android_kernel_samsung_msm8976/arch/arm64/mm/mmu.c
Matt Wagantall f4b9c08367 arm64: mark split_pmd() with __init to avoid section mismatch warnings
split_pmd() calls early_alloc(), which is marked with __init. Mark
split_pmd() similarly. The only current caller of split_pmd() is
remap_pages(), which is already __init, so there was no real danger
here in the first place.

Change-Id: I3bbc4c66f1ced8fe772366b7e5287be5f474f314
Signed-off-by: Matt Wagantall <mattw@codeaurora.org>
2015-03-11 13:17:24 -07:00

707 lines
18 KiB
C

/*
* Based on arch/arm/mm/mmu.c
*
* Copyright (C) 1995-2005 Russell King
* Copyright (C) 2012 ARM Ltd.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <linux/export.h>
#include <linux/kernel.h>
#include <linux/errno.h>
#include <linux/init.h>
#include <linux/mman.h>
#include <linux/nodemask.h>
#include <linux/memblock.h>
#include <linux/fs.h>
#include <linux/io.h>
#include <linux/dma-contiguous.h>
#include <asm/cputype.h>
#include <asm/sections.h>
#include <asm/setup.h>
#include <asm/sizes.h>
#include <asm/tlb.h>
#include <asm/mmu_context.h>
#include <asm/cacheflush.h>
#include "mm.h"
/*
* Empty_zero_page is a special page that is used for zero-initialized data
* and COW.
*/
struct page *empty_zero_page;
EXPORT_SYMBOL(empty_zero_page);
pgprot_t pgprot_default;
EXPORT_SYMBOL(pgprot_default);
static pmdval_t prot_sect_kernel;
struct cachepolicy {
const char policy[16];
u64 mair;
u64 tcr;
};
static struct cachepolicy cache_policies[] __initdata = {
{
.policy = "uncached",
.mair = 0x44, /* inner, outer non-cacheable */
.tcr = TCR_IRGN_NC | TCR_ORGN_NC,
}, {
.policy = "writethrough",
.mair = 0xaa, /* inner, outer write-through, read-allocate */
.tcr = TCR_IRGN_WT | TCR_ORGN_WT,
}, {
.policy = "writeback",
.mair = 0xee, /* inner, outer write-back, read-allocate */
.tcr = TCR_IRGN_WBnWA | TCR_ORGN_WBnWA,
}
};
#ifdef CONFIG_STRICT_MEMORY_RWX
static struct {
pmd_t *pmd;
pte_t *pte;
pmd_t saved_pmd;
pte_t saved_pte;
bool made_writeable;
} mem_unprotect;
static DEFINE_SPINLOCK(mem_text_writeable_lock);
void mem_text_writeable_spinlock(unsigned long *flags)
{
spin_lock_irqsave(&mem_text_writeable_lock, *flags);
}
void mem_text_writeable_spinunlock(unsigned long *flags)
{
spin_unlock_irqrestore(&mem_text_writeable_lock, *flags);
}
/*
* mem_text_address_writeable() and mem_text_address_restore()
* should be called as a pair. They are used to make the
* specified address in the kernel text section temporarily writeable
* when it has been marked read-only by STRICT_MEMORY_RWX.
* Used by kprobes and other debugging tools to set breakpoints etc.
* mem_text_address_writeable() is invoked before writing.
* After the write, mem_text_address_restore() must be called
* to restore the original state.
* This is only effective when used on the kernel text section
* marked as PMD_SECT_RDONLY by get_pmd_prot_sect_kernel()
*
* They must each be called with mem_text_writeable_lock locked
* by the caller, with no unlocking between the calls.
* The caller should release mem_text_writeable_lock immediately
* after the call to mem_text_address_restore().
* Only the write and associated cache operations should be performed
* between the calls.
*/
/* this function must be called with mem_text_writeable_lock held */
void mem_text_address_writeable(u64 addr)
{
pgd_t *pgd = pgd_offset_k(addr);
pud_t *pud = pud_offset(pgd, addr);
u64 addr_aligned;
mem_unprotect.made_writeable = 0;
if ((addr < (u64)_stext) || (addr >= (u64)__start_rodata))
return;
mem_unprotect.pmd = pmd_offset(pud, addr);
addr_aligned = addr & PAGE_MASK;
mem_unprotect.saved_pmd = *mem_unprotect.pmd;
if ((mem_unprotect.saved_pmd & PMD_TYPE_MASK) == PMD_TYPE_SECT) {
set_pmd(mem_unprotect.pmd,
__pmd(__pa(addr_aligned) | prot_sect_kernel));
} else {
mem_unprotect.pte = pte_offset_kernel(mem_unprotect.pmd, addr);
mem_unprotect.saved_pte = *mem_unprotect.pte;
set_pte(mem_unprotect.pte, pfn_pte(__pa(addr) >> PAGE_SHIFT,
PAGE_KERNEL_EXEC));
}
flush_tlb_kernel_range(addr, addr + PAGE_SIZE);
mem_unprotect.made_writeable = 1;
}
/* this function must be called with mem_text_writeable_lock held */
void mem_text_address_restore(u64 addr)
{
if (mem_unprotect.made_writeable) {
if ((mem_unprotect.saved_pmd & PMD_TYPE_MASK) == PMD_TYPE_SECT)
*mem_unprotect.pmd = mem_unprotect.saved_pmd;
else
*mem_unprotect.pte = mem_unprotect.saved_pte;
flush_tlb_kernel_range(addr, addr + PAGE_SIZE);
}
}
#else
static inline void mem_text_writeable_spinlock(unsigned long *flags) {};
static inline void mem_text_address_writeable(u64 addr) {};
static inline void mem_text_address_restore(u64 addr) {};
static inline void mem_text_writeable_spinunlock(unsigned long *flags) {};
#endif
void mem_text_write_kernel_word(u32 *addr, u32 word)
{
unsigned long flags;
mem_text_writeable_spinlock(&flags);
mem_text_address_writeable((u64)addr);
*addr = word;
flush_icache_range((unsigned long)addr,
((unsigned long)addr + sizeof(long)));
mem_text_address_restore((u64)addr);
mem_text_writeable_spinunlock(&flags);
}
EXPORT_SYMBOL(mem_text_write_kernel_word);
/*
* These are useful for identifying cache coherency problems by allowing the
* cache or the cache and writebuffer to be turned off. It changes the Normal
* memory caching attributes in the MAIR_EL1 register.
*/
static int __init early_cachepolicy(char *p)
{
int i;
u64 tmp;
for (i = 0; i < ARRAY_SIZE(cache_policies); i++) {
int len = strlen(cache_policies[i].policy);
if (memcmp(p, cache_policies[i].policy, len) == 0)
break;
}
if (i == ARRAY_SIZE(cache_policies)) {
pr_err("ERROR: unknown or unsupported cache policy: %s\n", p);
return 0;
}
flush_cache_all();
/*
* Modify MT_NORMAL attributes in MAIR_EL1.
*/
asm volatile(
" mrs %0, mair_el1\n"
" bfi %0, %1, #%2, #8\n"
" msr mair_el1, %0\n"
" isb\n"
: "=&r" (tmp)
: "r" (cache_policies[i].mair), "i" (MT_NORMAL * 8));
/*
* Modify TCR PTW cacheability attributes.
*/
asm volatile(
" mrs %0, tcr_el1\n"
" bic %0, %0, %2\n"
" orr %0, %0, %1\n"
" msr tcr_el1, %0\n"
" isb\n"
: "=&r" (tmp)
: "r" (cache_policies[i].tcr), "r" (TCR_IRGN_MASK | TCR_ORGN_MASK));
flush_cache_all();
return 0;
}
early_param("cachepolicy", early_cachepolicy);
/*
* Adjust the PMD section entries according to the CPU in use.
*/
void __init init_mem_pgprot(void)
{
pteval_t default_pgprot;
int i;
default_pgprot = PTE_ATTRINDX(MT_NORMAL);
prot_sect_kernel = PMD_TYPE_SECT | PMD_SECT_AF | PMD_ATTRINDX(MT_NORMAL);
#ifdef CONFIG_SMP
/*
* Mark memory with the "shared" attribute for SMP systems
*/
default_pgprot |= PTE_SHARED;
prot_sect_kernel |= PMD_SECT_S;
#endif
for (i = 0; i < 16; i++) {
unsigned long v = pgprot_val(protection_map[i]);
protection_map[i] = __pgprot(v | default_pgprot);
}
pgprot_default = __pgprot(PTE_TYPE_PAGE | PTE_AF | default_pgprot);
}
pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
unsigned long size, pgprot_t vma_prot)
{
if (!pfn_valid(pfn))
return pgprot_noncached(vma_prot);
else if (file->f_flags & O_SYNC)
return pgprot_writecombine(vma_prot);
return vma_prot;
}
EXPORT_SYMBOL(phys_mem_access_prot);
static void __init *early_alloc(unsigned long sz)
{
void *ptr = __va(memblock_alloc(sz, sz));
memset(ptr, 0, sz);
return ptr;
}
static void __init alloc_init_pte(pmd_t *pmd, unsigned long addr,
unsigned long end, unsigned long pfn,
pgprot_t prot)
{
pte_t *pte;
if (pmd_none(*pmd)) {
pte = early_alloc(PTRS_PER_PTE * sizeof(pte_t));
__pmd_populate(pmd, __pa(pte), PMD_TYPE_TABLE);
}
BUG_ON(pmd_bad(*pmd));
pte = pte_offset_kernel(pmd, addr);
do {
set_pte(pte, pfn_pte(pfn, prot));
pfn++;
} while (pte++, addr += PAGE_SIZE, addr != end);
}
#ifdef CONFIG_STRICT_MEMORY_RWX
pmdval_t get_pmd_prot_sect_kernel(unsigned long addr)
{
if (addr >= (unsigned long)__init_data_begin)
return prot_sect_kernel | PMD_SECT_PXN;
if (addr >= (unsigned long)__init_begin)
return prot_sect_kernel | PMD_SECT_RDONLY;
if (addr >= (unsigned long)__start_rodata)
return prot_sect_kernel | PMD_SECT_RDONLY | PMD_SECT_PXN;
if (addr >= (unsigned long)_stext)
return prot_sect_kernel | PMD_SECT_RDONLY;
return prot_sect_kernel | PMD_SECT_PXN;
}
#else
pmdval_t get_pmd_prot_sect_kernel(unsigned long addr)
{
return prot_sect_kernel;
}
#endif
static void __init alloc_init_pmd(pud_t *pud, unsigned long addr,
unsigned long end, phys_addr_t phys,
int map_io, bool pages)
{
pmd_t *pmd;
unsigned long next;
pmdval_t prot_sect;
pgprot_t prot_pte;
if (map_io) {
prot_sect = PMD_TYPE_SECT | PMD_SECT_AF |
PMD_ATTRINDX(MT_DEVICE_nGnRE);
prot_pte = __pgprot(PROT_DEVICE_nGnRE);
} else {
prot_sect = prot_sect_kernel;
prot_pte = PAGE_KERNEL;
}
/*
* Check for initial section mappings in the pgd/pud and remove them.
*/
if (pud_none(*pud) || pud_bad(*pud)) {
pmd = early_alloc(PTRS_PER_PMD * sizeof(pmd_t));
pud_populate(&init_mm, pud, pmd);
}
pmd = pmd_offset(pud, addr);
do {
next = pmd_addr_end(addr, end);
/* try section mapping first */
if (!pages && ((addr | next | phys) & ~SECTION_MASK) == 0) {
pmd_t old_pmd =*pmd;
set_pmd(pmd,
__pmd(phys | get_pmd_prot_sect_kernel(addr)));
/*
* Check for previous table entries created during
* boot (__create_page_tables) and flush them.
*/
if (!pmd_none(old_pmd))
flush_tlb_all();
} else {
alloc_init_pte(pmd, addr, next, __phys_to_pfn(phys),
prot_pte);
}
phys += next - addr;
} while (pmd++, addr = next, addr != end);
}
static void __init alloc_init_pud(pgd_t *pgd, unsigned long addr,
unsigned long end, unsigned long phys,
int map_io, bool force_pages)
{
pud_t *pud = pud_offset(pgd, addr);
unsigned long next;
do {
next = pud_addr_end(addr, end);
alloc_init_pmd(pud, addr, next, phys, map_io, force_pages);
phys += next - addr;
} while (pud++, addr = next, addr != end);
}
/*
* Create the page directory entries and any necessary page tables for the
* mapping specified by 'md'.
*/
static void __init __create_mapping(pgd_t *pgd, phys_addr_t phys,
unsigned long virt, phys_addr_t size,
int map_io, bool force_pages)
{
unsigned long addr, length, end, next;
addr = virt & PAGE_MASK;
length = PAGE_ALIGN(size + (virt & ~PAGE_MASK));
end = addr + length;
do {
next = pgd_addr_end(addr, end);
alloc_init_pud(pgd, addr, next, phys, map_io, force_pages);
phys += next - addr;
} while (pgd++, addr = next, addr != end);
}
static void __init create_mapping(phys_addr_t phys, unsigned long virt,
phys_addr_t size, bool force_pages)
{
if (virt < VMALLOC_START) {
pr_warn("BUG: not creating mapping for %pa at 0x%016lx - outside kernel range\n",
&phys, virt);
return;
}
__create_mapping(pgd_offset_k(virt & PAGE_MASK), phys, virt, size, 0, force_pages);
}
void __init create_id_mapping(phys_addr_t addr, phys_addr_t size, int map_io)
{
if ((addr >> PGDIR_SHIFT) >= ARRAY_SIZE(idmap_pg_dir)) {
pr_warn("BUG: not creating id mapping for %pa\n", &addr);
return;
}
__create_mapping(&idmap_pg_dir[pgd_index(addr)],
addr, addr, size, map_io, false);
}
static inline pmd_t *pmd_off_k(unsigned long virt)
{
return pmd_offset(pud_offset(pgd_offset_k(virt), virt), virt);
}
void __init remap_as_pages(unsigned long start, unsigned long size)
{
unsigned long addr;
unsigned long end = start + size;
/*
* Clear previous low-memory mapping
*/
for (addr = __phys_to_virt(start); addr < __phys_to_virt(end);
addr += PMD_SIZE)
pmd_clear(pmd_off_k(addr));
create_mapping(start, __phys_to_virt(start), size, true);
}
struct dma_contig_early_reserve {
phys_addr_t base;
unsigned long size;
};
static struct dma_contig_early_reserve dma_mmu_remap[MAX_CMA_AREAS] __initdata;
static int dma_mmu_remap_num __initdata;
void __init dma_contiguous_early_fixup(phys_addr_t base, unsigned long size)
{
dma_mmu_remap[dma_mmu_remap_num].base = base;
dma_mmu_remap[dma_mmu_remap_num].size = size;
dma_mmu_remap_num++;
}
static void __init dma_contiguous_remap(void)
{
int i;
for (i = 0; i < dma_mmu_remap_num; i++)
remap_as_pages(dma_mmu_remap[i].base,
dma_mmu_remap[i].size);
}
static void __init map_mem(void)
{
struct memblock_region *reg;
phys_addr_t limit;
/*
* Temporarily limit the memblock range. We need to do this as
* create_mapping requires puds, pmds and ptes to be allocated from
* memory addressable from the initial direct kernel mapping.
*
* The initial direct kernel mapping, located at swapper_pg_dir,
* gives us PGDIR_SIZE memory starting from PHYS_OFFSET (which must be
* aligned to 2MB as per Documentation/arm64/booting.txt).
*/
limit = PHYS_OFFSET + PGDIR_SIZE;
memblock_set_current_limit(limit);
/* map all the memory banks */
for_each_memblock(memory, reg) {
phys_addr_t start = reg->base;
phys_addr_t end = start + reg->size;
if (start >= end)
break;
#ifndef CONFIG_ARM64_64K_PAGES
/*
* For the first memory bank align the start address and
* current memblock limit to prevent create_mapping() from
* allocating pte page tables from unmapped memory.
* When 64K pages are enabled, the pte page table for the
* first PGDIR_SIZE is already present in swapper_pg_dir.
*/
if (start < limit)
start = ALIGN(start, PMD_SIZE);
if (end < limit) {
limit = end & PMD_MASK;
memblock_set_current_limit(limit);
}
#endif
create_mapping(start, __phys_to_virt(start), end - start,
false);
}
/* Limit no longer required. */
memblock_set_current_limit(MEMBLOCK_ALLOC_ANYWHERE);
}
#ifdef CONFIG_FORCE_PAGES
static noinline void __init split_pmd(pmd_t *pmd, unsigned long addr,
unsigned long end, unsigned long pfn)
{
pte_t *pte, *start_pte;
start_pte = early_alloc(PTRS_PER_PTE * sizeof(pte_t));
pte = start_pte;
do {
set_pte(pte, pfn_pte(pfn, PAGE_KERNEL_EXEC));
pfn++;
} while (pte++, addr += PAGE_SIZE, addr != end);
set_pmd(pmd, __pmd((__pa(start_pte)) | PMD_TYPE_TABLE));
}
static noinline void __init remap_pages(void)
{
struct memblock_region *reg;
for_each_memblock(memory, reg) {
phys_addr_t phys_pgd = reg->base;
phys_addr_t phys_end = reg->base + reg->size;
unsigned long addr_pgd = (unsigned long)__va(phys_pgd);
unsigned long end = (unsigned long)__va(phys_end);
pmd_t *pmd = NULL;
pud_t *pud = NULL;
pgd_t *pgd = NULL;
unsigned long next_pud, next_pmd, next_pgd;
unsigned long addr_pmd, addr_pud;
phys_addr_t phys_pud, phys_pmd;
if (phys_pgd >= phys_end)
break;
pgd = pgd_offset(&init_mm, addr_pgd);
do {
next_pgd = pgd_addr_end(addr_pgd, end);
pud = pud_offset(pgd, addr_pgd);
addr_pud = addr_pgd;
phys_pud = phys_pgd;
do {
next_pud = pud_addr_end(addr_pud, next_pgd);
pmd = pmd_offset(pud, addr_pud);
addr_pmd = addr_pud;
phys_pmd = phys_pud;
do {
next_pmd = pmd_addr_end(addr_pmd,
next_pud);
if (pmd_none(*pmd) || pmd_bad(*pmd))
split_pmd(pmd, addr_pmd,
next_pmd, __phys_to_pfn(phys_pmd));
pmd++;
phys_pmd += next_pmd - addr_pmd;
} while (addr_pmd = next_pmd,
addr_pmd < next_pud);
phys_pud += next_pud - addr_pud;
} while (pud++, addr_pud = next_pud,
addr_pud < next_pgd);
phys_pgd += next_pgd - addr_pgd;
} while (pgd++, addr_pgd = next_pgd, addr_pgd < end);
}
}
#else
static void __init remap_pages(void)
{
}
#endif
/*
* paging_init() sets up the page tables, initialises the zone memory
* maps and sets up the zero page.
*/
void __init paging_init(void)
{
void *zero_page;
map_mem();
dma_contiguous_remap();
remap_pages();
/*
* Finally flush the caches and tlb to ensure that we're in a
* consistent state.
*/
flush_cache_all();
flush_tlb_all();
/* allocate the zero page. */
zero_page = early_alloc(PAGE_SIZE);
bootmem_init();
empty_zero_page = virt_to_page(zero_page);
/*
* TTBR0 is only used for the identity mapping at this stage. Make it
* point to zero page to avoid speculatively fetching new entries.
*/
cpu_set_reserved_ttbr0();
flush_tlb_all();
set_kernel_text_ro();
flush_tlb_all();
}
/*
* Enable the identity mapping to allow the MMU disabling.
*/
void setup_mm_for_reboot(void)
{
cpu_switch_mm(idmap_pg_dir, &init_mm);
flush_tlb_all();
}
/*
* Check whether a kernel address is valid (derived from arch/x86/).
*/
int kern_addr_valid(unsigned long addr)
{
pgd_t *pgd;
pud_t *pud;
pmd_t *pmd;
pte_t *pte;
if ((((long)addr) >> VA_BITS) != -1UL)
return 0;
pgd = pgd_offset_k(addr);
if (pgd_none(*pgd))
return 0;
pud = pud_offset(pgd, addr);
if (pud_none(*pud))
return 0;
pmd = pmd_offset(pud, addr);
if (pmd_none(*pmd))
return 0;
if (pmd_sect(*pmd))
return pfn_valid(pmd_pfn(*pmd));
pte = pte_offset_kernel(pmd, addr);
if (pte_none(*pte))
return 0;
return pfn_valid(pte_pfn(*pte));
}
#ifdef CONFIG_SPARSEMEM_VMEMMAP
#ifdef CONFIG_ARM64_64K_PAGES
int __meminit vmemmap_populate(unsigned long start, unsigned long end, int node)
{
return vmemmap_populate_basepages(start, end, node);
}
#else /* !CONFIG_ARM64_64K_PAGES */
int __meminit vmemmap_populate(unsigned long start, unsigned long end, int node)
{
unsigned long addr = start;
unsigned long next;
pgd_t *pgd;
pud_t *pud;
pmd_t *pmd;
do {
next = pmd_addr_end(addr, end);
pgd = vmemmap_pgd_populate(addr, node);
if (!pgd)
return -ENOMEM;
pud = vmemmap_pud_populate(pgd, addr, node);
if (!pud)
return -ENOMEM;
pmd = pmd_offset(pud, addr);
if (pmd_none(*pmd)) {
void *p = NULL;
p = vmemmap_alloc_block_buf(PMD_SIZE, node);
if (!p)
return -ENOMEM;
set_pmd(pmd, __pmd(__pa(p) | prot_sect_kernel));
} else
vmemmap_verify((pte_t *)pmd, node, addr, next);
} while (addr = next, addr != end);
return 0;
}
#endif /* CONFIG_ARM64_64K_PAGES */
void vmemmap_free(unsigned long start, unsigned long end)
{
}
#endif /* CONFIG_SPARSEMEM_VMEMMAP */