android_kernel_samsung_msm8976/drivers/media/platform/msm/camera_v2/sensor/cci/msm_cci.c

2100 lines
60 KiB
C

/* Copyright (c) 2012-2015, The Linux Foundation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 and
* only version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <linux/delay.h>
#include <linux/clk.h>
#include <linux/io.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/of_gpio.h>
#include <linux/of_platform.h>
#include <media/msm_isp.h>
#include "msm_sd.h"
#include "msm_cci.h"
#include "msm_cam_cci_hwreg.h"
#include "msm_camera_io_util.h"
#define V4L2_IDENT_CCI 50005
#define CCI_I2C_QUEUE_0_SIZE 64
#define CCI_I2C_QUEUE_1_SIZE 16
#define CYCLES_PER_MICRO_SEC_DEFAULT 4915
#define CCI_MAX_DELAY 1000000
#define CCI_TIMEOUT msecs_to_jiffies(100)
/* TODO move this somewhere else */
#define MSM_CCI_DRV_NAME "msm_cci"
#undef CDBG
#define CDBG(fmt, args...) pr_debug(fmt, ##args)
/* Max bytes that can be read per CCI read transaction */
#define CCI_READ_MAX 12
#define CCI_I2C_READ_MAX_RETRIES 3
#define CCI_I2C_MAX_READ 8192
#define CCI_I2C_MAX_WRITE 8192
#define PRIORITY_QUEUE (QUEUE_0)
#define SYNC_QUEUE (QUEUE_1)
static struct v4l2_subdev *g_cci_subdev;
static struct msm_cam_clk_info cci_clk_info[CCI_NUM_CLK_CASES][CCI_NUM_CLK_MAX];
static int32_t msm_cci_set_clk_param(struct cci_device *cci_dev,
struct msm_camera_cci_ctrl *c_ctrl)
{
struct msm_cci_clk_params_t *clk_params = NULL;
enum cci_i2c_master_t master = c_ctrl->cci_info->cci_i2c_master;
enum i2c_freq_mode_t i2c_freq_mode = c_ctrl->cci_info->i2c_freq_mode;
if ((i2c_freq_mode >= I2C_MAX_MODES) || (i2c_freq_mode < 0)) {
pr_err("%s:%d invalid i2c_freq_mode = %d",
__func__, __LINE__, i2c_freq_mode);
return -EINVAL;
}
if (cci_dev->i2c_freq_mode[master] == i2c_freq_mode)
return 0;
clk_params = &cci_dev->cci_clk_params[i2c_freq_mode];
if (MASTER_0 == master) {
msm_camera_io_w_mb(clk_params->hw_thigh << 16 |
clk_params->hw_tlow,
cci_dev->base + CCI_I2C_M0_SCL_CTL_ADDR);
msm_camera_io_w_mb(clk_params->hw_tsu_sto << 16 |
clk_params->hw_tsu_sta,
cci_dev->base + CCI_I2C_M0_SDA_CTL_0_ADDR);
msm_camera_io_w_mb(clk_params->hw_thd_dat << 16 |
clk_params->hw_thd_sta,
cci_dev->base + CCI_I2C_M0_SDA_CTL_1_ADDR);
msm_camera_io_w_mb(clk_params->hw_tbuf,
cci_dev->base + CCI_I2C_M0_SDA_CTL_2_ADDR);
msm_camera_io_w_mb(clk_params->hw_scl_stretch_en << 8 |
clk_params->hw_trdhld << 4 | clk_params->hw_tsp,
cci_dev->base + CCI_I2C_M0_MISC_CTL_ADDR);
} else if (MASTER_1 == master) {
msm_camera_io_w_mb(clk_params->hw_thigh << 16 |
clk_params->hw_tlow,
cci_dev->base + CCI_I2C_M1_SCL_CTL_ADDR);
msm_camera_io_w_mb(clk_params->hw_tsu_sto << 16 |
clk_params->hw_tsu_sta,
cci_dev->base + CCI_I2C_M1_SDA_CTL_0_ADDR);
msm_camera_io_w_mb(clk_params->hw_thd_dat << 16 |
clk_params->hw_thd_sta,
cci_dev->base + CCI_I2C_M1_SDA_CTL_1_ADDR);
msm_camera_io_w_mb(clk_params->hw_tbuf,
cci_dev->base + CCI_I2C_M1_SDA_CTL_2_ADDR);
msm_camera_io_w_mb(clk_params->hw_scl_stretch_en << 8 |
clk_params->hw_trdhld << 4 | clk_params->hw_tsp,
cci_dev->base + CCI_I2C_M1_MISC_CTL_ADDR);
}
cci_dev->i2c_freq_mode[master] = i2c_freq_mode;
return 0;
}
static void msm_cci_flush_queue(struct cci_device *cci_dev,
enum cci_i2c_master_t master)
{
int32_t rc = 0;
msm_camera_io_w_mb(1 << master, cci_dev->base + CCI_HALT_REQ_ADDR);
rc = wait_for_completion_timeout(
&cci_dev->cci_master_info[master].reset_complete, CCI_TIMEOUT);
if (rc < 0) {
pr_err("%s:%d wait failed\n", __func__, __LINE__);
} else if (rc == 0) {
pr_err("%s:%d wait timeout\n", __func__, __LINE__);
/* Set reset pending flag to TRUE */
cci_dev->cci_master_info[master].reset_pending = TRUE;
/* Set proper mask to RESET CMD address based on MASTER */
if (master == MASTER_0)
msm_camera_io_w_mb(CCI_M0_RESET_RMSK,
cci_dev->base + CCI_RESET_CMD_ADDR);
else
msm_camera_io_w_mb(CCI_M1_RESET_RMSK,
cci_dev->base + CCI_RESET_CMD_ADDR);
/* wait for reset done irq */
rc = wait_for_completion_timeout(
&cci_dev->cci_master_info[master].reset_complete,
CCI_TIMEOUT);
if (rc <= 0)
pr_err("%s:%d wait failed %d\n", __func__, __LINE__,
rc);
}
return;
}
static int32_t msm_cci_validate_queue(struct cci_device *cci_dev,
uint32_t len,
enum cci_i2c_master_t master,
enum cci_i2c_queue_t queue)
{
int32_t rc = 0;
uint32_t read_val = 0;
uint32_t reg_offset = master * 0x200 + queue * 0x100;
read_val = msm_camera_io_r_mb(cci_dev->base +
CCI_I2C_M0_Q0_CUR_WORD_CNT_ADDR + reg_offset);
CDBG("%s line %d CCI_I2C_M0_Q0_CUR_WORD_CNT_ADDR %d len %d max %d\n",
__func__, __LINE__, read_val, len,
cci_dev->cci_i2c_queue_info[master][queue].max_queue_size);
if ((read_val + len + 1) > cci_dev->
cci_i2c_queue_info[master][queue].max_queue_size) {
uint32_t reg_val = 0;
uint32_t report_val = CCI_I2C_REPORT_CMD | (1 << 8);
CDBG("%s:%d CCI_I2C_REPORT_CMD\n", __func__, __LINE__);
msm_camera_io_w_mb(report_val,
cci_dev->base + CCI_I2C_M0_Q0_LOAD_DATA_ADDR +
reg_offset);
read_val++;
CDBG("%s:%d CCI_I2C_M0_Q0_EXEC_WORD_CNT_ADDR %d, queue: %d\n",
__func__, __LINE__, read_val, queue);
msm_camera_io_w_mb(read_val, cci_dev->base +
CCI_I2C_M0_Q0_EXEC_WORD_CNT_ADDR + reg_offset);
reg_val = 1 << ((master * 2) + queue);
CDBG("%s:%d CCI_QUEUE_START_ADDR\n", __func__, __LINE__);
atomic_set(&cci_dev->cci_master_info[master].
done_pending[queue], 1);
msm_camera_io_w_mb(reg_val, cci_dev->base +
CCI_QUEUE_START_ADDR);
CDBG("%s line %d wait_for_completion_timeout\n",
__func__, __LINE__);
atomic_set(&cci_dev->cci_master_info[master].q_free[queue], 1);
rc = wait_for_completion_timeout(&cci_dev->
cci_master_info[master].report_q[queue], CCI_TIMEOUT);
if (rc <= 0) {
pr_err("%s: wait_for_completion_timeout %d\n",
__func__, __LINE__);
if (rc == 0)
rc = -ETIMEDOUT;
msm_cci_flush_queue(cci_dev, master);
return rc;
}
rc = cci_dev->cci_master_info[master].status;
if (rc < 0)
pr_err("%s failed rc %d\n", __func__, rc);
}
return rc;
}
static int32_t msm_cci_write_i2c_queue(struct cci_device *cci_dev,
uint32_t val,
enum cci_i2c_master_t master,
enum cci_i2c_queue_t queue)
{
int32_t rc = 0;
uint32_t reg_offset = master * 0x200 + queue * 0x100;
if (!cci_dev) {
pr_err("%s: failed %d", __func__, __LINE__);
return -EINVAL;
}
CDBG("%s:%d called\n", __func__, __LINE__);
rc = msm_cci_validate_queue(cci_dev, 1, master, queue);
if (rc < 0) {
pr_err("%s: failed %d", __func__, __LINE__);
return rc;
}
CDBG("%s CCI_I2C_M0_Q0_LOAD_DATA_ADDR:val 0x%x:0x%x\n",
__func__, CCI_I2C_M0_Q0_LOAD_DATA_ADDR +
reg_offset, val);
msm_camera_io_w_mb(val, cci_dev->base + CCI_I2C_M0_Q0_LOAD_DATA_ADDR +
reg_offset);
return rc;
}
static uint32_t msm_cci_wait(struct cci_device *cci_dev,
enum cci_i2c_master_t master,
enum cci_i2c_queue_t queue)
{
int32_t rc = 0;
if (!cci_dev) {
pr_err("%s: failed %d", __func__, __LINE__);
return -EINVAL;
}
rc = wait_for_completion_timeout(&cci_dev->
cci_master_info[master].report_q[queue], CCI_TIMEOUT);
CDBG("%s line %d wait DONE_for_completion_timeout\n",
__func__, __LINE__);
if (rc <= 0) {
pr_err("%s: %d wait for queue: %d\n",
__func__, __LINE__, queue);
if (rc == 0)
rc = -ETIMEDOUT;
msm_cci_flush_queue(cci_dev, master);
return rc;
}
rc = cci_dev->cci_master_info[master].status;
if (rc < 0) {
pr_err("%s: %d failed rc %d\n", __func__, __LINE__, rc);
return rc;
}
return 0;
}
static int32_t msm_cci_addr_to_num_bytes(
enum msm_camera_i2c_reg_addr_type addr_type)
{
int32_t retVal;
switch (addr_type) {
case MSM_CAMERA_I2C_BYTE_ADDR:
retVal = 1;
break;
case MSM_CAMERA_I2C_WORD_ADDR:
retVal = 2;
break;
case MSM_CAMERA_I2C_3B_ADDR:
retVal = 3;
break;
default:
pr_err("%s: %d failed: %d\n", __func__, __LINE__, addr_type);
retVal = 1;
break;
}
return retVal;
}
static int32_t msm_cci_data_to_num_bytes(
enum msm_camera_i2c_data_type data_type)
{
int32_t retVal;
switch (data_type) {
case MSM_CAMERA_I2C_SET_BYTE_WRITE_MASK_DATA:
case MSM_CAMERA_I2C_SET_BYTE_MASK:
case MSM_CAMERA_I2C_UNSET_BYTE_MASK:
case MSM_CAMERA_I2C_BYTE_DATA:
retVal = 1;
break;
case MSM_CAMERA_I2C_SET_WORD_MASK:
case MSM_CAMERA_I2C_UNSET_WORD_MASK:
case MSM_CAMERA_I2C_WORD_DATA:
retVal = 2;
break;
case MSM_CAMERA_I2C_DWORD_DATA:
retVal = 4;
break;
default:
pr_err("%s: %d failed: %d\n", __func__, __LINE__, data_type);
retVal = 1;
break;
}
return retVal;
}
static int32_t msm_cci_calc_cmd_len(struct cci_device *cci_dev,
struct msm_camera_cci_ctrl *c_ctrl, uint32_t cmd_size,
struct msm_camera_i2c_reg_array *i2c_cmd, uint32_t *pack)
{
uint8_t i;
uint32_t len = 0;
uint8_t data_len = 0, addr_len = 0;
uint8_t pack_max_len;
struct msm_camera_i2c_reg_setting *msg;
struct msm_camera_i2c_reg_array *cmd = i2c_cmd;
uint32_t size = cmd_size;
if (!cci_dev || !c_ctrl) {
pr_err("%s: failed %d", __func__, __LINE__);
return -EINVAL;
}
msg = &c_ctrl->cfg.cci_i2c_write_cfg;
*pack = 0;
if (c_ctrl->cmd == MSM_CCI_I2C_WRITE_SEQ) {
addr_len = msm_cci_addr_to_num_bytes(msg->addr_type);
len = (size + addr_len) <= (cci_dev->payload_size) ?
(size + addr_len):cci_dev->payload_size;
} else {
addr_len = msm_cci_addr_to_num_bytes(msg->addr_type);
data_len = msm_cci_data_to_num_bytes(msg->data_type);
len = data_len + addr_len;
pack_max_len = size < (cci_dev->payload_size-len) ?
size : (cci_dev->payload_size-len);
for (i = 0; i < pack_max_len;) {
if (cmd->delay || ((cmd - i2c_cmd) >= (cmd_size-1)))
break;
if (cmd->reg_addr + 1 ==
(cmd+1)->reg_addr) {
len += data_len;
*pack += data_len;
} else
break;
i += data_len;
cmd++;
}
}
if (len > cci_dev->payload_size) {
pr_err("Len error: %d", len);
return -EINVAL;
}
len += 1; /*add i2c WR command*/
len = len/4 + 1;
return len;
}
static void msm_cci_load_report_cmd(struct cci_device *cci_dev,
enum cci_i2c_master_t master,
enum cci_i2c_queue_t queue)
{
uint32_t reg_offset = master * 0x200 + queue * 0x100;
uint32_t read_val = msm_camera_io_r_mb(cci_dev->base +
CCI_I2C_M0_Q0_CUR_WORD_CNT_ADDR + reg_offset);
uint32_t report_val = CCI_I2C_REPORT_CMD | (1 << 8);
CDBG("%s:%d CCI_I2C_REPORT_CMD curr_w_cnt: %d\n",
__func__, __LINE__, read_val);
msm_camera_io_w_mb(report_val,
cci_dev->base + CCI_I2C_M0_Q0_LOAD_DATA_ADDR +
reg_offset);
read_val++;
CDBG("%s:%d CCI_I2C_M0_Q0_EXEC_WORD_CNT_ADDR %d\n",
__func__, __LINE__, read_val);
msm_camera_io_w_mb(read_val, cci_dev->base +
CCI_I2C_M0_Q0_EXEC_WORD_CNT_ADDR + reg_offset);
}
static int32_t msm_cci_wait_report_cmd(struct cci_device *cci_dev,
enum cci_i2c_master_t master,
enum cci_i2c_queue_t queue)
{
uint32_t reg_val = 1 << ((master * 2) + queue);
msm_cci_load_report_cmd(cci_dev, master, queue);
atomic_set(&cci_dev->cci_master_info[master].q_free[queue], 1);
atomic_set(&cci_dev->cci_master_info[master].done_pending[queue], 1);
msm_camera_io_w_mb(reg_val, cci_dev->base +
CCI_QUEUE_START_ADDR);
return msm_cci_wait(cci_dev, master, queue);
}
static void msm_cci_process_half_q(struct cci_device *cci_dev,
enum cci_i2c_master_t master,
enum cci_i2c_queue_t queue)
{
uint32_t reg_val = 1 << ((master * 2) + queue);
if (0 == atomic_read(&cci_dev->cci_master_info[master].q_free[queue])) {
msm_cci_load_report_cmd(cci_dev, master, queue);
atomic_set(&cci_dev->cci_master_info[master].q_free[queue], 1);
msm_camera_io_w_mb(reg_val, cci_dev->base +
CCI_QUEUE_START_ADDR);
}
}
static int32_t msm_cci_process_full_q(struct cci_device *cci_dev,
enum cci_i2c_master_t master,
enum cci_i2c_queue_t queue)
{
int32_t rc = 0;
if (1 == atomic_read(&cci_dev->cci_master_info[master].q_free[queue])) {
atomic_set(&cci_dev->cci_master_info[master].
done_pending[queue], 1);
rc = msm_cci_wait(cci_dev, master, queue);
if (rc < 0) {
pr_err("%s: %d failed rc %d\n", __func__, __LINE__, rc);
return rc;
}
} else {
rc = msm_cci_wait_report_cmd(cci_dev, master, queue);
if (rc < 0) {
pr_err("%s: %d failed rc %d\n", __func__, __LINE__, rc);
return rc;
}
}
return rc;
}
static int32_t msm_cci_lock_queue(struct cci_device *cci_dev,
enum cci_i2c_master_t master,
enum cci_i2c_queue_t queue, uint32_t en)
{
uint32_t val;
if (queue != PRIORITY_QUEUE)
return 0;
val = en ? CCI_I2C_LOCK_CMD : CCI_I2C_UNLOCK_CMD;
return msm_cci_write_i2c_queue(cci_dev, val, master, queue);
}
static int32_t msm_cci_transfer_end(struct cci_device *cci_dev,
enum cci_i2c_master_t master,
enum cci_i2c_queue_t queue)
{
int32_t rc = 0;
if (0 == atomic_read(&cci_dev->cci_master_info[master].q_free[queue])) {
rc = msm_cci_lock_queue(cci_dev, master, queue, 0);
if (rc < 0) {
pr_err("%s failed line %d\n", __func__, __LINE__);
return rc;
}
rc = msm_cci_wait_report_cmd(cci_dev, master, queue);
if (rc < 0) {
pr_err("%s: %d failed rc %d\n", __func__, __LINE__, rc);
return rc;
}
} else {
atomic_set(&cci_dev->cci_master_info[master].
done_pending[queue], 1);
rc = msm_cci_wait(cci_dev, master, queue);
if (rc < 0) {
pr_err("%s: %d failed rc %d\n", __func__, __LINE__, rc);
return rc;
}
rc = msm_cci_lock_queue(cci_dev, master, queue, 0);
if (rc < 0) {
pr_err("%s failed line %d\n", __func__, __LINE__);
return rc;
}
rc = msm_cci_wait_report_cmd(cci_dev, master, queue);
if (rc < 0) {
pr_err("%s: %d failed rc %d\n", __func__, __LINE__, rc);
return rc;
}
}
return rc;
}
static int32_t msm_cci_get_queue_free_size(struct cci_device *cci_dev,
enum cci_i2c_master_t master,
enum cci_i2c_queue_t queue)
{
uint32_t read_val = 0;
uint32_t reg_offset = master * 0x200 + queue * 0x100;
read_val = msm_camera_io_r_mb(cci_dev->base +
CCI_I2C_M0_Q0_CUR_WORD_CNT_ADDR + reg_offset);
CDBG("%s line %d CCI_I2C_M0_Q0_CUR_WORD_CNT_ADDR %d max %d\n",
__func__, __LINE__, read_val,
cci_dev->cci_i2c_queue_info[master][queue].max_queue_size);
return (cci_dev->
cci_i2c_queue_info[master][queue].max_queue_size) -
read_val;
}
static int32_t msm_cci_data_queue(struct cci_device *cci_dev,
struct msm_camera_cci_ctrl *c_ctrl, enum cci_i2c_queue_t queue,
enum cci_i2c_sync sync_en)
{
uint16_t i = 0, j = 0, k = 0, h = 0, len = 0;
int32_t rc = 0, free_size = 0, en_seq_write = 0;
uint32_t cmd = 0, delay = 0;
uint8_t data[12];
uint16_t reg_addr = 0;
struct msm_camera_i2c_reg_setting *i2c_msg =
&c_ctrl->cfg.cci_i2c_write_cfg;
uint16_t cmd_size = i2c_msg->size;
struct msm_camera_i2c_reg_array *i2c_cmd = i2c_msg->reg_setting;
enum cci_i2c_master_t master = c_ctrl->cci_info->cci_i2c_master;
uint32_t read_val = 0;
uint32_t reg_offset;
uint32_t val = 0;
uint32_t max_queue_size;
if (i2c_cmd == NULL) {
pr_err("%s:%d Failed line\n", __func__,
__LINE__);
return -EINVAL;
}
if ((!cmd_size) || (cmd_size > CCI_I2C_MAX_WRITE)) {
pr_err("%s:%d Failed line\n", __func__, __LINE__);
return -EINVAL;
}
CDBG("%s addr type %d data type %d cmd_size %d\n", __func__,
i2c_msg->addr_type, i2c_msg->data_type, cmd_size);
if (i2c_msg->addr_type >= MSM_CAMERA_I2C_ADDR_TYPE_MAX) {
pr_err("%s failed line %d\n", __func__, __LINE__);
return -EINVAL;
}
if (i2c_msg->data_type >= MSM_CAMERA_I2C_DATA_TYPE_MAX) {
pr_err("%s failed line %d\n", __func__, __LINE__);
return -EINVAL;
}
reg_offset = master * 0x200 + queue * 0x100;
msm_camera_io_w_mb(cci_dev->cci_wait_sync_cfg.cid,
cci_dev->base + CCI_SET_CID_SYNC_TIMER_ADDR +
cci_dev->cci_wait_sync_cfg.csid *
CCI_SET_CID_SYNC_TIMER_OFFSET);
val = CCI_I2C_SET_PARAM_CMD | c_ctrl->cci_info->sid << 4 |
c_ctrl->cci_info->retries << 16 |
c_ctrl->cci_info->id_map << 18;
CDBG("%s CCI_I2C_M0_Q0_LOAD_DATA_ADDR:val 0x%x:0x%x\n",
__func__, CCI_I2C_M0_Q0_LOAD_DATA_ADDR +
reg_offset, val);
msm_camera_io_w_mb(val, cci_dev->base + CCI_I2C_M0_Q0_LOAD_DATA_ADDR +
reg_offset);
atomic_set(&cci_dev->cci_master_info[master].q_free[queue], 0);
max_queue_size = cci_dev->cci_i2c_queue_info[master][queue].
max_queue_size;
reg_addr = i2c_cmd->reg_addr;
if (sync_en == MSM_SYNC_ENABLE && cci_dev->valid_sync &&
cmd_size < max_queue_size) {
val = CCI_I2C_WAIT_SYNC_CMD |
((cci_dev->cci_wait_sync_cfg.line) << 4);
msm_camera_io_w_mb(val,
cci_dev->base + CCI_I2C_M0_Q0_LOAD_DATA_ADDR +
reg_offset);
}
rc = msm_cci_lock_queue(cci_dev, master, queue, 1);
if (rc < 0) {
pr_err("%s failed line %d\n", __func__, __LINE__);
return rc;
}
while (cmd_size) {
uint32_t pack = 0;
len = msm_cci_calc_cmd_len(cci_dev, c_ctrl, cmd_size,
i2c_cmd, &pack);
if (len <= 0) {
pr_err("%s failed line %d\n", __func__, __LINE__);
return -EINVAL;
}
read_val = msm_camera_io_r_mb(cci_dev->base +
CCI_I2C_M0_Q0_CUR_WORD_CNT_ADDR + reg_offset);
CDBG("%s line %d CUR_WORD_CNT_ADDR %d len %d max %d\n",
__func__, __LINE__, read_val, len, max_queue_size);
/* + 1 - space alocation for Report CMD*/
if ((read_val + len + 1) > max_queue_size/2) {
if ((read_val + len + 1) > max_queue_size) {
rc = msm_cci_process_full_q(cci_dev,
master, queue);
if (rc < 0) {
pr_err("%s failed line %d\n",
__func__, __LINE__);
return rc;
}
continue;
}
msm_cci_process_half_q(cci_dev, master, queue);
}
CDBG("%s cmd_size %d addr 0x%x data 0x%x\n", __func__,
cmd_size, i2c_cmd->reg_addr, i2c_cmd->reg_data);
delay = i2c_cmd->delay;
i = 0;
data[i++] = CCI_I2C_WRITE_CMD;
/* in case of multiple command
* MSM_CCI_I2C_WRITE : address is not continuous, so update
* address for a new packet.
* MSM_CCI_I2C_WRITE_SEQ : address is continuous, need to keep
* the incremented address for a
* new packet */
if (c_ctrl->cmd == MSM_CCI_I2C_WRITE ||
c_ctrl->cmd == MSM_CCI_I2C_WRITE_ASYNC ||
c_ctrl->cmd == MSM_CCI_I2C_WRITE_SYNC ||
c_ctrl->cmd == MSM_CCI_I2C_WRITE_SYNC_BLOCK)
reg_addr = i2c_cmd->reg_addr;
if (en_seq_write == 0) {
/* either byte or word addr */
if (i2c_msg->addr_type == MSM_CAMERA_I2C_BYTE_ADDR)
data[i++] = reg_addr;
else {
data[i++] = (reg_addr & 0xFF00) >> 8;
data[i++] = reg_addr & 0x00FF;
}
}
/* max of 10 data bytes */
do {
if (i2c_msg->data_type == MSM_CAMERA_I2C_BYTE_DATA) {
data[i++] = i2c_cmd->reg_data;
reg_addr++;
} else {
if ((i + 1) <= cci_dev->payload_size) {
data[i++] = (i2c_cmd->reg_data &
0xFF00) >> 8; /* MSB */
data[i++] = i2c_cmd->reg_data &
0x00FF; /* LSB */
reg_addr++;
} else
break;
}
i2c_cmd++;
--cmd_size;
} while (((c_ctrl->cmd == MSM_CCI_I2C_WRITE_SEQ) || pack--) &&
(cmd_size > 0) && (i <= cci_dev->payload_size));
free_size = msm_cci_get_queue_free_size(cci_dev, master,
queue);
if ((c_ctrl->cmd == MSM_CCI_I2C_WRITE_SEQ) &&
((i-1) == MSM_CCI_WRITE_DATA_PAYLOAD_SIZE_11) &&
cci_dev->support_seq_write && cmd_size > 0 &&
free_size > BURST_MIN_FREE_SIZE) {
data[0] |= 0xF0;
en_seq_write = 1;
} else {
data[0] |= ((i-1) << 4);
en_seq_write = 0;
}
len = ((i-1)/4) + 1;
read_val = msm_camera_io_r_mb(cci_dev->base +
CCI_I2C_M0_Q0_CUR_WORD_CNT_ADDR + reg_offset);
for (h = 0, k = 0; h < len; h++) {
cmd = 0;
for (j = 0; (j < 4 && k < i); j++)
cmd |= (data[k++] << (j * 8));
CDBG("%s LOAD_DATA_ADDR 0x%x, q: %d, len:%d, cnt: %d\n",
__func__, cmd, queue, len, read_val);
msm_camera_io_w_mb(cmd, cci_dev->base +
CCI_I2C_M0_Q0_LOAD_DATA_ADDR +
master * 0x200 + queue * 0x100);
read_val += 1;
msm_camera_io_w_mb(read_val, cci_dev->base +
CCI_I2C_M0_Q0_EXEC_WORD_CNT_ADDR + reg_offset);
}
if ((delay > 0) && (delay < CCI_MAX_DELAY) &&
en_seq_write == 0) {
cmd = (uint32_t)((delay * cci_dev->cycles_per_us) /
0x100);
cmd <<= 4;
cmd |= CCI_I2C_WAIT_CMD;
CDBG("%s CCI_I2C_M0_Q0_LOAD_DATA_ADDR 0x%x\n",
__func__, cmd);
msm_camera_io_w_mb(cmd, cci_dev->base +
CCI_I2C_M0_Q0_LOAD_DATA_ADDR +
master * 0x200 + queue * 0x100);
read_val += 1;
msm_camera_io_w_mb(read_val, cci_dev->base +
CCI_I2C_M0_Q0_EXEC_WORD_CNT_ADDR + reg_offset);
}
}
rc = msm_cci_transfer_end(cci_dev, master, queue);
if (rc < 0) {
pr_err("%s: %d failed rc %d\n", __func__, __LINE__, rc);
return rc;
}
return rc;
}
static int32_t msm_cci_i2c_read(struct v4l2_subdev *sd,
struct msm_camera_cci_ctrl *c_ctrl)
{
int32_t rc = 0;
uint32_t val = 0;
int32_t read_words = 0, exp_words = 0;
int32_t index = 0, first_byte = 0;
uint32_t i = 0;
enum cci_i2c_master_t master;
enum cci_i2c_queue_t queue = QUEUE_1;
struct cci_device *cci_dev = NULL;
struct msm_camera_cci_i2c_read_cfg *read_cfg = NULL;
CDBG("%s line %d\n", __func__, __LINE__);
cci_dev = v4l2_get_subdevdata(sd);
master = c_ctrl->cci_info->cci_i2c_master;
read_cfg = &c_ctrl->cfg.cci_i2c_read_cfg;
mutex_lock(&cci_dev->cci_master_info[master].mutex_q[queue]);
/* Set the I2C Frequency */
rc = msm_cci_set_clk_param(cci_dev, c_ctrl);
if (rc < 0) {
pr_err("%s:%d msm_cci_set_clk_param failed rc = %d\n",
__func__, __LINE__, rc);
mutex_unlock(&cci_dev->cci_master_info[master].mutex_q[queue]);
return rc;
}
/*
* Call validate queue to make sure queue is empty before starting.
* If this call fails, don't proceed with i2c_read call. This is to
* avoid overflow / underflow of queue
*/
rc = msm_cci_validate_queue(cci_dev,
cci_dev->cci_i2c_queue_info[master][queue].max_queue_size - 1,
master, queue);
if (rc < 0) {
pr_err("%s:%d Initial validataion failed rc %d\n", __func__,
__LINE__, rc);
goto ERROR;
}
if (c_ctrl->cci_info->retries > CCI_I2C_READ_MAX_RETRIES) {
pr_err("%s:%d More than max retries\n", __func__,
__LINE__);
goto ERROR;
}
if (read_cfg->data == NULL) {
pr_err("%s:%d Data ptr is NULL\n", __func__,
__LINE__);
goto ERROR;
}
CDBG("%s master %d, queue %d\n", __func__, master, queue);
CDBG("%s set param sid 0x%x retries %d id_map %d\n", __func__,
c_ctrl->cci_info->sid, c_ctrl->cci_info->retries,
c_ctrl->cci_info->id_map);
val = CCI_I2C_SET_PARAM_CMD | c_ctrl->cci_info->sid << 4 |
c_ctrl->cci_info->retries << 16 |
c_ctrl->cci_info->id_map << 18;
rc = msm_cci_write_i2c_queue(cci_dev, val, master, queue);
if (rc < 0) {
CDBG("%s failed line %d\n", __func__, __LINE__);
goto ERROR;
}
val = CCI_I2C_LOCK_CMD;
rc = msm_cci_write_i2c_queue(cci_dev, val, master, queue);
if (rc < 0) {
CDBG("%s failed line %d\n", __func__, __LINE__);
goto ERROR;
}
if (read_cfg->addr_type >= MSM_CAMERA_I2C_ADDR_TYPE_MAX) {
CDBG("%s failed line %d\n", __func__, __LINE__);
goto ERROR;
}
if (read_cfg->addr_type == MSM_CAMERA_I2C_BYTE_ADDR)
val = CCI_I2C_WRITE_DISABLE_P_CMD | (read_cfg->addr_type << 4) |
((read_cfg->addr & 0xFF) << 8);
if (read_cfg->addr_type == MSM_CAMERA_I2C_WORD_ADDR)
val = CCI_I2C_WRITE_DISABLE_P_CMD | (read_cfg->addr_type << 4) |
(((read_cfg->addr & 0xFF00) >> 8) << 8) |
((read_cfg->addr & 0xFF) << 16);
rc = msm_cci_write_i2c_queue(cci_dev, val, master, queue);
if (rc < 0) {
CDBG("%s failed line %d\n", __func__, __LINE__);
goto ERROR;
}
val = CCI_I2C_READ_CMD | (read_cfg->num_byte << 4);
rc = msm_cci_write_i2c_queue(cci_dev, val, master, queue);
if (rc < 0) {
CDBG("%s failed line %d\n", __func__, __LINE__);
goto ERROR;
}
val = CCI_I2C_UNLOCK_CMD;
rc = msm_cci_write_i2c_queue(cci_dev, val, master, queue);
if (rc < 0) {
CDBG("%s failed line %d\n", __func__, __LINE__);
goto ERROR;
}
val = msm_camera_io_r_mb(cci_dev->base + CCI_I2C_M0_Q0_CUR_WORD_CNT_ADDR
+ master * 0x200 + queue * 0x100);
CDBG("%s cur word cnt 0x%x\n", __func__, val);
msm_camera_io_w_mb(val, cci_dev->base + CCI_I2C_M0_Q0_EXEC_WORD_CNT_ADDR
+ master * 0x200 + queue * 0x100);
val = 1 << ((master * 2) + queue);
msm_camera_io_w_mb(val, cci_dev->base + CCI_QUEUE_START_ADDR);
CDBG("%s:%d E wait_for_completion_timeout\n", __func__,
__LINE__);
rc = wait_for_completion_timeout(&cci_dev->
cci_master_info[master].reset_complete, CCI_TIMEOUT);
if (rc <= 0) {
pr_err("%s: wait_for_completion_timeout %d\n",
__func__, __LINE__);
if (rc == 0)
rc = -ETIMEDOUT;
msm_cci_flush_queue(cci_dev, master);
goto ERROR;
} else {
rc = 0;
}
CDBG("%s:%d E wait_for_completion_timeout\n", __func__,
__LINE__);
read_words = msm_camera_io_r_mb(cci_dev->base +
CCI_I2C_M0_READ_BUF_LEVEL_ADDR + master * 0x100);
exp_words = ((read_cfg->num_byte / 4) + 1);
if (read_words != exp_words) {
pr_err("%s:%d read_words = %d, exp words = %d\n", __func__,
__LINE__, read_words, exp_words);
memset(read_cfg->data, 0, read_cfg->num_byte);
rc = -EINVAL;
goto ERROR;
}
index = 0;
CDBG("%s index %d num_type %d\n", __func__, index,
read_cfg->num_byte);
first_byte = 0;
do {
val = msm_camera_io_r_mb(cci_dev->base +
CCI_I2C_M0_READ_DATA_ADDR + master * 0x100);
CDBG("%s read val 0x%x\n", __func__, val);
for (i = 0; (i < 4) && (index < read_cfg->num_byte); i++) {
CDBG("%s i %d index %d\n", __func__, i, index);
if (!first_byte) {
CDBG("%s sid 0x%x\n", __func__, val & 0xFF);
first_byte++;
} else {
read_cfg->data[index] =
(val >> (i * 8)) & 0xFF;
CDBG("%s data[%d] 0x%x\n", __func__, index,
read_cfg->data[index]);
index++;
}
}
} while (--read_words > 0);
ERROR:
mutex_unlock(&cci_dev->cci_master_info[master].mutex_q[queue]);
return rc;
}
static int32_t msm_cci_i2c_read_bytes(struct v4l2_subdev *sd,
struct msm_camera_cci_ctrl *c_ctrl)
{
int32_t rc = 0;
struct cci_device *cci_dev = NULL;
enum cci_i2c_master_t master;
struct msm_camera_cci_i2c_read_cfg *read_cfg = NULL;
uint16_t read_bytes = 0;
if (!sd || !c_ctrl) {
pr_err("%s:%d sd %pK c_ctrl %pK\n", __func__,
__LINE__, sd, c_ctrl);
return -EINVAL;
}
if (!c_ctrl->cci_info) {
pr_err("%s:%d cci_info NULL\n", __func__, __LINE__);
return -EINVAL;
}
cci_dev = v4l2_get_subdevdata(sd);
if (!cci_dev) {
pr_err("%s:%d cci_dev NULL\n", __func__, __LINE__);
return -EINVAL;
}
if (cci_dev->cci_state != CCI_STATE_ENABLED) {
pr_err("%s invalid cci state %d\n",
__func__, cci_dev->cci_state);
return -EINVAL;
}
if (c_ctrl->cci_info->cci_i2c_master >= MASTER_MAX
|| c_ctrl->cci_info->cci_i2c_master < 0) {
pr_err("%s:%d Invalid I2C master addr\n", __func__, __LINE__);
return -EINVAL;
}
master = c_ctrl->cci_info->cci_i2c_master;
read_cfg = &c_ctrl->cfg.cci_i2c_read_cfg;
if ((!read_cfg->num_byte) || (read_cfg->num_byte > CCI_I2C_MAX_READ)) {
pr_err("%s:%d read num bytes 0\n", __func__, __LINE__);
rc = -EINVAL;
goto ERROR;
}
read_bytes = read_cfg->num_byte;
do {
if (read_bytes > CCI_READ_MAX)
read_cfg->num_byte = CCI_READ_MAX;
else
read_cfg->num_byte = read_bytes;
rc = msm_cci_i2c_read(sd, c_ctrl);
if (rc < 0) {
pr_err("%s:%d failed rc %d\n", __func__, __LINE__, rc);
goto ERROR;
}
if (read_bytes > CCI_READ_MAX) {
read_cfg->addr += CCI_READ_MAX;
read_cfg->data += CCI_READ_MAX;
read_bytes -= CCI_READ_MAX;
} else {
read_bytes = 0;
}
} while (read_bytes);
ERROR:
return rc;
}
static int32_t msm_cci_i2c_write(struct v4l2_subdev *sd,
struct msm_camera_cci_ctrl *c_ctrl, enum cci_i2c_queue_t queue,
enum cci_i2c_sync sync_en)
{
int32_t rc = 0;
struct cci_device *cci_dev;
enum cci_i2c_master_t master;
cci_dev = v4l2_get_subdevdata(sd);
if (c_ctrl->cci_info->cci_i2c_master >= MASTER_MAX
|| c_ctrl->cci_info->cci_i2c_master < 0) {
pr_err("%s:%d Invalid I2C master addr\n", __func__, __LINE__);
return -EINVAL;
}
if (cci_dev->cci_state != CCI_STATE_ENABLED) {
pr_err("%s invalid cci state %d\n",
__func__, cci_dev->cci_state);
return -EINVAL;
}
master = c_ctrl->cci_info->cci_i2c_master;
CDBG("%s set param sid 0x%x retries %d id_map %d\n", __func__,
c_ctrl->cci_info->sid, c_ctrl->cci_info->retries,
c_ctrl->cci_info->id_map);
/* Set the I2C Frequency */
rc = msm_cci_set_clk_param(cci_dev, c_ctrl);
if (rc < 0) {
pr_err("%s:%d msm_cci_set_clk_param failed rc = %d\n",
__func__, __LINE__, rc);
return rc;
}
/*
* Call validate queue to make sure queue is empty before starting.
* If this call fails, don't proceed with i2c_write call. This is to
* avoid overflow / underflow of queue
*/
rc = msm_cci_validate_queue(cci_dev,
cci_dev->cci_i2c_queue_info[master][queue].max_queue_size-1,
master, queue);
if (rc < 0) {
pr_err("%s:%d Initial validataion failed rc %d\n",
__func__, __LINE__, rc);
goto ERROR;
}
if (c_ctrl->cci_info->retries > CCI_I2C_READ_MAX_RETRIES) {
pr_err("%s:%d More than max retries\n", __func__,
__LINE__);
goto ERROR;
}
rc = msm_cci_data_queue(cci_dev, c_ctrl, queue, sync_en);
if (rc < 0) {
CDBG("%s failed line %d\n", __func__, __LINE__);
goto ERROR;
}
ERROR:
return rc;
}
static void msm_cci_write_async_helper(struct work_struct *work)
{
int rc;
struct cci_device *cci_dev;
struct cci_write_async *write_async =
container_of(work, struct cci_write_async, work);
struct msm_camera_i2c_reg_setting *i2c_msg;
enum cci_i2c_master_t master;
struct msm_camera_cci_master_info *cci_master_info;
cci_dev = write_async->cci_dev;
i2c_msg = &write_async->c_ctrl.cfg.cci_i2c_write_cfg;
master = write_async->c_ctrl.cci_info->cci_i2c_master;
cci_master_info = &cci_dev->cci_master_info[master];
mutex_lock(&cci_master_info->mutex_q[write_async->queue]);
rc = msm_cci_i2c_write(&cci_dev->msm_sd.sd,
&write_async->c_ctrl, write_async->queue, write_async->sync_en);
mutex_unlock(&cci_master_info->mutex_q[write_async->queue]);
if (rc < 0)
pr_err("%s: %d failed\n", __func__, __LINE__);
kfree(write_async->c_ctrl.cfg.cci_i2c_write_cfg.reg_setting);
kfree(write_async);
CDBG("%s: %d Exit\n", __func__, __LINE__);
}
static int32_t msm_cci_i2c_write_async(struct v4l2_subdev *sd,
struct msm_camera_cci_ctrl *c_ctrl, enum cci_i2c_queue_t queue,
enum cci_i2c_sync sync_en)
{
struct cci_write_async *write_async;
struct cci_device *cci_dev;
struct msm_camera_i2c_reg_setting *cci_i2c_write_cfg;
struct msm_camera_i2c_reg_setting *cci_i2c_write_cfg_w;
cci_dev = v4l2_get_subdevdata(sd);
CDBG("%s: %d Enter\n", __func__, __LINE__);
write_async = kzalloc(sizeof(*write_async), GFP_KERNEL);
if (!write_async) {
pr_err("%s: %d Couldn't allocate memory\n", __func__, __LINE__);
return -ENOMEM;
}
INIT_WORK(&write_async->work, msm_cci_write_async_helper);
write_async->cci_dev = cci_dev;
write_async->c_ctrl = *c_ctrl;
write_async->queue = queue;
write_async->sync_en = sync_en;
cci_i2c_write_cfg = &c_ctrl->cfg.cci_i2c_write_cfg;
cci_i2c_write_cfg_w = &write_async->c_ctrl.cfg.cci_i2c_write_cfg;
if (cci_i2c_write_cfg->size == 0) {
pr_err("%s: %d Size = 0\n", __func__, __LINE__);
kfree(write_async);
return -EINVAL;
}
cci_i2c_write_cfg_w->reg_setting =
kzalloc(sizeof(struct msm_camera_i2c_reg_array)*
cci_i2c_write_cfg->size, GFP_KERNEL);
if (!cci_i2c_write_cfg_w->reg_setting) {
pr_err("%s: %d Couldn't allocate memory\n", __func__, __LINE__);
kfree(write_async);
return -ENOMEM;
}
memcpy(cci_i2c_write_cfg_w->reg_setting,
cci_i2c_write_cfg->reg_setting,
(sizeof(struct msm_camera_i2c_reg_array)*
cci_i2c_write_cfg->size));
cci_i2c_write_cfg_w->addr_type = cci_i2c_write_cfg->addr_type;
cci_i2c_write_cfg_w->data_type = cci_i2c_write_cfg->data_type;
cci_i2c_write_cfg_w->size = cci_i2c_write_cfg->size;
cci_i2c_write_cfg_w->delay = cci_i2c_write_cfg->delay;
queue_work(cci_dev->write_wq[write_async->queue], &write_async->work);
CDBG("%s: %d Exit\n", __func__, __LINE__);
return 0;
}
static int msm_cci_subdev_g_chip_ident(struct v4l2_subdev *sd,
struct v4l2_dbg_chip_ident *chip)
{
if (!chip) {
pr_err("%s:%d: NULL pointer supplied for chip ident\n",
__func__, __LINE__);
return -EINVAL;
}
chip->ident = V4L2_IDENT_CCI;
chip->revision = 0;
return 0;
}
static int32_t msm_cci_pinctrl_init(struct cci_device *cci_dev)
{
struct msm_pinctrl_info *cci_pctrl = NULL;
cci_pctrl = &cci_dev->cci_pinctrl;
cci_pctrl->pinctrl = devm_pinctrl_get(&cci_dev->pdev->dev);
if (IS_ERR_OR_NULL(cci_pctrl->pinctrl)) {
pr_err("%s:%d devm_pinctrl_get cci_pinctrl failed\n",
__func__, __LINE__);
return -EINVAL;
}
cci_pctrl->gpio_state_active = pinctrl_lookup_state(
cci_pctrl->pinctrl,
CCI_PINCTRL_STATE_DEFAULT);
if (IS_ERR_OR_NULL(cci_pctrl->gpio_state_active)) {
pr_err("%s:%d look up state for active state failed\n",
__func__, __LINE__);
return -EINVAL;
}
cci_pctrl->gpio_state_suspend = pinctrl_lookup_state(
cci_pctrl->pinctrl,
CCI_PINCTRL_STATE_SLEEP);
if (IS_ERR_OR_NULL(cci_pctrl->gpio_state_suspend)) {
pr_err("%s:%d look up state for suspend state failed\n",
__func__, __LINE__);
return -EINVAL;
}
return 0;
}
static uint32_t msm_cci_cycles_per_ms(unsigned long clk)
{
uint32_t cycles_per_us;
if (clk)
cycles_per_us = ((clk/1000)*256)/1000;
else {
pr_err("%s:%d, failed: Can use default: %d",
__func__, __LINE__, CYCLES_PER_MICRO_SEC_DEFAULT);
cycles_per_us = CYCLES_PER_MICRO_SEC_DEFAULT;
}
return cycles_per_us;
}
static struct msm_cam_clk_info *msm_cci_get_clk(struct cci_device *cci_dev,
struct msm_camera_cci_ctrl *c_ctrl)
{
uint32_t j;
int32_t idx;
uint32_t cci_clk_src;
unsigned long clk;
struct msm_cci_clk_params_t *clk_params = NULL;
enum i2c_freq_mode_t i2c_freq_mode = c_ctrl->cci_info->i2c_freq_mode;
struct device_node *of_node = cci_dev->pdev->dev.of_node;
clk_params = &cci_dev->cci_clk_params[i2c_freq_mode];
cci_clk_src = clk_params->cci_clk_src;
idx = of_property_match_string(of_node,
"clock-names", CCI_CLK_SRC_NAME);
if (idx < 0) {
cci_dev->cycles_per_us = CYCLES_PER_MICRO_SEC_DEFAULT;
return &cci_clk_info[0][0];
}
if (cci_clk_src == 0) {
clk = cci_clk_info[0][idx].clk_rate;
cci_dev->cycles_per_us = msm_cci_cycles_per_ms(clk);
return &cci_clk_info[0][0];
}
for (j = 0; j < cci_dev->num_clk_cases; j++) {
clk = cci_clk_info[j][idx].clk_rate;
if (clk == cci_clk_src) {
cci_dev->cycles_per_us = msm_cci_cycles_per_ms(clk);
cci_dev->cci_clk_src = cci_clk_src;
return &cci_clk_info[j][0];
}
}
return NULL;
}
static int32_t msm_cci_i2c_set_sync_prms(struct v4l2_subdev *sd,
struct msm_camera_cci_ctrl *c_ctrl)
{
int32_t rc = 0;
struct cci_device *cci_dev;
cci_dev = v4l2_get_subdevdata(sd);
if (!cci_dev || !c_ctrl) {
pr_err("%s:%d failed: invalid params %pK %pK\n", __func__,
__LINE__, cci_dev, c_ctrl);
rc = -EINVAL;
return rc;
}
cci_dev->cci_wait_sync_cfg = c_ctrl->cfg.cci_wait_sync_cfg;
cci_dev->valid_sync = cci_dev->cci_wait_sync_cfg.csid < 0 ? 0 : 1;
return rc;
}
static int32_t msm_cci_init(struct v4l2_subdev *sd,
struct msm_camera_cci_ctrl *c_ctrl)
{
uint8_t i = 0;
int32_t rc = 0, ret = 0;
struct cci_device *cci_dev;
enum cci_i2c_master_t master = MASTER_0;
struct msm_cam_clk_info *clk_info = NULL;
cci_dev = v4l2_get_subdevdata(sd);
if (!cci_dev || !c_ctrl) {
pr_err("%s:%d failed: invalid params %pK %pK\n", __func__,
__LINE__, cci_dev, c_ctrl);
rc = -EINVAL;
return rc;
}
if (cci_dev->ref_count++) {
CDBG("%s ref_count %d\n", __func__, cci_dev->ref_count);
master = c_ctrl->cci_info->cci_i2c_master;
CDBG("%s:%d master %d\n", __func__, __LINE__, master);
if (master < MASTER_MAX && master >= 0) {
mutex_lock(&cci_dev->cci_master_info[master].mutex);
flush_workqueue(cci_dev->write_wq[master]);
/* Re-initialize the completion */
INIT_COMPLETION(cci_dev->
cci_master_info[master].reset_complete);
for (i = 0; i < NUM_QUEUES; i++)
INIT_COMPLETION(cci_dev->
cci_master_info[master].report_q[i]);
/* Set reset pending flag to TRUE */
cci_dev->cci_master_info[master].reset_pending = TRUE;
/* Set proper mask to RESET CMD address */
if (master == MASTER_0)
msm_camera_io_w_mb(CCI_M0_RESET_RMSK,
cci_dev->base + CCI_RESET_CMD_ADDR);
else
msm_camera_io_w_mb(CCI_M1_RESET_RMSK,
cci_dev->base + CCI_RESET_CMD_ADDR);
/* wait for reset done irq */
rc = wait_for_completion_timeout(
&cci_dev->cci_master_info[master].
reset_complete,
CCI_TIMEOUT);
if (rc <= 0)
pr_err("%s:%d wait failed %d\n", __func__,
__LINE__, rc);
mutex_unlock(&cci_dev->cci_master_info[master].mutex);
}
return 0;
}
ret = msm_cci_pinctrl_init(cci_dev);
if (ret < 0) {
pr_err("%s:%d Initialization of pinctrl failed\n",
__func__, __LINE__);
cci_dev->cci_pinctrl_status = 0;
} else {
cci_dev->cci_pinctrl_status = 1;
}
rc = msm_camera_request_gpio_table(cci_dev->cci_gpio_tbl,
cci_dev->cci_gpio_tbl_size, 1);
if (cci_dev->cci_pinctrl_status) {
ret = pinctrl_select_state(cci_dev->cci_pinctrl.pinctrl,
cci_dev->cci_pinctrl.gpio_state_active);
if (ret)
pr_err("%s:%d cannot set pin to active state\n",
__func__, __LINE__);
}
if (rc < 0) {
CDBG("%s: request gpio failed\n", __func__);
goto request_gpio_failed;
}
cci_dev->reg_ptr = regulator_get(&(cci_dev->pdev->dev),
"qcom,gdscr-vdd");
if (IS_ERR_OR_NULL(cci_dev->reg_ptr)) {
pr_err(" %s: Failed in getting TOP gdscr regulator handle",
__func__);
} else {
rc = regulator_enable(cci_dev->reg_ptr);
if (rc) {
pr_err(" %s: regulator enable failed for TOP GDSCR\n",
__func__);
goto clk_enable_failed;
}
}
clk_info = msm_cci_get_clk(cci_dev, c_ctrl);
if (!clk_info) {
pr_err("%s: clk enable failed\n", __func__);
goto clk_enable_failed;
}
rc = msm_cam_clk_enable(&cci_dev->pdev->dev, clk_info,
cci_dev->cci_clk, cci_dev->num_clk, 1);
if (rc < 0) {
CDBG("%s: clk enable failed\n", __func__);
goto clk_enable_failed;
}
/* Re-initialize the completion */
INIT_COMPLETION(cci_dev->cci_master_info[master].reset_complete);
for (i = 0; i < NUM_QUEUES; i++)
INIT_COMPLETION(cci_dev->cci_master_info[master].report_q[i]);
enable_irq(cci_dev->irq->start);
cci_dev->hw_version = msm_camera_io_r_mb(cci_dev->base +
CCI_HW_VERSION_ADDR);
pr_info("%s:%d: hw_version = 0x%x\n", __func__, __LINE__,
cci_dev->hw_version);
cci_dev->payload_size =
MSM_CCI_WRITE_DATA_PAYLOAD_SIZE_10;
cci_dev->support_seq_write = 0;
if (cci_dev->hw_version >= 0x10020000) {
cci_dev->payload_size =
MSM_CCI_WRITE_DATA_PAYLOAD_SIZE_11;
cci_dev->support_seq_write = 1;
}
cci_dev->cci_master_info[MASTER_0].reset_pending = TRUE;
msm_camera_io_w_mb(CCI_RESET_CMD_RMSK, cci_dev->base +
CCI_RESET_CMD_ADDR);
msm_camera_io_w_mb(0x1, cci_dev->base + CCI_RESET_CMD_ADDR);
rc = wait_for_completion_timeout(
&cci_dev->cci_master_info[MASTER_0].reset_complete,
CCI_TIMEOUT);
if (rc <= 0) {
pr_err("%s: wait_for_completion_timeout %d\n",
__func__, __LINE__);
if (rc == 0)
rc = -ETIMEDOUT;
goto reset_complete_failed;
}
for (i = 0; i < MASTER_MAX; i++)
cci_dev->i2c_freq_mode[i] = I2C_MAX_MODES;
msm_camera_io_w_mb(CCI_IRQ_MASK_0_RMSK,
cci_dev->base + CCI_IRQ_MASK_0_ADDR);
msm_camera_io_w_mb(CCI_IRQ_MASK_0_RMSK,
cci_dev->base + CCI_IRQ_CLEAR_0_ADDR);
msm_camera_io_w_mb(0x1, cci_dev->base + CCI_IRQ_GLOBAL_CLEAR_CMD_ADDR);
for (i = 0; i < MASTER_MAX; i++) {
if (!cci_dev->write_wq[i]) {
pr_err("Failed to flush write wq\n");
rc = -ENOMEM;
goto reset_complete_failed;
} else {
flush_workqueue(cci_dev->write_wq[i]);
}
}
cci_dev->cci_state = CCI_STATE_ENABLED;
return 0;
reset_complete_failed:
disable_irq(cci_dev->irq->start);
msm_cam_clk_enable(&cci_dev->pdev->dev, clk_info,
cci_dev->cci_clk, cci_dev->num_clk, 0);
clk_enable_failed:
if (cci_dev->cci_pinctrl_status) {
ret = pinctrl_select_state(cci_dev->cci_pinctrl.pinctrl,
cci_dev->cci_pinctrl.gpio_state_suspend);
if (ret)
pr_err("%s:%d cannot set pin to suspend state\n",
__func__, __LINE__);
}
msm_camera_request_gpio_table(cci_dev->cci_gpio_tbl,
cci_dev->cci_gpio_tbl_size, 0);
if (!IS_ERR_OR_NULL(cci_dev->reg_ptr)) {
regulator_disable(cci_dev->reg_ptr);
regulator_put(cci_dev->reg_ptr);
cci_dev->reg_ptr = NULL;
}
request_gpio_failed:
cci_dev->ref_count--;
return rc;
}
static int32_t msm_cci_release(struct v4l2_subdev *sd)
{
uint8_t i = 0, rc = 0;
struct cci_device *cci_dev;
cci_dev = v4l2_get_subdevdata(sd);
if (!cci_dev->ref_count || cci_dev->cci_state != CCI_STATE_ENABLED) {
pr_err("%s invalid ref count %d / cci state %d\n",
__func__, cci_dev->ref_count, cci_dev->cci_state);
return -EINVAL;
}
if (--cci_dev->ref_count) {
CDBG("%s ref_count Exit %d\n", __func__, cci_dev->ref_count);
return 0;
}
for (i = 0; i < MASTER_MAX; i++)
if (cci_dev->write_wq[i])
flush_workqueue(cci_dev->write_wq[i]);
disable_irq(cci_dev->irq->start);
msm_cam_clk_enable(&cci_dev->pdev->dev, &cci_clk_info[0][0],
cci_dev->cci_clk, cci_dev->num_clk, 0);
if (!IS_ERR_OR_NULL(cci_dev->reg_ptr)) {
regulator_disable(cci_dev->reg_ptr);
regulator_put(cci_dev->reg_ptr);
cci_dev->reg_ptr = NULL;
}
if (cci_dev->cci_pinctrl_status) {
rc = pinctrl_select_state(cci_dev->cci_pinctrl.pinctrl,
cci_dev->cci_pinctrl.gpio_state_suspend);
if (rc)
pr_err("%s:%d cannot set pin to active state\n",
__func__, __LINE__);
}
cci_dev->cci_pinctrl_status = 0;
msm_camera_request_gpio_table(cci_dev->cci_gpio_tbl,
cci_dev->cci_gpio_tbl_size, 0);
for (i = 0; i < MASTER_MAX; i++)
cci_dev->i2c_freq_mode[i] = I2C_MAX_MODES;
cci_dev->cci_state = CCI_STATE_DISABLED;
cci_dev->cycles_per_us = 0;
cci_dev->cci_clk_src = 0;
return 0;
}
static int32_t msm_cci_write(struct v4l2_subdev *sd,
struct msm_camera_cci_ctrl *c_ctrl)
{
int32_t rc = 0;
struct cci_device *cci_dev;
enum cci_i2c_master_t master;
struct msm_camera_cci_master_info *cci_master_info;
uint32_t i;
cci_dev = v4l2_get_subdevdata(sd);
if (!cci_dev || !c_ctrl) {
pr_err("%s:%d failed: invalid params %pK %pK\n", __func__,
__LINE__, cci_dev, c_ctrl);
rc = -EINVAL;
return rc;
}
master = c_ctrl->cci_info->cci_i2c_master;
cci_master_info = &cci_dev->cci_master_info[master];
switch (c_ctrl->cmd) {
case MSM_CCI_I2C_WRITE_SYNC_BLOCK:
mutex_lock(&cci_master_info->mutex_q[SYNC_QUEUE]);
rc = msm_cci_i2c_write(sd, c_ctrl,
SYNC_QUEUE, MSM_SYNC_ENABLE);
mutex_unlock(&cci_master_info->mutex_q[SYNC_QUEUE]);
break;
case MSM_CCI_I2C_WRITE_SYNC:
rc = msm_cci_i2c_write_async(sd, c_ctrl,
SYNC_QUEUE, MSM_SYNC_ENABLE);
break;
case MSM_CCI_I2C_WRITE:
case MSM_CCI_I2C_WRITE_SEQ:
for (i = 0; i < NUM_QUEUES; i++) {
if (mutex_trylock(&cci_master_info->mutex_q[i])) {
rc = msm_cci_i2c_write(sd, c_ctrl, i,
MSM_SYNC_DISABLE);
mutex_unlock(&cci_master_info->mutex_q[i]);
return rc;
}
}
mutex_lock(&cci_master_info->mutex_q[PRIORITY_QUEUE]);
rc = msm_cci_i2c_write(sd, c_ctrl,
PRIORITY_QUEUE, MSM_SYNC_DISABLE);
mutex_unlock(&cci_master_info->mutex_q[PRIORITY_QUEUE]);
break;
case MSM_CCI_I2C_WRITE_ASYNC:
rc = msm_cci_i2c_write_async(sd, c_ctrl,
PRIORITY_QUEUE, MSM_SYNC_DISABLE);
break;
default:
rc = -ENOIOCTLCMD;
}
return rc;
}
static int32_t msm_cci_config(struct v4l2_subdev *sd,
struct msm_camera_cci_ctrl *cci_ctrl)
{
int32_t rc = 0;
struct cci_device *cci_dev;
CDBG("%s line %d cmd %d\n", __func__, __LINE__,
cci_ctrl->cmd);
cci_dev = v4l2_get_subdevdata(sd);
mutex_lock(&cci_dev->mutex);
switch (cci_ctrl->cmd) {
case MSM_CCI_INIT:
rc = msm_cci_init(sd, cci_ctrl);
break;
case MSM_CCI_RELEASE:
rc = msm_cci_release(sd);
break;
case MSM_CCI_I2C_READ:
if (cci_dev->cci_state == CCI_STATE_DISABLED)
break;
rc = msm_cci_i2c_read_bytes(sd, cci_ctrl);
break;
case MSM_CCI_I2C_WRITE:
case MSM_CCI_I2C_WRITE_SEQ:
case MSM_CCI_I2C_WRITE_SYNC:
case MSM_CCI_I2C_WRITE_ASYNC:
case MSM_CCI_I2C_WRITE_SYNC_BLOCK:
if (cci_dev->cci_state == CCI_STATE_DISABLED)
break;
rc = msm_cci_write(sd, cci_ctrl);
break;
case MSM_CCI_GPIO_WRITE:
break;
case MSM_CCI_SET_SYNC_CID:
rc = msm_cci_i2c_set_sync_prms(sd, cci_ctrl);
break;
default:
rc = -ENOIOCTLCMD;
}
CDBG("%s line %d rc %d\n", __func__, __LINE__, rc);
cci_ctrl->status = rc;
mutex_unlock(&cci_dev->mutex);
return rc;
}
static irqreturn_t msm_cci_irq(int irq_num, void *data)
{
uint32_t irq;
struct cci_device *cci_dev = data;
irq = msm_camera_io_r_mb(cci_dev->base + CCI_IRQ_STATUS_0_ADDR);
msm_camera_io_w_mb(irq, cci_dev->base + CCI_IRQ_CLEAR_0_ADDR);
msm_camera_io_w_mb(0x1, cci_dev->base + CCI_IRQ_GLOBAL_CLEAR_CMD_ADDR);
msm_camera_io_w_mb(0x0, cci_dev->base + CCI_IRQ_GLOBAL_CLEAR_CMD_ADDR);
CDBG("%s CCI_I2C_M0_STATUS_ADDR = 0x%x\n", __func__, irq);
if (irq & CCI_IRQ_STATUS_0_RST_DONE_ACK_BMSK) {
if (cci_dev->cci_master_info[MASTER_0].reset_pending == TRUE) {
cci_dev->cci_master_info[MASTER_0].reset_pending =
FALSE;
complete(&cci_dev->cci_master_info[MASTER_0].
reset_complete);
}
if (cci_dev->cci_master_info[MASTER_1].reset_pending == TRUE) {
cci_dev->cci_master_info[MASTER_1].reset_pending =
FALSE;
complete(&cci_dev->cci_master_info[MASTER_1].
reset_complete);
}
}
if (irq & CCI_IRQ_STATUS_0_I2C_M0_RD_DONE_BMSK) {
cci_dev->cci_master_info[MASTER_0].status = 0;
complete(&cci_dev->cci_master_info[MASTER_0].reset_complete);
}
if (irq & CCI_IRQ_STATUS_0_I2C_M0_Q0_REPORT_BMSK) {
struct msm_camera_cci_master_info *cci_master_info;
cci_master_info = &cci_dev->cci_master_info[MASTER_0];
atomic_set(&cci_master_info->q_free[QUEUE_0], 0);
cci_master_info->status = 0;
if (atomic_read(&cci_master_info->done_pending[QUEUE_0]) == 1) {
complete(&cci_master_info->report_q[QUEUE_0]);
atomic_set(&cci_master_info->done_pending[QUEUE_0], 0);
}
}
if (irq & CCI_IRQ_STATUS_0_I2C_M0_Q1_REPORT_BMSK) {
struct msm_camera_cci_master_info *cci_master_info;
cci_master_info = &cci_dev->cci_master_info[MASTER_0];
atomic_set(&cci_master_info->q_free[QUEUE_1], 0);
cci_master_info->status = 0;
if (atomic_read(&cci_master_info->done_pending[QUEUE_1]) == 1) {
complete(&cci_master_info->report_q[QUEUE_1]);
atomic_set(&cci_master_info->done_pending[QUEUE_1], 0);
}
}
if (irq & CCI_IRQ_STATUS_0_I2C_M1_RD_DONE_BMSK) {
cci_dev->cci_master_info[MASTER_1].status = 0;
complete(&cci_dev->cci_master_info[MASTER_1].reset_complete);
}
if (irq & CCI_IRQ_STATUS_0_I2C_M1_Q0_REPORT_BMSK) {
struct msm_camera_cci_master_info *cci_master_info;
cci_master_info = &cci_dev->cci_master_info[MASTER_1];
atomic_set(&cci_master_info->q_free[QUEUE_0], 0);
cci_master_info->status = 0;
if (atomic_read(&cci_master_info->done_pending[QUEUE_0]) == 1) {
complete(&cci_master_info->report_q[QUEUE_0]);
atomic_set(&cci_master_info->done_pending[QUEUE_0], 0);
}
}
if (irq & CCI_IRQ_STATUS_0_I2C_M1_Q1_REPORT_BMSK) {
struct msm_camera_cci_master_info *cci_master_info;
cci_master_info = &cci_dev->cci_master_info[MASTER_1];
atomic_set(&cci_master_info->q_free[QUEUE_1], 0);
cci_master_info->status = 0;
if (atomic_read(&cci_master_info->done_pending[QUEUE_1]) == 1) {
complete(&cci_master_info->report_q[QUEUE_1]);
atomic_set(&cci_master_info->done_pending[QUEUE_1], 0);
}
}
if (irq & CCI_IRQ_STATUS_0_I2C_M0_Q0Q1_HALT_ACK_BMSK) {
cci_dev->cci_master_info[MASTER_0].reset_pending = TRUE;
msm_camera_io_w_mb(CCI_M0_RESET_RMSK,
cci_dev->base + CCI_RESET_CMD_ADDR);
}
if (irq & CCI_IRQ_STATUS_0_I2C_M1_Q0Q1_HALT_ACK_BMSK) {
cci_dev->cci_master_info[MASTER_1].reset_pending = TRUE;
msm_camera_io_w_mb(CCI_M1_RESET_RMSK,
cci_dev->base + CCI_RESET_CMD_ADDR);
}
if (irq & CCI_IRQ_STATUS_0_I2C_M0_ERROR_BMSK) {
pr_err("%s:%d MASTER_0 error 0x%x\n", __func__, __LINE__, irq);
cci_dev->cci_master_info[MASTER_0].status = -EINVAL;
msm_camera_io_w_mb(CCI_M0_HALT_REQ_RMSK,
cci_dev->base + CCI_HALT_REQ_ADDR);
}
if (irq & CCI_IRQ_STATUS_0_I2C_M1_ERROR_BMSK) {
pr_err("%s:%d MASTER_1 error 0x%x\n", __func__, __LINE__, irq);
cci_dev->cci_master_info[MASTER_1].status = -EINVAL;
msm_camera_io_w_mb(CCI_M1_HALT_REQ_RMSK,
cci_dev->base + CCI_HALT_REQ_ADDR);
}
return IRQ_HANDLED;
}
static int msm_cci_irq_routine(struct v4l2_subdev *sd, u32 status,
bool *handled)
{
struct cci_device *cci_dev = v4l2_get_subdevdata(sd);
irqreturn_t ret;
CDBG("%s line %d\n", __func__, __LINE__);
ret = msm_cci_irq(cci_dev->irq->start, cci_dev);
CDBG("%s: msm_cci_irq return %d\n", __func__, ret);
*handled = TRUE;
return 0;
}
static long msm_cci_subdev_ioctl(struct v4l2_subdev *sd,
unsigned int cmd, void *arg)
{
int32_t rc = 0;
CDBG("%s line %d\n", __func__, __LINE__);
switch (cmd) {
case VIDIOC_MSM_CCI_CFG:
rc = msm_cci_config(sd, arg);
break;
case MSM_SD_NOTIFY_FREEZE:
break;
case MSM_SD_SHUTDOWN: {
struct msm_camera_cci_ctrl ctrl_cmd;
ctrl_cmd.cmd = MSM_CCI_RELEASE;
rc = msm_cci_config(sd, &ctrl_cmd);
break;
}
default:
rc = -ENOIOCTLCMD;
}
CDBG("%s line %d rc %d\n", __func__, __LINE__, rc);
return rc;
}
static struct v4l2_subdev_core_ops msm_cci_subdev_core_ops = {
.g_chip_ident = &msm_cci_subdev_g_chip_ident,
.ioctl = &msm_cci_subdev_ioctl,
.interrupt_service_routine = msm_cci_irq_routine,
};
static const struct v4l2_subdev_ops msm_cci_subdev_ops = {
.core = &msm_cci_subdev_core_ops,
};
static const struct v4l2_subdev_internal_ops msm_cci_internal_ops;
static void msm_cci_init_cci_params(struct cci_device *new_cci_dev)
{
uint8_t i = 0, j = 0;
for (i = 0; i < NUM_MASTERS; i++) {
new_cci_dev->cci_master_info[i].status = 0;
mutex_init(&new_cci_dev->cci_master_info[i].mutex);
init_completion(&new_cci_dev->
cci_master_info[i].reset_complete);
for (j = 0; j < NUM_QUEUES; j++) {
mutex_init(&new_cci_dev->cci_master_info[i].mutex_q[j]);
init_completion(&new_cci_dev->
cci_master_info[i].report_q[j]);
if (j == QUEUE_0)
new_cci_dev->cci_i2c_queue_info[i][j].
max_queue_size = CCI_I2C_QUEUE_0_SIZE;
else
new_cci_dev->cci_i2c_queue_info[i][j].
max_queue_size = CCI_I2C_QUEUE_1_SIZE;
}
}
return;
}
static int32_t msm_cci_init_gpio_params(struct cci_device *cci_dev)
{
int32_t rc = 0, i = 0;
uint32_t *val_array = NULL;
uint8_t tbl_size = 0;
struct device_node *of_node = cci_dev->pdev->dev.of_node;
struct gpio *gpio_tbl = NULL;
cci_dev->cci_gpio_tbl_size = tbl_size = of_gpio_count(of_node);
CDBG("%s gpio count %d\n", __func__, tbl_size);
if (!tbl_size) {
pr_err("%s:%d gpio count 0\n", __func__, __LINE__);
return 0;
}
gpio_tbl = cci_dev->cci_gpio_tbl =
kzalloc(sizeof(struct gpio) * tbl_size, GFP_KERNEL);
if (!gpio_tbl) {
pr_err("%s failed %d\n", __func__, __LINE__);
return 0;
}
for (i = 0; i < tbl_size; i++) {
gpio_tbl[i].gpio = of_get_gpio(of_node, i);
CDBG("%s gpio_tbl[%d].gpio = %d\n", __func__, i,
gpio_tbl[i].gpio);
}
val_array = kzalloc(sizeof(uint32_t) * tbl_size, GFP_KERNEL);
if (!val_array) {
pr_err("%s failed %d\n", __func__, __LINE__);
rc = -ENOMEM;
goto ERROR1;
}
rc = of_property_read_u32_array(of_node, "qcom,gpio-tbl-flags",
val_array, tbl_size);
if (rc < 0) {
pr_err("%s failed %d\n", __func__, __LINE__);
goto ERROR2;
}
for (i = 0; i < tbl_size; i++) {
gpio_tbl[i].flags = val_array[i];
CDBG("%s gpio_tbl[%d].flags = %ld\n", __func__, i,
gpio_tbl[i].flags);
}
for (i = 0; i < tbl_size; i++) {
rc = of_property_read_string_index(of_node,
"qcom,gpio-tbl-label", i, &gpio_tbl[i].label);
CDBG("%s gpio_tbl[%d].label = %s\n", __func__, i,
gpio_tbl[i].label);
if (rc < 0) {
pr_err("%s failed %d\n", __func__, __LINE__);
goto ERROR2;
}
}
kfree(val_array);
return rc;
ERROR2:
kfree(val_array);
ERROR1:
kfree(cci_dev->cci_gpio_tbl);
cci_dev->cci_gpio_tbl = NULL;
cci_dev->cci_gpio_tbl_size = 0;
return rc;
}
static void msm_cci_init_default_clk_params(struct cci_device *cci_dev,
uint8_t index)
{
/* default clock params are for 100Khz */
cci_dev->cci_clk_params[index].hw_thigh = 78;
cci_dev->cci_clk_params[index].hw_tlow = 114;
cci_dev->cci_clk_params[index].hw_tsu_sto = 28;
cci_dev->cci_clk_params[index].hw_tsu_sta = 28;
cci_dev->cci_clk_params[index].hw_thd_dat = 10;
cci_dev->cci_clk_params[index].hw_thd_sta = 77;
cci_dev->cci_clk_params[index].hw_tbuf = 118;
cci_dev->cci_clk_params[index].hw_scl_stretch_en = 0;
cci_dev->cci_clk_params[index].hw_trdhld = 6;
cci_dev->cci_clk_params[index].hw_tsp = 1;
cci_dev->cci_clk_params[index].cci_clk_src = 19200000;
}
static void msm_cci_init_clk_params(struct cci_device *cci_dev)
{
int32_t rc = 0;
uint32_t val = 0;
uint8_t count = 0;
struct device_node *of_node = cci_dev->pdev->dev.of_node;
struct device_node *src_node = NULL;
for (count = 0; count < I2C_MAX_MODES; count++) {
if (I2C_STANDARD_MODE == count)
src_node = of_find_node_by_name(of_node,
"qcom,i2c_standard_mode");
else if (I2C_FAST_MODE == count)
src_node = of_find_node_by_name(of_node,
"qcom,i2c_fast_mode");
else if (I2C_FAST_PLUS_MODE == count)
src_node = of_find_node_by_name(of_node,
"qcom,i2c_fast_plus_mode");
else
src_node = of_find_node_by_name(of_node,
"qcom,i2c_custom_mode");
rc = of_property_read_u32(src_node, "qcom,hw-thigh", &val);
CDBG("%s qcom,hw-thigh %d, rc %d\n", __func__, val, rc);
if (!rc) {
cci_dev->cci_clk_params[count].hw_thigh = val;
rc = of_property_read_u32(src_node, "qcom,hw-tlow",
&val);
CDBG("%s qcom,hw-tlow %d, rc %d\n", __func__, val, rc);
}
if (!rc) {
cci_dev->cci_clk_params[count].hw_tlow = val;
rc = of_property_read_u32(src_node, "qcom,hw-tsu-sto",
&val);
CDBG("%s qcom,hw-tsu-sto %d, rc %d\n",
__func__, val, rc);
}
if (!rc) {
cci_dev->cci_clk_params[count].hw_tsu_sto = val;
rc = of_property_read_u32(src_node, "qcom,hw-tsu-sta",
&val);
CDBG("%s qcom,hw-tsu-sta %d, rc %d\n",
__func__, val, rc);
}
if (!rc) {
cci_dev->cci_clk_params[count].hw_tsu_sta = val;
rc = of_property_read_u32(src_node, "qcom,hw-thd-dat",
&val);
CDBG("%s qcom,hw-thd-dat %d, rc %d\n",
__func__, val, rc);
}
if (!rc) {
cci_dev->cci_clk_params[count].hw_thd_dat = val;
rc = of_property_read_u32(src_node, "qcom,hw-thd-sta",
&val);
CDBG("%s qcom,hw-thd-sta %d, rc %d\n", __func__,
val, rc);
}
if (!rc) {
cci_dev->cci_clk_params[count].hw_thd_sta = val;
rc = of_property_read_u32(src_node, "qcom,hw-tbuf",
&val);
CDBG("%s qcom,hw-tbuf %d, rc %d\n", __func__, val, rc);
}
if (!rc) {
cci_dev->cci_clk_params[count].hw_tbuf = val;
rc = of_property_read_u32(src_node,
"qcom,hw-scl-stretch-en", &val);
CDBG("%s qcom,hw-scl-stretch-en %d, rc %d\n",
__func__, val, rc);
}
if (!rc) {
cci_dev->cci_clk_params[count].hw_scl_stretch_en = val;
rc = of_property_read_u32(src_node, "qcom,hw-trdhld",
&val);
CDBG("%s qcom,hw-trdhld %d, rc %d\n",
__func__, val, rc);
}
if (!rc) {
cci_dev->cci_clk_params[count].hw_trdhld = val;
rc = of_property_read_u32(src_node, "qcom,hw-tsp",
&val);
CDBG("%s qcom,hw-tsp %d, rc %d\n", __func__, val, rc);
}
if (!rc) {
cci_dev->cci_clk_params[count].hw_tsp = val;
val = 0;
rc = of_property_read_u32(src_node, "qcom,cci-clk-src",
&val);
CDBG("%s qcom,cci-clk-src %d, rc %d\n",
__func__, val, rc);
cci_dev->cci_clk_params[count].cci_clk_src = val;
}
else
msm_cci_init_default_clk_params(cci_dev, count);
of_node_put(src_node);
src_node = NULL;
}
return;
}
struct v4l2_subdev *msm_cci_get_subdev(void)
{
return g_cci_subdev;
}
static int msm_cci_get_clk_info(struct cci_device *cci_dev,
struct platform_device *pdev)
{
uint32_t count;
uint32_t count_r;
int i, j, rc;
const uint32_t *p;
int index = 0;
struct device_node *of_node;
of_node = pdev->dev.of_node;
count = of_property_count_strings(of_node, "clock-names");
cci_dev->num_clk = count;
CDBG("%s: count = %d\n", __func__, count);
if (count == 0) {
pr_err("%s: no clocks found in device tree, count=%d",
__func__, count);
return 0;
}
if (count > CCI_NUM_CLK_MAX) {
pr_err("%s: invalid count=%d, max is %d\n", __func__,
count, CCI_NUM_CLK_MAX);
return -EINVAL;
}
p = of_get_property(of_node, "qcom,clock-rates", &count_r);
if (!p || !count_r) {
pr_err("failed\n");
return -EINVAL;
}
count_r /= sizeof(uint32_t);
cci_dev->num_clk_cases = count_r/count;
if (cci_dev->num_clk_cases > CCI_NUM_CLK_CASES) {
pr_err("%s: invalid count=%d, max is %d\n", __func__,
cci_dev->num_clk_cases, CCI_NUM_CLK_CASES);
return -EINVAL;
}
index = 0;
for (i = 0; i < count_r/count; i++) {
for (j = 0; j < count; j++) {
rc = of_property_read_string_index(of_node,
"clock-names", j,
&(cci_clk_info[i][j].clk_name));
pr_err("%s: clock-names[%d][%d] = %s\n", __func__,
i, j, cci_clk_info[i][j].clk_name);
if (rc < 0) {
pr_err("%s:%d, failed\n", __func__, __LINE__);
return rc;
}
cci_clk_info[i][j].clk_rate =
(be32_to_cpu(p[index]) == 0) ?
(long)-1 : be32_to_cpu(p[index]);
pr_err("%s: clk_rate[%d][%d] = %ld\n", __func__, i, j,
cci_clk_info[i][j].clk_rate);
index++;
}
}
return 0;
}
static int msm_cci_probe(struct platform_device *pdev)
{
struct cci_device *new_cci_dev;
int rc = 0, i = 0;
CDBG("%s: pdev %pK device id = %d\n", __func__, pdev, pdev->id);
new_cci_dev = kzalloc(sizeof(struct cci_device), GFP_KERNEL);
if (!new_cci_dev) {
CDBG("%s: no enough memory\n", __func__);
return -ENOMEM;
}
mutex_init(&new_cci_dev->mutex);
v4l2_subdev_init(&new_cci_dev->msm_sd.sd, &msm_cci_subdev_ops);
new_cci_dev->msm_sd.sd.internal_ops = &msm_cci_internal_ops;
snprintf(new_cci_dev->msm_sd.sd.name,
ARRAY_SIZE(new_cci_dev->msm_sd.sd.name), "msm_cci");
v4l2_set_subdevdata(&new_cci_dev->msm_sd.sd, new_cci_dev);
platform_set_drvdata(pdev, &new_cci_dev->msm_sd.sd);
CDBG("%s sd %pK\n", __func__, &new_cci_dev->msm_sd.sd);
if (pdev->dev.of_node)
of_property_read_u32((&pdev->dev)->of_node,
"cell-index", &pdev->id);
new_cci_dev->reg_ptr = NULL;
rc = msm_cci_get_clk_info(new_cci_dev, pdev);
if (rc < 0) {
pr_err("%s: msm_cci_get_clk_info() failed", __func__);
kfree(new_cci_dev);
return -EFAULT;
}
new_cci_dev->ref_count = 0;
new_cci_dev->mem = platform_get_resource_byname(pdev,
IORESOURCE_MEM, "cci");
if (!new_cci_dev->mem) {
CDBG("%s: no mem resource?\n", __func__);
rc = -ENODEV;
goto cci_no_resource;
}
new_cci_dev->irq = platform_get_resource_byname(pdev,
IORESOURCE_IRQ, "cci");
if (!new_cci_dev->irq) {
CDBG("%s: no irq resource?\n", __func__);
rc = -ENODEV;
goto cci_no_resource;
}
CDBG("%s line %d cci irq start %d end %d\n", __func__,
__LINE__,
(int) new_cci_dev->irq->start,
(int) new_cci_dev->irq->end);
new_cci_dev->io = request_mem_region(new_cci_dev->mem->start,
resource_size(new_cci_dev->mem), pdev->name);
if (!new_cci_dev->io) {
CDBG("%s: no valid mem region\n", __func__);
rc = -EBUSY;
goto cci_no_resource;
}
new_cci_dev->base = ioremap(new_cci_dev->mem->start,
resource_size(new_cci_dev->mem));
if (!new_cci_dev->base) {
rc = -ENOMEM;
goto cci_release_mem;
}
rc = request_irq(new_cci_dev->irq->start, msm_cci_irq,
IRQF_TRIGGER_RISING, "cci", new_cci_dev);
if (rc < 0) {
CDBG("%s: irq request fail\n", __func__);
rc = -EBUSY;
goto cci_release_mem;
}
disable_irq(new_cci_dev->irq->start);
new_cci_dev->msm_sd.close_seq = MSM_SD_CLOSE_2ND_CATEGORY | 0x6;
msm_sd_register(&new_cci_dev->msm_sd);
new_cci_dev->pdev = pdev;
msm_cci_init_cci_params(new_cci_dev);
msm_cci_init_clk_params(new_cci_dev);
msm_cci_init_gpio_params(new_cci_dev);
rc = of_platform_populate(pdev->dev.of_node, NULL, NULL, &pdev->dev);
if (rc)
pr_err("%s: failed to add child nodes, rc=%d\n", __func__, rc);
new_cci_dev->cci_state = CCI_STATE_DISABLED;
g_cci_subdev = &new_cci_dev->msm_sd.sd;
for (i = 0; i < MASTER_MAX; i++) {
new_cci_dev->write_wq[i] = create_singlethread_workqueue(
"msm_cci_wq");
if (!new_cci_dev->write_wq[i])
pr_err("Failed to create write wq\n");
}
CDBG("%s cci subdev %pK\n", __func__, &new_cci_dev->msm_sd.sd);
CDBG("%s line %d\n", __func__, __LINE__);
return 0;
cci_release_mem:
release_mem_region(new_cci_dev->mem->start,
resource_size(new_cci_dev->mem));
cci_no_resource:
mutex_destroy(&new_cci_dev->mutex);
kfree(new_cci_dev);
return 0;
}
static int msm_cci_exit(struct platform_device *pdev)
{
struct v4l2_subdev *subdev = platform_get_drvdata(pdev);
struct cci_device *cci_dev =
v4l2_get_subdevdata(subdev);
release_mem_region(cci_dev->mem->start, resource_size(cci_dev->mem));
kfree(cci_dev);
return 0;
}
static const struct of_device_id msm_cci_dt_match[] = {
{.compatible = "qcom,cci"},
{}
};
MODULE_DEVICE_TABLE(of, msm_cci_dt_match);
static struct platform_driver cci_driver = {
.probe = msm_cci_probe,
.remove = msm_cci_exit,
.driver = {
.name = MSM_CCI_DRV_NAME,
.owner = THIS_MODULE,
.of_match_table = msm_cci_dt_match,
},
};
static int __init msm_cci_init_module(void)
{
return platform_driver_register(&cci_driver);
}
static void __exit msm_cci_exit_module(void)
{
platform_driver_unregister(&cci_driver);
}
module_init(msm_cci_init_module);
module_exit(msm_cci_exit_module);
MODULE_DESCRIPTION("MSM CCI driver");
MODULE_LICENSE("GPL v2");