android_kernel_samsung_msm8976/kernel/time/alarmtimer.c
Thomas Gleixner d3bb25ec21 alarmtimer: Prevent overflow for relative nanosleep
[ Upstream commit 5f936e19cc0ef97dbe3a56e9498922ad5ba1edef ]

Air Icy reported:

  UBSAN: Undefined behaviour in kernel/time/alarmtimer.c:811:7
  signed integer overflow:
  1529859276030040771 + 9223372036854775807 cannot be represented in type 'long long int'
  Call Trace:
   alarm_timer_nsleep+0x44c/0x510 kernel/time/alarmtimer.c:811
   __do_sys_clock_nanosleep kernel/time/posix-timers.c:1235 [inline]
   __se_sys_clock_nanosleep kernel/time/posix-timers.c:1213 [inline]
   __x64_sys_clock_nanosleep+0x326/0x4e0 kernel/time/posix-timers.c:1213
   do_syscall_64+0xb8/0x3a0 arch/x86/entry/common.c:290

alarm_timer_nsleep() uses ktime_add() to add the current time and the
relative expiry value. ktime_add() has no sanity checks so the addition
can overflow when the relative timeout is large enough.

Use ktime_add_safe() which has the necessary sanity checks in place and
limits the result to the valid range.

Fixes: 9a7adcf5c6 ("timers: Posix interface for alarm-timers")
Reported-by: Team OWL337 <icytxw@gmail.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: John Stultz <john.stultz@linaro.org>
Link: https://lkml.kernel.org/r/alpine.DEB.2.21.1807020926360.1595@nanos.tec.linutronix.de
Signed-off-by: Sasha Levin <alexander.levin@microsoft.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-07-27 21:51:54 +02:00

1241 lines
30 KiB
C

/*
* Alarmtimer interface
*
* This interface provides a timer which is similarto hrtimers,
* but triggers a RTC alarm if the box is suspend.
*
* This interface is influenced by the Android RTC Alarm timer
* interface.
*
* Copyright (C) 2010 IBM Corperation
*
* Author: John Stultz <john.stultz@linaro.org>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <linux/time.h>
#include <linux/hrtimer.h>
#include <linux/timerqueue.h>
#include <linux/rtc.h>
#include <linux/alarmtimer.h>
#include <linux/mutex.h>
#include <linux/platform_device.h>
#include <linux/posix-timers.h>
#include <linux/workqueue.h>
#include <linux/freezer.h>
#include <linux/workqueue.h>
#ifdef CONFIG_MSM_PM
#include "lpm-levels.h"
#endif
/**
* struct alarm_base - Alarm timer bases
* @lock: Lock for syncrhonized access to the base
* @timerqueue: Timerqueue head managing the list of events
* @timer: hrtimer used to schedule events while running
* @gettime: Function to read the time correlating to the base
* @base_clockid: clockid for the base
*/
static struct alarm_base {
spinlock_t lock;
struct timerqueue_head timerqueue;
ktime_t (*gettime)(void);
clockid_t base_clockid;
} alarm_bases[ALARM_NUMTYPE];
/* freezer delta & lock used to handle clock_nanosleep triggered wakeups */
static ktime_t freezer_delta;
static DEFINE_SPINLOCK(freezer_delta_lock);
static struct wakeup_source *ws;
static struct delayed_work work;
static struct workqueue_struct *power_off_alarm_workqueue;
#ifdef CONFIG_RTC_CLASS
/* rtc timer and device for setting alarm wakeups at suspend */
static struct rtc_timer rtctimer;
static struct rtc_device *rtcdev;
static DEFINE_SPINLOCK(rtcdev_lock);
static struct mutex power_on_alarm_lock;
struct alarm init_alarm;
/**
* power_on_alarm_init - Init power on alarm value
*
* Read rtc alarm value after device booting up and add this alarm
* into alarm queue.
*/
void power_on_alarm_init(void)
{
struct rtc_wkalrm rtc_alarm;
struct rtc_time rt;
unsigned long alarm_time;
struct rtc_device *rtc;
ktime_t alarm_ktime;
rtc = alarmtimer_get_rtcdev();
if (!rtc)
return;
rtc_read_alarm(rtc, &rtc_alarm);
rt = rtc_alarm.time;
rtc_tm_to_time(&rt, &alarm_time);
if (alarm_time) {
alarm_ktime = ktime_set(alarm_time, 0);
alarm_init(&init_alarm, ALARM_POWEROFF_REALTIME, NULL);
alarm_start(&init_alarm, alarm_ktime);
}
}
/**
* set_power_on_alarm - set power on alarm value into rtc register
*
* Get the soonest power off alarm timer and set the alarm value into rtc
* register.
*/
#ifdef CONFIG_RTC_AUTO_PWRON
inline void set_power_on_alarm(void) { }
#else
void set_power_on_alarm(void)
{
int rc;
struct timespec wall_time, alarm_ts;
long alarm_secs = 0l;
long rtc_secs, alarm_time, alarm_delta;
struct rtc_time rtc_time;
struct rtc_wkalrm alarm;
struct rtc_device *rtc;
struct timerqueue_node *next;
unsigned long flags;
struct alarm_base *base = &alarm_bases[ALARM_POWEROFF_REALTIME];
rc = mutex_lock_interruptible(&power_on_alarm_lock);
if (rc != 0)
return;
spin_lock_irqsave(&base->lock, flags);
next = timerqueue_getnext(&base->timerqueue);
spin_unlock_irqrestore(&base->lock, flags);
if (next) {
alarm_ts = ktime_to_timespec(next->expires);
alarm_secs = alarm_ts.tv_sec;
}
if (!alarm_secs)
goto disable_alarm;
getnstimeofday(&wall_time);
/*
* alarm_secs have to be bigger than "wall_time +1".
* It is to make sure that alarm time will be always
* bigger than wall time.
*/
if (alarm_secs <= wall_time.tv_sec + 1)
goto disable_alarm;
rtc = alarmtimer_get_rtcdev();
if (!rtc)
goto exit;
rtc_read_time(rtc, &rtc_time);
rtc_tm_to_time(&rtc_time, &rtc_secs);
alarm_delta = wall_time.tv_sec - rtc_secs;
alarm_time = alarm_secs - alarm_delta;
rtc_time_to_tm(alarm_time, &alarm.time);
alarm.enabled = 1;
rc = rtc_set_alarm(rtcdev, &alarm);
if (rc)
goto disable_alarm;
mutex_unlock(&power_on_alarm_lock);
return;
disable_alarm:
rtc_alarm_irq_enable(rtcdev, 0);
exit:
mutex_unlock(&power_on_alarm_lock);
}
#endif
static void alarmtimer_triggered_func(void *p)
{
struct rtc_device *rtc = rtcdev;
if (!(rtc->irq_data & RTC_AF))
return;
__pm_wakeup_event(ws, 2 * MSEC_PER_SEC);
}
static struct rtc_task alarmtimer_rtc_task = {
.func = alarmtimer_triggered_func
};
/**
* alarmtimer_get_rtcdev - Return selected rtcdevice
*
* This function returns the rtc device to use for wakealarms.
* If one has not already been chosen, it checks to see if a
* functional rtc device is available.
*/
struct rtc_device *alarmtimer_get_rtcdev(void)
{
unsigned long flags;
struct rtc_device *ret = NULL;
spin_lock_irqsave(&rtcdev_lock, flags);
ret = rtcdev;
spin_unlock_irqrestore(&rtcdev_lock, flags);
return ret;
}
static int alarmtimer_rtc_add_device(struct device *dev,
struct class_interface *class_intf)
{
unsigned long flags;
int err = 0;
struct rtc_device *rtc = to_rtc_device(dev);
if (rtcdev)
return -EBUSY;
if (!rtc->ops->set_alarm)
return -1;
spin_lock_irqsave(&rtcdev_lock, flags);
if (!rtcdev) {
err = rtc_irq_register(rtc, &alarmtimer_rtc_task);
if (err)
goto rtc_irq_reg_err;
rtcdev = rtc;
/* hold a reference so it doesn't go away */
get_device(dev);
}
rtc_irq_reg_err:
spin_unlock_irqrestore(&rtcdev_lock, flags);
return err;
}
#ifdef CONFIG_RTC_AUTO_PWRON
extern int rtc_set_bootalarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm);
/* 0|1234|56|78|90|12 */
/* 1|2010|01|01|00|00 */
//en yyyy mm dd hh mm
#define BOOTALM_BIT_EN 0
#define BOOTALM_BIT_YEAR 1
#define BOOTALM_BIT_MONTH 5
#define BOOTALM_BIT_DAY 7
#define BOOTALM_BIT_HOUR 9
#define BOOTALM_BIT_MIN 11
#define BOOTALM_BIT_TOTAL 13
int alarm_set_alarm(char* alarm_data)
{
struct rtc_wkalrm alm;
int ret;
char buf_ptr[BOOTALM_BIT_TOTAL+1];
struct rtc_time rtc_tm;
unsigned long rtc_sec;
unsigned long rtc_alarm_time;
struct timespec rtc_delta;
struct timespec wall_time;
ktime_t wall_ktm;
struct rtc_time wall_tm;
if (!rtcdev) {
printk(
"alarm_set_alarm: no RTC, time will be lost on reboot\n");
return -1;
}
strlcpy(buf_ptr, alarm_data, BOOTALM_BIT_TOTAL+1);
alm.time.tm_sec = 0;
alm.time.tm_min = (buf_ptr[BOOTALM_BIT_MIN] -'0') * 10
+ (buf_ptr[BOOTALM_BIT_MIN+1] -'0');
alm.time.tm_hour = (buf_ptr[BOOTALM_BIT_HOUR] -'0') * 10
+ (buf_ptr[BOOTALM_BIT_HOUR+1] -'0');
alm.time.tm_mday = (buf_ptr[BOOTALM_BIT_DAY] -'0') * 10
+ (buf_ptr[BOOTALM_BIT_DAY+1] -'0');
alm.time.tm_mon = (buf_ptr[BOOTALM_BIT_MONTH] -'0') * 10
+ (buf_ptr[BOOTALM_BIT_MONTH+1]-'0');
alm.time.tm_year = (buf_ptr[BOOTALM_BIT_YEAR] -'0') * 1000
+ (buf_ptr[BOOTALM_BIT_YEAR+1] -'0') * 100
+ (buf_ptr[BOOTALM_BIT_YEAR+2] -'0') * 10
+ (buf_ptr[BOOTALM_BIT_YEAR+3] -'0');
alm.enabled = (*buf_ptr == '1');
pr_info("[SAPA] %s : %s => tm(%d %04d-%02d-%02d %02d:%02d:%02d)\n",
__func__, buf_ptr, alm.enabled,
alm.time.tm_year, alm.time.tm_mon, alm.time.tm_mday,
alm.time.tm_hour, alm.time.tm_min, alm.time.tm_sec);
if ( alm.enabled ) {
/* If time daemon is exist */
alm.time.tm_mon -= 1;
alm.time.tm_year -= 1900;
/* read current time */
rtc_read_time(rtcdev, &rtc_tm);
rtc_tm_to_time(&rtc_tm, &rtc_sec);
pr_info("[SAPA] rtc %4d-%02d-%02d %02d:%02d:%02d -> %lu\n",
rtc_tm.tm_year, rtc_tm.tm_mon, rtc_tm.tm_mday,
rtc_tm.tm_hour, rtc_tm.tm_min, rtc_tm.tm_sec, rtc_sec);
/* read kernel time */
getnstimeofday(&wall_time);
wall_ktm = timespec_to_ktime(wall_time);
wall_tm = rtc_ktime_to_tm(wall_ktm);
pr_info("[SAPA] wall %4d-%02d-%02d %02d:%02d:%02d -> %lu\n",
wall_tm.tm_year, wall_tm.tm_mon, wall_tm.tm_mday,
wall_tm.tm_hour, wall_tm.tm_min, wall_tm.tm_sec, wall_time.tv_sec);
/* calculate offset */
set_normalized_timespec(&rtc_delta,
wall_time.tv_sec - rtc_sec,
wall_time.tv_nsec);
/* convert user requested SAPA time to second type */
rtc_tm_to_time(&alm.time, &rtc_alarm_time);
/* convert to RTC time with user requested SAPA time and offset */
rtc_alarm_time -= rtc_delta.tv_sec;
rtc_time_to_tm(rtc_alarm_time, &alm.time);
pr_info("[SAPA] arlm %4d-%02d-%02d %02d:%02d:%02d -> %lu\n",
alm.time.tm_year, alm.time.tm_mon, alm.time.tm_mday,
alm.time.tm_hour, alm.time.tm_min, alm.time.tm_sec, rtc_alarm_time);
}
ret = rtc_set_bootalarm(rtcdev, &alm);
if (ret < 0) {
printk( "alarm_set_alarm: "
"Failed to set ALARM, time will be lost on reboot\n");
return -2;
}
return 0;
}
extern int alarm_set_alarm(char* alarm_data);
#endif /*CONFIG_RTC_AUTO_PWRON*/
static void alarmtimer_rtc_remove_device(struct device *dev,
struct class_interface *class_intf)
{
if (rtcdev && dev == &rtcdev->dev) {
rtc_irq_unregister(rtcdev, &alarmtimer_rtc_task);
rtcdev = NULL;
}
}
static inline void alarmtimer_rtc_timer_init(void)
{
mutex_init(&power_on_alarm_lock);
rtc_timer_init(&rtctimer, NULL, NULL);
}
static struct class_interface alarmtimer_rtc_interface = {
.add_dev = &alarmtimer_rtc_add_device,
.remove_dev = &alarmtimer_rtc_remove_device,
};
static int alarmtimer_rtc_interface_setup(void)
{
alarmtimer_rtc_interface.class = rtc_class;
return class_interface_register(&alarmtimer_rtc_interface);
}
static void alarmtimer_rtc_interface_remove(void)
{
class_interface_unregister(&alarmtimer_rtc_interface);
}
#else
struct rtc_device *alarmtimer_get_rtcdev(void)
{
return NULL;
}
#define rtcdev (NULL)
static inline int alarmtimer_rtc_interface_setup(void) { return 0; }
static inline void alarmtimer_rtc_interface_remove(void) { }
static inline void alarmtimer_rtc_timer_init(void) { }
void set_power_on_alarm(void) { }
#endif
static void alarm_work_func(struct work_struct *unused)
{
set_power_on_alarm();
}
/**
* alarmtimer_enqueue - Adds an alarm timer to an alarm_base timerqueue
* @base: pointer to the base where the timer is being run
* @alarm: pointer to alarm being enqueued.
*
* Adds alarm to a alarm_base timerqueue
*
* Must hold base->lock when calling.
*/
static void alarmtimer_enqueue(struct alarm_base *base, struct alarm *alarm)
{
if (alarm->state & ALARMTIMER_STATE_ENQUEUED)
timerqueue_del(&base->timerqueue, &alarm->node);
timerqueue_add(&base->timerqueue, &alarm->node);
alarm->state |= ALARMTIMER_STATE_ENQUEUED;
}
/**
* alarmtimer_dequeue - Removes an alarm timer from an alarm_base timerqueue
* @base: pointer to the base where the timer is running
* @alarm: pointer to alarm being removed
*
* Removes alarm to a alarm_base timerqueue
*
* Must hold base->lock when calling.
*/
static void alarmtimer_dequeue(struct alarm_base *base, struct alarm *alarm)
{
if (!(alarm->state & ALARMTIMER_STATE_ENQUEUED))
return;
timerqueue_del(&base->timerqueue, &alarm->node);
alarm->state &= ~ALARMTIMER_STATE_ENQUEUED;
}
/**
* alarmtimer_fired - Handles alarm hrtimer being fired.
* @timer: pointer to hrtimer being run
*
* When a alarm timer fires, this runs through the timerqueue to
* see which alarms expired, and runs those. If there are more alarm
* timers queued for the future, we set the hrtimer to fire when
* when the next future alarm timer expires.
*/
static enum hrtimer_restart alarmtimer_fired(struct hrtimer *timer)
{
struct alarm *alarm = container_of(timer, struct alarm, timer);
struct alarm_base *base = &alarm_bases[alarm->type];
unsigned long flags;
int ret = HRTIMER_NORESTART;
int restart = ALARMTIMER_NORESTART;
spin_lock_irqsave(&base->lock, flags);
alarmtimer_dequeue(base, alarm);
spin_unlock_irqrestore(&base->lock, flags);
if (alarm->function)
restart = alarm->function(alarm, base->gettime());
spin_lock_irqsave(&base->lock, flags);
if (restart != ALARMTIMER_NORESTART) {
hrtimer_set_expires(&alarm->timer, alarm->node.expires);
alarmtimer_enqueue(base, alarm);
ret = HRTIMER_RESTART;
}
spin_unlock_irqrestore(&base->lock, flags);
/* set next power off alarm */
if (alarm->type == ALARM_POWEROFF_REALTIME)
queue_delayed_work(power_off_alarm_workqueue, &work, 0);
return ret;
}
ktime_t alarm_expires_remaining(const struct alarm *alarm)
{
struct alarm_base *base = &alarm_bases[alarm->type];
return ktime_sub(alarm->node.expires, base->gettime());
}
#ifdef CONFIG_RTC_CLASS
/**
* alarmtimer_suspend - Suspend time callback
* @dev: unused
* @state: unused
*
* When we are going into suspend, we look through the bases
* to see which is the soonest timer to expire. We then
* set an rtc timer to fire that far into the future, which
* will wake us from suspend.
*/
#if defined(CONFIG_RTC_DRV_QPNP) && defined(CONFIG_MSM_PM)
static int alarmtimer_suspend(struct device *dev)
{
struct rtc_time tm;
ktime_t min, now;
unsigned long flags;
struct rtc_device *rtc;
int i;
int ret = 0;
cancel_delayed_work_sync(&work);
spin_lock_irqsave(&freezer_delta_lock, flags);
min = freezer_delta;
freezer_delta = ktime_set(0, 0);
spin_unlock_irqrestore(&freezer_delta_lock, flags);
rtc = alarmtimer_get_rtcdev();
/* If we have no rtcdev, just return */
if (!rtc)
return 0;
/* Find the soonest timer to expire*/
for (i = 0; i < ALARM_NUMTYPE; i++) {
struct alarm_base *base = &alarm_bases[i];
struct timerqueue_node *next;
ktime_t delta;
spin_lock_irqsave(&base->lock, flags);
next = timerqueue_getnext(&base->timerqueue);
spin_unlock_irqrestore(&base->lock, flags);
if (!next)
continue;
delta = ktime_sub(next->expires, base->gettime());
if (!min.tv64 || (delta.tv64 < min.tv64))
min = delta;
}
if (min.tv64 == 0)
return 0;
if (ktime_to_ns(min) < 2 * NSEC_PER_SEC) {
__pm_wakeup_event(ws, 2 * MSEC_PER_SEC);
return -EBUSY;
}
/* Setup a timer to fire that far in the future */
rtc_timer_cancel(rtc, &rtctimer);
rtc_read_time(rtc, &tm);
now = rtc_tm_to_ktime(tm);
now = ktime_add(now, min);
if (poweron_alarm) {
struct rtc_time tm_val;
unsigned long secs;
tm_val = rtc_ktime_to_tm(min);
rtc_tm_to_time(&tm_val, &secs);
lpm_suspend_wake_time(secs);
} else {
/* Set alarm, if in the past reject suspend briefly to handle */
ret = rtc_timer_start(rtc, &rtctimer, now, ktime_set(0, 0));
if (ret < 0)
__pm_wakeup_event(ws, MSEC_PER_SEC);
}
return ret;
}
#else
static int alarmtimer_suspend(struct device *dev)
{
struct rtc_time tm;
ktime_t min, now;
unsigned long flags;
struct rtc_device *rtc;
int i;
int ret;
cancel_delayed_work_sync(&work);
spin_lock_irqsave(&freezer_delta_lock, flags);
min = freezer_delta;
freezer_delta = ktime_set(0, 0);
spin_unlock_irqrestore(&freezer_delta_lock, flags);
rtc = alarmtimer_get_rtcdev();
/* If we have no rtcdev, just return */
if (!rtc)
return 0;
/* Find the soonest timer to expire*/
for (i = 0; i < ALARM_NUMTYPE; i++) {
struct alarm_base *base = &alarm_bases[i];
struct timerqueue_node *next;
ktime_t delta;
spin_lock_irqsave(&base->lock, flags);
next = timerqueue_getnext(&base->timerqueue);
spin_unlock_irqrestore(&base->lock, flags);
if (!next)
continue;
delta = ktime_sub(next->expires, base->gettime());
if (!min.tv64 || (delta.tv64 < min.tv64))
min = delta;
}
if (min.tv64 == 0)
return 0;
if (ktime_to_ns(min) < 2 * NSEC_PER_SEC) {
__pm_wakeup_event(ws, 2 * MSEC_PER_SEC);
return -EBUSY;
}
/* Setup an rtc timer to fire that far in the future */
rtc_timer_cancel(rtc, &rtctimer);
rtc_read_time(rtc, &tm);
now = rtc_tm_to_ktime(tm);
now = ktime_add(now, min);
/* Set alarm, if in the past reject suspend briefly to handle */
ret = rtc_timer_start(rtc, &rtctimer, now, ktime_set(0, 0));
if (ret < 0)
__pm_wakeup_event(ws, MSEC_PER_SEC);
return ret;
}
#endif
static int alarmtimer_resume(struct device *dev)
{
struct rtc_device *rtc;
rtc = alarmtimer_get_rtcdev();
/* If we have no rtcdev, just return */
if (!rtc)
return 0;
rtc_timer_cancel(rtc, &rtctimer);
queue_delayed_work(power_off_alarm_workqueue, &work, 0);
return 0;
}
#else
static int alarmtimer_suspend(struct device *dev)
{
return 0;
}
static int alarmtimer_resume(struct device *dev)
{
return 0;
}
#endif
static void alarmtimer_freezerset(ktime_t absexp, enum alarmtimer_type type)
{
ktime_t delta;
unsigned long flags;
struct alarm_base *base = &alarm_bases[type];
delta = ktime_sub(absexp, base->gettime());
spin_lock_irqsave(&freezer_delta_lock, flags);
if (!freezer_delta.tv64 || (delta.tv64 < freezer_delta.tv64))
freezer_delta = delta;
spin_unlock_irqrestore(&freezer_delta_lock, flags);
}
/**
* alarm_init - Initialize an alarm structure
* @alarm: ptr to alarm to be initialized
* @type: the type of the alarm
* @function: callback that is run when the alarm fires
*/
void alarm_init(struct alarm *alarm, enum alarmtimer_type type,
enum alarmtimer_restart (*function)(struct alarm *, ktime_t))
{
timerqueue_init(&alarm->node);
hrtimer_init(&alarm->timer, alarm_bases[type].base_clockid,
HRTIMER_MODE_ABS);
alarm->timer.function = alarmtimer_fired;
alarm->function = function;
alarm->type = type;
alarm->state = ALARMTIMER_STATE_INACTIVE;
}
/**
* alarm_start - Sets an absolute alarm to fire
* @alarm: ptr to alarm to set
* @start: time to run the alarm
*/
int alarm_start(struct alarm *alarm, ktime_t start)
{
struct alarm_base *base = &alarm_bases[alarm->type];
unsigned long flags;
int ret;
spin_lock_irqsave(&base->lock, flags);
alarm->node.expires = start;
alarmtimer_enqueue(base, alarm);
ret = hrtimer_start(&alarm->timer, alarm->node.expires,
HRTIMER_MODE_ABS);
spin_unlock_irqrestore(&base->lock, flags);
return ret;
}
/**
* alarm_start_relative - Sets a relative alarm to fire
* @alarm: ptr to alarm to set
* @start: time relative to now to run the alarm
*/
int alarm_start_relative(struct alarm *alarm, ktime_t start)
{
struct alarm_base *base;
if (alarm->type >= ALARM_NUMTYPE) {
pr_err("Array out of index\n");
return -EINVAL;
}
base = &alarm_bases[alarm->type];
start = ktime_add_safe(start, base->gettime());
return alarm_start(alarm, start);
}
void alarm_restart(struct alarm *alarm)
{
struct alarm_base *base = &alarm_bases[alarm->type];
unsigned long flags;
spin_lock_irqsave(&base->lock, flags);
hrtimer_set_expires(&alarm->timer, alarm->node.expires);
hrtimer_restart(&alarm->timer);
alarmtimer_enqueue(base, alarm);
spin_unlock_irqrestore(&base->lock, flags);
}
/**
* alarm_try_to_cancel - Tries to cancel an alarm timer
* @alarm: ptr to alarm to be canceled
*
* Returns 1 if the timer was canceled, 0 if it was not running,
* and -1 if the callback was running
*/
int alarm_try_to_cancel(struct alarm *alarm)
{
struct alarm_base *base;
unsigned long flags;
int ret;
if (alarm->type >= ALARM_NUMTYPE) {
pr_err("Array out of index\n");
return -EINVAL;
}
base = &alarm_bases[alarm->type];
spin_lock_irqsave(&base->lock, flags);
ret = hrtimer_try_to_cancel(&alarm->timer);
if (ret >= 0)
alarmtimer_dequeue(base, alarm);
spin_unlock_irqrestore(&base->lock, flags);
return ret;
}
/**
* alarm_cancel - Spins trying to cancel an alarm timer until it is done
* @alarm: ptr to alarm to be canceled
*
* Returns 1 if the timer was canceled, 0 if it was not active.
*/
int alarm_cancel(struct alarm *alarm)
{
for (;;) {
int ret = alarm_try_to_cancel(alarm);
if (ret >= 0)
return ret;
cpu_relax();
}
}
u64 alarm_forward(struct alarm *alarm, ktime_t now, ktime_t interval)
{
u64 overrun = 1;
ktime_t delta;
delta = ktime_sub(now, alarm->node.expires);
if (delta.tv64 < 0)
return 0;
if (unlikely(delta.tv64 >= interval.tv64)) {
s64 incr = ktime_to_ns(interval);
overrun = ktime_divns(delta, incr);
alarm->node.expires = ktime_add_ns(alarm->node.expires,
incr*overrun);
if (alarm->node.expires.tv64 > now.tv64)
return overrun;
/*
* This (and the ktime_add() below) is the
* correction for exact:
*/
overrun++;
}
alarm->node.expires = ktime_add_safe(alarm->node.expires, interval);
return overrun;
}
u64 alarm_forward_now(struct alarm *alarm, ktime_t interval)
{
struct alarm_base *base = &alarm_bases[alarm->type];
return alarm_forward(alarm, base->gettime(), interval);
}
/**
* clock2alarm - helper that converts from clockid to alarmtypes
* @clockid: clockid.
*/
enum alarmtimer_type clock2alarm(clockid_t clockid)
{
if (clockid == CLOCK_REALTIME_ALARM)
return ALARM_REALTIME;
if (clockid == CLOCK_BOOTTIME_ALARM)
return ALARM_BOOTTIME;
if (clockid == CLOCK_POWEROFF_ALARM)
return ALARM_POWEROFF_REALTIME;
return -1;
}
/**
* alarm_handle_timer - Callback for posix timers
* @alarm: alarm that fired
*
* Posix timer callback for expired alarm timers.
*/
static enum alarmtimer_restart alarm_handle_timer(struct alarm *alarm,
ktime_t now)
{
unsigned long flags;
struct k_itimer *ptr = container_of(alarm, struct k_itimer,
it.alarm.alarmtimer);
enum alarmtimer_restart result = ALARMTIMER_NORESTART;
spin_lock_irqsave(&ptr->it_lock, flags);
if ((ptr->it_sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE) {
if (posix_timer_event(ptr, 0) != 0)
ptr->it_overrun++;
}
/* Re-add periodic timers */
if (ptr->it.alarm.interval.tv64) {
ptr->it_overrun += alarm_forward(alarm, now,
ptr->it.alarm.interval);
result = ALARMTIMER_RESTART;
}
spin_unlock_irqrestore(&ptr->it_lock, flags);
return result;
}
/**
* alarm_clock_getres - posix getres interface
* @which_clock: clockid
* @tp: timespec to fill
*
* Returns the granularity of underlying alarm base clock
*/
static int alarm_clock_getres(const clockid_t which_clock, struct timespec *tp)
{
clockid_t baseid = alarm_bases[clock2alarm(which_clock)].base_clockid;
if (!alarmtimer_get_rtcdev())
return -EINVAL;
return hrtimer_get_res(baseid, tp);
}
/**
* alarm_clock_get - posix clock_get interface
* @which_clock: clockid
* @tp: timespec to fill.
*
* Provides the underlying alarm base time.
*/
static int alarm_clock_get(clockid_t which_clock, struct timespec *tp)
{
struct alarm_base *base = &alarm_bases[clock2alarm(which_clock)];
if (!alarmtimer_get_rtcdev())
return -EINVAL;
*tp = ktime_to_timespec(base->gettime());
return 0;
}
/**
* alarm_timer_create - posix timer_create interface
* @new_timer: k_itimer pointer to manage
*
* Initializes the k_itimer structure.
*/
static int alarm_timer_create(struct k_itimer *new_timer)
{
enum alarmtimer_type type;
struct alarm_base *base;
if (!alarmtimer_get_rtcdev())
return -ENOTSUPP;
if (!capable(CAP_WAKE_ALARM))
return -EPERM;
type = clock2alarm(new_timer->it_clock);
base = &alarm_bases[type];
alarm_init(&new_timer->it.alarm.alarmtimer, type, alarm_handle_timer);
return 0;
}
/**
* alarm_timer_get - posix timer_get interface
* @new_timer: k_itimer pointer
* @cur_setting: itimerspec data to fill
*
* Copies the itimerspec data out from the k_itimer
*/
static void alarm_timer_get(struct k_itimer *timr,
struct itimerspec *cur_setting)
{
memset(cur_setting, 0, sizeof(struct itimerspec));
cur_setting->it_interval =
ktime_to_timespec(timr->it.alarm.interval);
cur_setting->it_value =
ktime_to_timespec(timr->it.alarm.alarmtimer.node.expires);
return;
}
/**
* alarm_timer_del - posix timer_del interface
* @timr: k_itimer pointer to be deleted
*
* Cancels any programmed alarms for the given timer.
*/
static int alarm_timer_del(struct k_itimer *timr)
{
if (!rtcdev)
return -ENOTSUPP;
if (alarm_try_to_cancel(&timr->it.alarm.alarmtimer) < 0)
return TIMER_RETRY;
return 0;
}
/**
* alarm_timer_set - posix timer_set interface
* @timr: k_itimer pointer to be deleted
* @flags: timer flags
* @new_setting: itimerspec to be used
* @old_setting: itimerspec being replaced
*
* Sets the timer to new_setting, and starts the timer.
*/
static int alarm_timer_set(struct k_itimer *timr, int flags,
struct itimerspec *new_setting,
struct itimerspec *old_setting)
{
ktime_t exp;
if (!rtcdev)
return -ENOTSUPP;
if (flags & ~TIMER_ABSTIME)
return -EINVAL;
if (old_setting)
alarm_timer_get(timr, old_setting);
/* If the timer was already set, cancel it */
if (alarm_try_to_cancel(&timr->it.alarm.alarmtimer) < 0)
return TIMER_RETRY;
/* start the timer */
timr->it.alarm.interval = timespec_to_ktime(new_setting->it_interval);
/*
* Rate limit to the tick as a hot fix to prevent DOS. Will be
* mopped up later.
*/
if (ktime_to_ns(timr->it.alarm.interval) < TICK_NSEC)
timr->it.alarm.interval = ktime_set(1, 0);
exp = timespec_to_ktime(new_setting->it_value);
/* Convert (if necessary) to absolute time */
if (flags != TIMER_ABSTIME) {
ktime_t now;
now = alarm_bases[timr->it.alarm.alarmtimer.type].gettime();
exp = ktime_add_safe(now, exp);
}
alarm_start(&timr->it.alarm.alarmtimer, exp);
return 0;
}
/**
* alarmtimer_nsleep_wakeup - Wakeup function for alarm_timer_nsleep
* @alarm: ptr to alarm that fired
*
* Wakes up the task that set the alarmtimer
*/
static enum alarmtimer_restart alarmtimer_nsleep_wakeup(struct alarm *alarm,
ktime_t now)
{
struct task_struct *task = (struct task_struct *)alarm->data;
alarm->data = NULL;
if (task)
wake_up_process(task);
return ALARMTIMER_NORESTART;
}
/**
* alarmtimer_do_nsleep - Internal alarmtimer nsleep implementation
* @alarm: ptr to alarmtimer
* @absexp: absolute expiration time
*
* Sets the alarm timer and sleeps until it is fired or interrupted.
*/
static int alarmtimer_do_nsleep(struct alarm *alarm, ktime_t absexp)
{
alarm->data = (void *)current;
do {
set_current_state(TASK_INTERRUPTIBLE);
alarm_start(alarm, absexp);
if (likely(alarm->data))
schedule();
alarm_cancel(alarm);
} while (alarm->data && !signal_pending(current));
__set_current_state(TASK_RUNNING);
return (alarm->data == NULL);
}
/**
* update_rmtp - Update remaining timespec value
* @exp: expiration time
* @type: timer type
* @rmtp: user pointer to remaining timepsec value
*
* Helper function that fills in rmtp value with time between
* now and the exp value
*/
static int update_rmtp(ktime_t exp, enum alarmtimer_type type,
struct timespec __user *rmtp)
{
struct timespec rmt;
ktime_t rem;
rem = ktime_sub(exp, alarm_bases[type].gettime());
if (rem.tv64 <= 0)
return 0;
rmt = ktime_to_timespec(rem);
if (copy_to_user(rmtp, &rmt, sizeof(*rmtp)))
return -EFAULT;
return 1;
}
/**
* alarm_timer_nsleep_restart - restartblock alarmtimer nsleep
* @restart: ptr to restart block
*
* Handles restarted clock_nanosleep calls
*/
static long __sched alarm_timer_nsleep_restart(struct restart_block *restart)
{
enum alarmtimer_type type = restart->nanosleep.clockid;
ktime_t exp;
struct timespec __user *rmtp;
struct alarm alarm;
int ret = 0;
exp.tv64 = restart->nanosleep.expires;
alarm_init(&alarm, type, alarmtimer_nsleep_wakeup);
if (alarmtimer_do_nsleep(&alarm, exp))
goto out;
if (freezing(current))
alarmtimer_freezerset(exp, type);
rmtp = restart->nanosleep.rmtp;
if (rmtp) {
ret = update_rmtp(exp, type, rmtp);
if (ret <= 0)
goto out;
}
/* The other values in restart are already filled in */
ret = -ERESTART_RESTARTBLOCK;
out:
return ret;
}
/**
* alarm_timer_nsleep - alarmtimer nanosleep
* @which_clock: clockid
* @flags: determins abstime or relative
* @tsreq: requested sleep time (abs or rel)
* @rmtp: remaining sleep time saved
*
* Handles clock_nanosleep calls against _ALARM clockids
*/
static int alarm_timer_nsleep(const clockid_t which_clock, int flags,
struct timespec *tsreq, struct timespec __user *rmtp)
{
enum alarmtimer_type type = clock2alarm(which_clock);
struct alarm alarm;
ktime_t exp;
int ret = 0;
struct restart_block *restart;
if (!alarmtimer_get_rtcdev())
return -ENOTSUPP;
if (flags & ~TIMER_ABSTIME)
return -EINVAL;
if (!capable(CAP_WAKE_ALARM))
return -EPERM;
alarm_init(&alarm, type, alarmtimer_nsleep_wakeup);
exp = timespec_to_ktime(*tsreq);
/* Convert (if necessary) to absolute time */
if (flags != TIMER_ABSTIME) {
ktime_t now = alarm_bases[type].gettime();
exp = ktime_add_safe(now, exp);
}
if (alarmtimer_do_nsleep(&alarm, exp))
goto out;
if (freezing(current))
alarmtimer_freezerset(exp, type);
/* abs timers don't set remaining time or restart */
if (flags == TIMER_ABSTIME) {
ret = -ERESTARTNOHAND;
goto out;
}
if (rmtp) {
ret = update_rmtp(exp, type, rmtp);
if (ret <= 0)
goto out;
}
restart = &current_thread_info()->restart_block;
restart->fn = alarm_timer_nsleep_restart;
restart->nanosleep.clockid = type;
restart->nanosleep.expires = exp.tv64;
restart->nanosleep.rmtp = rmtp;
ret = -ERESTART_RESTARTBLOCK;
out:
return ret;
}
/* Suspend hook structures */
static const struct dev_pm_ops alarmtimer_pm_ops = {
.suspend = alarmtimer_suspend,
.resume = alarmtimer_resume,
};
static struct platform_driver alarmtimer_driver = {
.driver = {
.name = "alarmtimer",
.pm = &alarmtimer_pm_ops,
}
};
/**
* alarmtimer_init - Initialize alarm timer code
*
* This function initializes the alarm bases and registers
* the posix clock ids.
*/
static int __init alarmtimer_init(void)
{
struct platform_device *pdev;
int error = 0;
int i;
struct k_clock alarm_clock = {
.clock_getres = alarm_clock_getres,
.clock_get = alarm_clock_get,
.timer_create = alarm_timer_create,
.timer_set = alarm_timer_set,
.timer_del = alarm_timer_del,
.timer_get = alarm_timer_get,
.nsleep = alarm_timer_nsleep,
};
alarmtimer_rtc_timer_init();
posix_timers_register_clock(CLOCK_REALTIME_ALARM, &alarm_clock);
posix_timers_register_clock(CLOCK_BOOTTIME_ALARM, &alarm_clock);
posix_timers_register_clock(CLOCK_POWEROFF_ALARM, &alarm_clock);
/* Initialize alarm bases */
alarm_bases[ALARM_REALTIME].base_clockid = CLOCK_REALTIME;
alarm_bases[ALARM_REALTIME].gettime = &ktime_get_real;
alarm_bases[ALARM_POWEROFF_REALTIME].base_clockid = CLOCK_REALTIME;
alarm_bases[ALARM_POWEROFF_REALTIME].gettime = &ktime_get_real;
alarm_bases[ALARM_BOOTTIME].base_clockid = CLOCK_BOOTTIME;
alarm_bases[ALARM_BOOTTIME].gettime = &ktime_get_boottime;
for (i = 0; i < ALARM_NUMTYPE; i++) {
timerqueue_init_head(&alarm_bases[i].timerqueue);
spin_lock_init(&alarm_bases[i].lock);
}
error = alarmtimer_rtc_interface_setup();
if (error)
return error;
error = platform_driver_register(&alarmtimer_driver);
if (error)
goto out_if;
pdev = platform_device_register_simple("alarmtimer", -1, NULL, 0);
if (IS_ERR(pdev)) {
error = PTR_ERR(pdev);
goto out_drv;
}
ws = wakeup_source_register("alarmtimer");
if (!ws) {
error = -ENOMEM;
goto out_ws;
}
INIT_DELAYED_WORK(&work, alarm_work_func);
power_off_alarm_workqueue =
create_singlethread_workqueue("power_off_alarm");
if (!power_off_alarm_workqueue) {
error = -ENOMEM;
goto out_wq;
}
return 0;
out_wq:
wakeup_source_unregister(ws);
out_ws:
platform_device_unregister(pdev);
out_drv:
platform_driver_unregister(&alarmtimer_driver);
out_if:
alarmtimer_rtc_interface_remove();
return error;
}
device_initcall(alarmtimer_init);