android_kernel_samsung_msm8976/arch/powerpc/platforms/iseries/setup.c
Benjamin Herrenschmidt 0ebfff1491 [POWERPC] Add new interrupt mapping core and change platforms to use it
This adds the new irq remapper core and removes the old one.  Because
there are some fundamental conflicts with the old code, like the value
of NO_IRQ which I'm now setting to 0 (as per discussions with Linus),
etc..., this commit also changes the relevant platform and driver code
over to use the new remapper (so as not to cause difficulties later
in bisecting).

This patch removes the old pre-parsing of the open firmware interrupt
tree along with all the bogus assumptions it made to try to renumber
interrupts according to the platform. This is all to be handled by the
new code now.

For the pSeries XICS interrupt controller, a single remapper host is
created for the whole machine regardless of how many interrupt
presentation and source controllers are found, and it's set to match
any device node that isn't a 8259.  That works fine on pSeries and
avoids having to deal with some of the complexities of split source
controllers vs. presentation controllers in the pSeries device trees.

The powerpc i8259 PIC driver now always requests the legacy interrupt
range. It also has the feature of being able to match any device node
(including NULL) if passed no device node as an input. That will help
porting over platforms with broken device-trees like Pegasos who don't
have a proper interrupt tree.

Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Paul Mackerras <paulus@samba.org>
2006-07-03 21:36:01 +10:00

713 lines
19 KiB
C

/*
* Copyright (c) 2000 Mike Corrigan <mikejc@us.ibm.com>
* Copyright (c) 1999-2000 Grant Erickson <grant@lcse.umn.edu>
*
* Description:
* Architecture- / platform-specific boot-time initialization code for
* the IBM iSeries LPAR. Adapted from original code by Grant Erickson and
* code by Gary Thomas, Cort Dougan <cort@fsmlabs.com>, and Dan Malek
* <dan@net4x.com>.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*/
#undef DEBUG
#include <linux/init.h>
#include <linux/threads.h>
#include <linux/smp.h>
#include <linux/param.h>
#include <linux/string.h>
#include <linux/initrd.h>
#include <linux/seq_file.h>
#include <linux/kdev_t.h>
#include <linux/major.h>
#include <linux/root_dev.h>
#include <linux/kernel.h>
#include <asm/processor.h>
#include <asm/machdep.h>
#include <asm/page.h>
#include <asm/mmu.h>
#include <asm/pgtable.h>
#include <asm/mmu_context.h>
#include <asm/cputable.h>
#include <asm/sections.h>
#include <asm/iommu.h>
#include <asm/firmware.h>
#include <asm/system.h>
#include <asm/time.h>
#include <asm/paca.h>
#include <asm/cache.h>
#include <asm/sections.h>
#include <asm/abs_addr.h>
#include <asm/iseries/hv_lp_config.h>
#include <asm/iseries/hv_call_event.h>
#include <asm/iseries/hv_call_xm.h>
#include <asm/iseries/it_lp_queue.h>
#include <asm/iseries/mf.h>
#include <asm/iseries/hv_lp_event.h>
#include <asm/iseries/lpar_map.h>
#include <asm/udbg.h>
#include <asm/irq.h>
#include "naca.h"
#include "setup.h"
#include "irq.h"
#include "vpd_areas.h"
#include "processor_vpd.h"
#include "main_store.h"
#include "call_sm.h"
#include "call_hpt.h"
#ifdef DEBUG
#define DBG(fmt...) udbg_printf(fmt)
#else
#define DBG(fmt...)
#endif
/* Function Prototypes */
static unsigned long build_iSeries_Memory_Map(void);
static void iseries_shared_idle(void);
static void iseries_dedicated_idle(void);
#ifdef CONFIG_PCI
extern void iSeries_pci_final_fixup(void);
#else
static void iSeries_pci_final_fixup(void) { }
#endif
extern int rd_size; /* Defined in drivers/block/rd.c */
extern unsigned long iSeries_recal_tb;
extern unsigned long iSeries_recal_titan;
struct MemoryBlock {
unsigned long absStart;
unsigned long absEnd;
unsigned long logicalStart;
unsigned long logicalEnd;
};
/*
* Process the main store vpd to determine where the holes in memory are
* and return the number of physical blocks and fill in the array of
* block data.
*/
static unsigned long iSeries_process_Condor_mainstore_vpd(
struct MemoryBlock *mb_array, unsigned long max_entries)
{
unsigned long holeFirstChunk, holeSizeChunks;
unsigned long numMemoryBlocks = 1;
struct IoHriMainStoreSegment4 *msVpd =
(struct IoHriMainStoreSegment4 *)xMsVpd;
unsigned long holeStart = msVpd->nonInterleavedBlocksStartAdr;
unsigned long holeEnd = msVpd->nonInterleavedBlocksEndAdr;
unsigned long holeSize = holeEnd - holeStart;
printk("Mainstore_VPD: Condor\n");
/*
* Determine if absolute memory has any
* holes so that we can interpret the
* access map we get back from the hypervisor
* correctly.
*/
mb_array[0].logicalStart = 0;
mb_array[0].logicalEnd = 0x100000000;
mb_array[0].absStart = 0;
mb_array[0].absEnd = 0x100000000;
if (holeSize) {
numMemoryBlocks = 2;
holeStart = holeStart & 0x000fffffffffffff;
holeStart = addr_to_chunk(holeStart);
holeFirstChunk = holeStart;
holeSize = addr_to_chunk(holeSize);
holeSizeChunks = holeSize;
printk( "Main store hole: start chunk = %0lx, size = %0lx chunks\n",
holeFirstChunk, holeSizeChunks );
mb_array[0].logicalEnd = holeFirstChunk;
mb_array[0].absEnd = holeFirstChunk;
mb_array[1].logicalStart = holeFirstChunk;
mb_array[1].logicalEnd = 0x100000000 - holeSizeChunks;
mb_array[1].absStart = holeFirstChunk + holeSizeChunks;
mb_array[1].absEnd = 0x100000000;
}
return numMemoryBlocks;
}
#define MaxSegmentAreas 32
#define MaxSegmentAdrRangeBlocks 128
#define MaxAreaRangeBlocks 4
static unsigned long iSeries_process_Regatta_mainstore_vpd(
struct MemoryBlock *mb_array, unsigned long max_entries)
{
struct IoHriMainStoreSegment5 *msVpdP =
(struct IoHriMainStoreSegment5 *)xMsVpd;
unsigned long numSegmentBlocks = 0;
u32 existsBits = msVpdP->msAreaExists;
unsigned long area_num;
printk("Mainstore_VPD: Regatta\n");
for (area_num = 0; area_num < MaxSegmentAreas; ++area_num ) {
unsigned long numAreaBlocks;
struct IoHriMainStoreArea4 *currentArea;
if (existsBits & 0x80000000) {
unsigned long block_num;
currentArea = &msVpdP->msAreaArray[area_num];
numAreaBlocks = currentArea->numAdrRangeBlocks;
printk("ms_vpd: processing area %2ld blocks=%ld",
area_num, numAreaBlocks);
for (block_num = 0; block_num < numAreaBlocks;
++block_num ) {
/* Process an address range block */
struct MemoryBlock tempBlock;
unsigned long i;
tempBlock.absStart =
(unsigned long)currentArea->xAdrRangeBlock[block_num].blockStart;
tempBlock.absEnd =
(unsigned long)currentArea->xAdrRangeBlock[block_num].blockEnd;
tempBlock.logicalStart = 0;
tempBlock.logicalEnd = 0;
printk("\n block %ld absStart=%016lx absEnd=%016lx",
block_num, tempBlock.absStart,
tempBlock.absEnd);
for (i = 0; i < numSegmentBlocks; ++i) {
if (mb_array[i].absStart ==
tempBlock.absStart)
break;
}
if (i == numSegmentBlocks) {
if (numSegmentBlocks == max_entries)
panic("iSeries_process_mainstore_vpd: too many memory blocks");
mb_array[numSegmentBlocks] = tempBlock;
++numSegmentBlocks;
} else
printk(" (duplicate)");
}
printk("\n");
}
existsBits <<= 1;
}
/* Now sort the blocks found into ascending sequence */
if (numSegmentBlocks > 1) {
unsigned long m, n;
for (m = 0; m < numSegmentBlocks - 1; ++m) {
for (n = numSegmentBlocks - 1; m < n; --n) {
if (mb_array[n].absStart <
mb_array[n-1].absStart) {
struct MemoryBlock tempBlock;
tempBlock = mb_array[n];
mb_array[n] = mb_array[n-1];
mb_array[n-1] = tempBlock;
}
}
}
}
/*
* Assign "logical" addresses to each block. These
* addresses correspond to the hypervisor "bitmap" space.
* Convert all addresses into units of 256K chunks.
*/
{
unsigned long i, nextBitmapAddress;
printk("ms_vpd: %ld sorted memory blocks\n", numSegmentBlocks);
nextBitmapAddress = 0;
for (i = 0; i < numSegmentBlocks; ++i) {
unsigned long length = mb_array[i].absEnd -
mb_array[i].absStart;
mb_array[i].logicalStart = nextBitmapAddress;
mb_array[i].logicalEnd = nextBitmapAddress + length;
nextBitmapAddress += length;
printk(" Bitmap range: %016lx - %016lx\n"
" Absolute range: %016lx - %016lx\n",
mb_array[i].logicalStart,
mb_array[i].logicalEnd,
mb_array[i].absStart, mb_array[i].absEnd);
mb_array[i].absStart = addr_to_chunk(mb_array[i].absStart &
0x000fffffffffffff);
mb_array[i].absEnd = addr_to_chunk(mb_array[i].absEnd &
0x000fffffffffffff);
mb_array[i].logicalStart =
addr_to_chunk(mb_array[i].logicalStart);
mb_array[i].logicalEnd = addr_to_chunk(mb_array[i].logicalEnd);
}
}
return numSegmentBlocks;
}
static unsigned long iSeries_process_mainstore_vpd(struct MemoryBlock *mb_array,
unsigned long max_entries)
{
unsigned long i;
unsigned long mem_blocks = 0;
if (cpu_has_feature(CPU_FTR_SLB))
mem_blocks = iSeries_process_Regatta_mainstore_vpd(mb_array,
max_entries);
else
mem_blocks = iSeries_process_Condor_mainstore_vpd(mb_array,
max_entries);
printk("Mainstore_VPD: numMemoryBlocks = %ld \n", mem_blocks);
for (i = 0; i < mem_blocks; ++i) {
printk("Mainstore_VPD: block %3ld logical chunks %016lx - %016lx\n"
" abs chunks %016lx - %016lx\n",
i, mb_array[i].logicalStart, mb_array[i].logicalEnd,
mb_array[i].absStart, mb_array[i].absEnd);
}
return mem_blocks;
}
static void __init iSeries_get_cmdline(void)
{
char *p, *q;
/* copy the command line parameter from the primary VSP */
HvCallEvent_dmaToSp(cmd_line, 2 * 64* 1024, 256,
HvLpDma_Direction_RemoteToLocal);
p = cmd_line;
q = cmd_line + 255;
while(p < q) {
if (!*p || *p == '\n')
break;
++p;
}
*p = 0;
}
static void __init iSeries_init_early(void)
{
DBG(" -> iSeries_init_early()\n");
#if defined(CONFIG_BLK_DEV_INITRD)
/*
* If the init RAM disk has been configured and there is
* a non-zero starting address for it, set it up
*/
if (naca.xRamDisk) {
initrd_start = (unsigned long)__va(naca.xRamDisk);
initrd_end = initrd_start + naca.xRamDiskSize * HW_PAGE_SIZE;
initrd_below_start_ok = 1; // ramdisk in kernel space
ROOT_DEV = Root_RAM0;
if (((rd_size * 1024) / HW_PAGE_SIZE) < naca.xRamDiskSize)
rd_size = (naca.xRamDiskSize * HW_PAGE_SIZE) / 1024;
} else
#endif /* CONFIG_BLK_DEV_INITRD */
{
/* ROOT_DEV = MKDEV(VIODASD_MAJOR, 1); */
}
iSeries_recal_tb = get_tb();
iSeries_recal_titan = HvCallXm_loadTod();
/*
* Initialize the DMA/TCE management
*/
iommu_init_early_iSeries();
/* Initialize machine-dependency vectors */
#ifdef CONFIG_SMP
smp_init_iSeries();
#endif
/* Associate Lp Event Queue 0 with processor 0 */
HvCallEvent_setLpEventQueueInterruptProc(0, 0);
mf_init();
/* If we were passed an initrd, set the ROOT_DEV properly if the values
* look sensible. If not, clear initrd reference.
*/
#ifdef CONFIG_BLK_DEV_INITRD
if (initrd_start >= KERNELBASE && initrd_end >= KERNELBASE &&
initrd_end > initrd_start)
ROOT_DEV = Root_RAM0;
else
initrd_start = initrd_end = 0;
#endif /* CONFIG_BLK_DEV_INITRD */
DBG(" <- iSeries_init_early()\n");
}
struct mschunks_map mschunks_map = {
/* XXX We don't use these, but Piranha might need them. */
.chunk_size = MSCHUNKS_CHUNK_SIZE,
.chunk_shift = MSCHUNKS_CHUNK_SHIFT,
.chunk_mask = MSCHUNKS_OFFSET_MASK,
};
EXPORT_SYMBOL(mschunks_map);
void mschunks_alloc(unsigned long num_chunks)
{
klimit = _ALIGN(klimit, sizeof(u32));
mschunks_map.mapping = (u32 *)klimit;
klimit += num_chunks * sizeof(u32);
mschunks_map.num_chunks = num_chunks;
}
/*
* The iSeries may have very large memories ( > 128 GB ) and a partition
* may get memory in "chunks" that may be anywhere in the 2**52 real
* address space. The chunks are 256K in size. To map this to the
* memory model Linux expects, the AS/400 specific code builds a
* translation table to translate what Linux thinks are "physical"
* addresses to the actual real addresses. This allows us to make
* it appear to Linux that we have contiguous memory starting at
* physical address zero while in fact this could be far from the truth.
* To avoid confusion, I'll let the words physical and/or real address
* apply to the Linux addresses while I'll use "absolute address" to
* refer to the actual hardware real address.
*
* build_iSeries_Memory_Map gets information from the Hypervisor and
* looks at the Main Store VPD to determine the absolute addresses
* of the memory that has been assigned to our partition and builds
* a table used to translate Linux's physical addresses to these
* absolute addresses. Absolute addresses are needed when
* communicating with the hypervisor (e.g. to build HPT entries)
*
* Returns the physical memory size
*/
static unsigned long __init build_iSeries_Memory_Map(void)
{
u32 loadAreaFirstChunk, loadAreaLastChunk, loadAreaSize;
u32 nextPhysChunk;
u32 hptFirstChunk, hptLastChunk, hptSizeChunks, hptSizePages;
u32 totalChunks,moreChunks;
u32 currChunk, thisChunk, absChunk;
u32 currDword;
u32 chunkBit;
u64 map;
struct MemoryBlock mb[32];
unsigned long numMemoryBlocks, curBlock;
/* Chunk size on iSeries is 256K bytes */
totalChunks = (u32)HvLpConfig_getMsChunks();
mschunks_alloc(totalChunks);
/*
* Get absolute address of our load area
* and map it to physical address 0
* This guarantees that the loadarea ends up at physical 0
* otherwise, it might not be returned by PLIC as the first
* chunks
*/
loadAreaFirstChunk = (u32)addr_to_chunk(itLpNaca.xLoadAreaAddr);
loadAreaSize = itLpNaca.xLoadAreaChunks;
/*
* Only add the pages already mapped here.
* Otherwise we might add the hpt pages
* The rest of the pages of the load area
* aren't in the HPT yet and can still
* be assigned an arbitrary physical address
*/
if ((loadAreaSize * 64) > HvPagesToMap)
loadAreaSize = HvPagesToMap / 64;
loadAreaLastChunk = loadAreaFirstChunk + loadAreaSize - 1;
/*
* TODO Do we need to do something if the HPT is in the 64MB load area?
* This would be required if the itLpNaca.xLoadAreaChunks includes
* the HPT size
*/
printk("Mapping load area - physical addr = 0000000000000000\n"
" absolute addr = %016lx\n",
chunk_to_addr(loadAreaFirstChunk));
printk("Load area size %dK\n", loadAreaSize * 256);
for (nextPhysChunk = 0; nextPhysChunk < loadAreaSize; ++nextPhysChunk)
mschunks_map.mapping[nextPhysChunk] =
loadAreaFirstChunk + nextPhysChunk;
/*
* Get absolute address of our HPT and remember it so
* we won't map it to any physical address
*/
hptFirstChunk = (u32)addr_to_chunk(HvCallHpt_getHptAddress());
hptSizePages = (u32)HvCallHpt_getHptPages();
hptSizeChunks = hptSizePages >>
(MSCHUNKS_CHUNK_SHIFT - HW_PAGE_SHIFT);
hptLastChunk = hptFirstChunk + hptSizeChunks - 1;
printk("HPT absolute addr = %016lx, size = %dK\n",
chunk_to_addr(hptFirstChunk), hptSizeChunks * 256);
/*
* Determine if absolute memory has any
* holes so that we can interpret the
* access map we get back from the hypervisor
* correctly.
*/
numMemoryBlocks = iSeries_process_mainstore_vpd(mb, 32);
/*
* Process the main store access map from the hypervisor
* to build up our physical -> absolute translation table
*/
curBlock = 0;
currChunk = 0;
currDword = 0;
moreChunks = totalChunks;
while (moreChunks) {
map = HvCallSm_get64BitsOfAccessMap(itLpNaca.xLpIndex,
currDword);
thisChunk = currChunk;
while (map) {
chunkBit = map >> 63;
map <<= 1;
if (chunkBit) {
--moreChunks;
while (thisChunk >= mb[curBlock].logicalEnd) {
++curBlock;
if (curBlock >= numMemoryBlocks)
panic("out of memory blocks");
}
if (thisChunk < mb[curBlock].logicalStart)
panic("memory block error");
absChunk = mb[curBlock].absStart +
(thisChunk - mb[curBlock].logicalStart);
if (((absChunk < hptFirstChunk) ||
(absChunk > hptLastChunk)) &&
((absChunk < loadAreaFirstChunk) ||
(absChunk > loadAreaLastChunk))) {
mschunks_map.mapping[nextPhysChunk] =
absChunk;
++nextPhysChunk;
}
}
++thisChunk;
}
++currDword;
currChunk += 64;
}
/*
* main store size (in chunks) is
* totalChunks - hptSizeChunks
* which should be equal to
* nextPhysChunk
*/
return chunk_to_addr(nextPhysChunk);
}
/*
* Document me.
*/
static void __init iSeries_setup_arch(void)
{
if (get_lppaca()->shared_proc) {
ppc_md.idle_loop = iseries_shared_idle;
printk(KERN_DEBUG "Using shared processor idle loop\n");
} else {
ppc_md.idle_loop = iseries_dedicated_idle;
printk(KERN_DEBUG "Using dedicated idle loop\n");
}
/* Setup the Lp Event Queue */
setup_hvlpevent_queue();
printk("Max logical processors = %d\n",
itVpdAreas.xSlicMaxLogicalProcs);
printk("Max physical processors = %d\n",
itVpdAreas.xSlicMaxPhysicalProcs);
}
static void iSeries_show_cpuinfo(struct seq_file *m)
{
seq_printf(m, "machine\t\t: 64-bit iSeries Logical Partition\n");
}
static void __init iSeries_progress(char * st, unsigned short code)
{
printk("Progress: [%04x] - %s\n", (unsigned)code, st);
mf_display_progress(code);
}
static void __init iSeries_fixup_klimit(void)
{
/*
* Change klimit to take into account any ram disk
* that may be included
*/
if (naca.xRamDisk)
klimit = KERNELBASE + (u64)naca.xRamDisk +
(naca.xRamDiskSize * HW_PAGE_SIZE);
}
static int __init iSeries_src_init(void)
{
/* clear the progress line */
ppc_md.progress(" ", 0xffff);
return 0;
}
late_initcall(iSeries_src_init);
static inline void process_iSeries_events(void)
{
asm volatile ("li 0,0x5555; sc" : : : "r0", "r3");
}
static void yield_shared_processor(void)
{
unsigned long tb;
HvCall_setEnabledInterrupts(HvCall_MaskIPI |
HvCall_MaskLpEvent |
HvCall_MaskLpProd |
HvCall_MaskTimeout);
tb = get_tb();
/* Compute future tb value when yield should expire */
HvCall_yieldProcessor(HvCall_YieldTimed, tb+tb_ticks_per_jiffy);
/*
* The decrementer stops during the yield. Force a fake decrementer
* here and let the timer_interrupt code sort out the actual time.
*/
get_lppaca()->int_dword.fields.decr_int = 1;
ppc64_runlatch_on();
process_iSeries_events();
}
static void iseries_shared_idle(void)
{
while (1) {
while (!need_resched() && !hvlpevent_is_pending()) {
local_irq_disable();
ppc64_runlatch_off();
/* Recheck with irqs off */
if (!need_resched() && !hvlpevent_is_pending())
yield_shared_processor();
HMT_medium();
local_irq_enable();
}
ppc64_runlatch_on();
if (hvlpevent_is_pending())
process_iSeries_events();
preempt_enable_no_resched();
schedule();
preempt_disable();
}
}
static void iseries_dedicated_idle(void)
{
set_thread_flag(TIF_POLLING_NRFLAG);
while (1) {
if (!need_resched()) {
while (!need_resched()) {
ppc64_runlatch_off();
HMT_low();
if (hvlpevent_is_pending()) {
HMT_medium();
ppc64_runlatch_on();
process_iSeries_events();
}
}
HMT_medium();
}
ppc64_runlatch_on();
preempt_enable_no_resched();
schedule();
preempt_disable();
}
}
#ifndef CONFIG_PCI
void __init iSeries_init_IRQ(void) { }
#endif
static int __init iseries_probe(void)
{
unsigned long root = of_get_flat_dt_root();
if (!of_flat_dt_is_compatible(root, "IBM,iSeries"))
return 0;
powerpc_firmware_features |= FW_FEATURE_ISERIES;
powerpc_firmware_features |= FW_FEATURE_LPAR;
hpte_init_iSeries();
return 1;
}
define_machine(iseries) {
.name = "iSeries",
.setup_arch = iSeries_setup_arch,
.show_cpuinfo = iSeries_show_cpuinfo,
.init_IRQ = iSeries_init_IRQ,
.get_irq = iSeries_get_irq,
.init_early = iSeries_init_early,
.pcibios_fixup = iSeries_pci_final_fixup,
.restart = mf_reboot,
.power_off = mf_power_off,
.halt = mf_power_off,
.get_boot_time = iSeries_get_boot_time,
.set_rtc_time = iSeries_set_rtc_time,
.get_rtc_time = iSeries_get_rtc_time,
.calibrate_decr = generic_calibrate_decr,
.progress = iSeries_progress,
.probe = iseries_probe,
/* XXX Implement enable_pmcs for iSeries */
};
void * __init iSeries_early_setup(void)
{
unsigned long phys_mem_size;
iSeries_fixup_klimit();
/*
* Initialize the table which translate Linux physical addresses to
* AS/400 absolute addresses
*/
phys_mem_size = build_iSeries_Memory_Map();
iSeries_get_cmdline();
return (void *) __pa(build_flat_dt(phys_mem_size));
}
static void hvputc(char c)
{
if (c == '\n')
hvputc('\r');
HvCall_writeLogBuffer(&c, 1);
}
void __init udbg_init_iseries(void)
{
udbg_putc = hvputc;
}