android_kernel_samsung_msm8976/net/ipv4/netfilter/ip_tables.c
Eric Dumazet 3183606469 [NETFILTER] ip_tables: NUMA-aware allocation
Part of a performance problem with ip_tables is that memory allocation
is not NUMA aware, but 'only' SMP aware (ie each CPU normally touch
separate cache lines)

Even with small iptables rules, the cost of this misplacement can be
high on common workloads.  Instead of using one vmalloc() area
(located in the node of the iptables process), we now allocate an area
for each possible CPU, using vmalloc_node() so that memory should be
allocated in the CPU's node if possible.

Port to arp_tables and ip6_tables by Harald Welte.

Signed-off-by: Eric Dumazet <dada1@cosmosbay.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2006-01-03 13:10:29 -08:00

2034 lines
48 KiB
C

/*
* Packet matching code.
*
* Copyright (C) 1999 Paul `Rusty' Russell & Michael J. Neuling
* Copyright (C) 2000-2004 Netfilter Core Team <coreteam@netfilter.org>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* 19 Jan 2002 Harald Welte <laforge@gnumonks.org>
* - increase module usage count as soon as we have rules inside
* a table
*/
#include <linux/config.h>
#include <linux/cache.h>
#include <linux/skbuff.h>
#include <linux/kmod.h>
#include <linux/vmalloc.h>
#include <linux/netdevice.h>
#include <linux/module.h>
#include <linux/tcp.h>
#include <linux/udp.h>
#include <linux/icmp.h>
#include <net/ip.h>
#include <asm/uaccess.h>
#include <asm/semaphore.h>
#include <linux/proc_fs.h>
#include <linux/err.h>
#include <linux/cpumask.h>
#include <linux/netfilter_ipv4/ip_tables.h>
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Netfilter Core Team <coreteam@netfilter.org>");
MODULE_DESCRIPTION("IPv4 packet filter");
/*#define DEBUG_IP_FIREWALL*/
/*#define DEBUG_ALLOW_ALL*/ /* Useful for remote debugging */
/*#define DEBUG_IP_FIREWALL_USER*/
#ifdef DEBUG_IP_FIREWALL
#define dprintf(format, args...) printk(format , ## args)
#else
#define dprintf(format, args...)
#endif
#ifdef DEBUG_IP_FIREWALL_USER
#define duprintf(format, args...) printk(format , ## args)
#else
#define duprintf(format, args...)
#endif
#ifdef CONFIG_NETFILTER_DEBUG
#define IP_NF_ASSERT(x) \
do { \
if (!(x)) \
printk("IP_NF_ASSERT: %s:%s:%u\n", \
__FUNCTION__, __FILE__, __LINE__); \
} while(0)
#else
#define IP_NF_ASSERT(x)
#endif
#define SMP_ALIGN(x) (((x) + SMP_CACHE_BYTES-1) & ~(SMP_CACHE_BYTES-1))
static DECLARE_MUTEX(ipt_mutex);
/* Must have mutex */
#define ASSERT_READ_LOCK(x) IP_NF_ASSERT(down_trylock(&ipt_mutex) != 0)
#define ASSERT_WRITE_LOCK(x) IP_NF_ASSERT(down_trylock(&ipt_mutex) != 0)
#include <linux/netfilter_ipv4/listhelp.h>
#if 0
/* All the better to debug you with... */
#define static
#define inline
#endif
/*
We keep a set of rules for each CPU, so we can avoid write-locking
them in the softirq when updating the counters and therefore
only need to read-lock in the softirq; doing a write_lock_bh() in user
context stops packets coming through and allows user context to read
the counters or update the rules.
Hence the start of any table is given by get_table() below. */
/* The table itself */
struct ipt_table_info
{
/* Size per table */
unsigned int size;
/* Number of entries: FIXME. --RR */
unsigned int number;
/* Initial number of entries. Needed for module usage count */
unsigned int initial_entries;
/* Entry points and underflows */
unsigned int hook_entry[NF_IP_NUMHOOKS];
unsigned int underflow[NF_IP_NUMHOOKS];
/* ipt_entry tables: one per CPU */
void *entries[NR_CPUS];
};
static LIST_HEAD(ipt_target);
static LIST_HEAD(ipt_match);
static LIST_HEAD(ipt_tables);
#define SET_COUNTER(c,b,p) do { (c).bcnt = (b); (c).pcnt = (p); } while(0)
#define ADD_COUNTER(c,b,p) do { (c).bcnt += (b); (c).pcnt += (p); } while(0)
#if 0
#define down(x) do { printk("DOWN:%u:" #x "\n", __LINE__); down(x); } while(0)
#define down_interruptible(x) ({ int __r; printk("DOWNi:%u:" #x "\n", __LINE__); __r = down_interruptible(x); if (__r != 0) printk("ABORT-DOWNi:%u\n", __LINE__); __r; })
#define up(x) do { printk("UP:%u:" #x "\n", __LINE__); up(x); } while(0)
#endif
/* Returns whether matches rule or not. */
static inline int
ip_packet_match(const struct iphdr *ip,
const char *indev,
const char *outdev,
const struct ipt_ip *ipinfo,
int isfrag)
{
size_t i;
unsigned long ret;
#define FWINV(bool,invflg) ((bool) ^ !!(ipinfo->invflags & invflg))
if (FWINV((ip->saddr&ipinfo->smsk.s_addr) != ipinfo->src.s_addr,
IPT_INV_SRCIP)
|| FWINV((ip->daddr&ipinfo->dmsk.s_addr) != ipinfo->dst.s_addr,
IPT_INV_DSTIP)) {
dprintf("Source or dest mismatch.\n");
dprintf("SRC: %u.%u.%u.%u. Mask: %u.%u.%u.%u. Target: %u.%u.%u.%u.%s\n",
NIPQUAD(ip->saddr),
NIPQUAD(ipinfo->smsk.s_addr),
NIPQUAD(ipinfo->src.s_addr),
ipinfo->invflags & IPT_INV_SRCIP ? " (INV)" : "");
dprintf("DST: %u.%u.%u.%u Mask: %u.%u.%u.%u Target: %u.%u.%u.%u.%s\n",
NIPQUAD(ip->daddr),
NIPQUAD(ipinfo->dmsk.s_addr),
NIPQUAD(ipinfo->dst.s_addr),
ipinfo->invflags & IPT_INV_DSTIP ? " (INV)" : "");
return 0;
}
/* Look for ifname matches; this should unroll nicely. */
for (i = 0, ret = 0; i < IFNAMSIZ/sizeof(unsigned long); i++) {
ret |= (((const unsigned long *)indev)[i]
^ ((const unsigned long *)ipinfo->iniface)[i])
& ((const unsigned long *)ipinfo->iniface_mask)[i];
}
if (FWINV(ret != 0, IPT_INV_VIA_IN)) {
dprintf("VIA in mismatch (%s vs %s).%s\n",
indev, ipinfo->iniface,
ipinfo->invflags&IPT_INV_VIA_IN ?" (INV)":"");
return 0;
}
for (i = 0, ret = 0; i < IFNAMSIZ/sizeof(unsigned long); i++) {
ret |= (((const unsigned long *)outdev)[i]
^ ((const unsigned long *)ipinfo->outiface)[i])
& ((const unsigned long *)ipinfo->outiface_mask)[i];
}
if (FWINV(ret != 0, IPT_INV_VIA_OUT)) {
dprintf("VIA out mismatch (%s vs %s).%s\n",
outdev, ipinfo->outiface,
ipinfo->invflags&IPT_INV_VIA_OUT ?" (INV)":"");
return 0;
}
/* Check specific protocol */
if (ipinfo->proto
&& FWINV(ip->protocol != ipinfo->proto, IPT_INV_PROTO)) {
dprintf("Packet protocol %hi does not match %hi.%s\n",
ip->protocol, ipinfo->proto,
ipinfo->invflags&IPT_INV_PROTO ? " (INV)":"");
return 0;
}
/* If we have a fragment rule but the packet is not a fragment
* then we return zero */
if (FWINV((ipinfo->flags&IPT_F_FRAG) && !isfrag, IPT_INV_FRAG)) {
dprintf("Fragment rule but not fragment.%s\n",
ipinfo->invflags & IPT_INV_FRAG ? " (INV)" : "");
return 0;
}
return 1;
}
static inline int
ip_checkentry(const struct ipt_ip *ip)
{
if (ip->flags & ~IPT_F_MASK) {
duprintf("Unknown flag bits set: %08X\n",
ip->flags & ~IPT_F_MASK);
return 0;
}
if (ip->invflags & ~IPT_INV_MASK) {
duprintf("Unknown invflag bits set: %08X\n",
ip->invflags & ~IPT_INV_MASK);
return 0;
}
return 1;
}
static unsigned int
ipt_error(struct sk_buff **pskb,
const struct net_device *in,
const struct net_device *out,
unsigned int hooknum,
const void *targinfo,
void *userinfo)
{
if (net_ratelimit())
printk("ip_tables: error: `%s'\n", (char *)targinfo);
return NF_DROP;
}
static inline
int do_match(struct ipt_entry_match *m,
const struct sk_buff *skb,
const struct net_device *in,
const struct net_device *out,
int offset,
int *hotdrop)
{
/* Stop iteration if it doesn't match */
if (!m->u.kernel.match->match(skb, in, out, m->data, offset, hotdrop))
return 1;
else
return 0;
}
static inline struct ipt_entry *
get_entry(void *base, unsigned int offset)
{
return (struct ipt_entry *)(base + offset);
}
/* Returns one of the generic firewall policies, like NF_ACCEPT. */
unsigned int
ipt_do_table(struct sk_buff **pskb,
unsigned int hook,
const struct net_device *in,
const struct net_device *out,
struct ipt_table *table,
void *userdata)
{
static const char nulldevname[IFNAMSIZ] __attribute__((aligned(sizeof(long))));
u_int16_t offset;
struct iphdr *ip;
u_int16_t datalen;
int hotdrop = 0;
/* Initializing verdict to NF_DROP keeps gcc happy. */
unsigned int verdict = NF_DROP;
const char *indev, *outdev;
void *table_base;
struct ipt_entry *e, *back;
/* Initialization */
ip = (*pskb)->nh.iph;
datalen = (*pskb)->len - ip->ihl * 4;
indev = in ? in->name : nulldevname;
outdev = out ? out->name : nulldevname;
/* We handle fragments by dealing with the first fragment as
* if it was a normal packet. All other fragments are treated
* normally, except that they will NEVER match rules that ask
* things we don't know, ie. tcp syn flag or ports). If the
* rule is also a fragment-specific rule, non-fragments won't
* match it. */
offset = ntohs(ip->frag_off) & IP_OFFSET;
read_lock_bh(&table->lock);
IP_NF_ASSERT(table->valid_hooks & (1 << hook));
table_base = (void *)table->private->entries[smp_processor_id()];
e = get_entry(table_base, table->private->hook_entry[hook]);
#ifdef CONFIG_NETFILTER_DEBUG
/* Check noone else using our table */
if (((struct ipt_entry *)table_base)->comefrom != 0xdead57ac
&& ((struct ipt_entry *)table_base)->comefrom != 0xeeeeeeec) {
printk("ASSERT: CPU #%u, %s comefrom(%p) = %X\n",
smp_processor_id(),
table->name,
&((struct ipt_entry *)table_base)->comefrom,
((struct ipt_entry *)table_base)->comefrom);
}
((struct ipt_entry *)table_base)->comefrom = 0x57acc001;
#endif
/* For return from builtin chain */
back = get_entry(table_base, table->private->underflow[hook]);
do {
IP_NF_ASSERT(e);
IP_NF_ASSERT(back);
if (ip_packet_match(ip, indev, outdev, &e->ip, offset)) {
struct ipt_entry_target *t;
if (IPT_MATCH_ITERATE(e, do_match,
*pskb, in, out,
offset, &hotdrop) != 0)
goto no_match;
ADD_COUNTER(e->counters, ntohs(ip->tot_len), 1);
t = ipt_get_target(e);
IP_NF_ASSERT(t->u.kernel.target);
/* Standard target? */
if (!t->u.kernel.target->target) {
int v;
v = ((struct ipt_standard_target *)t)->verdict;
if (v < 0) {
/* Pop from stack? */
if (v != IPT_RETURN) {
verdict = (unsigned)(-v) - 1;
break;
}
e = back;
back = get_entry(table_base,
back->comefrom);
continue;
}
if (table_base + v != (void *)e + e->next_offset
&& !(e->ip.flags & IPT_F_GOTO)) {
/* Save old back ptr in next entry */
struct ipt_entry *next
= (void *)e + e->next_offset;
next->comefrom
= (void *)back - table_base;
/* set back pointer to next entry */
back = next;
}
e = get_entry(table_base, v);
} else {
/* Targets which reenter must return
abs. verdicts */
#ifdef CONFIG_NETFILTER_DEBUG
((struct ipt_entry *)table_base)->comefrom
= 0xeeeeeeec;
#endif
verdict = t->u.kernel.target->target(pskb,
in, out,
hook,
t->data,
userdata);
#ifdef CONFIG_NETFILTER_DEBUG
if (((struct ipt_entry *)table_base)->comefrom
!= 0xeeeeeeec
&& verdict == IPT_CONTINUE) {
printk("Target %s reentered!\n",
t->u.kernel.target->name);
verdict = NF_DROP;
}
((struct ipt_entry *)table_base)->comefrom
= 0x57acc001;
#endif
/* Target might have changed stuff. */
ip = (*pskb)->nh.iph;
datalen = (*pskb)->len - ip->ihl * 4;
if (verdict == IPT_CONTINUE)
e = (void *)e + e->next_offset;
else
/* Verdict */
break;
}
} else {
no_match:
e = (void *)e + e->next_offset;
}
} while (!hotdrop);
#ifdef CONFIG_NETFILTER_DEBUG
((struct ipt_entry *)table_base)->comefrom = 0xdead57ac;
#endif
read_unlock_bh(&table->lock);
#ifdef DEBUG_ALLOW_ALL
return NF_ACCEPT;
#else
if (hotdrop)
return NF_DROP;
else return verdict;
#endif
}
/*
* These are weird, but module loading must not be done with mutex
* held (since they will register), and we have to have a single
* function to use try_then_request_module().
*/
/* Find table by name, grabs mutex & ref. Returns ERR_PTR() on error. */
static inline struct ipt_table *find_table_lock(const char *name)
{
struct ipt_table *t;
if (down_interruptible(&ipt_mutex) != 0)
return ERR_PTR(-EINTR);
list_for_each_entry(t, &ipt_tables, list)
if (strcmp(t->name, name) == 0 && try_module_get(t->me))
return t;
up(&ipt_mutex);
return NULL;
}
/* Find match, grabs ref. Returns ERR_PTR() on error. */
static inline struct ipt_match *find_match(const char *name, u8 revision)
{
struct ipt_match *m;
int err = 0;
if (down_interruptible(&ipt_mutex) != 0)
return ERR_PTR(-EINTR);
list_for_each_entry(m, &ipt_match, list) {
if (strcmp(m->name, name) == 0) {
if (m->revision == revision) {
if (try_module_get(m->me)) {
up(&ipt_mutex);
return m;
}
} else
err = -EPROTOTYPE; /* Found something. */
}
}
up(&ipt_mutex);
return ERR_PTR(err);
}
/* Find target, grabs ref. Returns ERR_PTR() on error. */
static inline struct ipt_target *find_target(const char *name, u8 revision)
{
struct ipt_target *t;
int err = 0;
if (down_interruptible(&ipt_mutex) != 0)
return ERR_PTR(-EINTR);
list_for_each_entry(t, &ipt_target, list) {
if (strcmp(t->name, name) == 0) {
if (t->revision == revision) {
if (try_module_get(t->me)) {
up(&ipt_mutex);
return t;
}
} else
err = -EPROTOTYPE; /* Found something. */
}
}
up(&ipt_mutex);
return ERR_PTR(err);
}
struct ipt_target *ipt_find_target(const char *name, u8 revision)
{
struct ipt_target *target;
target = try_then_request_module(find_target(name, revision),
"ipt_%s", name);
if (IS_ERR(target) || !target)
return NULL;
return target;
}
static int match_revfn(const char *name, u8 revision, int *bestp)
{
struct ipt_match *m;
int have_rev = 0;
list_for_each_entry(m, &ipt_match, list) {
if (strcmp(m->name, name) == 0) {
if (m->revision > *bestp)
*bestp = m->revision;
if (m->revision == revision)
have_rev = 1;
}
}
return have_rev;
}
static int target_revfn(const char *name, u8 revision, int *bestp)
{
struct ipt_target *t;
int have_rev = 0;
list_for_each_entry(t, &ipt_target, list) {
if (strcmp(t->name, name) == 0) {
if (t->revision > *bestp)
*bestp = t->revision;
if (t->revision == revision)
have_rev = 1;
}
}
return have_rev;
}
/* Returns true or false (if no such extension at all) */
static inline int find_revision(const char *name, u8 revision,
int (*revfn)(const char *, u8, int *),
int *err)
{
int have_rev, best = -1;
if (down_interruptible(&ipt_mutex) != 0) {
*err = -EINTR;
return 1;
}
have_rev = revfn(name, revision, &best);
up(&ipt_mutex);
/* Nothing at all? Return 0 to try loading module. */
if (best == -1) {
*err = -ENOENT;
return 0;
}
*err = best;
if (!have_rev)
*err = -EPROTONOSUPPORT;
return 1;
}
/* All zeroes == unconditional rule. */
static inline int
unconditional(const struct ipt_ip *ip)
{
unsigned int i;
for (i = 0; i < sizeof(*ip)/sizeof(__u32); i++)
if (((__u32 *)ip)[i])
return 0;
return 1;
}
/* Figures out from what hook each rule can be called: returns 0 if
there are loops. Puts hook bitmask in comefrom. */
static int
mark_source_chains(struct ipt_table_info *newinfo,
unsigned int valid_hooks, void *entry0)
{
unsigned int hook;
/* No recursion; use packet counter to save back ptrs (reset
to 0 as we leave), and comefrom to save source hook bitmask */
for (hook = 0; hook < NF_IP_NUMHOOKS; hook++) {
unsigned int pos = newinfo->hook_entry[hook];
struct ipt_entry *e
= (struct ipt_entry *)(entry0 + pos);
if (!(valid_hooks & (1 << hook)))
continue;
/* Set initial back pointer. */
e->counters.pcnt = pos;
for (;;) {
struct ipt_standard_target *t
= (void *)ipt_get_target(e);
if (e->comefrom & (1 << NF_IP_NUMHOOKS)) {
printk("iptables: loop hook %u pos %u %08X.\n",
hook, pos, e->comefrom);
return 0;
}
e->comefrom
|= ((1 << hook) | (1 << NF_IP_NUMHOOKS));
/* Unconditional return/END. */
if (e->target_offset == sizeof(struct ipt_entry)
&& (strcmp(t->target.u.user.name,
IPT_STANDARD_TARGET) == 0)
&& t->verdict < 0
&& unconditional(&e->ip)) {
unsigned int oldpos, size;
/* Return: backtrack through the last
big jump. */
do {
e->comefrom ^= (1<<NF_IP_NUMHOOKS);
#ifdef DEBUG_IP_FIREWALL_USER
if (e->comefrom
& (1 << NF_IP_NUMHOOKS)) {
duprintf("Back unset "
"on hook %u "
"rule %u\n",
hook, pos);
}
#endif
oldpos = pos;
pos = e->counters.pcnt;
e->counters.pcnt = 0;
/* We're at the start. */
if (pos == oldpos)
goto next;
e = (struct ipt_entry *)
(entry0 + pos);
} while (oldpos == pos + e->next_offset);
/* Move along one */
size = e->next_offset;
e = (struct ipt_entry *)
(entry0 + pos + size);
e->counters.pcnt = pos;
pos += size;
} else {
int newpos = t->verdict;
if (strcmp(t->target.u.user.name,
IPT_STANDARD_TARGET) == 0
&& newpos >= 0) {
/* This a jump; chase it. */
duprintf("Jump rule %u -> %u\n",
pos, newpos);
} else {
/* ... this is a fallthru */
newpos = pos + e->next_offset;
}
e = (struct ipt_entry *)
(entry0 + newpos);
e->counters.pcnt = pos;
pos = newpos;
}
}
next:
duprintf("Finished chain %u\n", hook);
}
return 1;
}
static inline int
cleanup_match(struct ipt_entry_match *m, unsigned int *i)
{
if (i && (*i)-- == 0)
return 1;
if (m->u.kernel.match->destroy)
m->u.kernel.match->destroy(m->data,
m->u.match_size - sizeof(*m));
module_put(m->u.kernel.match->me);
return 0;
}
static inline int
standard_check(const struct ipt_entry_target *t,
unsigned int max_offset)
{
struct ipt_standard_target *targ = (void *)t;
/* Check standard info. */
if (t->u.target_size
!= IPT_ALIGN(sizeof(struct ipt_standard_target))) {
duprintf("standard_check: target size %u != %u\n",
t->u.target_size,
IPT_ALIGN(sizeof(struct ipt_standard_target)));
return 0;
}
if (targ->verdict >= 0
&& targ->verdict > max_offset - sizeof(struct ipt_entry)) {
duprintf("ipt_standard_check: bad verdict (%i)\n",
targ->verdict);
return 0;
}
if (targ->verdict < -NF_MAX_VERDICT - 1) {
duprintf("ipt_standard_check: bad negative verdict (%i)\n",
targ->verdict);
return 0;
}
return 1;
}
static inline int
check_match(struct ipt_entry_match *m,
const char *name,
const struct ipt_ip *ip,
unsigned int hookmask,
unsigned int *i)
{
struct ipt_match *match;
match = try_then_request_module(find_match(m->u.user.name,
m->u.user.revision),
"ipt_%s", m->u.user.name);
if (IS_ERR(match) || !match) {
duprintf("check_match: `%s' not found\n", m->u.user.name);
return match ? PTR_ERR(match) : -ENOENT;
}
m->u.kernel.match = match;
if (m->u.kernel.match->checkentry
&& !m->u.kernel.match->checkentry(name, ip, m->data,
m->u.match_size - sizeof(*m),
hookmask)) {
module_put(m->u.kernel.match->me);
duprintf("ip_tables: check failed for `%s'.\n",
m->u.kernel.match->name);
return -EINVAL;
}
(*i)++;
return 0;
}
static struct ipt_target ipt_standard_target;
static inline int
check_entry(struct ipt_entry *e, const char *name, unsigned int size,
unsigned int *i)
{
struct ipt_entry_target *t;
struct ipt_target *target;
int ret;
unsigned int j;
if (!ip_checkentry(&e->ip)) {
duprintf("ip_tables: ip check failed %p %s.\n", e, name);
return -EINVAL;
}
j = 0;
ret = IPT_MATCH_ITERATE(e, check_match, name, &e->ip, e->comefrom, &j);
if (ret != 0)
goto cleanup_matches;
t = ipt_get_target(e);
target = try_then_request_module(find_target(t->u.user.name,
t->u.user.revision),
"ipt_%s", t->u.user.name);
if (IS_ERR(target) || !target) {
duprintf("check_entry: `%s' not found\n", t->u.user.name);
ret = target ? PTR_ERR(target) : -ENOENT;
goto cleanup_matches;
}
t->u.kernel.target = target;
if (t->u.kernel.target == &ipt_standard_target) {
if (!standard_check(t, size)) {
ret = -EINVAL;
goto cleanup_matches;
}
} else if (t->u.kernel.target->checkentry
&& !t->u.kernel.target->checkentry(name, e, t->data,
t->u.target_size
- sizeof(*t),
e->comefrom)) {
module_put(t->u.kernel.target->me);
duprintf("ip_tables: check failed for `%s'.\n",
t->u.kernel.target->name);
ret = -EINVAL;
goto cleanup_matches;
}
(*i)++;
return 0;
cleanup_matches:
IPT_MATCH_ITERATE(e, cleanup_match, &j);
return ret;
}
static inline int
check_entry_size_and_hooks(struct ipt_entry *e,
struct ipt_table_info *newinfo,
unsigned char *base,
unsigned char *limit,
const unsigned int *hook_entries,
const unsigned int *underflows,
unsigned int *i)
{
unsigned int h;
if ((unsigned long)e % __alignof__(struct ipt_entry) != 0
|| (unsigned char *)e + sizeof(struct ipt_entry) >= limit) {
duprintf("Bad offset %p\n", e);
return -EINVAL;
}
if (e->next_offset
< sizeof(struct ipt_entry) + sizeof(struct ipt_entry_target)) {
duprintf("checking: element %p size %u\n",
e, e->next_offset);
return -EINVAL;
}
/* Check hooks & underflows */
for (h = 0; h < NF_IP_NUMHOOKS; h++) {
if ((unsigned char *)e - base == hook_entries[h])
newinfo->hook_entry[h] = hook_entries[h];
if ((unsigned char *)e - base == underflows[h])
newinfo->underflow[h] = underflows[h];
}
/* FIXME: underflows must be unconditional, standard verdicts
< 0 (not IPT_RETURN). --RR */
/* Clear counters and comefrom */
e->counters = ((struct ipt_counters) { 0, 0 });
e->comefrom = 0;
(*i)++;
return 0;
}
static inline int
cleanup_entry(struct ipt_entry *e, unsigned int *i)
{
struct ipt_entry_target *t;
if (i && (*i)-- == 0)
return 1;
/* Cleanup all matches */
IPT_MATCH_ITERATE(e, cleanup_match, NULL);
t = ipt_get_target(e);
if (t->u.kernel.target->destroy)
t->u.kernel.target->destroy(t->data,
t->u.target_size - sizeof(*t));
module_put(t->u.kernel.target->me);
return 0;
}
/* Checks and translates the user-supplied table segment (held in
newinfo) */
static int
translate_table(const char *name,
unsigned int valid_hooks,
struct ipt_table_info *newinfo,
void *entry0,
unsigned int size,
unsigned int number,
const unsigned int *hook_entries,
const unsigned int *underflows)
{
unsigned int i;
int ret;
newinfo->size = size;
newinfo->number = number;
/* Init all hooks to impossible value. */
for (i = 0; i < NF_IP_NUMHOOKS; i++) {
newinfo->hook_entry[i] = 0xFFFFFFFF;
newinfo->underflow[i] = 0xFFFFFFFF;
}
duprintf("translate_table: size %u\n", newinfo->size);
i = 0;
/* Walk through entries, checking offsets. */
ret = IPT_ENTRY_ITERATE(entry0, newinfo->size,
check_entry_size_and_hooks,
newinfo,
entry0,
entry0 + size,
hook_entries, underflows, &i);
if (ret != 0)
return ret;
if (i != number) {
duprintf("translate_table: %u not %u entries\n",
i, number);
return -EINVAL;
}
/* Check hooks all assigned */
for (i = 0; i < NF_IP_NUMHOOKS; i++) {
/* Only hooks which are valid */
if (!(valid_hooks & (1 << i)))
continue;
if (newinfo->hook_entry[i] == 0xFFFFFFFF) {
duprintf("Invalid hook entry %u %u\n",
i, hook_entries[i]);
return -EINVAL;
}
if (newinfo->underflow[i] == 0xFFFFFFFF) {
duprintf("Invalid underflow %u %u\n",
i, underflows[i]);
return -EINVAL;
}
}
if (!mark_source_chains(newinfo, valid_hooks, entry0))
return -ELOOP;
/* Finally, each sanity check must pass */
i = 0;
ret = IPT_ENTRY_ITERATE(entry0, newinfo->size,
check_entry, name, size, &i);
if (ret != 0) {
IPT_ENTRY_ITERATE(entry0, newinfo->size,
cleanup_entry, &i);
return ret;
}
/* And one copy for every other CPU */
for_each_cpu(i) {
if (newinfo->entries[i] && newinfo->entries[i] != entry0)
memcpy(newinfo->entries[i], entry0, newinfo->size);
}
return ret;
}
static struct ipt_table_info *
replace_table(struct ipt_table *table,
unsigned int num_counters,
struct ipt_table_info *newinfo,
int *error)
{
struct ipt_table_info *oldinfo;
#ifdef CONFIG_NETFILTER_DEBUG
{
int cpu;
for_each_cpu(cpu) {
struct ipt_entry *table_base = newinfo->entries[cpu];
if (table_base)
table_base->comefrom = 0xdead57ac;
}
}
#endif
/* Do the substitution. */
write_lock_bh(&table->lock);
/* Check inside lock: is the old number correct? */
if (num_counters != table->private->number) {
duprintf("num_counters != table->private->number (%u/%u)\n",
num_counters, table->private->number);
write_unlock_bh(&table->lock);
*error = -EAGAIN;
return NULL;
}
oldinfo = table->private;
table->private = newinfo;
newinfo->initial_entries = oldinfo->initial_entries;
write_unlock_bh(&table->lock);
return oldinfo;
}
/* Gets counters. */
static inline int
add_entry_to_counter(const struct ipt_entry *e,
struct ipt_counters total[],
unsigned int *i)
{
ADD_COUNTER(total[*i], e->counters.bcnt, e->counters.pcnt);
(*i)++;
return 0;
}
static inline int
set_entry_to_counter(const struct ipt_entry *e,
struct ipt_counters total[],
unsigned int *i)
{
SET_COUNTER(total[*i], e->counters.bcnt, e->counters.pcnt);
(*i)++;
return 0;
}
static void
get_counters(const struct ipt_table_info *t,
struct ipt_counters counters[])
{
unsigned int cpu;
unsigned int i;
unsigned int curcpu;
/* Instead of clearing (by a previous call to memset())
* the counters and using adds, we set the counters
* with data used by 'current' CPU
* We dont care about preemption here.
*/
curcpu = raw_smp_processor_id();
i = 0;
IPT_ENTRY_ITERATE(t->entries[curcpu],
t->size,
set_entry_to_counter,
counters,
&i);
for_each_cpu(cpu) {
if (cpu == curcpu)
continue;
i = 0;
IPT_ENTRY_ITERATE(t->entries[cpu],
t->size,
add_entry_to_counter,
counters,
&i);
}
}
static int
copy_entries_to_user(unsigned int total_size,
struct ipt_table *table,
void __user *userptr)
{
unsigned int off, num, countersize;
struct ipt_entry *e;
struct ipt_counters *counters;
int ret = 0;
void *loc_cpu_entry;
/* We need atomic snapshot of counters: rest doesn't change
(other than comefrom, which userspace doesn't care
about). */
countersize = sizeof(struct ipt_counters) * table->private->number;
counters = vmalloc_node(countersize, numa_node_id());
if (counters == NULL)
return -ENOMEM;
/* First, sum counters... */
write_lock_bh(&table->lock);
get_counters(table->private, counters);
write_unlock_bh(&table->lock);
/* choose the copy that is on our node/cpu, ...
* This choice is lazy (because current thread is
* allowed to migrate to another cpu)
*/
loc_cpu_entry = table->private->entries[raw_smp_processor_id()];
/* ... then copy entire thing ... */
if (copy_to_user(userptr, loc_cpu_entry, total_size) != 0) {
ret = -EFAULT;
goto free_counters;
}
/* FIXME: use iterator macros --RR */
/* ... then go back and fix counters and names */
for (off = 0, num = 0; off < total_size; off += e->next_offset, num++){
unsigned int i;
struct ipt_entry_match *m;
struct ipt_entry_target *t;
e = (struct ipt_entry *)(loc_cpu_entry + off);
if (copy_to_user(userptr + off
+ offsetof(struct ipt_entry, counters),
&counters[num],
sizeof(counters[num])) != 0) {
ret = -EFAULT;
goto free_counters;
}
for (i = sizeof(struct ipt_entry);
i < e->target_offset;
i += m->u.match_size) {
m = (void *)e + i;
if (copy_to_user(userptr + off + i
+ offsetof(struct ipt_entry_match,
u.user.name),
m->u.kernel.match->name,
strlen(m->u.kernel.match->name)+1)
!= 0) {
ret = -EFAULT;
goto free_counters;
}
}
t = ipt_get_target(e);
if (copy_to_user(userptr + off + e->target_offset
+ offsetof(struct ipt_entry_target,
u.user.name),
t->u.kernel.target->name,
strlen(t->u.kernel.target->name)+1) != 0) {
ret = -EFAULT;
goto free_counters;
}
}
free_counters:
vfree(counters);
return ret;
}
static int
get_entries(const struct ipt_get_entries *entries,
struct ipt_get_entries __user *uptr)
{
int ret;
struct ipt_table *t;
t = find_table_lock(entries->name);
if (t && !IS_ERR(t)) {
duprintf("t->private->number = %u\n",
t->private->number);
if (entries->size == t->private->size)
ret = copy_entries_to_user(t->private->size,
t, uptr->entrytable);
else {
duprintf("get_entries: I've got %u not %u!\n",
t->private->size,
entries->size);
ret = -EINVAL;
}
module_put(t->me);
up(&ipt_mutex);
} else
ret = t ? PTR_ERR(t) : -ENOENT;
return ret;
}
static void free_table_info(struct ipt_table_info *info)
{
int cpu;
for_each_cpu(cpu) {
if (info->size <= PAGE_SIZE)
kfree(info->entries[cpu]);
else
vfree(info->entries[cpu]);
}
kfree(info);
}
static struct ipt_table_info *alloc_table_info(unsigned int size)
{
struct ipt_table_info *newinfo;
int cpu;
newinfo = kzalloc(sizeof(struct ipt_table_info), GFP_KERNEL);
if (!newinfo)
return NULL;
newinfo->size = size;
for_each_cpu(cpu) {
if (size <= PAGE_SIZE)
newinfo->entries[cpu] = kmalloc_node(size,
GFP_KERNEL,
cpu_to_node(cpu));
else
newinfo->entries[cpu] = vmalloc_node(size, cpu_to_node(cpu));
if (newinfo->entries[cpu] == 0) {
free_table_info(newinfo);
return NULL;
}
}
return newinfo;
}
static int
do_replace(void __user *user, unsigned int len)
{
int ret;
struct ipt_replace tmp;
struct ipt_table *t;
struct ipt_table_info *newinfo, *oldinfo;
struct ipt_counters *counters;
void *loc_cpu_entry, *loc_cpu_old_entry;
if (copy_from_user(&tmp, user, sizeof(tmp)) != 0)
return -EFAULT;
/* Hack: Causes ipchains to give correct error msg --RR */
if (len != sizeof(tmp) + tmp.size)
return -ENOPROTOOPT;
/* Pedantry: prevent them from hitting BUG() in vmalloc.c --RR */
if ((SMP_ALIGN(tmp.size) >> PAGE_SHIFT) + 2 > num_physpages)
return -ENOMEM;
newinfo = alloc_table_info(tmp.size);
if (!newinfo)
return -ENOMEM;
/* choose the copy that is our node/cpu */
loc_cpu_entry = newinfo->entries[raw_smp_processor_id()];
if (copy_from_user(loc_cpu_entry, user + sizeof(tmp),
tmp.size) != 0) {
ret = -EFAULT;
goto free_newinfo;
}
counters = vmalloc(tmp.num_counters * sizeof(struct ipt_counters));
if (!counters) {
ret = -ENOMEM;
goto free_newinfo;
}
ret = translate_table(tmp.name, tmp.valid_hooks,
newinfo, loc_cpu_entry, tmp.size, tmp.num_entries,
tmp.hook_entry, tmp.underflow);
if (ret != 0)
goto free_newinfo_counters;
duprintf("ip_tables: Translated table\n");
t = try_then_request_module(find_table_lock(tmp.name),
"iptable_%s", tmp.name);
if (!t || IS_ERR(t)) {
ret = t ? PTR_ERR(t) : -ENOENT;
goto free_newinfo_counters_untrans;
}
/* You lied! */
if (tmp.valid_hooks != t->valid_hooks) {
duprintf("Valid hook crap: %08X vs %08X\n",
tmp.valid_hooks, t->valid_hooks);
ret = -EINVAL;
goto put_module;
}
oldinfo = replace_table(t, tmp.num_counters, newinfo, &ret);
if (!oldinfo)
goto put_module;
/* Update module usage count based on number of rules */
duprintf("do_replace: oldnum=%u, initnum=%u, newnum=%u\n",
oldinfo->number, oldinfo->initial_entries, newinfo->number);
if ((oldinfo->number > oldinfo->initial_entries) ||
(newinfo->number <= oldinfo->initial_entries))
module_put(t->me);
if ((oldinfo->number > oldinfo->initial_entries) &&
(newinfo->number <= oldinfo->initial_entries))
module_put(t->me);
/* Get the old counters. */
get_counters(oldinfo, counters);
/* Decrease module usage counts and free resource */
loc_cpu_old_entry = oldinfo->entries[raw_smp_processor_id()];
IPT_ENTRY_ITERATE(loc_cpu_old_entry, oldinfo->size, cleanup_entry,NULL);
free_table_info(oldinfo);
if (copy_to_user(tmp.counters, counters,
sizeof(struct ipt_counters) * tmp.num_counters) != 0)
ret = -EFAULT;
vfree(counters);
up(&ipt_mutex);
return ret;
put_module:
module_put(t->me);
up(&ipt_mutex);
free_newinfo_counters_untrans:
IPT_ENTRY_ITERATE(loc_cpu_entry, newinfo->size, cleanup_entry,NULL);
free_newinfo_counters:
vfree(counters);
free_newinfo:
free_table_info(newinfo);
return ret;
}
/* We're lazy, and add to the first CPU; overflow works its fey magic
* and everything is OK. */
static inline int
add_counter_to_entry(struct ipt_entry *e,
const struct ipt_counters addme[],
unsigned int *i)
{
#if 0
duprintf("add_counter: Entry %u %lu/%lu + %lu/%lu\n",
*i,
(long unsigned int)e->counters.pcnt,
(long unsigned int)e->counters.bcnt,
(long unsigned int)addme[*i].pcnt,
(long unsigned int)addme[*i].bcnt);
#endif
ADD_COUNTER(e->counters, addme[*i].bcnt, addme[*i].pcnt);
(*i)++;
return 0;
}
static int
do_add_counters(void __user *user, unsigned int len)
{
unsigned int i;
struct ipt_counters_info tmp, *paddc;
struct ipt_table *t;
int ret = 0;
void *loc_cpu_entry;
if (copy_from_user(&tmp, user, sizeof(tmp)) != 0)
return -EFAULT;
if (len != sizeof(tmp) + tmp.num_counters*sizeof(struct ipt_counters))
return -EINVAL;
paddc = vmalloc_node(len, numa_node_id());
if (!paddc)
return -ENOMEM;
if (copy_from_user(paddc, user, len) != 0) {
ret = -EFAULT;
goto free;
}
t = find_table_lock(tmp.name);
if (!t || IS_ERR(t)) {
ret = t ? PTR_ERR(t) : -ENOENT;
goto free;
}
write_lock_bh(&t->lock);
if (t->private->number != paddc->num_counters) {
ret = -EINVAL;
goto unlock_up_free;
}
i = 0;
/* Choose the copy that is on our node */
loc_cpu_entry = t->private->entries[raw_smp_processor_id()];
IPT_ENTRY_ITERATE(loc_cpu_entry,
t->private->size,
add_counter_to_entry,
paddc->counters,
&i);
unlock_up_free:
write_unlock_bh(&t->lock);
up(&ipt_mutex);
module_put(t->me);
free:
vfree(paddc);
return ret;
}
static int
do_ipt_set_ctl(struct sock *sk, int cmd, void __user *user, unsigned int len)
{
int ret;
if (!capable(CAP_NET_ADMIN))
return -EPERM;
switch (cmd) {
case IPT_SO_SET_REPLACE:
ret = do_replace(user, len);
break;
case IPT_SO_SET_ADD_COUNTERS:
ret = do_add_counters(user, len);
break;
default:
duprintf("do_ipt_set_ctl: unknown request %i\n", cmd);
ret = -EINVAL;
}
return ret;
}
static int
do_ipt_get_ctl(struct sock *sk, int cmd, void __user *user, int *len)
{
int ret;
if (!capable(CAP_NET_ADMIN))
return -EPERM;
switch (cmd) {
case IPT_SO_GET_INFO: {
char name[IPT_TABLE_MAXNAMELEN];
struct ipt_table *t;
if (*len != sizeof(struct ipt_getinfo)) {
duprintf("length %u != %u\n", *len,
sizeof(struct ipt_getinfo));
ret = -EINVAL;
break;
}
if (copy_from_user(name, user, sizeof(name)) != 0) {
ret = -EFAULT;
break;
}
name[IPT_TABLE_MAXNAMELEN-1] = '\0';
t = try_then_request_module(find_table_lock(name),
"iptable_%s", name);
if (t && !IS_ERR(t)) {
struct ipt_getinfo info;
info.valid_hooks = t->valid_hooks;
memcpy(info.hook_entry, t->private->hook_entry,
sizeof(info.hook_entry));
memcpy(info.underflow, t->private->underflow,
sizeof(info.underflow));
info.num_entries = t->private->number;
info.size = t->private->size;
memcpy(info.name, name, sizeof(info.name));
if (copy_to_user(user, &info, *len) != 0)
ret = -EFAULT;
else
ret = 0;
up(&ipt_mutex);
module_put(t->me);
} else
ret = t ? PTR_ERR(t) : -ENOENT;
}
break;
case IPT_SO_GET_ENTRIES: {
struct ipt_get_entries get;
if (*len < sizeof(get)) {
duprintf("get_entries: %u < %u\n", *len, sizeof(get));
ret = -EINVAL;
} else if (copy_from_user(&get, user, sizeof(get)) != 0) {
ret = -EFAULT;
} else if (*len != sizeof(struct ipt_get_entries) + get.size) {
duprintf("get_entries: %u != %u\n", *len,
sizeof(struct ipt_get_entries) + get.size);
ret = -EINVAL;
} else
ret = get_entries(&get, user);
break;
}
case IPT_SO_GET_REVISION_MATCH:
case IPT_SO_GET_REVISION_TARGET: {
struct ipt_get_revision rev;
int (*revfn)(const char *, u8, int *);
if (*len != sizeof(rev)) {
ret = -EINVAL;
break;
}
if (copy_from_user(&rev, user, sizeof(rev)) != 0) {
ret = -EFAULT;
break;
}
if (cmd == IPT_SO_GET_REVISION_TARGET)
revfn = target_revfn;
else
revfn = match_revfn;
try_then_request_module(find_revision(rev.name, rev.revision,
revfn, &ret),
"ipt_%s", rev.name);
break;
}
default:
duprintf("do_ipt_get_ctl: unknown request %i\n", cmd);
ret = -EINVAL;
}
return ret;
}
/* Registration hooks for targets. */
int
ipt_register_target(struct ipt_target *target)
{
int ret;
ret = down_interruptible(&ipt_mutex);
if (ret != 0)
return ret;
list_add(&target->list, &ipt_target);
up(&ipt_mutex);
return ret;
}
void
ipt_unregister_target(struct ipt_target *target)
{
down(&ipt_mutex);
LIST_DELETE(&ipt_target, target);
up(&ipt_mutex);
}
int
ipt_register_match(struct ipt_match *match)
{
int ret;
ret = down_interruptible(&ipt_mutex);
if (ret != 0)
return ret;
list_add(&match->list, &ipt_match);
up(&ipt_mutex);
return ret;
}
void
ipt_unregister_match(struct ipt_match *match)
{
down(&ipt_mutex);
LIST_DELETE(&ipt_match, match);
up(&ipt_mutex);
}
int ipt_register_table(struct ipt_table *table, const struct ipt_replace *repl)
{
int ret;
struct ipt_table_info *newinfo;
static struct ipt_table_info bootstrap
= { 0, 0, 0, { 0 }, { 0 }, { } };
void *loc_cpu_entry;
newinfo = alloc_table_info(repl->size);
if (!newinfo)
return -ENOMEM;
/* choose the copy on our node/cpu
* but dont care of preemption
*/
loc_cpu_entry = newinfo->entries[raw_smp_processor_id()];
memcpy(loc_cpu_entry, repl->entries, repl->size);
ret = translate_table(table->name, table->valid_hooks,
newinfo, loc_cpu_entry, repl->size,
repl->num_entries,
repl->hook_entry,
repl->underflow);
if (ret != 0) {
free_table_info(newinfo);
return ret;
}
ret = down_interruptible(&ipt_mutex);
if (ret != 0) {
free_table_info(newinfo);
return ret;
}
/* Don't autoload: we'd eat our tail... */
if (list_named_find(&ipt_tables, table->name)) {
ret = -EEXIST;
goto free_unlock;
}
/* Simplifies replace_table code. */
table->private = &bootstrap;
if (!replace_table(table, 0, newinfo, &ret))
goto free_unlock;
duprintf("table->private->number = %u\n",
table->private->number);
/* save number of initial entries */
table->private->initial_entries = table->private->number;
rwlock_init(&table->lock);
list_prepend(&ipt_tables, table);
unlock:
up(&ipt_mutex);
return ret;
free_unlock:
free_table_info(newinfo);
goto unlock;
}
void ipt_unregister_table(struct ipt_table *table)
{
void *loc_cpu_entry;
down(&ipt_mutex);
LIST_DELETE(&ipt_tables, table);
up(&ipt_mutex);
/* Decrease module usage counts and free resources */
loc_cpu_entry = table->private->entries[raw_smp_processor_id()];
IPT_ENTRY_ITERATE(loc_cpu_entry, table->private->size,
cleanup_entry, NULL);
free_table_info(table->private);
}
/* Returns 1 if the port is matched by the range, 0 otherwise */
static inline int
port_match(u_int16_t min, u_int16_t max, u_int16_t port, int invert)
{
int ret;
ret = (port >= min && port <= max) ^ invert;
return ret;
}
static int
tcp_find_option(u_int8_t option,
const struct sk_buff *skb,
unsigned int optlen,
int invert,
int *hotdrop)
{
/* tcp.doff is only 4 bits, ie. max 15 * 4 bytes */
u_int8_t _opt[60 - sizeof(struct tcphdr)], *op;
unsigned int i;
duprintf("tcp_match: finding option\n");
if (!optlen)
return invert;
/* If we don't have the whole header, drop packet. */
op = skb_header_pointer(skb,
skb->nh.iph->ihl*4 + sizeof(struct tcphdr),
optlen, _opt);
if (op == NULL) {
*hotdrop = 1;
return 0;
}
for (i = 0; i < optlen; ) {
if (op[i] == option) return !invert;
if (op[i] < 2) i++;
else i += op[i+1]?:1;
}
return invert;
}
static int
tcp_match(const struct sk_buff *skb,
const struct net_device *in,
const struct net_device *out,
const void *matchinfo,
int offset,
int *hotdrop)
{
struct tcphdr _tcph, *th;
const struct ipt_tcp *tcpinfo = matchinfo;
if (offset) {
/* To quote Alan:
Don't allow a fragment of TCP 8 bytes in. Nobody normal
causes this. Its a cracker trying to break in by doing a
flag overwrite to pass the direction checks.
*/
if (offset == 1) {
duprintf("Dropping evil TCP offset=1 frag.\n");
*hotdrop = 1;
}
/* Must not be a fragment. */
return 0;
}
#define FWINVTCP(bool,invflg) ((bool) ^ !!(tcpinfo->invflags & invflg))
th = skb_header_pointer(skb, skb->nh.iph->ihl*4,
sizeof(_tcph), &_tcph);
if (th == NULL) {
/* We've been asked to examine this packet, and we
can't. Hence, no choice but to drop. */
duprintf("Dropping evil TCP offset=0 tinygram.\n");
*hotdrop = 1;
return 0;
}
if (!port_match(tcpinfo->spts[0], tcpinfo->spts[1],
ntohs(th->source),
!!(tcpinfo->invflags & IPT_TCP_INV_SRCPT)))
return 0;
if (!port_match(tcpinfo->dpts[0], tcpinfo->dpts[1],
ntohs(th->dest),
!!(tcpinfo->invflags & IPT_TCP_INV_DSTPT)))
return 0;
if (!FWINVTCP((((unsigned char *)th)[13] & tcpinfo->flg_mask)
== tcpinfo->flg_cmp,
IPT_TCP_INV_FLAGS))
return 0;
if (tcpinfo->option) {
if (th->doff * 4 < sizeof(_tcph)) {
*hotdrop = 1;
return 0;
}
if (!tcp_find_option(tcpinfo->option, skb,
th->doff*4 - sizeof(_tcph),
tcpinfo->invflags & IPT_TCP_INV_OPTION,
hotdrop))
return 0;
}
return 1;
}
/* Called when user tries to insert an entry of this type. */
static int
tcp_checkentry(const char *tablename,
const struct ipt_ip *ip,
void *matchinfo,
unsigned int matchsize,
unsigned int hook_mask)
{
const struct ipt_tcp *tcpinfo = matchinfo;
/* Must specify proto == TCP, and no unknown invflags */
return ip->proto == IPPROTO_TCP
&& !(ip->invflags & IPT_INV_PROTO)
&& matchsize == IPT_ALIGN(sizeof(struct ipt_tcp))
&& !(tcpinfo->invflags & ~IPT_TCP_INV_MASK);
}
static int
udp_match(const struct sk_buff *skb,
const struct net_device *in,
const struct net_device *out,
const void *matchinfo,
int offset,
int *hotdrop)
{
struct udphdr _udph, *uh;
const struct ipt_udp *udpinfo = matchinfo;
/* Must not be a fragment. */
if (offset)
return 0;
uh = skb_header_pointer(skb, skb->nh.iph->ihl*4,
sizeof(_udph), &_udph);
if (uh == NULL) {
/* We've been asked to examine this packet, and we
can't. Hence, no choice but to drop. */
duprintf("Dropping evil UDP tinygram.\n");
*hotdrop = 1;
return 0;
}
return port_match(udpinfo->spts[0], udpinfo->spts[1],
ntohs(uh->source),
!!(udpinfo->invflags & IPT_UDP_INV_SRCPT))
&& port_match(udpinfo->dpts[0], udpinfo->dpts[1],
ntohs(uh->dest),
!!(udpinfo->invflags & IPT_UDP_INV_DSTPT));
}
/* Called when user tries to insert an entry of this type. */
static int
udp_checkentry(const char *tablename,
const struct ipt_ip *ip,
void *matchinfo,
unsigned int matchinfosize,
unsigned int hook_mask)
{
const struct ipt_udp *udpinfo = matchinfo;
/* Must specify proto == UDP, and no unknown invflags */
if (ip->proto != IPPROTO_UDP || (ip->invflags & IPT_INV_PROTO)) {
duprintf("ipt_udp: Protocol %u != %u\n", ip->proto,
IPPROTO_UDP);
return 0;
}
if (matchinfosize != IPT_ALIGN(sizeof(struct ipt_udp))) {
duprintf("ipt_udp: matchsize %u != %u\n",
matchinfosize, IPT_ALIGN(sizeof(struct ipt_udp)));
return 0;
}
if (udpinfo->invflags & ~IPT_UDP_INV_MASK) {
duprintf("ipt_udp: unknown flags %X\n",
udpinfo->invflags);
return 0;
}
return 1;
}
/* Returns 1 if the type and code is matched by the range, 0 otherwise */
static inline int
icmp_type_code_match(u_int8_t test_type, u_int8_t min_code, u_int8_t max_code,
u_int8_t type, u_int8_t code,
int invert)
{
return ((test_type == 0xFF) || (type == test_type && code >= min_code && code <= max_code))
^ invert;
}
static int
icmp_match(const struct sk_buff *skb,
const struct net_device *in,
const struct net_device *out,
const void *matchinfo,
int offset,
int *hotdrop)
{
struct icmphdr _icmph, *ic;
const struct ipt_icmp *icmpinfo = matchinfo;
/* Must not be a fragment. */
if (offset)
return 0;
ic = skb_header_pointer(skb, skb->nh.iph->ihl*4,
sizeof(_icmph), &_icmph);
if (ic == NULL) {
/* We've been asked to examine this packet, and we
* can't. Hence, no choice but to drop.
*/
duprintf("Dropping evil ICMP tinygram.\n");
*hotdrop = 1;
return 0;
}
return icmp_type_code_match(icmpinfo->type,
icmpinfo->code[0],
icmpinfo->code[1],
ic->type, ic->code,
!!(icmpinfo->invflags&IPT_ICMP_INV));
}
/* Called when user tries to insert an entry of this type. */
static int
icmp_checkentry(const char *tablename,
const struct ipt_ip *ip,
void *matchinfo,
unsigned int matchsize,
unsigned int hook_mask)
{
const struct ipt_icmp *icmpinfo = matchinfo;
/* Must specify proto == ICMP, and no unknown invflags */
return ip->proto == IPPROTO_ICMP
&& !(ip->invflags & IPT_INV_PROTO)
&& matchsize == IPT_ALIGN(sizeof(struct ipt_icmp))
&& !(icmpinfo->invflags & ~IPT_ICMP_INV);
}
/* The built-in targets: standard (NULL) and error. */
static struct ipt_target ipt_standard_target = {
.name = IPT_STANDARD_TARGET,
};
static struct ipt_target ipt_error_target = {
.name = IPT_ERROR_TARGET,
.target = ipt_error,
};
static struct nf_sockopt_ops ipt_sockopts = {
.pf = PF_INET,
.set_optmin = IPT_BASE_CTL,
.set_optmax = IPT_SO_SET_MAX+1,
.set = do_ipt_set_ctl,
.get_optmin = IPT_BASE_CTL,
.get_optmax = IPT_SO_GET_MAX+1,
.get = do_ipt_get_ctl,
};
static struct ipt_match tcp_matchstruct = {
.name = "tcp",
.match = &tcp_match,
.checkentry = &tcp_checkentry,
};
static struct ipt_match udp_matchstruct = {
.name = "udp",
.match = &udp_match,
.checkentry = &udp_checkentry,
};
static struct ipt_match icmp_matchstruct = {
.name = "icmp",
.match = &icmp_match,
.checkentry = &icmp_checkentry,
};
#ifdef CONFIG_PROC_FS
static inline int print_name(const char *i,
off_t start_offset, char *buffer, int length,
off_t *pos, unsigned int *count)
{
if ((*count)++ >= start_offset) {
unsigned int namelen;
namelen = sprintf(buffer + *pos, "%s\n",
i + sizeof(struct list_head));
if (*pos + namelen > length) {
/* Stop iterating */
return 1;
}
*pos += namelen;
}
return 0;
}
static inline int print_target(const struct ipt_target *t,
off_t start_offset, char *buffer, int length,
off_t *pos, unsigned int *count)
{
if (t == &ipt_standard_target || t == &ipt_error_target)
return 0;
return print_name((char *)t, start_offset, buffer, length, pos, count);
}
static int ipt_get_tables(char *buffer, char **start, off_t offset, int length)
{
off_t pos = 0;
unsigned int count = 0;
if (down_interruptible(&ipt_mutex) != 0)
return 0;
LIST_FIND(&ipt_tables, print_name, void *,
offset, buffer, length, &pos, &count);
up(&ipt_mutex);
/* `start' hack - see fs/proc/generic.c line ~105 */
*start=(char *)((unsigned long)count-offset);
return pos;
}
static int ipt_get_targets(char *buffer, char **start, off_t offset, int length)
{
off_t pos = 0;
unsigned int count = 0;
if (down_interruptible(&ipt_mutex) != 0)
return 0;
LIST_FIND(&ipt_target, print_target, struct ipt_target *,
offset, buffer, length, &pos, &count);
up(&ipt_mutex);
*start = (char *)((unsigned long)count - offset);
return pos;
}
static int ipt_get_matches(char *buffer, char **start, off_t offset, int length)
{
off_t pos = 0;
unsigned int count = 0;
if (down_interruptible(&ipt_mutex) != 0)
return 0;
LIST_FIND(&ipt_match, print_name, void *,
offset, buffer, length, &pos, &count);
up(&ipt_mutex);
*start = (char *)((unsigned long)count - offset);
return pos;
}
static const struct { char *name; get_info_t *get_info; } ipt_proc_entry[] =
{ { "ip_tables_names", ipt_get_tables },
{ "ip_tables_targets", ipt_get_targets },
{ "ip_tables_matches", ipt_get_matches },
{ NULL, NULL} };
#endif /*CONFIG_PROC_FS*/
static int __init init(void)
{
int ret;
/* Noone else will be downing sem now, so we won't sleep */
down(&ipt_mutex);
list_append(&ipt_target, &ipt_standard_target);
list_append(&ipt_target, &ipt_error_target);
list_append(&ipt_match, &tcp_matchstruct);
list_append(&ipt_match, &udp_matchstruct);
list_append(&ipt_match, &icmp_matchstruct);
up(&ipt_mutex);
/* Register setsockopt */
ret = nf_register_sockopt(&ipt_sockopts);
if (ret < 0) {
duprintf("Unable to register sockopts.\n");
return ret;
}
#ifdef CONFIG_PROC_FS
{
struct proc_dir_entry *proc;
int i;
for (i = 0; ipt_proc_entry[i].name; i++) {
proc = proc_net_create(ipt_proc_entry[i].name, 0,
ipt_proc_entry[i].get_info);
if (!proc) {
while (--i >= 0)
proc_net_remove(ipt_proc_entry[i].name);
nf_unregister_sockopt(&ipt_sockopts);
return -ENOMEM;
}
proc->owner = THIS_MODULE;
}
}
#endif
printk("ip_tables: (C) 2000-2002 Netfilter core team\n");
return 0;
}
static void __exit fini(void)
{
nf_unregister_sockopt(&ipt_sockopts);
#ifdef CONFIG_PROC_FS
{
int i;
for (i = 0; ipt_proc_entry[i].name; i++)
proc_net_remove(ipt_proc_entry[i].name);
}
#endif
}
EXPORT_SYMBOL(ipt_register_table);
EXPORT_SYMBOL(ipt_unregister_table);
EXPORT_SYMBOL(ipt_register_match);
EXPORT_SYMBOL(ipt_unregister_match);
EXPORT_SYMBOL(ipt_do_table);
EXPORT_SYMBOL(ipt_register_target);
EXPORT_SYMBOL(ipt_unregister_target);
EXPORT_SYMBOL(ipt_find_target);
module_init(init);
module_exit(fini);