android_kernel_samsung_msm8976/arch/s390/hypfs/hypfs_diag.c
Michael Holzheu 2fcb3686e1 [S390] hypfs: Move buffer allocation from open to read
Currently the buffer for diagnose data is allocated in the open function
of the debugfs file and is released in the close function. This has the
drawback that a user (root) can pin that memory by not closing the file.
This patch moves the buffer allocation to the read function. The buffer is
automatically released after the buffer is copied to userspace.

Signed-off-by: Michael Holzheu <holzheu@linux.vnet.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
2011-01-05 12:47:27 +01:00

779 lines
18 KiB
C

/*
* arch/s390/hypfs/hypfs_diag.c
* Hypervisor filesystem for Linux on s390. Diag 204 and 224
* implementation.
*
* Copyright IBM Corp. 2006, 2008
* Author(s): Michael Holzheu <holzheu@de.ibm.com>
*/
#define KMSG_COMPONENT "hypfs"
#define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
#include <linux/types.h>
#include <linux/errno.h>
#include <linux/slab.h>
#include <linux/string.h>
#include <linux/vmalloc.h>
#include <linux/mm.h>
#include <asm/ebcdic.h>
#include "hypfs.h"
#define LPAR_NAME_LEN 8 /* lpar name len in diag 204 data */
#define CPU_NAME_LEN 16 /* type name len of cpus in diag224 name table */
#define TMP_SIZE 64 /* size of temporary buffers */
#define DBFS_D204_HDR_VERSION 0
/* diag 204 subcodes */
enum diag204_sc {
SUBC_STIB4 = 4,
SUBC_RSI = 5,
SUBC_STIB6 = 6,
SUBC_STIB7 = 7
};
/* The two available diag 204 data formats */
enum diag204_format {
INFO_SIMPLE = 0,
INFO_EXT = 0x00010000
};
/* bit is set in flags, when physical cpu info is included in diag 204 data */
#define LPAR_PHYS_FLG 0x80
static char *diag224_cpu_names; /* diag 224 name table */
static enum diag204_sc diag204_store_sc; /* used subcode for store */
static enum diag204_format diag204_info_type; /* used diag 204 data format */
static void *diag204_buf; /* 4K aligned buffer for diag204 data */
static void *diag204_buf_vmalloc; /* vmalloc pointer for diag204 data */
static int diag204_buf_pages; /* number of pages for diag204 data */
static struct dentry *dbfs_d204_file;
/*
* DIAG 204 data structures and member access functions.
*
* Since we have two different diag 204 data formats for old and new s390
* machines, we do not access the structs directly, but use getter functions for
* each struct member instead. This should make the code more readable.
*/
/* Time information block */
struct info_blk_hdr {
__u8 npar;
__u8 flags;
__u16 tslice;
__u16 phys_cpus;
__u16 this_part;
__u64 curtod;
} __attribute__ ((packed));
struct x_info_blk_hdr {
__u8 npar;
__u8 flags;
__u16 tslice;
__u16 phys_cpus;
__u16 this_part;
__u64 curtod1;
__u64 curtod2;
char reserved[40];
} __attribute__ ((packed));
static inline int info_blk_hdr__size(enum diag204_format type)
{
if (type == INFO_SIMPLE)
return sizeof(struct info_blk_hdr);
else /* INFO_EXT */
return sizeof(struct x_info_blk_hdr);
}
static inline __u8 info_blk_hdr__npar(enum diag204_format type, void *hdr)
{
if (type == INFO_SIMPLE)
return ((struct info_blk_hdr *)hdr)->npar;
else /* INFO_EXT */
return ((struct x_info_blk_hdr *)hdr)->npar;
}
static inline __u8 info_blk_hdr__flags(enum diag204_format type, void *hdr)
{
if (type == INFO_SIMPLE)
return ((struct info_blk_hdr *)hdr)->flags;
else /* INFO_EXT */
return ((struct x_info_blk_hdr *)hdr)->flags;
}
static inline __u16 info_blk_hdr__pcpus(enum diag204_format type, void *hdr)
{
if (type == INFO_SIMPLE)
return ((struct info_blk_hdr *)hdr)->phys_cpus;
else /* INFO_EXT */
return ((struct x_info_blk_hdr *)hdr)->phys_cpus;
}
/* Partition header */
struct part_hdr {
__u8 pn;
__u8 cpus;
char reserved[6];
char part_name[LPAR_NAME_LEN];
} __attribute__ ((packed));
struct x_part_hdr {
__u8 pn;
__u8 cpus;
__u8 rcpus;
__u8 pflag;
__u32 mlu;
char part_name[LPAR_NAME_LEN];
char lpc_name[8];
char os_name[8];
__u64 online_cs;
__u64 online_es;
__u8 upid;
char reserved1[3];
__u32 group_mlu;
char group_name[8];
char reserved2[32];
} __attribute__ ((packed));
static inline int part_hdr__size(enum diag204_format type)
{
if (type == INFO_SIMPLE)
return sizeof(struct part_hdr);
else /* INFO_EXT */
return sizeof(struct x_part_hdr);
}
static inline __u8 part_hdr__rcpus(enum diag204_format type, void *hdr)
{
if (type == INFO_SIMPLE)
return ((struct part_hdr *)hdr)->cpus;
else /* INFO_EXT */
return ((struct x_part_hdr *)hdr)->rcpus;
}
static inline void part_hdr__part_name(enum diag204_format type, void *hdr,
char *name)
{
if (type == INFO_SIMPLE)
memcpy(name, ((struct part_hdr *)hdr)->part_name,
LPAR_NAME_LEN);
else /* INFO_EXT */
memcpy(name, ((struct x_part_hdr *)hdr)->part_name,
LPAR_NAME_LEN);
EBCASC(name, LPAR_NAME_LEN);
name[LPAR_NAME_LEN] = 0;
strim(name);
}
struct cpu_info {
__u16 cpu_addr;
char reserved1[2];
__u8 ctidx;
__u8 cflag;
__u16 weight;
__u64 acc_time;
__u64 lp_time;
} __attribute__ ((packed));
struct x_cpu_info {
__u16 cpu_addr;
char reserved1[2];
__u8 ctidx;
__u8 cflag;
__u16 weight;
__u64 acc_time;
__u64 lp_time;
__u16 min_weight;
__u16 cur_weight;
__u16 max_weight;
char reseved2[2];
__u64 online_time;
__u64 wait_time;
__u32 pma_weight;
__u32 polar_weight;
char reserved3[40];
} __attribute__ ((packed));
/* CPU info block */
static inline int cpu_info__size(enum diag204_format type)
{
if (type == INFO_SIMPLE)
return sizeof(struct cpu_info);
else /* INFO_EXT */
return sizeof(struct x_cpu_info);
}
static inline __u8 cpu_info__ctidx(enum diag204_format type, void *hdr)
{
if (type == INFO_SIMPLE)
return ((struct cpu_info *)hdr)->ctidx;
else /* INFO_EXT */
return ((struct x_cpu_info *)hdr)->ctidx;
}
static inline __u16 cpu_info__cpu_addr(enum diag204_format type, void *hdr)
{
if (type == INFO_SIMPLE)
return ((struct cpu_info *)hdr)->cpu_addr;
else /* INFO_EXT */
return ((struct x_cpu_info *)hdr)->cpu_addr;
}
static inline __u64 cpu_info__acc_time(enum diag204_format type, void *hdr)
{
if (type == INFO_SIMPLE)
return ((struct cpu_info *)hdr)->acc_time;
else /* INFO_EXT */
return ((struct x_cpu_info *)hdr)->acc_time;
}
static inline __u64 cpu_info__lp_time(enum diag204_format type, void *hdr)
{
if (type == INFO_SIMPLE)
return ((struct cpu_info *)hdr)->lp_time;
else /* INFO_EXT */
return ((struct x_cpu_info *)hdr)->lp_time;
}
static inline __u64 cpu_info__online_time(enum diag204_format type, void *hdr)
{
if (type == INFO_SIMPLE)
return 0; /* online_time not available in simple info */
else /* INFO_EXT */
return ((struct x_cpu_info *)hdr)->online_time;
}
/* Physical header */
struct phys_hdr {
char reserved1[1];
__u8 cpus;
char reserved2[6];
char mgm_name[8];
} __attribute__ ((packed));
struct x_phys_hdr {
char reserved1[1];
__u8 cpus;
char reserved2[6];
char mgm_name[8];
char reserved3[80];
} __attribute__ ((packed));
static inline int phys_hdr__size(enum diag204_format type)
{
if (type == INFO_SIMPLE)
return sizeof(struct phys_hdr);
else /* INFO_EXT */
return sizeof(struct x_phys_hdr);
}
static inline __u8 phys_hdr__cpus(enum diag204_format type, void *hdr)
{
if (type == INFO_SIMPLE)
return ((struct phys_hdr *)hdr)->cpus;
else /* INFO_EXT */
return ((struct x_phys_hdr *)hdr)->cpus;
}
/* Physical CPU info block */
struct phys_cpu {
__u16 cpu_addr;
char reserved1[2];
__u8 ctidx;
char reserved2[3];
__u64 mgm_time;
char reserved3[8];
} __attribute__ ((packed));
struct x_phys_cpu {
__u16 cpu_addr;
char reserved1[2];
__u8 ctidx;
char reserved2[3];
__u64 mgm_time;
char reserved3[80];
} __attribute__ ((packed));
static inline int phys_cpu__size(enum diag204_format type)
{
if (type == INFO_SIMPLE)
return sizeof(struct phys_cpu);
else /* INFO_EXT */
return sizeof(struct x_phys_cpu);
}
static inline __u16 phys_cpu__cpu_addr(enum diag204_format type, void *hdr)
{
if (type == INFO_SIMPLE)
return ((struct phys_cpu *)hdr)->cpu_addr;
else /* INFO_EXT */
return ((struct x_phys_cpu *)hdr)->cpu_addr;
}
static inline __u64 phys_cpu__mgm_time(enum diag204_format type, void *hdr)
{
if (type == INFO_SIMPLE)
return ((struct phys_cpu *)hdr)->mgm_time;
else /* INFO_EXT */
return ((struct x_phys_cpu *)hdr)->mgm_time;
}
static inline __u64 phys_cpu__ctidx(enum diag204_format type, void *hdr)
{
if (type == INFO_SIMPLE)
return ((struct phys_cpu *)hdr)->ctidx;
else /* INFO_EXT */
return ((struct x_phys_cpu *)hdr)->ctidx;
}
/* Diagnose 204 functions */
static int diag204(unsigned long subcode, unsigned long size, void *addr)
{
register unsigned long _subcode asm("0") = subcode;
register unsigned long _size asm("1") = size;
asm volatile(
" diag %2,%0,0x204\n"
"0:\n"
EX_TABLE(0b,0b)
: "+d" (_subcode), "+d" (_size) : "d" (addr) : "memory");
if (_subcode)
return -1;
return _size;
}
/*
* For the old diag subcode 4 with simple data format we have to use real
* memory. If we use subcode 6 or 7 with extended data format, we can (and
* should) use vmalloc, since we need a lot of memory in that case. Currently
* up to 93 pages!
*/
static void diag204_free_buffer(void)
{
if (!diag204_buf)
return;
if (diag204_buf_vmalloc) {
vfree(diag204_buf_vmalloc);
diag204_buf_vmalloc = NULL;
} else {
free_pages((unsigned long) diag204_buf, 0);
}
diag204_buf = NULL;
}
static void *page_align_ptr(void *ptr)
{
return (void *) PAGE_ALIGN((unsigned long) ptr);
}
static void *diag204_alloc_vbuf(int pages)
{
/* The buffer has to be page aligned! */
diag204_buf_vmalloc = vmalloc(PAGE_SIZE * (pages + 1));
if (!diag204_buf_vmalloc)
return ERR_PTR(-ENOMEM);
diag204_buf = page_align_ptr(diag204_buf_vmalloc);
diag204_buf_pages = pages;
return diag204_buf;
}
static void *diag204_alloc_rbuf(void)
{
diag204_buf = (void*)__get_free_pages(GFP_KERNEL,0);
if (!diag204_buf)
return ERR_PTR(-ENOMEM);
diag204_buf_pages = 1;
return diag204_buf;
}
static void *diag204_get_buffer(enum diag204_format fmt, int *pages)
{
if (diag204_buf) {
*pages = diag204_buf_pages;
return diag204_buf;
}
if (fmt == INFO_SIMPLE) {
*pages = 1;
return diag204_alloc_rbuf();
} else {/* INFO_EXT */
*pages = diag204((unsigned long)SUBC_RSI |
(unsigned long)INFO_EXT, 0, NULL);
if (*pages <= 0)
return ERR_PTR(-ENOSYS);
else
return diag204_alloc_vbuf(*pages);
}
}
/*
* diag204_probe() has to find out, which type of diagnose 204 implementation
* we have on our machine. Currently there are three possible scanarios:
* - subcode 4 + simple data format (only one page)
* - subcode 4-6 + extended data format
* - subcode 4-7 + extended data format
*
* Subcode 5 is used to retrieve the size of the data, provided by subcodes
* 6 and 7. Subcode 7 basically has the same function as subcode 6. In addition
* to subcode 6 it provides also information about secondary cpus.
* In order to get as much information as possible, we first try
* subcode 7, then 6 and if both fail, we use subcode 4.
*/
static int diag204_probe(void)
{
void *buf;
int pages, rc;
buf = diag204_get_buffer(INFO_EXT, &pages);
if (!IS_ERR(buf)) {
if (diag204((unsigned long)SUBC_STIB7 |
(unsigned long)INFO_EXT, pages, buf) >= 0) {
diag204_store_sc = SUBC_STIB7;
diag204_info_type = INFO_EXT;
goto out;
}
if (diag204((unsigned long)SUBC_STIB6 |
(unsigned long)INFO_EXT, pages, buf) >= 0) {
diag204_store_sc = SUBC_STIB6;
diag204_info_type = INFO_EXT;
goto out;
}
diag204_free_buffer();
}
/* subcodes 6 and 7 failed, now try subcode 4 */
buf = diag204_get_buffer(INFO_SIMPLE, &pages);
if (IS_ERR(buf)) {
rc = PTR_ERR(buf);
goto fail_alloc;
}
if (diag204((unsigned long)SUBC_STIB4 |
(unsigned long)INFO_SIMPLE, pages, buf) >= 0) {
diag204_store_sc = SUBC_STIB4;
diag204_info_type = INFO_SIMPLE;
goto out;
} else {
rc = -ENOSYS;
goto fail_store;
}
out:
rc = 0;
fail_store:
diag204_free_buffer();
fail_alloc:
return rc;
}
static int diag204_do_store(void *buf, int pages)
{
int rc;
rc = diag204((unsigned long) diag204_store_sc |
(unsigned long) diag204_info_type, pages, buf);
return rc < 0 ? -ENOSYS : 0;
}
static void *diag204_store(void)
{
void *buf;
int pages, rc;
buf = diag204_get_buffer(diag204_info_type, &pages);
if (IS_ERR(buf))
goto out;
rc = diag204_do_store(buf, pages);
if (rc)
return ERR_PTR(rc);
out:
return buf;
}
/* Diagnose 224 functions */
static int diag224(void *ptr)
{
int rc = -EOPNOTSUPP;
asm volatile(
" diag %1,%2,0x224\n"
"0: lhi %0,0x0\n"
"1:\n"
EX_TABLE(0b,1b)
: "+d" (rc) :"d" (0), "d" (ptr) : "memory");
return rc;
}
static int diag224_get_name_table(void)
{
/* memory must be below 2GB */
diag224_cpu_names = kmalloc(PAGE_SIZE, GFP_KERNEL | GFP_DMA);
if (!diag224_cpu_names)
return -ENOMEM;
if (diag224(diag224_cpu_names)) {
kfree(diag224_cpu_names);
return -EOPNOTSUPP;
}
EBCASC(diag224_cpu_names + 16, (*diag224_cpu_names + 1) * 16);
return 0;
}
static void diag224_delete_name_table(void)
{
kfree(diag224_cpu_names);
}
static int diag224_idx2name(int index, char *name)
{
memcpy(name, diag224_cpu_names + ((index + 1) * CPU_NAME_LEN),
CPU_NAME_LEN);
name[CPU_NAME_LEN] = 0;
strim(name);
return 0;
}
struct dbfs_d204_hdr {
u64 len; /* Length of d204 buffer without header */
u16 version; /* Version of header */
u8 sc; /* Used subcode */
char reserved[53];
} __attribute__ ((packed));
struct dbfs_d204 {
struct dbfs_d204_hdr hdr; /* 64 byte header */
char buf[]; /* d204 buffer */
} __attribute__ ((packed));
static int dbfs_d204_create(void **data, void **data_free_ptr, size_t *size)
{
struct dbfs_d204 *d204;
int rc, buf_size;
void *base;
buf_size = PAGE_SIZE * (diag204_buf_pages + 1) + sizeof(d204->hdr);
base = vmalloc(buf_size);
if (!base)
return -ENOMEM;
memset(base, 0, buf_size);
d204 = page_align_ptr(base + sizeof(d204->hdr)) - sizeof(d204->hdr);
rc = diag204_do_store(d204->buf, diag204_buf_pages);
if (rc) {
vfree(base);
return rc;
}
d204->hdr.version = DBFS_D204_HDR_VERSION;
d204->hdr.len = PAGE_SIZE * diag204_buf_pages;
d204->hdr.sc = diag204_store_sc;
*data = d204;
*data_free_ptr = base;
*size = d204->hdr.len + sizeof(struct dbfs_d204_hdr);
return 0;
}
static struct hypfs_dbfs_file dbfs_file_d204 = {
.name = "diag_204",
.data_create = dbfs_d204_create,
.data_free = vfree,
};
__init int hypfs_diag_init(void)
{
int rc;
if (diag204_probe()) {
pr_err("The hardware system does not support hypfs\n");
return -ENODATA;
}
if (diag204_info_type == INFO_EXT) {
rc = hypfs_dbfs_create_file(&dbfs_file_d204);
if (rc)
return rc;
}
if (MACHINE_IS_LPAR) {
rc = diag224_get_name_table();
if (rc) {
pr_err("The hardware system does not provide all "
"functions required by hypfs\n");
debugfs_remove(dbfs_d204_file);
return rc;
}
}
return 0;
}
void hypfs_diag_exit(void)
{
debugfs_remove(dbfs_d204_file);
diag224_delete_name_table();
diag204_free_buffer();
hypfs_dbfs_remove_file(&dbfs_file_d204);
}
/*
* Functions to create the directory structure
* *******************************************
*/
static int hypfs_create_cpu_files(struct super_block *sb,
struct dentry *cpus_dir, void *cpu_info)
{
struct dentry *cpu_dir;
char buffer[TMP_SIZE];
void *rc;
snprintf(buffer, TMP_SIZE, "%d", cpu_info__cpu_addr(diag204_info_type,
cpu_info));
cpu_dir = hypfs_mkdir(sb, cpus_dir, buffer);
rc = hypfs_create_u64(sb, cpu_dir, "mgmtime",
cpu_info__acc_time(diag204_info_type, cpu_info) -
cpu_info__lp_time(diag204_info_type, cpu_info));
if (IS_ERR(rc))
return PTR_ERR(rc);
rc = hypfs_create_u64(sb, cpu_dir, "cputime",
cpu_info__lp_time(diag204_info_type, cpu_info));
if (IS_ERR(rc))
return PTR_ERR(rc);
if (diag204_info_type == INFO_EXT) {
rc = hypfs_create_u64(sb, cpu_dir, "onlinetime",
cpu_info__online_time(diag204_info_type,
cpu_info));
if (IS_ERR(rc))
return PTR_ERR(rc);
}
diag224_idx2name(cpu_info__ctidx(diag204_info_type, cpu_info), buffer);
rc = hypfs_create_str(sb, cpu_dir, "type", buffer);
if (IS_ERR(rc))
return PTR_ERR(rc);
return 0;
}
static void *hypfs_create_lpar_files(struct super_block *sb,
struct dentry *systems_dir, void *part_hdr)
{
struct dentry *cpus_dir;
struct dentry *lpar_dir;
char lpar_name[LPAR_NAME_LEN + 1];
void *cpu_info;
int i;
part_hdr__part_name(diag204_info_type, part_hdr, lpar_name);
lpar_name[LPAR_NAME_LEN] = 0;
lpar_dir = hypfs_mkdir(sb, systems_dir, lpar_name);
if (IS_ERR(lpar_dir))
return lpar_dir;
cpus_dir = hypfs_mkdir(sb, lpar_dir, "cpus");
if (IS_ERR(cpus_dir))
return cpus_dir;
cpu_info = part_hdr + part_hdr__size(diag204_info_type);
for (i = 0; i < part_hdr__rcpus(diag204_info_type, part_hdr); i++) {
int rc;
rc = hypfs_create_cpu_files(sb, cpus_dir, cpu_info);
if (rc)
return ERR_PTR(rc);
cpu_info += cpu_info__size(diag204_info_type);
}
return cpu_info;
}
static int hypfs_create_phys_cpu_files(struct super_block *sb,
struct dentry *cpus_dir, void *cpu_info)
{
struct dentry *cpu_dir;
char buffer[TMP_SIZE];
void *rc;
snprintf(buffer, TMP_SIZE, "%i", phys_cpu__cpu_addr(diag204_info_type,
cpu_info));
cpu_dir = hypfs_mkdir(sb, cpus_dir, buffer);
if (IS_ERR(cpu_dir))
return PTR_ERR(cpu_dir);
rc = hypfs_create_u64(sb, cpu_dir, "mgmtime",
phys_cpu__mgm_time(diag204_info_type, cpu_info));
if (IS_ERR(rc))
return PTR_ERR(rc);
diag224_idx2name(phys_cpu__ctidx(diag204_info_type, cpu_info), buffer);
rc = hypfs_create_str(sb, cpu_dir, "type", buffer);
if (IS_ERR(rc))
return PTR_ERR(rc);
return 0;
}
static void *hypfs_create_phys_files(struct super_block *sb,
struct dentry *parent_dir, void *phys_hdr)
{
int i;
void *cpu_info;
struct dentry *cpus_dir;
cpus_dir = hypfs_mkdir(sb, parent_dir, "cpus");
if (IS_ERR(cpus_dir))
return cpus_dir;
cpu_info = phys_hdr + phys_hdr__size(diag204_info_type);
for (i = 0; i < phys_hdr__cpus(diag204_info_type, phys_hdr); i++) {
int rc;
rc = hypfs_create_phys_cpu_files(sb, cpus_dir, cpu_info);
if (rc)
return ERR_PTR(rc);
cpu_info += phys_cpu__size(diag204_info_type);
}
return cpu_info;
}
int hypfs_diag_create_files(struct super_block *sb, struct dentry *root)
{
struct dentry *systems_dir, *hyp_dir;
void *time_hdr, *part_hdr;
int i, rc;
void *buffer, *ptr;
buffer = diag204_store();
if (IS_ERR(buffer))
return PTR_ERR(buffer);
systems_dir = hypfs_mkdir(sb, root, "systems");
if (IS_ERR(systems_dir)) {
rc = PTR_ERR(systems_dir);
goto err_out;
}
time_hdr = (struct x_info_blk_hdr *)buffer;
part_hdr = time_hdr + info_blk_hdr__size(diag204_info_type);
for (i = 0; i < info_blk_hdr__npar(diag204_info_type, time_hdr); i++) {
part_hdr = hypfs_create_lpar_files(sb, systems_dir, part_hdr);
if (IS_ERR(part_hdr)) {
rc = PTR_ERR(part_hdr);
goto err_out;
}
}
if (info_blk_hdr__flags(diag204_info_type, time_hdr) & LPAR_PHYS_FLG) {
ptr = hypfs_create_phys_files(sb, root, part_hdr);
if (IS_ERR(ptr)) {
rc = PTR_ERR(ptr);
goto err_out;
}
}
hyp_dir = hypfs_mkdir(sb, root, "hyp");
if (IS_ERR(hyp_dir)) {
rc = PTR_ERR(hyp_dir);
goto err_out;
}
ptr = hypfs_create_str(sb, hyp_dir, "type", "LPAR Hypervisor");
if (IS_ERR(ptr)) {
rc = PTR_ERR(ptr);
goto err_out;
}
rc = 0;
err_out:
return rc;
}