trylock(lock)) {
|
|
#ifdef CONFIG_DEBUG_QUEUE_SPINLOCK
|
|
trace_printk("before MCS, we won trylock; going to release\n");
|
|
#endif
|
|
goto release;
|
|
}
|
|
|
|
/*
|
|
* We have already touched the queueing cacheline; don't bother with
|
|
* pending stuff.
|
|
*
|
|
* p,*,* -> n,*,*
|
|
*/
|
|
old = xchg_tail(lock, tail);
|
|
|
|
/*
|
|
* if there was a previous node; link it and wait until reaching the
|
|
* head of the waitqueue.
|
|
*/
|
|
if (old & _Q_TAIL_MASK) {
|
|
prev = decode_tail(old);
|
|
WRITE_ONCE(prev->next, node);
|
|
#ifdef CONFIG_DEBUG_QUEUE_SPINLOCK
|
|
trace_printk("we've cpu %d ahead of us\n",
|
|
(old >> _Q_TAIL_CPU_OFFSET) - 1);
|
|
/* trace_dump_this_mcs_node(prev); */
|
|
#endif
|
|
/*
|
|
* BluesMan: Read atomically the locked variable while
|
|
* == 0 and wfe
|
|
*/
|
|
arch_mcs_spin_lock_contended(&node->locked);
|
|
}
|
|
|
|
|
|
/*
|
|
* we're at the head of the waitqueue, wait for the owner & pending to
|
|
* go away.
|
|
* Load-acquired is used here because the set_locked()
|
|
* function below may not be a full memory barrier.
|
|
*
|
|
* *,x,y -> *,0,0
|
|
*/
|
|
while ((val = smp_load_acquire(&lock->val.counter)) &
|
|
_Q_LOCKED_PENDING_MASK)
|
|
cpu_relax();
|
|
|
|
/*
|
|
* claim the lock:
|
|
*
|
|
* n,0,0 -> 0,0,1 : lock, uncontended
|
|
* *,0,0 -> *,0,1 : lock, contended
|
|
*
|
|
* If the queue head is the only one in the queue (lock value == tail),
|
|
* clear the tail code and grab the lock. Otherwise, we only need
|
|
* to grab the lock.
|
|
*/
|
|
for (;;) {
|
|
if (val != tail) {
|
|
#ifdef CONFIG_DEBUG_QUEUE_SPINLOCK
|
|
trace_printk("contended Q, owner has released\n");
|
|
trace_printk("just grab the lock and wait for next\n");
|
|
#endif
|
|
set_locked(lock);
|
|
break;
|
|
}
|
|
/* val == tail */
|
|
old = atomic_cmpxchg(&lock->val, val, _Q_LOCKED_VAL);
|
|
if (old == val ) {
|
|
#ifdef CONFIG_DEBUG_QUEUE_SPINLOCK
|
|
trace_printk("uncontented Q, owner has released\n");
|
|
trace_printk("grab the lock, clear the tail and goto release\n");
|
|
#endif
|
|
goto release; /* No contention */
|
|
}
|
|
|
|
val = old;
|
|
}
|
|
#ifdef CONFIG_DEBUG_QUEUE_SPINLOCK
|
|
trace_printk("contented path\n");
|
|
/* trace_dump_this_mcs_node(node->next); */
|
|
#endif
|
|
/*
|
|
* contended path; wait for next, release.
|
|
*/
|
|
while (!(next = READ_ONCE(node->next)))
|
|
cpu_relax();
|
|
|
|
arch_mcs_spin_unlock_contended(&next->locked);
|
|
|
|
release:
|
|
/*
|
|
* BluesMan: Strictly debug code
|
|
*/
|
|
#ifdef CONFIG_DEBUG_QUEUE_SPINLOCK
|
|
trace_printk("we're at release, will dec the percpu ptr\n");
|
|
/* trace_dump_per_cpu_mcs_nodes(); */
|
|
#endif
|
|
/*
|
|
* release the node
|
|
*/
|
|
this_cpu_dec(mcs_nodes[0].count);
|
|
}
|
|
EXPORT_SYMBOL(queue_spin_lock_slowpath);
|