android_kernel_samsung_msm8976/drivers/hwmon/qpnp-adc-current.c
Dipen Parmar d31e4aee0f hwmon: qpnp-current: Fix parameter configuration for IADC
Removing redundant parameters which are not applicable
on the IADC peripheral.

Fix the issue with "fast_avg_setup" and "decimation"
parameters to configure correctly as per channel
configuration.

Change-Id: Idfe823effc6255b57e31f37621971aab29f08020
Signed-off-by: Dipen Parmar <dipenp@codeaurora.org>
2014-07-25 11:51:04 +05:30

1650 lines
41 KiB
C

/* Copyright (c) 2012-2014, The Linux Foundation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 and
* only version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#define pr_fmt(fmt) "%s: " fmt, __func__
#include <linux/kernel.h>
#include <linux/of.h>
#include <linux/err.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/delay.h>
#include <linux/mutex.h>
#include <linux/types.h>
#include <linux/hwmon.h>
#include <linux/module.h>
#include <linux/debugfs.h>
#include <linux/spmi.h>
#include <linux/of_irq.h>
#include <linux/wakelock.h>
#include <linux/interrupt.h>
#include <linux/completion.h>
#include <linux/hwmon-sysfs.h>
#include <linux/qpnp/qpnp-adc.h>
#include <linux/platform_device.h>
#include <linux/wakelock.h>
/* QPNP IADC register definition */
#define QPNP_IADC_REVISION1 0x0
#define QPNP_IADC_REVISION2 0x1
#define QPNP_IADC_REVISION3 0x2
#define QPNP_IADC_REVISION4 0x3
#define QPNP_IADC_PERPH_TYPE 0x4
#define QPNP_IADC_PERH_SUBTYPE 0x5
#define QPNP_IADC_SUPPORTED_REVISION2 1
#define QPNP_STATUS1 0x8
#define QPNP_STATUS1_OP_MODE 4
#define QPNP_STATUS1_MULTI_MEAS_EN BIT(3)
#define QPNP_STATUS1_MEAS_INTERVAL_EN_STS BIT(2)
#define QPNP_STATUS1_REQ_STS BIT(1)
#define QPNP_STATUS1_EOC BIT(0)
#define QPNP_STATUS1_REQ_STS_EOC_MASK 0x3
#define QPNP_STATUS2 0x9
#define QPNP_STATUS2_CONV_SEQ_STATE_SHIFT 4
#define QPNP_STATUS2_FIFO_NOT_EMPTY_FLAG BIT(1)
#define QPNP_STATUS2_CONV_SEQ_TIMEOUT_STS BIT(0)
#define QPNP_CONV_TIMEOUT_ERR 2
#define QPNP_IADC_MODE_CTL 0x40
#define QPNP_OP_MODE_SHIFT 4
#define QPNP_USE_BMS_DATA BIT(4)
#define QPNP_VADC_SYNCH_EN BIT(2)
#define QPNP_OFFSET_RMV_EN BIT(1)
#define QPNP_ADC_TRIM_EN BIT(0)
#define QPNP_IADC_EN_CTL1 0x46
#define QPNP_IADC_ADC_EN BIT(7)
#define QPNP_ADC_CH_SEL_CTL 0x48
#define QPNP_ADC_DIG_PARAM 0x50
#define QPNP_ADC_CLK_SEL_MASK 0x3
#define QPNP_ADC_DEC_RATIO_SEL_MASK 0xc
#define QPNP_ADC_DIG_DEC_RATIO_SEL_SHIFT 2
#define QPNP_CONV_REQ 0x52
#define QPNP_CONV_REQ_SET BIT(7)
#define QPNP_CONV_SEQ_CTL 0x54
#define QPNP_CONV_SEQ_HOLDOFF_SHIFT 4
#define QPNP_CONV_SEQ_TRIG_CTL 0x55
#define QPNP_FAST_AVG_CTL 0x5a
#define QPNP_M0_LOW_THR_LSB 0x5c
#define QPNP_M0_LOW_THR_MSB 0x5d
#define QPNP_M0_HIGH_THR_LSB 0x5e
#define QPNP_M0_HIGH_THR_MSB 0x5f
#define QPNP_M1_LOW_THR_LSB 0x69
#define QPNP_M1_LOW_THR_MSB 0x6a
#define QPNP_M1_HIGH_THR_LSB 0x6b
#define QPNP_M1_HIGH_THR_MSB 0x6c
#define QPNP_DATA0 0x60
#define QPNP_DATA1 0x61
#define QPNP_CONV_TIMEOUT_ERR 2
#define QPNP_IADC_SEC_ACCESS 0xD0
#define QPNP_IADC_SEC_ACCESS_DATA 0xA5
#define QPNP_IADC_MSB_OFFSET 0xF2
#define QPNP_IADC_LSB_OFFSET 0xF3
#define QPNP_IADC_NOMINAL_RSENSE 0xF4
#define QPNP_IADC_ATE_GAIN_CALIB_OFFSET 0xF5
#define QPNP_INT_TEST_VAL 0xE1
#define QPNP_IADC_ADC_CH_SEL_CTL 0x48
#define QPNP_IADC_ADC_CHX_SEL_SHIFT 3
#define QPNP_IADC_ADC_DIG_PARAM 0x50
#define QPNP_IADC_CLK_SEL_SHIFT 1
#define QPNP_IADC_DEC_RATIO_SEL 3
#define QPNP_IADC_CONV_REQUEST 0x52
#define QPNP_IADC_CONV_REQ BIT(7)
#define QPNP_IADC_DATA0 0x60
#define QPNP_IADC_DATA1 0x61
#define QPNP_ADC_CONV_TIME_MIN 2000
#define QPNP_ADC_CONV_TIME_MAX 2100
#define QPNP_ADC_ERR_COUNT 20
#define QPNP_ADC_GAIN_NV 17857
#define QPNP_OFFSET_CALIBRATION_SHORT_CADC_LEADS_IDEAL 0
#define QPNP_IADC_INTERNAL_RSENSE_N_OHMS_FACTOR 10000000
#define QPNP_IADC_NANO_VOLTS_FACTOR 1000000
#define QPNP_IADC_CALIB_SECONDS 300000
#define QPNP_IADC_RSENSE_LSB_N_OHMS_PER_BIT 15625
#define QPNP_IADC_DIE_TEMP_CALIB_OFFSET 5000
#define QPNP_RAW_CODE_16_BIT_MSB_MASK 0xff00
#define QPNP_RAW_CODE_16_BIT_LSB_MASK 0xff
#define QPNP_BIT_SHIFT_8 8
#define QPNP_RSENSE_MSB_SIGN_CHECK 0x80
#define QPNP_ADC_COMPLETION_TIMEOUT HZ
#define SMBB_BAT_IF_TRIM_CNST_RDS_MASK 0x7
#define SMBB_BAT_IF_TRIM_CNST_RDS_MASK_CONST_0 0
#define SMBB_BAT_IF_TRIM_CNST_RDS_MASK_CONST_2 2
#define QPNP_IADC1_USR_TRIM2_ADC_FULLSCALE1_CONST 127
#define QPNP_IADC_RSENSE_DEFAULT_VALUE 7800000
#define QPNP_IADC_RSENSE_DEFAULT_TYPEB_GF 9000000
#define QPNP_IADC_RSENSE_DEFAULT_TYPEB_SMIC 9700000
struct qpnp_iadc_comp {
bool ext_rsense;
u8 id;
u8 sys_gain;
u8 revision_dig_major;
u8 revision_ana_minor;
};
struct qpnp_iadc_chip {
struct device *dev;
struct qpnp_adc_drv *adc;
int32_t rsense;
bool external_rsense;
bool default_internal_rsense;
struct device *iadc_hwmon;
struct list_head list;
int64_t die_temp;
struct delayed_work iadc_work;
bool iadc_mode_sel;
struct qpnp_iadc_comp iadc_comp;
struct qpnp_vadc_chip *vadc_dev;
struct work_struct trigger_completion_work;
bool skip_auto_calibrations;
bool iadc_poll_eoc;
u16 batt_id_trim_cnst_rds;
int rds_trim_default_type;
int max_channels_available;
bool rds_trim_default_check;
int32_t rsense_workaround_value;
struct sensor_device_attribute sens_attr[0];
};
LIST_HEAD(qpnp_iadc_device_list);
enum qpnp_iadc_rsense_rds_workaround {
QPNP_IADC_RDS_DEFAULT_TYPEA,
QPNP_IADC_RDS_DEFAULT_TYPEB,
QPNP_IADC_RDS_DEFAULT_TYPEC,
};
static int32_t qpnp_iadc_read_reg(struct qpnp_iadc_chip *iadc,
uint32_t reg, u8 *data)
{
int rc;
rc = spmi_ext_register_readl(iadc->adc->spmi->ctrl, iadc->adc->slave,
(iadc->adc->offset + reg), data, 1);
if (rc < 0) {
pr_err("qpnp iadc read reg %d failed with %d\n", reg, rc);
return rc;
}
return 0;
}
static int32_t qpnp_iadc_write_reg(struct qpnp_iadc_chip *iadc,
uint32_t reg, u8 data)
{
int rc;
u8 *buf;
buf = &data;
rc = spmi_ext_register_writel(iadc->adc->spmi->ctrl, iadc->adc->slave,
(iadc->adc->offset + reg), buf, 1);
if (rc < 0) {
pr_err("qpnp iadc write reg %d failed with %d\n", reg, rc);
return rc;
}
return 0;
}
static int qpnp_iadc_is_valid(struct qpnp_iadc_chip *iadc)
{
struct qpnp_iadc_chip *iadc_chip = NULL;
list_for_each_entry(iadc_chip, &qpnp_iadc_device_list, list)
if (iadc == iadc_chip)
return 0;
return -EINVAL;
}
static void qpnp_iadc_trigger_completion(struct work_struct *work)
{
struct qpnp_iadc_chip *iadc = container_of(work,
struct qpnp_iadc_chip, trigger_completion_work);
if (qpnp_iadc_is_valid(iadc) < 0)
return;
complete(&iadc->adc->adc_rslt_completion);
return;
}
static irqreturn_t qpnp_iadc_isr(int irq, void *dev_id)
{
struct qpnp_iadc_chip *iadc = dev_id;
schedule_work(&iadc->trigger_completion_work);
return IRQ_HANDLED;
}
static int32_t qpnp_iadc_enable(struct qpnp_iadc_chip *dev, bool state)
{
int rc = 0;
u8 data = 0;
data = QPNP_IADC_ADC_EN;
if (state) {
rc = qpnp_iadc_write_reg(dev, QPNP_IADC_EN_CTL1,
data);
if (rc < 0) {
pr_err("IADC enable failed\n");
return rc;
}
} else {
rc = qpnp_iadc_write_reg(dev, QPNP_IADC_EN_CTL1,
(~data & QPNP_IADC_ADC_EN));
if (rc < 0) {
pr_err("IADC disable failed\n");
return rc;
}
}
return 0;
}
static int32_t qpnp_iadc_status_debug(struct qpnp_iadc_chip *dev)
{
int rc = 0;
u8 mode = 0, status1 = 0, chan = 0, dig = 0, en = 0;
rc = qpnp_iadc_read_reg(dev, QPNP_IADC_MODE_CTL, &mode);
if (rc < 0) {
pr_err("mode ctl register read failed with %d\n", rc);
return rc;
}
rc = qpnp_iadc_read_reg(dev, QPNP_ADC_DIG_PARAM, &dig);
if (rc < 0) {
pr_err("digital param read failed with %d\n", rc);
return rc;
}
rc = qpnp_iadc_read_reg(dev, QPNP_IADC_ADC_CH_SEL_CTL, &chan);
if (rc < 0) {
pr_err("channel read failed with %d\n", rc);
return rc;
}
rc = qpnp_iadc_read_reg(dev, QPNP_STATUS1, &status1);
if (rc < 0) {
pr_err("status1 read failed with %d\n", rc);
return rc;
}
rc = qpnp_iadc_read_reg(dev, QPNP_IADC_EN_CTL1, &en);
if (rc < 0) {
pr_err("en read failed with %d\n", rc);
return rc;
}
pr_debug("EOC not set with status:%x, dig:%x, ch:%x, mode:%x, en:%x\n",
status1, dig, chan, mode, en);
rc = qpnp_iadc_enable(dev, false);
if (rc < 0) {
pr_err("IADC disable failed with %d\n", rc);
return rc;
}
return 0;
}
static int32_t qpnp_iadc_read_conversion_result(struct qpnp_iadc_chip *iadc,
int16_t *data)
{
uint8_t rslt_lsb, rslt_msb;
uint16_t rslt;
int32_t rc;
rc = qpnp_iadc_read_reg(iadc, QPNP_IADC_DATA0, &rslt_lsb);
if (rc < 0) {
pr_err("qpnp adc result read failed with %d\n", rc);
return rc;
}
rc = qpnp_iadc_read_reg(iadc, QPNP_IADC_DATA1, &rslt_msb);
if (rc < 0) {
pr_err("qpnp adc result read failed with %d\n", rc);
return rc;
}
rslt = (rslt_msb << 8) | rslt_lsb;
*data = rslt;
rc = qpnp_iadc_enable(iadc, false);
if (rc)
return rc;
return 0;
}
#define QPNP_IADC_PM8026_2_REV2 4
#define QPNP_IADC_PM8026_2_REV3 2
#define QPNP_COEFF_1 969000
#define QPNP_COEFF_2 32
#define QPNP_COEFF_3_TYPEA 1700000
#define QPNP_COEFF_3_TYPEB 1000000
#define QPNP_COEFF_4 100
#define QPNP_COEFF_5 15
#define QPNP_COEFF_6 100000
#define QPNP_COEFF_7 21
#define QPNP_COEFF_8 100000000
#define QPNP_COEFF_9 38
#define QPNP_COEFF_10 40
#define QPNP_COEFF_11 7
#define QPNP_COEFF_12 11
#define QPNP_COEFF_13 37
#define QPNP_COEFF_14 39
#define QPNP_COEFF_15 9
#define QPNP_COEFF_16 11
#define QPNP_COEFF_17 851200
#define QPNP_COEFF_18 296500
#define QPNP_COEFF_19 222400
#define QPNP_COEFF_20 813800
#define QPNP_COEFF_21 1059100
#define QPNP_COEFF_22 5000000
#define QPNP_COEFF_23 3722500
#define QPNP_COEFF_24 84
#define QPNP_COEFF_25 33
#define QPNP_COEFF_26 22
#define QPNP_COEFF_27 53
#define QPNP_COEFF_28 48
static int32_t qpnp_iadc_comp(int64_t *result, struct qpnp_iadc_chip *iadc,
int64_t die_temp)
{
int64_t temp_var = 0, sys_gain_coeff = 0, old;
int32_t coeff_a = 0, coeff_b = 0;
int version = 0;
version = qpnp_adc_get_revid_version(iadc->dev);
if (version == -EINVAL)
return 0;
old = *result;
*result = *result * 1000000;
if (iadc->iadc_comp.sys_gain > 127)
sys_gain_coeff = -QPNP_COEFF_6 *
(iadc->iadc_comp.sys_gain - 128);
else
sys_gain_coeff = QPNP_COEFF_6 *
iadc->iadc_comp.sys_gain;
switch (version) {
case QPNP_REV_ID_8941_3_1:
switch (iadc->iadc_comp.id) {
case COMP_ID_GF:
if (!iadc->iadc_comp.ext_rsense) {
/* internal rsense */
coeff_a = QPNP_COEFF_2;
coeff_b = -QPNP_COEFF_3_TYPEA;
} else {
if (*result < 0) {
/* charge */
coeff_a = QPNP_COEFF_5;
coeff_b = QPNP_COEFF_6;
} else {
/* discharge */
coeff_a = -QPNP_COEFF_7;
coeff_b = QPNP_COEFF_6;
}
}
break;
case COMP_ID_TSMC:
default:
if (!iadc->iadc_comp.ext_rsense) {
/* internal rsense */
coeff_a = QPNP_COEFF_2;
coeff_b = -QPNP_COEFF_3_TYPEB;
} else {
if (*result < 0) {
/* charge */
coeff_a = QPNP_COEFF_5;
coeff_b = QPNP_COEFF_6;
} else {
/* discharge */
coeff_a = -QPNP_COEFF_7;
coeff_b = QPNP_COEFF_6;
}
}
break;
}
break;
case QPNP_REV_ID_8026_2_1:
case QPNP_REV_ID_8026_2_2:
/* pm8026 rev 2.1 and 2.2 */
switch (iadc->iadc_comp.id) {
case COMP_ID_GF:
if (!iadc->iadc_comp.ext_rsense) {
/* internal rsense */
if (*result < 0) {
/* charge */
coeff_a = 0;
coeff_b = 0;
} else {
coeff_a = QPNP_COEFF_25;
coeff_b = 0;
}
} else {
if (*result < 0) {
/* charge */
coeff_a = 0;
coeff_b = 0;
} else {
/* discharge */
coeff_a = 0;
coeff_b = 0;
}
}
break;
case COMP_ID_TSMC:
default:
if (!iadc->iadc_comp.ext_rsense) {
/* internal rsense */
if (*result < 0) {
/* charge */
coeff_a = 0;
coeff_b = 0;
} else {
coeff_a = QPNP_COEFF_26;
coeff_b = 0;
}
} else {
if (*result < 0) {
/* charge */
coeff_a = 0;
coeff_b = 0;
} else {
/* discharge */
coeff_a = 0;
coeff_b = 0;
}
}
break;
}
break;
case QPNP_REV_ID_8026_1_0:
/* pm8026 rev 1.0 */
switch (iadc->iadc_comp.id) {
case COMP_ID_GF:
if (!iadc->iadc_comp.ext_rsense) {
/* internal rsense */
if (*result < 0) {
/* charge */
coeff_a = QPNP_COEFF_9;
coeff_b = -QPNP_COEFF_17;
} else {
coeff_a = QPNP_COEFF_10;
coeff_b = QPNP_COEFF_18;
}
} else {
if (*result < 0) {
/* charge */
coeff_a = -QPNP_COEFF_11;
coeff_b = 0;
} else {
/* discharge */
coeff_a = -QPNP_COEFF_17;
coeff_b = -QPNP_COEFF_19;
}
}
break;
case COMP_ID_TSMC:
default:
if (!iadc->iadc_comp.ext_rsense) {
/* internal rsense */
if (*result < 0) {
/* charge */
coeff_a = QPNP_COEFF_13;
coeff_b = -QPNP_COEFF_20;
} else {
coeff_a = QPNP_COEFF_14;
coeff_b = QPNP_COEFF_21;
}
} else {
if (*result < 0) {
/* charge */
coeff_a = -QPNP_COEFF_15;
coeff_b = 0;
} else {
/* discharge */
coeff_a = -QPNP_COEFF_12;
coeff_b = -QPNP_COEFF_19;
}
}
break;
}
break;
case QPNP_REV_ID_8110_1_0:
/* pm8110 rev 1.0 */
switch (iadc->iadc_comp.id) {
case COMP_ID_GF:
if (!iadc->iadc_comp.ext_rsense) {
/* internal rsense */
if (*result < 0) {
/* charge */
coeff_a = QPNP_COEFF_24;
coeff_b = -QPNP_COEFF_22;
} else {
coeff_a = QPNP_COEFF_24;
coeff_b = -QPNP_COEFF_23;
}
}
break;
case COMP_ID_SMIC:
default:
if (!iadc->iadc_comp.ext_rsense) {
/* internal rsense */
if (*result < 0) {
/* charge */
coeff_a = QPNP_COEFF_24;
coeff_b = -QPNP_COEFF_22;
} else {
coeff_a = QPNP_COEFF_24;
coeff_b = -QPNP_COEFF_23;
}
}
break;
}
break;
case QPNP_REV_ID_8110_2_0:
die_temp -= 25000;
/* pm8110 rev 2.0 */
switch (iadc->iadc_comp.id) {
case COMP_ID_GF:
if (!iadc->iadc_comp.ext_rsense) {
/* internal rsense */
if (*result < 0) {
/* charge */
coeff_a = 0;
coeff_b = 0;
} else {
coeff_a = QPNP_COEFF_27;
coeff_b = 0;
}
}
break;
case COMP_ID_SMIC:
default:
if (!iadc->iadc_comp.ext_rsense) {
/* internal rsense */
if (*result < 0) {
/* charge */
coeff_a = 0;
coeff_b = 0;
} else {
coeff_a = QPNP_COEFF_28;
coeff_b = 0;
}
}
break;
}
break;
default:
case QPNP_REV_ID_8026_2_0:
/* pm8026 rev 1.0 */
coeff_a = 0;
coeff_b = 0;
break;
}
temp_var = (coeff_a * die_temp) + coeff_b;
temp_var = div64_s64(temp_var, QPNP_COEFF_4);
temp_var = 1000 * (1000000 - temp_var);
if (!iadc->iadc_comp.ext_rsense) {
/* internal rsense */
*result = div64_s64(*result * 1000, temp_var);
}
if (iadc->iadc_comp.ext_rsense) {
/* external rsense */
sys_gain_coeff = (1000000 +
div64_s64(sys_gain_coeff, QPNP_COEFF_4));
temp_var = div64_s64(temp_var * sys_gain_coeff, 1000000);
*result = div64_s64(*result * 1000, temp_var);
}
pr_debug("%lld compensated into %lld, a: %d, b: %d, sys_gain: %lld\n",
old, *result, coeff_a, coeff_b, sys_gain_coeff);
return 0;
}
int32_t qpnp_iadc_comp_result(struct qpnp_iadc_chip *iadc, int64_t *result)
{
return qpnp_iadc_comp(result, iadc, iadc->die_temp);
}
EXPORT_SYMBOL(qpnp_iadc_comp_result);
static int qpnp_iadc_rds_trim_update_check(struct qpnp_iadc_chip *iadc)
{
int rc = 0;
u8 trim2_val = 0, smbb_batt_trm_data = 0;
u8 smbb_batt_trm_cnst_rds = 0;
if (!iadc->rds_trim_default_check) {
pr_debug("No internal rds trim check needed\n");
return 0;
}
rc = qpnp_iadc_read_reg(iadc, QPNP_IADC_NOMINAL_RSENSE, &trim2_val);
if (rc < 0) {
pr_err("qpnp adc trim2_fullscale1 reg read failed %d\n", rc);
return rc;
}
rc = spmi_ext_register_readl(iadc->adc->spmi->ctrl, iadc->adc->slave,
iadc->batt_id_trim_cnst_rds, &smbb_batt_trm_data, 1);
if (rc < 0) {
pr_err("batt_id trim_cnst rds reg read failed %d\n", rc);
return rc;
}
smbb_batt_trm_cnst_rds = smbb_batt_trm_data &
SMBB_BAT_IF_TRIM_CNST_RDS_MASK;
pr_debug("n_trim:0x%x smb_trm:0x%x\n", trim2_val, smbb_batt_trm_data);
if (iadc->rds_trim_default_type == QPNP_IADC_RDS_DEFAULT_TYPEA) {
if ((smbb_batt_trm_cnst_rds ==
SMBB_BAT_IF_TRIM_CNST_RDS_MASK_CONST_2) &&
(trim2_val == QPNP_IADC1_USR_TRIM2_ADC_FULLSCALE1_CONST)) {
iadc->rsense_workaround_value =
QPNP_IADC_RSENSE_DEFAULT_VALUE;
iadc->default_internal_rsense = true;
}
} else if (iadc->rds_trim_default_type ==
QPNP_IADC_RDS_DEFAULT_TYPEB) {
if ((smbb_batt_trm_cnst_rds >=
SMBB_BAT_IF_TRIM_CNST_RDS_MASK_CONST_2) &&
(trim2_val == QPNP_IADC1_USR_TRIM2_ADC_FULLSCALE1_CONST)) {
iadc->rsense_workaround_value =
QPNP_IADC_RSENSE_DEFAULT_VALUE;
iadc->default_internal_rsense = true;
} else if ((smbb_batt_trm_cnst_rds <
SMBB_BAT_IF_TRIM_CNST_RDS_MASK_CONST_2) &&
(trim2_val ==
QPNP_IADC1_USR_TRIM2_ADC_FULLSCALE1_CONST)) {
if (iadc->iadc_comp.id == COMP_ID_GF) {
iadc->rsense_workaround_value =
QPNP_IADC_RSENSE_DEFAULT_TYPEB_GF;
iadc->default_internal_rsense = true;
} else if (iadc->iadc_comp.id == COMP_ID_SMIC) {
iadc->rsense_workaround_value =
QPNP_IADC_RSENSE_DEFAULT_TYPEB_SMIC;
iadc->default_internal_rsense = true;
}
}
} else if (iadc->rds_trim_default_type == QPNP_IADC_RDS_DEFAULT_TYPEC) {
if ((smbb_batt_trm_cnst_rds >
SMBB_BAT_IF_TRIM_CNST_RDS_MASK_CONST_0) &&
(smbb_batt_trm_cnst_rds <=
SMBB_BAT_IF_TRIM_CNST_RDS_MASK_CONST_2) &&
(trim2_val == QPNP_IADC1_USR_TRIM2_ADC_FULLSCALE1_CONST)) {
iadc->rsense_workaround_value =
QPNP_IADC_RSENSE_DEFAULT_VALUE;
iadc->default_internal_rsense = true;
}
}
return 0;
}
static int32_t qpnp_iadc_comp_info(struct qpnp_iadc_chip *iadc)
{
int rc = 0;
rc = qpnp_iadc_read_reg(iadc, QPNP_INT_TEST_VAL, &iadc->iadc_comp.id);
if (rc < 0) {
pr_err("qpnp adc comp id failed with %d\n", rc);
return rc;
}
rc = qpnp_iadc_read_reg(iadc, QPNP_IADC_REVISION2,
&iadc->iadc_comp.revision_dig_major);
if (rc < 0) {
pr_err("qpnp adc revision2 read failed with %d\n", rc);
return rc;
}
rc = qpnp_iadc_read_reg(iadc, QPNP_IADC_REVISION3,
&iadc->iadc_comp.revision_ana_minor);
if (rc < 0) {
pr_err("qpnp adc revision3 read failed with %d\n", rc);
return rc;
}
rc = qpnp_iadc_read_reg(iadc, QPNP_IADC_ATE_GAIN_CALIB_OFFSET,
&iadc->iadc_comp.sys_gain);
if (rc < 0) {
pr_err("full scale read failed with %d\n", rc);
return rc;
}
if (iadc->external_rsense)
iadc->iadc_comp.ext_rsense = true;
pr_debug("fab id = %u, revision_dig_major = %u, revision_ana_minor = %u sys gain = %u, external_rsense = %d\n",
iadc->iadc_comp.id,
iadc->iadc_comp.revision_dig_major,
iadc->iadc_comp.revision_ana_minor,
iadc->iadc_comp.sys_gain,
iadc->iadc_comp.ext_rsense);
return rc;
}
static int32_t qpnp_iadc_configure(struct qpnp_iadc_chip *iadc,
enum qpnp_iadc_channels channel,
uint16_t *raw_code, uint32_t mode_sel)
{
u8 qpnp_iadc_mode_reg = 0, qpnp_iadc_ch_sel_reg = 0;
u8 qpnp_iadc_conv_req = 0, qpnp_iadc_dig_param_reg = 0;
u8 status1 = 0;
uint32_t count = 0;
int32_t rc = 0;
qpnp_iadc_ch_sel_reg = channel;
qpnp_iadc_dig_param_reg |= iadc->adc->amux_prop->decimation <<
QPNP_IADC_DEC_RATIO_SEL;
if (iadc->iadc_mode_sel)
qpnp_iadc_mode_reg |= (QPNP_ADC_TRIM_EN | QPNP_VADC_SYNCH_EN);
else
qpnp_iadc_mode_reg |= QPNP_ADC_TRIM_EN;
qpnp_iadc_conv_req = QPNP_IADC_CONV_REQ;
rc = qpnp_iadc_write_reg(iadc, QPNP_IADC_MODE_CTL, qpnp_iadc_mode_reg);
if (rc) {
pr_err("qpnp adc read adc failed with %d\n", rc);
return rc;
}
rc = qpnp_iadc_write_reg(iadc, QPNP_IADC_ADC_CH_SEL_CTL,
qpnp_iadc_ch_sel_reg);
if (rc) {
pr_err("qpnp adc read adc failed with %d\n", rc);
return rc;
}
rc = qpnp_iadc_write_reg(iadc, QPNP_ADC_DIG_PARAM,
qpnp_iadc_dig_param_reg);
if (rc) {
pr_err("qpnp adc read adc failed with %d\n", rc);
return rc;
}
rc = qpnp_iadc_write_reg(iadc, QPNP_FAST_AVG_CTL,
iadc->adc->amux_prop->fast_avg_setup);
if (rc < 0) {
pr_err("qpnp adc fast averaging configure error\n");
return rc;
}
if (!iadc->iadc_poll_eoc)
INIT_COMPLETION(iadc->adc->adc_rslt_completion);
rc = qpnp_iadc_enable(iadc, true);
if (rc)
return rc;
rc = qpnp_iadc_write_reg(iadc, QPNP_CONV_REQ, qpnp_iadc_conv_req);
if (rc) {
pr_err("qpnp adc read adc failed with %d\n", rc);
return rc;
}
if (iadc->iadc_poll_eoc) {
while (status1 != QPNP_STATUS1_EOC) {
rc = qpnp_iadc_read_reg(iadc, QPNP_STATUS1, &status1);
if (rc < 0)
return rc;
status1 &= QPNP_STATUS1_REQ_STS_EOC_MASK;
usleep_range(QPNP_ADC_CONV_TIME_MIN,
QPNP_ADC_CONV_TIME_MAX);
count++;
if (count > QPNP_ADC_ERR_COUNT) {
pr_err("retry error exceeded\n");
rc = qpnp_iadc_status_debug(iadc);
if (rc < 0)
pr_err("IADC status debug failed\n");
rc = -EINVAL;
return rc;
}
}
} else {
rc = wait_for_completion_timeout(
&iadc->adc->adc_rslt_completion,
QPNP_ADC_COMPLETION_TIMEOUT);
if (!rc) {
rc = qpnp_iadc_read_reg(iadc, QPNP_STATUS1, &status1);
if (rc < 0)
return rc;
status1 &= QPNP_STATUS1_REQ_STS_EOC_MASK;
if (status1 == QPNP_STATUS1_EOC)
pr_debug("End of conversion status set\n");
else {
rc = qpnp_iadc_status_debug(iadc);
if (rc < 0) {
pr_err("status debug failed %d\n", rc);
return rc;
}
return -EINVAL;
}
}
}
rc = qpnp_iadc_read_conversion_result(iadc, raw_code);
if (rc) {
pr_err("qpnp adc read adc failed with %d\n", rc);
return rc;
}
return 0;
}
#define IADC_CENTER 0xC000
#define IADC_READING_RESOLUTION_N 542535
#define IADC_READING_RESOLUTION_D 100000
static int32_t qpnp_convert_raw_offset_voltage(struct qpnp_iadc_chip *iadc)
{
s64 numerator;
if ((iadc->adc->calib.gain_raw - iadc->adc->calib.offset_raw) == 0) {
pr_err("raw offset errors! raw_gain:0x%x and raw_offset:0x%x\n",
iadc->adc->calib.gain_raw, iadc->adc->calib.offset_raw);
return -EINVAL;
}
numerator = iadc->adc->calib.offset_raw - IADC_CENTER;
numerator *= IADC_READING_RESOLUTION_N;
iadc->adc->calib.offset_uv = div_s64(numerator,
IADC_READING_RESOLUTION_D);
numerator = iadc->adc->calib.gain_raw - iadc->adc->calib.offset_raw;
numerator *= IADC_READING_RESOLUTION_N;
iadc->adc->calib.gain_uv = div_s64(numerator,
IADC_READING_RESOLUTION_D);
pr_debug("gain_uv:%d offset_uv:%d\n",
iadc->adc->calib.gain_uv, iadc->adc->calib.offset_uv);
return 0;
}
#define IADC_IDEAL_RAW_GAIN 3291
int32_t qpnp_iadc_calibrate_for_trim(struct qpnp_iadc_chip *iadc,
bool batfet_closed)
{
uint8_t rslt_lsb, rslt_msb;
int32_t rc = 0, version = 0;
uint16_t raw_data;
uint32_t mode_sel = 0;
bool iadc_offset_ch_batfet_check;
if (qpnp_iadc_is_valid(iadc) < 0)
return -EPROBE_DEFER;
mutex_lock(&iadc->adc->adc_lock);
if (iadc->iadc_poll_eoc) {
pr_debug("acquiring iadc eoc wakelock\n");
pm_stay_awake(iadc->dev);
}
iadc->adc->amux_prop->decimation = DECIMATION_TYPE1;
iadc->adc->amux_prop->fast_avg_setup = ADC_FAST_AVG_SAMPLE_1;
rc = qpnp_iadc_configure(iadc, GAIN_CALIBRATION_17P857MV,
&raw_data, mode_sel);
if (rc < 0) {
pr_err("qpnp adc result read failed with %d\n", rc);
goto fail;
}
iadc->adc->calib.gain_raw = raw_data;
/*
* there is a features on PM8941 in the BMS where if the batfet is
* opened the BMS reads from INTERNAL_RSENSE (channel 0) actually go to
* OFFSET_CALIBRATION_CSP_CSN (channel 5). Hence if batfet is opened
* we have to calibrate based on OFFSET_CALIBRATION_CSP_CSN even for
* internal rsense.
*/
version = qpnp_adc_get_revid_version(iadc->dev);
if ((version == QPNP_REV_ID_8941_3_1) ||
(version == QPNP_REV_ID_8941_3_0) ||
(version == QPNP_REV_ID_8941_2_0))
iadc_offset_ch_batfet_check = true;
else
iadc_offset_ch_batfet_check = false;
if ((iadc_offset_ch_batfet_check && !batfet_closed) ||
(iadc->external_rsense)) {
/* external offset calculation */
rc = qpnp_iadc_configure(iadc, OFFSET_CALIBRATION_CSP_CSN,
&raw_data, mode_sel);
if (rc < 0) {
pr_err("qpnp adc result read failed with %d\n", rc);
goto fail;
}
} else {
/* internal offset calculation */
rc = qpnp_iadc_configure(iadc, OFFSET_CALIBRATION_CSP2_CSN2,
&raw_data, mode_sel);
if (rc < 0) {
pr_err("qpnp adc result read failed with %d\n", rc);
goto fail;
}
}
iadc->adc->calib.offset_raw = raw_data;
if (rc < 0) {
pr_err("qpnp adc offset/gain calculation failed\n");
goto fail;
}
if (iadc->iadc_comp.revision_dig_major == QPNP_IADC_PM8026_2_REV2
&& iadc->iadc_comp.revision_ana_minor ==
QPNP_IADC_PM8026_2_REV3)
iadc->adc->calib.gain_raw =
iadc->adc->calib.offset_raw + IADC_IDEAL_RAW_GAIN;
pr_debug("raw gain:0x%x, raw offset:0x%x\n",
iadc->adc->calib.gain_raw, iadc->adc->calib.offset_raw);
rc = qpnp_convert_raw_offset_voltage(iadc);
if (rc < 0) {
pr_err("qpnp raw_voltage conversion failed\n");
goto fail;
}
rslt_msb = (raw_data & QPNP_RAW_CODE_16_BIT_MSB_MASK) >>
QPNP_BIT_SHIFT_8;
rslt_lsb = raw_data & QPNP_RAW_CODE_16_BIT_LSB_MASK;
pr_debug("trim values:lsb:0x%x and msb:0x%x\n", rslt_lsb, rslt_msb);
rc = qpnp_iadc_write_reg(iadc, QPNP_IADC_SEC_ACCESS,
QPNP_IADC_SEC_ACCESS_DATA);
if (rc < 0) {
pr_err("qpnp iadc configure error for sec access\n");
goto fail;
}
rc = qpnp_iadc_write_reg(iadc, QPNP_IADC_MSB_OFFSET,
rslt_msb);
if (rc < 0) {
pr_err("qpnp iadc configure error for MSB write\n");
goto fail;
}
rc = qpnp_iadc_write_reg(iadc, QPNP_IADC_SEC_ACCESS,
QPNP_IADC_SEC_ACCESS_DATA);
if (rc < 0) {
pr_err("qpnp iadc configure error for sec access\n");
goto fail;
}
rc = qpnp_iadc_write_reg(iadc, QPNP_IADC_LSB_OFFSET,
rslt_lsb);
if (rc < 0) {
pr_err("qpnp iadc configure error for LSB write\n");
goto fail;
}
fail:
if (iadc->iadc_poll_eoc) {
pr_debug("releasing iadc eoc wakelock\n");
pm_relax(iadc->dev);
}
mutex_unlock(&iadc->adc->adc_lock);
return rc;
}
EXPORT_SYMBOL(qpnp_iadc_calibrate_for_trim);
static void qpnp_iadc_work(struct work_struct *work)
{
struct qpnp_iadc_chip *iadc = container_of(work,
struct qpnp_iadc_chip, iadc_work.work);
int rc = 0;
if (!iadc->skip_auto_calibrations) {
rc = qpnp_iadc_calibrate_for_trim(iadc, true);
if (rc)
pr_debug("periodic IADC calibration failed\n");
}
schedule_delayed_work(&iadc->iadc_work,
round_jiffies_relative(msecs_to_jiffies
(QPNP_IADC_CALIB_SECONDS)));
return;
}
static int32_t qpnp_iadc_version_check(struct qpnp_iadc_chip *iadc)
{
uint8_t revision;
int rc;
rc = qpnp_iadc_read_reg(iadc, QPNP_IADC_REVISION2, &revision);
if (rc < 0) {
pr_err("qpnp adc result read failed with %d\n", rc);
return rc;
}
if (revision < QPNP_IADC_SUPPORTED_REVISION2) {
pr_err("IADC Version not supported\n");
return -EINVAL;
}
return 0;
}
struct qpnp_iadc_chip *qpnp_get_iadc(struct device *dev, const char *name)
{
struct qpnp_iadc_chip *iadc;
struct device_node *node = NULL;
char prop_name[QPNP_MAX_PROP_NAME_LEN];
snprintf(prop_name, QPNP_MAX_PROP_NAME_LEN, "qcom,%s-iadc", name);
node = of_parse_phandle(dev->of_node, prop_name, 0);
if (node == NULL)
return ERR_PTR(-ENODEV);
list_for_each_entry(iadc, &qpnp_iadc_device_list, list)
if (iadc->adc->spmi->dev.of_node == node)
return iadc;
return ERR_PTR(-EPROBE_DEFER);
}
EXPORT_SYMBOL(qpnp_get_iadc);
int32_t qpnp_iadc_get_rsense(struct qpnp_iadc_chip *iadc, int32_t *rsense)
{
uint8_t rslt_rsense = 0;
int32_t rc = 0, sign_bit = 0;
if (qpnp_iadc_is_valid(iadc) < 0)
return -EPROBE_DEFER;
if (iadc->external_rsense) {
*rsense = iadc->rsense;
} else if (iadc->default_internal_rsense) {
*rsense = iadc->rsense_workaround_value;
} else {
rc = qpnp_iadc_read_reg(iadc, QPNP_IADC_NOMINAL_RSENSE,
&rslt_rsense);
if (rc < 0) {
pr_err("qpnp adc rsense read failed with %d\n", rc);
return rc;
}
pr_debug("rsense:0%x\n", rslt_rsense);
if (rslt_rsense & QPNP_RSENSE_MSB_SIGN_CHECK)
sign_bit = 1;
rslt_rsense &= ~QPNP_RSENSE_MSB_SIGN_CHECK;
if (sign_bit)
*rsense = QPNP_IADC_INTERNAL_RSENSE_N_OHMS_FACTOR -
(rslt_rsense * QPNP_IADC_RSENSE_LSB_N_OHMS_PER_BIT);
else
*rsense = QPNP_IADC_INTERNAL_RSENSE_N_OHMS_FACTOR +
(rslt_rsense * QPNP_IADC_RSENSE_LSB_N_OHMS_PER_BIT);
}
pr_debug("rsense value is %d\n", *rsense);
if (*rsense == 0)
pr_err("incorrect rsens value:%d rslt_rsense:%d\n",
*rsense, rslt_rsense);
return rc;
}
EXPORT_SYMBOL(qpnp_iadc_get_rsense);
static int32_t qpnp_check_pmic_temp(struct qpnp_iadc_chip *iadc)
{
struct qpnp_vadc_result result_pmic_therm;
int64_t die_temp_offset;
int rc = 0;
rc = qpnp_vadc_read(iadc->vadc_dev, DIE_TEMP, &result_pmic_therm);
if (rc < 0)
return rc;
die_temp_offset = result_pmic_therm.physical -
iadc->die_temp;
if (die_temp_offset < 0)
die_temp_offset = -die_temp_offset;
if (die_temp_offset > QPNP_IADC_DIE_TEMP_CALIB_OFFSET) {
iadc->die_temp = result_pmic_therm.physical;
if (!iadc->skip_auto_calibrations) {
rc = qpnp_iadc_calibrate_for_trim(iadc, true);
if (rc)
pr_err("IADC calibration failed rc = %d\n", rc);
}
}
return rc;
}
int32_t qpnp_iadc_read(struct qpnp_iadc_chip *iadc,
enum qpnp_iadc_channels channel,
struct qpnp_iadc_result *result)
{
int32_t rc, rsense_n_ohms, sign = 0, num, mode_sel = 0;
int32_t rsense_u_ohms = 0;
int64_t result_current;
uint16_t raw_data;
int dt_index = 0;
if (qpnp_iadc_is_valid(iadc) < 0)
return -EPROBE_DEFER;
if ((iadc->adc->calib.gain_raw - iadc->adc->calib.offset_raw) == 0) {
pr_err("raw offset errors! run iadc calibration again\n");
return -EINVAL;
}
rc = qpnp_check_pmic_temp(iadc);
if (rc) {
pr_err("Error checking pmic therm temp\n");
return rc;
}
mutex_lock(&iadc->adc->adc_lock);
while (((enum qpnp_iadc_channels)
iadc->adc->adc_channels[dt_index].channel_num
!= channel) && (dt_index < iadc->max_channels_available))
dt_index++;
if (dt_index >= iadc->max_channels_available) {
pr_err("not a valid IADC channel\n");
rc = -EINVAL;
goto fail;
}
iadc->adc->amux_prop->decimation =
iadc->adc->adc_channels[dt_index].adc_decimation;
iadc->adc->amux_prop->fast_avg_setup =
iadc->adc->adc_channels[dt_index].fast_avg_setup;
if (iadc->iadc_poll_eoc) {
pr_debug("acquiring iadc eoc wakelock\n");
pm_stay_awake(iadc->dev);
}
rc = qpnp_iadc_configure(iadc, channel, &raw_data, mode_sel);
if (rc < 0) {
pr_err("qpnp adc result read failed with %d\n", rc);
goto fail;
}
rc = qpnp_iadc_get_rsense(iadc, &rsense_n_ohms);
pr_debug("current raw:0%x and rsense:%d\n",
raw_data, rsense_n_ohms);
rsense_u_ohms = rsense_n_ohms/1000;
num = raw_data - iadc->adc->calib.offset_raw;
if (num < 0) {
sign = 1;
num = -num;
}
result->result_uv = (num * QPNP_ADC_GAIN_NV)/
(iadc->adc->calib.gain_raw - iadc->adc->calib.offset_raw);
result_current = result->result_uv;
result_current *= QPNP_IADC_NANO_VOLTS_FACTOR;
/* Intentional fall through. Process the result w/o comp */
do_div(result_current, rsense_u_ohms);
if (sign) {
result->result_uv = -result->result_uv;
result_current = -result_current;
}
result_current *= -1;
rc = qpnp_iadc_comp_result(iadc, &result_current);
if (rc < 0)
pr_err("Error during compensating the IADC\n");
rc = 0;
result_current *= -1;
result->result_ua = (int32_t) result_current;
fail:
if (iadc->iadc_poll_eoc) {
pr_debug("releasing iadc eoc wakelock\n");
pm_relax(iadc->dev);
}
mutex_unlock(&iadc->adc->adc_lock);
return rc;
}
EXPORT_SYMBOL(qpnp_iadc_read);
int32_t qpnp_iadc_get_gain_and_offset(struct qpnp_iadc_chip *iadc,
struct qpnp_iadc_calib *result)
{
int rc;
if (qpnp_iadc_is_valid(iadc) < 0)
return -EPROBE_DEFER;
rc = qpnp_check_pmic_temp(iadc);
if (rc) {
pr_err("Error checking pmic therm temp\n");
return rc;
}
mutex_lock(&iadc->adc->adc_lock);
result->gain_raw = iadc->adc->calib.gain_raw;
result->ideal_gain_nv = QPNP_ADC_GAIN_NV;
result->gain_uv = iadc->adc->calib.gain_uv;
result->offset_raw = iadc->adc->calib.offset_raw;
result->ideal_offset_uv =
QPNP_OFFSET_CALIBRATION_SHORT_CADC_LEADS_IDEAL;
result->offset_uv = iadc->adc->calib.offset_uv;
pr_debug("raw gain:0%x, raw offset:0%x\n",
result->gain_raw, result->offset_raw);
pr_debug("gain_uv:%d offset_uv:%d\n",
result->gain_uv, result->offset_uv);
mutex_unlock(&iadc->adc->adc_lock);
return 0;
}
EXPORT_SYMBOL(qpnp_iadc_get_gain_and_offset);
int qpnp_iadc_skip_calibration(struct qpnp_iadc_chip *iadc)
{
iadc->skip_auto_calibrations = true;
return 0;
}
EXPORT_SYMBOL(qpnp_iadc_skip_calibration);
int qpnp_iadc_resume_calibration(struct qpnp_iadc_chip *iadc)
{
iadc->skip_auto_calibrations = false;
return 0;
}
EXPORT_SYMBOL(qpnp_iadc_resume_calibration);
int32_t qpnp_iadc_vadc_sync_read(struct qpnp_iadc_chip *iadc,
enum qpnp_iadc_channels i_channel, struct qpnp_iadc_result *i_result,
enum qpnp_vadc_channels v_channel, struct qpnp_vadc_result *v_result)
{
int rc = 0, mode_sel = 0, num = 0, rsense_n_ohms = 0, sign = 0;
int dt_index = 0;
uint16_t raw_data;
int32_t rsense_u_ohms = 0;
int64_t result_current;
if (qpnp_iadc_is_valid(iadc) < 0)
return -EPROBE_DEFER;
if ((iadc->adc->calib.gain_raw - iadc->adc->calib.offset_raw) == 0) {
pr_err("raw offset errors! run iadc calibration again\n");
return -EINVAL;
}
mutex_lock(&iadc->adc->adc_lock);
if (iadc->iadc_poll_eoc) {
pr_debug("acquiring iadc eoc wakelock\n");
pm_stay_awake(iadc->dev);
}
iadc->iadc_mode_sel = true;
rc = qpnp_vadc_iadc_sync_request(iadc->vadc_dev, v_channel);
if (rc) {
pr_err("Configuring VADC failed\n");
goto fail;
}
while (((enum qpnp_iadc_channels)
iadc->adc->adc_channels[dt_index].channel_num
!= i_channel) && (dt_index < iadc->max_channels_available))
dt_index++;
if (dt_index >= iadc->max_channels_available) {
pr_err("not a valid IADC channel\n");
rc = -EINVAL;
goto fail;
}
iadc->adc->amux_prop->decimation =
iadc->adc->adc_channels[dt_index].adc_decimation;
iadc->adc->amux_prop->fast_avg_setup =
iadc->adc->adc_channels[dt_index].fast_avg_setup;
rc = qpnp_iadc_configure(iadc, i_channel, &raw_data, mode_sel);
if (rc < 0) {
pr_err("qpnp adc result read failed with %d\n", rc);
goto fail_release_vadc;
}
rc = qpnp_iadc_get_rsense(iadc, &rsense_n_ohms);
pr_debug("current raw:0%x and rsense:%d\n",
raw_data, rsense_n_ohms);
rsense_u_ohms = rsense_n_ohms/1000;
num = raw_data - iadc->adc->calib.offset_raw;
if (num < 0) {
sign = 1;
num = -num;
}
i_result->result_uv = (num * QPNP_ADC_GAIN_NV)/
(iadc->adc->calib.gain_raw - iadc->adc->calib.offset_raw);
result_current = i_result->result_uv;
result_current *= QPNP_IADC_NANO_VOLTS_FACTOR;
/* Intentional fall through. Process the result w/o comp */
if (!rsense_u_ohms) {
pr_err("rsense error=%d\n", rsense_u_ohms);
goto fail_release_vadc;
}
do_div(result_current, rsense_u_ohms);
if (sign) {
i_result->result_uv = -i_result->result_uv;
result_current = -result_current;
}
result_current *= -1;
rc = qpnp_iadc_comp_result(iadc, &result_current);
if (rc < 0)
pr_err("Error during compensating the IADC\n");
rc = 0;
result_current *= -1;
i_result->result_ua = (int32_t) result_current;
fail_release_vadc:
rc = qpnp_vadc_iadc_sync_complete_request(iadc->vadc_dev, v_channel,
v_result);
if (rc)
pr_err("Releasing VADC failed\n");
fail:
iadc->iadc_mode_sel = false;
if (iadc->iadc_poll_eoc) {
pr_debug("releasing iadc eoc wakelock\n");
pm_relax(iadc->dev);
}
mutex_unlock(&iadc->adc->adc_lock);
return rc;
}
EXPORT_SYMBOL(qpnp_iadc_vadc_sync_read);
static ssize_t qpnp_iadc_show(struct device *dev,
struct device_attribute *devattr, char *buf)
{
struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
struct qpnp_iadc_chip *iadc = dev_get_drvdata(dev);
struct qpnp_iadc_result result;
int rc = -1;
rc = qpnp_iadc_read(iadc, attr->index, &result);
if (rc)
return 0;
return snprintf(buf, QPNP_ADC_HWMON_NAME_LENGTH,
"Result:%d\n", result.result_ua);
}
static struct sensor_device_attribute qpnp_adc_attr =
SENSOR_ATTR(NULL, S_IRUGO, qpnp_iadc_show, NULL, 0);
static int32_t qpnp_iadc_init_hwmon(struct qpnp_iadc_chip *iadc,
struct spmi_device *spmi)
{
struct device_node *child;
struct device_node *node = spmi->dev.of_node;
int rc = 0, i = 0, channel;
for_each_child_of_node(node, child) {
channel = iadc->adc->adc_channels[i].channel_num;
qpnp_adc_attr.index = iadc->adc->adc_channels[i].channel_num;
qpnp_adc_attr.dev_attr.attr.name =
iadc->adc->adc_channels[i].name;
memcpy(&iadc->sens_attr[i], &qpnp_adc_attr,
sizeof(qpnp_adc_attr));
sysfs_attr_init(&iadc->sens_attr[i].dev_attr.attr);
rc = device_create_file(&spmi->dev,
&iadc->sens_attr[i].dev_attr);
if (rc) {
dev_err(&spmi->dev,
"device_create_file failed for dev %s\n",
iadc->adc->adc_channels[i].name);
goto hwmon_err_sens;
}
i++;
}
return 0;
hwmon_err_sens:
pr_err("Init HWMON failed for qpnp_iadc with %d\n", rc);
return rc;
}
static int qpnp_iadc_probe(struct spmi_device *spmi)
{
struct qpnp_iadc_chip *iadc;
struct qpnp_adc_drv *adc_qpnp;
struct device_node *node = spmi->dev.of_node;
struct device_node *child;
struct resource *res;
int rc, count_adc_channel_list = 0, i = 0;
for_each_child_of_node(node, child)
count_adc_channel_list++;
if (!count_adc_channel_list) {
pr_err("No channel listing\n");
return -EINVAL;
}
iadc = devm_kzalloc(&spmi->dev, sizeof(struct qpnp_iadc_chip) +
(sizeof(struct sensor_device_attribute) *
count_adc_channel_list), GFP_KERNEL);
if (!iadc) {
dev_err(&spmi->dev, "Unable to allocate memory\n");
return -ENOMEM;
}
adc_qpnp = devm_kzalloc(&spmi->dev, sizeof(struct qpnp_adc_drv),
GFP_KERNEL);
if (!adc_qpnp) {
dev_err(&spmi->dev, "Unable to allocate memory\n");
return -ENOMEM;
}
iadc->dev = &(spmi->dev);
iadc->adc = adc_qpnp;
rc = qpnp_adc_get_devicetree_data(spmi, iadc->adc);
if (rc) {
dev_err(&spmi->dev, "failed to read device tree\n");
return rc;
}
res = spmi_get_resource_byname(spmi, NULL, IORESOURCE_MEM,
"batt-id-trim-cnst-rds");
if (!res) {
dev_err(&spmi->dev, "failed to read batt_id trim register\n");
return -EINVAL;
}
iadc->batt_id_trim_cnst_rds = res->start;
rc = of_property_read_u32(node, "qcom,use-default-rds-trim",
&iadc->rds_trim_default_type);
if (rc)
pr_debug("No trim workaround needed\n");
else {
pr_debug("Use internal RDS trim workaround\n");
iadc->rds_trim_default_check = true;
}
iadc->vadc_dev = qpnp_get_vadc(&spmi->dev, "iadc");
if (IS_ERR(iadc->vadc_dev)) {
rc = PTR_ERR(iadc->vadc_dev);
if (rc != -EPROBE_DEFER)
pr_err("vadc property missing, rc=%d\n", rc);
return rc;
}
mutex_init(&iadc->adc->adc_lock);
rc = of_property_read_u32(node, "qcom,rsense",
&iadc->rsense);
if (rc)
pr_debug("Defaulting to internal rsense\n");
else {
pr_debug("Use external rsense\n");
iadc->external_rsense = true;
}
iadc->iadc_poll_eoc = of_property_read_bool(node,
"qcom,iadc-poll-eoc");
if (!iadc->iadc_poll_eoc) {
rc = devm_request_irq(&spmi->dev, iadc->adc->adc_irq_eoc,
qpnp_iadc_isr, IRQF_TRIGGER_RISING,
"qpnp_iadc_interrupt", iadc);
if (rc) {
dev_err(&spmi->dev, "failed to request adc irq\n");
return rc;
} else
enable_irq_wake(iadc->adc->adc_irq_eoc);
}
rc = qpnp_iadc_init_hwmon(iadc, spmi);
if (rc) {
dev_err(&spmi->dev, "failed to initialize qpnp hwmon adc\n");
return rc;
}
iadc->iadc_hwmon = hwmon_device_register(&iadc->adc->spmi->dev);
rc = qpnp_iadc_version_check(iadc);
if (rc) {
dev_err(&spmi->dev, "IADC version not supported\n");
goto fail;
}
iadc->max_channels_available = count_adc_channel_list;
INIT_WORK(&iadc->trigger_completion_work, qpnp_iadc_trigger_completion);
INIT_DELAYED_WORK(&iadc->iadc_work, qpnp_iadc_work);
rc = qpnp_iadc_comp_info(iadc);
if (rc) {
dev_err(&spmi->dev, "abstracting IADC comp info failed!\n");
goto fail;
}
rc = qpnp_iadc_rds_trim_update_check(iadc);
if (rc) {
dev_err(&spmi->dev, "Rds trim update failed!\n");
goto fail;
}
dev_set_drvdata(&spmi->dev, iadc);
list_add(&iadc->list, &qpnp_iadc_device_list);
rc = qpnp_iadc_calibrate_for_trim(iadc, true);
if (rc)
dev_err(&spmi->dev, "failed to calibrate for USR trim\n");
if (iadc->iadc_poll_eoc)
device_init_wakeup(iadc->dev, 1);
schedule_delayed_work(&iadc->iadc_work,
round_jiffies_relative(msecs_to_jiffies
(QPNP_IADC_CALIB_SECONDS)));
return 0;
fail:
for_each_child_of_node(node, child) {
device_remove_file(&spmi->dev,
&iadc->sens_attr[i].dev_attr);
i++;
}
hwmon_device_unregister(iadc->iadc_hwmon);
return rc;
}
static int qpnp_iadc_remove(struct spmi_device *spmi)
{
struct qpnp_iadc_chip *iadc = dev_get_drvdata(&spmi->dev);
struct device_node *node = spmi->dev.of_node;
struct device_node *child;
int i = 0;
cancel_delayed_work(&iadc->iadc_work);
for_each_child_of_node(node, child) {
device_remove_file(&spmi->dev,
&iadc->sens_attr[i].dev_attr);
i++;
}
hwmon_device_unregister(iadc->iadc_hwmon);
if (iadc->iadc_poll_eoc)
pm_relax(iadc->dev);
dev_set_drvdata(&spmi->dev, NULL);
return 0;
}
static const struct of_device_id qpnp_iadc_match_table[] = {
{ .compatible = "qcom,qpnp-iadc",
},
{}
};
static struct spmi_driver qpnp_iadc_driver = {
.driver = {
.name = "qcom,qpnp-iadc",
.of_match_table = qpnp_iadc_match_table,
},
.probe = qpnp_iadc_probe,
.remove = qpnp_iadc_remove,
};
static int __init qpnp_iadc_init(void)
{
return spmi_driver_register(&qpnp_iadc_driver);
}
module_init(qpnp_iadc_init);
static void __exit qpnp_iadc_exit(void)
{
spmi_driver_unregister(&qpnp_iadc_driver);
}
module_exit(qpnp_iadc_exit);
MODULE_DESCRIPTION("QPNP PMIC current ADC driver");
MODULE_LICENSE("GPL v2");