android_kernel_samsung_msm8976/drivers/sensorhub/stm/adpd143.c

3728 lines
100 KiB
C

/**
*\mainpage
* ADPD143 driver
* (c) copyright 2014 Analog Devices Inc.
* Licensed under the GPL version 3 or later.
* \date April 2014
* \version 1.1 Driver
* \version Linux 3.4.0
*/
#include <linux/init.h> /* module initialization api */
#include <linux/module.h> /* module functionality */
#include <linux/i2c.h> /* i2c related functionality */
#include <linux/slab.h>
#include <linux/pm.h> /* device Power Management functionality */
#include <linux/errno.h>
#include <linux/err.h>
#include <linux/delay.h>
#include <linux/input.h>
#include <linux/workqueue.h>
#include <linux/kobject.h>
#include <linux/average.h>
#include <linux/uaccess.h>
#include <linux/gpio.h>
#include <linux/irq.h>
#include <linux/interrupt.h>
#include <linux/gpio.h>
#include <linux/of_gpio.h>
#include <linux/moduleparam.h>
#include <linux/regulator/consumer.h>
#include <linux/fs.h>
#include <linux/pinctrl/consumer.h>
#include "../../pinctrl/core.h"
#include "adpd143.h"
static int dbg_enable;
module_param(dbg_enable, int, S_IRUGO | S_IWUSR);
/* ADPD143 driver version*/
#define ADPD143_VERSION "1.2"
/* ADPD143 release date*/
#define ADPD143_RELEASE_DATE "Tue Apr 22 12:11:42 IST 2014"
#define ADPD_DEV_NAME "adpd143"
/*INPUT DEVICE NAME LIST*/
#define MODULE_NAME_HRM "hrm_sensor"
#define MODULE_NAME_HRMLED "hrmled_sensor"
#define CHIP_NAME "ADPD143RI"
#define VENDOR "ADI"
#define MAX_EOL_RESULT 132
/*I2C RELATED*/
#define I2C_RETRY_DELAY 5
#define I2C_RETRIES 5
/*ADPD143 DRIVER RELATED*/
#define MAX_BUFFER 128
#define GLOBAL_OP_MODE_OFF 0
#define GLOBAL_OP_MODE_IDLE 1
#define GLOBAL_OP_MODE_GO 2
#define SET_GLOBAL_OP_MODE(val, cmd) ((val & 0xFC) | cmd)
#define FRM_FILE 0
#define FRM_ARR 1
#define EN_FIFO_CLK 0x3B5B
#define DS_FIFO_CLK 0x3050
/******************************************************************/
/**************** ADPD143 USER OPERATING MODE ********************/
/*
Operating mode defined to user
*/
#define IDLE_MODE 0x00
#define SAMPLE_XY_A_MODE 0x30
#define SAMPLE_XY_AB_MODE 0x31
#define SAMPLE_XY_B_MODE 0x32
#define GET_USR_MODE(usr_val) ((usr_val & 0xF0) >> 4)
#define GET_USR_SUB_MODE(usr_val) (usr_val & 0xF)
/******************************************************************/
/**************** ADPD143 OPERATING MODE & DATA MODE *************/
#define R_RDATA_FLAG_EN (0x1 << 15)
#define R_PACK_START_EN (0x0 << 14)
#define R_RDOUT_MODE (0x0 << 13)
#define R_FIFO_PREVENT_EN (0x1 << 12)
#define R_SAMP_OUT_MODE (0x0 << 9)
#define DEFAULT_OP_MODE_CFG_VAL(cfg_x) (R_RDATA_FLAG_EN + R_PACK_START_EN +\
R_RDOUT_MODE + R_FIFO_PREVENT_EN+\
R_SAMP_OUT_MODE)
#define SET_R_OP_MODE_A(val) ((val & 0xF000) >> 12)
#define SET_R_DATAMODE_A(val) ((val & 0x0F00) >> 8)
#define SET_R_OP_MODE_B(val) ((val & 0x00F0) >> 4)
#define SET_R_DATAMODE_B(val) ((val & 0x000F))
/**
@brief Used to get the value need to be set for slot-A, B operating mode
and data out mode.
*/
#define SET_MODE_VALUE(val) (SET_R_OP_MODE_A(val) |\
(SET_R_DATAMODE_A(val) << 2) |\
(SET_R_OP_MODE_B(val) << 5) |\
(SET_R_DATAMODE_B(val) << 6))
/******************************************************************/
/**************** ADPD143 INTERRUPT MASK *************************/
#define INTR_MASK_IDLE_USR 0x0000
#define INTR_MASK_SAMPLE_USR 0x0020
#define INTR_MASK_S_SAMP_XY_A_USR 0x0020
#define INTR_MASK_S_SAMP_XY_AB_USR 0x0040
#define INTR_MASK_S_SAMP_XY_B_USR 0x0040
#define SET_INTR_MASK(usr_val) ((~(INTR_MASK_##usr_val)) & 0x1FF)
/******************************************************************/
/***************** ADPD143 PRINT *********************************/
#ifdef ADPD_DBG
#define ADPD143_dbg(format, arg...) \
printk(KERN_DEBUG "ADPD143 : "format, ##arg);
#else
#define ADPD143_dbg(format, arg...) {if (dbg_enable)\
printk(KERN_DEBUG "ADPD143 : "format, ##arg);\
}
#endif
#ifdef ADPD_INFO
#define ADPD143_info(format, arg...) \
printk(KERN_INFO "ADPD143 : "format, ##arg);
#else
#define ADPD143_info(format, arg...) {if (0)\
; }
#endif
/******************************************************************/
/***************** ADPD143 DIFFERENT MODE ************************/
/*
Main mode
*/
#define IDLE_USR 0
#define SAMPLE_USR 3
#define TIA_ADC_USR 5
/*
Sub mode
*/
#define S_SAMP_XY_A 0
#define S_SAMP_XY_AB 1
#define S_SAMP_XY_B 2
/*
OPERATING MODE ==> MAIN_mode[20:16] |
OP_mode_A[15:12] |
DATA_mode_A[11:8]|
OP_mode_B[7:4] |
DATA_mode_B[3:0]
*/
#define IDLE_OFF ((IDLE_USR << 16) | (0x0000))
#define SAMPLE_XY_A ((SAMPLE_USR << 16) | (0x1400))
#define SAMPLE_XY_AB ((SAMPLE_USR << 16) | (0x1414))
#define SAMPLE_XY_B ((SAMPLE_USR << 16) | (0x0014))
#define MAX_MODE 6
#define MAX_IDLE_MODE 1
#define MAX_SAMPLE_MODE 3
#define MODE(val) __arr_mode_##val
#define MODE_SIZE(val) MAX_##val##_MODE
#define MAX_LIB_VER 20
#define OSC_TRIM_ADDR26_REG 0x26
#define OSC_TRIM_ADDR28_REG 0x28
#define OSC_TRIM_ADDR29_REG 0x29
#define OSC_TRIM_32K_REG 0x4B
#define OSC_TRIM_32M_REG 0x4D
#define OSC_DEFAULT_32K_SET 0x2695
#define OSC_DEFAULT_32M_SET 0x4272
#define OSCILLATOR_TRIM_FILE_PATH "/efs/osc_trim"
#define ALC_OFF_MODE 0
#define ALC_TIA_MODE 1
#define ALC_TNF_MODE 2
#define ALC_FLOAT_MODE 3
#define HRM_LDO_ON 1
#define HRM_LDO_OFF 0
#define IRRED_OFF 0
#define IR_MODE 1
#define RED_MODE 2
#define IRRED_MODE 3
#define HRM_IDLE_MODE 0
#define HRM_SAMPLE_MODE 1
#define HRM_TIA_ADC_MODE 2
/**
mode mapping structure used to hold the number mode actually supported by
driver
*/
struct mode_mapping {
char *name;
int *mode_code;
unsigned int size;
};
int __arr_mode_IDLE[MAX_IDLE_MODE] =
{ IDLE_OFF };
int __arr_mode_SAMPLE[MAX_SAMPLE_MODE] =
{ SAMPLE_XY_A, SAMPLE_XY_AB, SAMPLE_XY_B };
int __arr_mode_TIA_ADC_SAMPLE[MAX_SAMPLE_MODE] =
{ SAMPLE_XY_A, SAMPLE_XY_AB, SAMPLE_XY_B };
struct mode_mapping __mode_recv_frm_usr[MAX_MODE] = {
{
.name = "IDLE",
.mode_code = MODE(IDLE),
.size = MODE_SIZE(IDLE)
},
{ .name = "UNSUPPORTED1",
.mode_code = 0,
.size = 0,
},
{ .name = "UNSUPPORTED2",
.mode_code = 0,
.size = 0,
},
{
.name = "SAMPLE",
.mode_code = MODE(SAMPLE),
.size = MODE_SIZE(SAMPLE)
},
{ .name = "UNSUPPORTED3",
.mode_code = 0,
.size = 0,
},
{
.name = "TIA_ADC_SAMPLE",
.mode_code = MODE(TIA_ADC_SAMPLE),
.size = MODE_SIZE(SAMPLE)
}
};
/**
general data buffer that is required to store the recieved buffer
*/
unsigned short data_buffer[MAX_BUFFER] = { 0 };
struct wrk_q_timestamp {
struct timeval interrupt_trigger;
};
struct adpd143_stats {
atomic_t interrupts;
atomic_t fifo_requires_sync;
atomic_t fifo_bytes[4];
atomic_t wq_pending;
atomic_t wq_schedule_time_peak_usec;
atomic_t wq_schedule_time_last_usec;
struct ewma wq_schedule_time_avg_usec;
atomic_t data_process_time_peak_usec;
atomic_t data_process_time_last_usec;
struct ewma data_process_time_avg_usec;
struct wrk_q_timestamp stamp;
};
/**
structure hold adpd143 chip structure, and parameter used
to control the adpd143 software part.
*/
struct adpd143_data {
struct i2c_client *client;
struct mutex mutex;/*for chip structure*/
struct mutex storelock;
struct device *dev;
struct input_dev *hrm_input_dev;
struct input_dev *hrmled_input_dev;
struct adpd_platform_data *ptr_config;
struct work_struct work;
struct workqueue_struct *ptr_adpd143_wq_st;
struct pinctrl *p;
struct pinctrl_state *pins_sleep;
struct pinctrl_state *pins_idle;
int irq;
int hrm_int;
int led_en;
int pre_hrmled_enable;
int sample_cnt;
struct regulator *leda;
unsigned short *ptr_data;
struct adpd143_stats stats;
unsigned short intr_mask_val;
unsigned short intr_status_val;
unsigned short fifo_size;
/*sysfs register read write */
unsigned short sysfs_I2C_regaddr;
unsigned short sysfs_I2C_regval;
unsigned short sysfslastreadval;
atomic_t hrm_enabled;
atomic_t hrmled_enabled;
atomic_t adpd_mode;
int (*read)(struct adpd143_data *, u8 reg_addr, int len, u16 *buf);
int (*write)(struct adpd143_data *, u8 reg_addr, int len, u16 data);
u8 eol_test_is_enable;
u8 eol_test_status;
char *eol_test_result;
char *eol_lib_ver;
char *elf_lib_ver;
const char *led_3p3;
const char *vdd_1p8;
const char *i2c_1p8;
int osc_trim_32K_value;
int osc_trim_32M_value;
int osc_trim_addr26_value;
int osc_trim_addr28_value;
int osc_trim_addr29_value;
u8 osc_trim_open_enable;
};
/**
structure hold adpd143 configuration data to be written during probe.
*/
static struct adpd_platform_data adpd143_config_data = {
.config_size = 54,
.config_data = {
0x00100001,
0x000100ff,
0x00020005,
0x00060000,
0x00111011,
0x0012000A,
0x00130320,
0x00140449,
0x00150333,
0x001C4040,
0x001D4040,
0x00181400,
0x00191400,
0x001a1650,
0x001b1000,
0x001e1ff0,
0x001f1Fc0,
0x00201ad0,
0x00211470,
0x00231032,
0x00241039,
0x002502CC,
0x00340000,
0x00260000,
0x00270800,
0x00280000,
0x00294003,
0x00300330,
0x00310213,
0x00421d37,
0x0043ada5,
0x003924D2,
0x00350330,
0x00360813,
0x00441d37,
0x0045ada5,
0x003b24D2,
0x00590808,
0x00320320,
0x00330113,
0x003a22d4,
0x003c0006,
0x00401010,
0x0041004c,
0x004c0004,
0x004f2090,
0x00500000,
0x00523000,
0x0053e400,
0x00580000,
0x005b1831,
0x005d1b31,
0x005e2808,
0x004e0040,
},
};
static struct adpd_platform_data adpd143_tia_adc_config_data = {
.config_size = 66,
.config_data = {
0x00100001, 0x000100ff, 0x00020005, 0x00060000,
0x00111011, 0x00120020, 0x00130320,
0x00140000, /* No PD connect first for dark calibration */
0x00150000,
0x00233034, 0x0024303A, 0x002502CC,
0x00340100, /* LED off */
0x00260000, 0x00270800, 0x00280000,
0x00300220, 0x00350220, /* Pulse offset */
0x00310440, 0x00360244, /* Pulse count 0x0813/0120 */
0x00294003,
0x003924D2, 0x003b1a70, /* AFE_CTRL */
0x00421d34, 0x00441d26, /* AFE_TRIM */
0x0043b065, 0x0045ae65, /* AFE_MUX_SW */
0x005e0808, 0x00597a08, /* float */
0x00168080, 0x00178080, 0x001C8080, 0x001D8080, /*AFE ch gain */
0x005b0000,
0x00370000, 0x003d0000,
0x00460000, 0x00470080, 0x00480000,
0x00490000, 0x004a0000, 0x005d0000,
0x00320320, 0x00330113, 0x003a22d4,
0x003c3206, /* 32Mhz/PD cathod to VDD - hrm : 0x003c0006 */
0x00401010, 0x0041004c, 0x004c0004,
0x004d4272, 0x004f2090, 0x00500000, 0x00523000,
0x0053e400, 0x004e0040,
0x005a0000,
/* slot B-float:subtract first, add second -hrm:0x00580000 */
0x00580040,
/* ADC offset start */
0x00180000,
0x00190000,
0x001a0000,
0x001b0000,
0x001e0000,
0x001f0000,
0x00200000,
0x00210000,
/* ADC offset end */
},
};
static int adpd143_configuration(struct adpd143_data *pst_adpd, unsigned char config);
static int adpd143_TIA_ADC_configuration(struct adpd143_data *pst_adpd, unsigned char config);
/* for TIA_ADC runtime Dark Calibration */
static unsigned short is_TIA_Dark_Cal = 0;
static unsigned short is_Float_Dark_Cal = 0;
static unsigned rawDarkCh[8];
static unsigned rawDataCh[8];
static unsigned ch1FloatSat = 65535;
static unsigned ch2FloatSat = 65535;
static unsigned ch3FloatSat = 65535;
static unsigned ch4FloatSat = 65535;
/**
This function is used to parse data from the string "0xXXX 1 0xYYY"
@param buf is pointer point constant address
@param cnt store number value need to parse
@param data parse data are stored in it
@return void
*/
static void
cmd_parsing(const char *buf, unsigned short cnt, unsigned short *data)
{
char **bp = (char **)&buf;
char *token, minus, parsing_cnt = 0;
int val;
int pos;
while ((token = strsep(bp, " "))) {
pos = 0;
minus = false;
if ((char)token[pos] == '-') {
minus = true;
pos++;
}
if ((token[pos] == '0') &&
(token[pos + 1] == 'x' || token[pos + 1] == 'X')) {
if (kstrtoul(&token[pos + 2], 16,
(long unsigned int *)&val))
val = 0;
if (minus)
val *= (-1);
} else {
if (kstrtoul(&token[pos], 10,
(long unsigned int *)&val))
val = 0;
if (minus)
val *= (-1);
}
if (parsing_cnt < cnt)
*(data + parsing_cnt) = (unsigned short)val;
else
break;
parsing_cnt++;
}
}
/**
This function is a inline function mapped to i2c read functionality
@param pst_adpd the ADPD143 data structure
@param reg is the address from which the value need to be read out
@return u16 value present in the register.
*/
static inline u16
reg_read(struct adpd143_data *pst_adpd, u16 reg)
{
u16 value;
if (!pst_adpd->read(pst_adpd, reg, 1, &value))
return value;
return 0xFFFF;
}
/**
This function is a inline function mapped to i2c read functionality
@param pst_adpd the ADPD143 data structure
@param reg is the address from which the value need to be read out
@param len number of data need to be readout
@param buf is pointer store the value present in the register.
@return u16 status of i2c read.
*/
static inline u16
multi_reg_read(struct adpd143_data *pst_adpd, u16 reg, u16 len, u16 *buf)
{
return pst_adpd->read(pst_adpd, reg, len, buf);
}
/**
This function is a inline function mapped to i2c write functionality
@param pst_adpd the ADPD143 data structure
@param reg is the address to which the data need to be written
@param value is the data need to be write.
@return u16 status of i2c write.
*/
static inline u16
reg_write(struct adpd143_data *pst_adpd, u16 reg, u16 value)
{
return pst_adpd->write(pst_adpd, reg, 1, value);
}
/**
This function is used for I2C read from the sysfs
file system of the ADPD143 Chip
@param pst_adpd the ADPD143 data structure
@return u16 status of i2c read.
*/
static u16
adpd143_sysfs_I2C_read(struct adpd143_data *pst_adpd)
{
return reg_read(pst_adpd, pst_adpd->sysfs_I2C_regaddr);
}
/**
This function is used for I2C write from the sysfs
file system of the ADPD143 Chip
@param pst_adpd the ADPD143 data structure
@return u16 the bytes of written data.
*/
static u16
adpd143_sysfs_I2C_write(struct adpd143_data *pst_adpd)
{
u16 err;
err = reg_write(pst_adpd, pst_adpd->sysfs_I2C_regaddr,
pst_adpd->sysfs_I2C_regval);
if (err)
return 0xFFFF;
else
return pst_adpd->sysfs_I2C_regval;
}
/**
This function is used to parse string
@param recv_buf pointer point a string
@return int
*/
static int
parse_data(char *recv_buf)
{
char **bp = (char **)&recv_buf;
char *token, parsing_cnt = 0;
long val;
int test_data;
unsigned int data = 0;
int ret = 0;
char test[10] = {'\0'};
while ((token = strsep(bp, " \t"))) {
memset(test, '\0', 10);
memcpy(test, token, strlen(token));
memmove(test+2, test, strlen(test));
test[0] = '0';
test[1] = 'x';
ret = kstrtol(test, 0, &val);
if (ret) {
if (ret == -ERANGE) {
ADPD143_info("out of range\n");
val = 0;
}
if (ret == -EINVAL) {
ADPD143_info("parsing error\n");
sscanf(test, "%x", &test_data);
val = test_data;
}
}
if (parsing_cnt == 0) {
data = (int) (0xFF & val);
if (data == 0)
return -1;
}
if (parsing_cnt == 1) {
data = data << 16;
data |= (0xFFFF & val);
}
parsing_cnt++;
if (parsing_cnt > 2)
break;
}
return data;
}
/**
This function is used for reading configuration file
@param pst_adpd the ADPD143 data structure
@return int status of the configuration file.
*/
static int
adpd143_read_config_file(struct adpd143_data *pst_adpd)
{
mm_segment_t old_fs;
struct file *fpt_adpd = NULL;
struct adpd_platform_data *ptr_config = NULL;
int line_cnt = 0;
int start = 0;
int cnt = 0;
int ret = 0;
int i = 0;
char get_char;
char *recieved_buf = NULL;
loff_t pos = 0;
ptr_config = pst_adpd->ptr_config;
old_fs = get_fs();
set_fs(KERNEL_DS);
fpt_adpd = filp_open("/data/misc/adpd143_config.dcfg", O_RDONLY, 0666);
if (IS_ERR(fpt_adpd)) {
ADPD143_dbg("unable to find de file %ld\n", PTR_ERR(fpt_adpd));
set_fs(old_fs);
ret = /*PTR_ERR(fpt_adpd_filp); */ -1;
ptr_config->config_size = 0;
goto err_filp_open;
}
recieved_buf = kzalloc(sizeof(char) * 15, GFP_KERNEL);
memset(recieved_buf, '\0', sizeof(char) * 15);
while (vfs_read(fpt_adpd, &get_char, sizeof(char), &pos)) {
if (get_char == '\n') {
line_cnt++;
if (cnt > 1) {
ret = parse_data(recieved_buf);
if (ret == -1) {
ADPD143_dbg("Error in reading dcfg\n");
break;
}
ADPD143_info("0x%08x\n", ret);
ptr_config->config_data[i] = ret;
i++;
}
memset(recieved_buf, '\0', sizeof(char) * 15);
start = 0;
cnt = 0;
ret = 0;
} else {
if (get_char != '#') {
if (start != 0xF) {
recieved_buf[cnt] = get_char;
cnt++;
}
} else {
start = 0xF;
}
}
}
filp_close(fpt_adpd, NULL);
set_fs(old_fs);
kfree(recieved_buf);
ptr_config->config_size = i;
return 0;
err_filp_open:
return -1;
}
/**
This function is used for reading interrupt and FIFO status
@param pst_adpd the ADPD143 data structure
@return unsigned short interrupt status value
*/
static unsigned short
adpd143_rd_intr_fifo(struct adpd143_data *pst_adpd)
{
unsigned short regval = 0;
unsigned short fifo_size = 0;
unsigned short usr_mode = 0;
regval = reg_read(pst_adpd, ADPD_INT_STATUS_ADDR);
fifo_size = ((regval & 0xFF00) >> 8);
pst_adpd->fifo_size = ((fifo_size / 2) + (fifo_size & 1));
pst_adpd->intr_status_val = (regval & 0xFF);
ADPD143_info("Intr_status 0x%x, FIFO_SIZE 0x%x\n",
pst_adpd->intr_status_val, pst_adpd->fifo_size);
if (fifo_size <= 16)
atomic_inc(&pst_adpd->stats.fifo_bytes[0]);
else if (fifo_size <= 32)
atomic_inc(&pst_adpd->stats.fifo_bytes[1]);
else if (fifo_size <= 64)
atomic_inc(&pst_adpd->stats.fifo_bytes[2]);
else
atomic_inc(&pst_adpd->stats.fifo_bytes[3]);
usr_mode = atomic_read(&pst_adpd->adpd_mode);
if (0 != usr_mode) {
unsigned int mask = 0;
unsigned int mod = 0;
switch (GET_USR_SUB_MODE(usr_mode)) {
case S_SAMP_XY_AB:
mask = 0x07;
break;
default:
mask = 0x03;
break;
};
mod = pst_adpd->fifo_size & mask;
if (mod) {
ADPD143_info("Keeping %d samples in FIFO from %d\n",
mod, pst_adpd->fifo_size);
pst_adpd->fifo_size &= ~mask;
atomic_inc(&pst_adpd->stats.fifo_requires_sync);
}
}
return pst_adpd->intr_status_val;
}
/**
This function is used for clearing the Interrupt as well as FIFO
@param pst_adpd the ADPD143 data structure
@return void
*/
static void
adpd143_clr_intr_fifo(struct adpd143_data *pst_adpd)
{
/*below code is added for verification */
unsigned short regval;
regval = reg_read(pst_adpd, ADPD_INT_STATUS_ADDR);
ADPD143_info("fifo_size: 0x%04x, Status: 0x%x\n",
((regval & 0xFF00) >> 8), (regval & 0xFF));
reg_write(pst_adpd, ADPD_INT_STATUS_ADDR, 0x80FF);
regval = reg_read(pst_adpd, ADPD_INT_STATUS_ADDR);
ADPD143_info("After clear - fifo_size: 0x%04x, Status: 0x%x\n",
((regval & 0xFF00) >> 8), (regval & 0xFF));
}
/**
This function is used for clearing the Interrupt status
@param pst_adpd the ADPD143 data structure
@param mode operating mode of ADPD143
@return void
*/
static void
adpd143_clr_intr_status(struct adpd143_data *pst_adpd, unsigned short mode)
{
reg_write(pst_adpd, ADPD_INT_STATUS_ADDR,
pst_adpd->intr_status_val);
}
/**
This function is used to read out FIFO data from FIFO
@param pst_adpd the ADPD143 data structure
@return unsigned int FIFO size
*/
static unsigned int
adpd143_rd_fifo_data(struct adpd143_data *pst_adpd)
{
int loop_cnt = 0;
if (!pst_adpd->fifo_size)
goto err_rd_fifo_data;
if (0 != atomic_read(&pst_adpd->adpd_mode) &&
pst_adpd->fifo_size & 0x3) {
pr_err("Unexpected FIFO_SIZE=%d,\
should be multiple of four (channels)!\n",
pst_adpd->fifo_size);
}
/* reg_write(pst_adpd, ADPD_ACCESS_CTRL_ADDR, 0x0001);*/
reg_write(pst_adpd, ADPD_TEST_PD_ADDR, EN_FIFO_CLK);
multi_reg_read(pst_adpd, ADPD_DATA_BUFFER_ADDR,
pst_adpd->fifo_size, pst_adpd->ptr_data);
/* reg_write(pst_adpd, ADPD_ACCESS_CTRL_ADDR, 0x0000);*/
reg_write(pst_adpd, ADPD_TEST_PD_ADDR, DS_FIFO_CLK);
for (; loop_cnt < pst_adpd->fifo_size; loop_cnt++) {
ADPD143_info("[0x%04x] 0x%04x\n", loop_cnt,
pst_adpd->ptr_data[loop_cnt]);
}
return pst_adpd->fifo_size;
err_rd_fifo_data:
return 0;
}
/**
This function is a thing need to configure before changing the register
@param pst_adpd the ADPD143 data structure
@param global_mode OFF, IDLE, GO are the three mode
@return void
*/
static void
adpd143_config_prerequisite(struct adpd143_data *pst_adpd, u32 global_mode)
{
unsigned short regval = 0;
regval = reg_read(pst_adpd, ADPD_OP_MODE_ADDR);
regval = SET_GLOBAL_OP_MODE(regval, global_mode);
ADPD143_info("reg 0x%04x,\tafter set 0x%04x\n",
regval, SET_GLOBAL_OP_MODE(regval, global_mode));
reg_write(pst_adpd, ADPD_OP_MODE_ADDR, regval);
}
void adpd143_pin_control(struct adpd143_data *pst_adpd, bool pin_set)
{
int status = 0;
pst_adpd->p->state = NULL;
if (pin_set) {
if (!IS_ERR(pst_adpd->pins_idle)) {
status = pinctrl_select_state(pst_adpd->p,
pst_adpd->pins_idle);
if (status)
pr_err("%s: can't set pin default state\n",
__func__);
pr_debug("%s idle\n", __func__);
}
} else {
if (!IS_ERR(pst_adpd->pins_sleep)) {
status = pinctrl_select_state(pst_adpd->p,
pst_adpd->pins_sleep);
if (status)
pr_err("%s: can't set pin sleep state\n",
__func__);
pr_debug("%s sleep\n", __func__);
}
}
}
/**
This function is used for switching the adpd143 mode
@param pst_adpd the ADPD143 data structure
@param usr_mode user mode
@return void
*/
static void
adpd143_mode_switching(struct adpd143_data *pst_adpd, u32 usr_mode)
{
unsigned int opmode_val = 0;
unsigned short mode_val = 0;
unsigned short intr_mask_val = 0;
int i;
unsigned short mode = GET_USR_MODE(usr_mode);
unsigned short sub_mode = GET_USR_SUB_MODE(usr_mode);
/*disabling further avoid further interrupt to trigger */
disable_irq(pst_adpd->irq);
/*stop the pending work */
/*this function Gurantee that wrk is not pending or executing on CPU */
cancel_work_sync(&pst_adpd->work);
atomic_set(&pst_adpd->adpd_mode, 0);
mutex_lock(&pst_adpd->mutex);
/*Depending upon the mode get the value need to write Operatin mode*/
opmode_val = *(__mode_recv_frm_usr[mode].mode_code + (sub_mode));
adpd143_config_prerequisite(pst_adpd, GLOBAL_OP_MODE_IDLE);
/*switch to IDLE mode */
mode_val = DEFAULT_OP_MODE_CFG_VAL(pst_adpd);
mode_val += SET_MODE_VALUE(IDLE_OFF);
intr_mask_val = SET_INTR_MASK(IDLE_USR);
reg_write(pst_adpd, ADPD_OP_MODE_CFG_ADDR, mode_val);
reg_write(pst_adpd, ADPD_INT_MASK_ADDR, intr_mask_val);
/*clear FIFO and flush buffer */
adpd143_clr_intr_fifo(pst_adpd);
adpd143_rd_intr_fifo(pst_adpd);
if (pst_adpd->fifo_size != 0) {
adpd143_clr_intr_status(pst_adpd, IDLE_USR);
ADPD143_info("Flushing FIFO\n");
adpd143_rd_fifo_data(pst_adpd);
}
adpd143_config_prerequisite(pst_adpd, GLOBAL_OP_MODE_GO);
msleep(20);
adpd143_config_prerequisite(pst_adpd, GLOBAL_OP_MODE_IDLE);
/*Find Interrupt mask value */
switch (mode) {
case IDLE_USR:
ADPD143_info("IDLE MODE\n");
intr_mask_val = SET_INTR_MASK(IDLE_USR);
atomic_set(&pst_adpd->hrm_enabled, HRM_IDLE_MODE);
break;
case SAMPLE_USR:
ADPD143_info("SAMPLE MODE\n");
/*enable interrupt only when data written to FIFO */
switch (sub_mode) {
case S_SAMP_XY_A:
intr_mask_val = SET_INTR_MASK(S_SAMP_XY_A_USR);
break;
case S_SAMP_XY_AB:
intr_mask_val = SET_INTR_MASK(S_SAMP_XY_AB_USR);
break;
case S_SAMP_XY_B:
intr_mask_val = SET_INTR_MASK(S_SAMP_XY_B_USR);
break;
default:
intr_mask_val = SET_INTR_MASK(SAMPLE_USR);
break;
};
intr_mask_val |= 0xC000;
atomic_set(&pst_adpd->hrm_enabled, HRM_SAMPLE_MODE);
adpd143_configuration(pst_adpd, 1);
break;
case TIA_ADC_USR:
ADPD143_info("TIA_ADC_USR SAMPLE MODE\n");
/* for TIA_ADC runtime Dark Calibration */
ch1FloatSat = ch2FloatSat = ch3FloatSat = ch4FloatSat = 65535;
is_TIA_Dark_Cal = is_Float_Dark_Cal = 0;
for(i = 0; i < 8; i++) rawDarkCh[i] = rawDataCh[i] = 0;
/*enable interrupt only when data written to FIFO */
switch (sub_mode) {
case S_SAMP_XY_A:
intr_mask_val = SET_INTR_MASK(S_SAMP_XY_A_USR);
break;
case S_SAMP_XY_AB:
intr_mask_val = SET_INTR_MASK(S_SAMP_XY_AB_USR);
break;
case S_SAMP_XY_B:
intr_mask_val = SET_INTR_MASK(S_SAMP_XY_B_USR);
break;
default:
intr_mask_val = SET_INTR_MASK(SAMPLE_USR);
break;
};
intr_mask_val |= 0xC000;
atomic_set(&pst_adpd->hrm_enabled, HRM_TIA_ADC_MODE);
adpd143_TIA_ADC_configuration(pst_adpd, 1);
break;
default:
/*This case won't occur */
ADPD143_dbg("invalid mode\n");
break;
};
ADPD143_info("INT_MASK_ADDR[0x%04x] = 0x%04x\n", ADPD_INT_MASK_ADDR,
intr_mask_val);
pst_adpd->intr_mask_val = intr_mask_val;
/*Fetch Default opmode configuration other than OP mode
and DATA_OUT mode */
mode_val = DEFAULT_OP_MODE_CFG_VAL(pst_adpd);
/*Get Mode value from the opmode value,
to hardocde the macro, change SET_MODE_VALUE macro and concern
mode macro
*/
mode_val += SET_MODE_VALUE(opmode_val);
ADPD143_info("OP_MODE_CFG[0x%04x] = 0x%04x\n",
ADPD_OP_MODE_CFG_ADDR, mode_val);
atomic_set(&pst_adpd->adpd_mode, usr_mode);
reg_write(pst_adpd, ADPD_INT_MASK_ADDR, pst_adpd->intr_mask_val);
reg_write(pst_adpd, ADPD_OP_MODE_CFG_ADDR, mode_val);
mutex_unlock(&pst_adpd->mutex);
enable_irq(pst_adpd->irq);
if (mode != IDLE_USR)
adpd143_config_prerequisite(pst_adpd, GLOBAL_OP_MODE_GO);
else
adpd143_config_prerequisite(pst_adpd, GLOBAL_OP_MODE_OFF);
}
/**
This function is used for sending Sample event depend upon
the Sample mode
@param pst_adpd the ADPD143 data structure
@return void
*/
/* for making float mode saturated at the point */
#define FLOAT_STR_CONTROL 7200
/* for TIA_ADC runtime Dark Calibration */
#define TIA_DARK_CAL_CNT 5
#define FLOAT_DARK_CAL_CNT 5
static void
adpd143_sample_event(struct adpd143_data *pst_adpd)
{
unsigned short usr_mode = 0;
unsigned short sub_mode = 0;
unsigned short cnt = 0;
unsigned int ch;
unsigned short uncoated_ch3 = 0;
unsigned short coated_ch4 = 0;
unsigned short k = 0;
ADPD143_info("%s\n", __func__);
usr_mode = atomic_read(&pst_adpd->adpd_mode);
sub_mode = GET_USR_SUB_MODE(usr_mode);
pst_adpd->sample_cnt++;
if ((pst_adpd->sample_cnt % 200) == 1) {
printk("%s: user mode : %d, sub mode : %d\n",
__func__, GET_USR_MODE(usr_mode),GET_USR_SUB_MODE(usr_mode));
pst_adpd->sample_cnt = 0;
}
switch (sub_mode) {
case S_SAMP_XY_A:
if (pst_adpd->fifo_size < 4 || (pst_adpd->fifo_size & 0x3)) {
pr_err("Unexpected FIFO_SIZE=%d\n",
pst_adpd->fifo_size);
break;
}
if(GET_USR_MODE(usr_mode) != TIA_ADC_USR) {
for (cnt = 0; cnt < pst_adpd->fifo_size; cnt += 4) {
if (atomic_read(&pst_adpd->hrmled_enabled)) {
input_event(pst_adpd->hrmled_input_dev,
EV_REL, REL_Z, sub_mode + 1);
input_event(pst_adpd->hrmled_input_dev, EV_MSC,
MSC_RAW, pst_adpd->ptr_data[cnt] + 1);
input_event(pst_adpd->hrmled_input_dev, EV_MSC,
MSC_RAW, pst_adpd->ptr_data[cnt + 1] + 1);
input_event(pst_adpd->hrmled_input_dev, EV_MSC,
MSC_RAW, pst_adpd->ptr_data[cnt + 2] + 1);
input_event(pst_adpd->hrmled_input_dev, EV_MSC,
MSC_RAW, pst_adpd->ptr_data[cnt + 3] + 1);
input_sync(pst_adpd->hrmled_input_dev);
} else {
input_event(pst_adpd->hrm_input_dev,
EV_REL, REL_Z, sub_mode + 1);
input_event(pst_adpd->hrm_input_dev, EV_MSC,
MSC_RAW, pst_adpd->ptr_data[cnt] + 1);
input_event(pst_adpd->hrm_input_dev, EV_MSC,
MSC_RAW, pst_adpd->ptr_data[cnt + 1] + 1);
input_event(pst_adpd->hrm_input_dev, EV_MSC,
MSC_RAW, pst_adpd->ptr_data[cnt + 2] + 1);
input_event(pst_adpd->hrm_input_dev, EV_MSC,
MSC_RAW, pst_adpd->ptr_data[cnt + 3] + 1);
input_sync(pst_adpd->hrm_input_dev);
}
}
} else {
for (cnt = 0; cnt < pst_adpd->fifo_size; cnt += 4) {
/* for TIA_ADC runtime Dark Calibration */
if (is_TIA_Dark_Cal < TIA_DARK_CAL_CNT
&& is_TIA_Dark_Cal > 1) {
for(k = 0; k < 4; k++) {
if (rawDarkCh[k] < pst_adpd->ptr_data[cnt+k]
|| !rawDarkCh[k])
rawDarkCh[k] = pst_adpd->ptr_data[cnt+k];
}
is_TIA_Dark_Cal++;
continue;
} else if (is_TIA_Dark_Cal >= TIA_DARK_CAL_CNT
&& is_TIA_Dark_Cal < 100) {
rawDarkCh[0] -= 1470;
rawDarkCh[1] -= 205;
rawDarkCh[2] -= 210;
rawDarkCh[3] -= 230;
is_TIA_Dark_Cal = 100;
continue;
} else if (is_TIA_Dark_Cal < TIA_DARK_CAL_CNT) {
is_TIA_Dark_Cal++;
continue;
} else if (is_TIA_Dark_Cal == 100) {
reg_write(pst_adpd, 0x10,0x0001);
reg_write(pst_adpd, 0x14,0x0441);
reg_write(pst_adpd, 0x10,0x0002);
is_TIA_Dark_Cal++;
continue;
}
/* for making float mode saturated at the point */
for(ch = 0; ch < 4; ++ch) {
rawDataCh[ch] =
rawDarkCh[ch] - pst_adpd->ptr_data[cnt+ch];
rawDataCh[ch] =
((int)rawDataCh[ch] < 0)? 0 : rawDataCh[ch];
}
input_event(pst_adpd->hrm_input_dev,
EV_REL, REL_Z, sub_mode + 1);
input_event(pst_adpd->hrm_input_dev, EV_MSC,
MSC_RAW, rawDataCh[0]);
input_event(pst_adpd->hrm_input_dev, EV_MSC,
MSC_RAW, rawDataCh[1]);
input_event(pst_adpd->hrm_input_dev, EV_MSC,
MSC_RAW, rawDataCh[2]);
uncoated_ch3 = rawDataCh[2];
input_event(pst_adpd->hrm_input_dev, EV_MSC,
MSC_RAW, rawDataCh[3]);
input_sync(pst_adpd->hrm_input_dev);
coated_ch4 = rawDataCh[3];
pr_err("adpd143 SLOT A(TIA) unch3:%d, ch4=%d\n",
uncoated_ch3, coated_ch4);
}
}
break;
case S_SAMP_XY_AB:
if (pst_adpd->fifo_size < 8 || (pst_adpd->fifo_size & 0x7)) {
pr_err("Unexpected FIFO_SIZE=%d\n",
pst_adpd->fifo_size);
break;
}
if (GET_USR_MODE(usr_mode) != TIA_ADC_USR) {
for (cnt = 0; cnt < pst_adpd->fifo_size; cnt += 8) {
unsigned int sum_slot_a = 0;
unsigned int sum_slot_b = 0;
if (atomic_read(&pst_adpd->hrmled_enabled)) {
input_event(pst_adpd->hrmled_input_dev,
EV_REL, REL_Z, sub_mode + 1);
for (ch = 0; ch < 4; ++ch) {
sum_slot_a +=
pst_adpd->ptr_data[cnt+ch];
input_event(pst_adpd->hrmled_input_dev,
EV_MSC, MSC_RAW,
pst_adpd->ptr_data[cnt+ch] + 1);
}
input_event(pst_adpd->hrmled_input_dev,
EV_REL, REL_X, sum_slot_a + 1);
for (ch = 4; ch < 8; ++ch) {
sum_slot_b +=
pst_adpd->ptr_data[cnt+ch];
input_event(pst_adpd->hrmled_input_dev,
EV_MSC, MSC_RAW,
pst_adpd->ptr_data[cnt+ch] + 1);
}
input_event(pst_adpd->hrmled_input_dev,
EV_REL, REL_Y, sum_slot_b + 1);
input_sync(pst_adpd->hrmled_input_dev);
} else {
input_event(pst_adpd->hrm_input_dev,
EV_REL, REL_Z, sub_mode + 1);
for (ch = 0; ch < 4; ++ch) {
sum_slot_a +=
pst_adpd->ptr_data[cnt+ch];
input_event(pst_adpd->hrm_input_dev,
EV_MSC, MSC_RAW,
pst_adpd->ptr_data[cnt+ch] + 1);
}
input_event(pst_adpd->hrm_input_dev,
EV_REL, REL_X, sum_slot_a + 1);
for (ch = 4; ch < 8; ++ch) {
sum_slot_b +=
pst_adpd->ptr_data[cnt+ch];
input_event(pst_adpd->hrm_input_dev,
EV_MSC, MSC_RAW,
pst_adpd->ptr_data[cnt+ch] + 1);
}
input_event(pst_adpd->hrm_input_dev,
EV_REL, REL_Y, sum_slot_b + 1);
input_sync(pst_adpd->hrm_input_dev);
pr_err("adpd143 sum_slot_a:%d, sum_slot_b:%d\n",
sum_slot_a, sum_slot_b);
}
}
} else {
for (cnt = 0; cnt < pst_adpd->fifo_size; cnt += 8) {
input_event(pst_adpd->hrm_input_dev,
EV_REL, REL_Z, sub_mode + 1);
/* for TIA_ADC runtime Dark Calibration */
if (is_TIA_Dark_Cal < TIA_DARK_CAL_CNT
&& is_TIA_Dark_Cal > 1) {
for(k = 0; k < 4; k++) {
if (rawDarkCh[k] < pst_adpd->ptr_data[cnt+k]
|| !rawDarkCh[k])
rawDarkCh[k] = pst_adpd->ptr_data[cnt+k];
}
is_TIA_Dark_Cal++;
} else if (is_TIA_Dark_Cal >= TIA_DARK_CAL_CNT
&& is_TIA_Dark_Cal < 100) {
rawDarkCh[0] -= 1470;
rawDarkCh[1] -= 205;
rawDarkCh[2] -= 210;
rawDarkCh[3] -= 230;
is_TIA_Dark_Cal = 100;
} else if (is_TIA_Dark_Cal < TIA_DARK_CAL_CNT) {
is_TIA_Dark_Cal++;
}
/* for TIA_ADC runtime Dark Calibration */
if (is_Float_Dark_Cal < TIA_DARK_CAL_CNT &&
is_Float_Dark_Cal > 1) {
for(k = 4; k < 8; k++) {
if (rawDarkCh[k] < pst_adpd->ptr_data[cnt+k]
|| !rawDarkCh[k])
rawDarkCh[k] = pst_adpd->ptr_data[cnt+k];
}
is_Float_Dark_Cal++;
continue;
} else if (is_Float_Dark_Cal >= TIA_DARK_CAL_CNT &&
is_Float_Dark_Cal < 100) {
is_Float_Dark_Cal = 100;
continue;
} else if (is_Float_Dark_Cal < TIA_DARK_CAL_CNT) {
is_Float_Dark_Cal++;
continue;
} else if (is_Float_Dark_Cal == 100) {
reg_write(pst_adpd, 0x10,0x0001);
reg_write(pst_adpd, 0x14,0x0441);
reg_write(pst_adpd, 0x10,0x0002);
is_Float_Dark_Cal++;
continue;
}
/* for making float mode saturated at the point */
for(ch = 0; ch < 4; ++ch) {
rawDataCh[ch]
= rawDarkCh[ch] - pst_adpd->ptr_data[cnt+ch];
rawDataCh[ch]
= ((int)rawDataCh[ch] < 0)? 0 : rawDataCh[ch];
}
for (ch = 0; ch < 4; ++ch) {
if (ch == 2) uncoated_ch3 = rawDataCh[2];
if (ch == 3) {
coated_ch4 = rawDataCh[3];
/* for approximating the code continuity between float and TIA_ADC */
input_event(pst_adpd->hrm_input_dev,
EV_MSC, MSC_RAW, rawDataCh[ch]*2 );
} else {
input_event(pst_adpd->hrm_input_dev,
EV_MSC, MSC_RAW, rawDataCh[ch]);
pr_err("adpd143 SLOT A %d:%d\n",
ch, rawDataCh[ch]);
}
}
if (uncoated_ch3 == 0) {
uncoated_ch3++;
coated_ch4++;
}
input_event(pst_adpd->hrm_input_dev, EV_REL,
REL_X, (((unsigned)coated_ch4) * 100) / uncoated_ch3);
/* for making float mode saturated at the point */
for (ch = 4; ch < 8; ++ch) {
pr_err("adpd142 SLOT B(float mode) : rawDataCh%d : %d, rawDarkCh%d : %d\n",
ch, pst_adpd->ptr_data[cnt+ch], ch, rawDarkCh[ch]);
rawDataCh[ch] =
pst_adpd->ptr_data[cnt+ch] - rawDarkCh[ch];
rawDataCh[ch] =
((int)rawDataCh[ch] < 0)? 0 : rawDataCh[ch];
if ((int)rawDataCh[ch] >=
(FLOAT_STR_CONTROL - rawDarkCh[ch])) {
rawDataCh[ch] =
FLOAT_STR_CONTROL - rawDarkCh[ch];
if (ch == 4 &&
(((rawDataCh[0] < ch1FloatSat)
&& (rawDataCh[0] > ch1FloatSat - 20))
|| (ch1FloatSat == 65535)))
ch1FloatSat = rawDataCh[0];
if (ch == 5 &&
(((rawDataCh[1] < ch2FloatSat)
&& (rawDataCh[1] > ch2FloatSat - 20))
|| (ch2FloatSat == 65535)))
ch2FloatSat = rawDataCh[1];
if (ch == 6 &&
(((rawDataCh[2] < ch3FloatSat)
&& (rawDataCh[2] > ch3FloatSat - 20))
|| (ch3FloatSat == 65535)))
ch3FloatSat = rawDataCh[2];
if (ch == 7 &&
(((rawDataCh[3] < ch4FloatSat)
&& (rawDataCh[3] > ch4FloatSat - 10))
|| (ch4FloatSat == 65535)))
ch4FloatSat = rawDataCh[3];
}
}
if ((int)rawDataCh[0] >= ch1FloatSat)
rawDataCh[4] =
FLOAT_STR_CONTROL - rawDarkCh[4];
if ((int)rawDataCh[1] >= ch2FloatSat)
rawDataCh[5] =
FLOAT_STR_CONTROL - rawDarkCh[5];
if ((int)rawDataCh[2] >= ch3FloatSat)
rawDataCh[6] =
FLOAT_STR_CONTROL - rawDarkCh[6];
if ((int)rawDataCh[3] >= ch4FloatSat)
rawDataCh[7] = FLOAT_STR_CONTROL;
for (ch = 4; ch < 8; ++ch) {
if (GET_USR_MODE(usr_mode) == TIA_ADC_USR) {
if (ch == 6)
uncoated_ch3 = rawDataCh[6];
if (ch == 7)
coated_ch4 = rawDataCh[7];
input_event(pst_adpd->hrm_input_dev,
EV_MSC, MSC_RAW, rawDataCh[ch]);
pr_err("adpd143 SLOT B(After Dark Cal) %d:%d\n",
ch, rawDataCh[ch]);
}
}
if (uncoated_ch3 == 0) {
uncoated_ch3++;
coated_ch4++;
}
input_event(pst_adpd->hrm_input_dev,
EV_REL, REL_Y,
(((unsigned)coated_ch4)*100)/uncoated_ch3);
input_sync(pst_adpd->hrm_input_dev);
}
}
break;
case S_SAMP_XY_B:
if (pst_adpd->fifo_size < 4 || (pst_adpd->fifo_size & 0x3)) {
pr_err("Unexpected FIFO_SIZE=%d\n",
pst_adpd->fifo_size);
break;
}
if( GET_USR_MODE(usr_mode) != TIA_ADC_USR ) {
for (cnt = 0; cnt < pst_adpd->fifo_size; cnt += 4) {
if (atomic_read(&pst_adpd->hrmled_enabled)) {
input_event(pst_adpd->hrmled_input_dev, EV_REL,
REL_Z, sub_mode + 1);
input_event(pst_adpd->hrmled_input_dev, EV_MSC,
MSC_RAW, pst_adpd->ptr_data[cnt] + 1);
input_event(pst_adpd->hrmled_input_dev, EV_MSC,
MSC_RAW, pst_adpd->ptr_data[cnt + 1] + 1);
input_event(pst_adpd->hrmled_input_dev, EV_MSC,
MSC_RAW, pst_adpd->ptr_data[cnt + 2] + 1);
input_event(pst_adpd->hrmled_input_dev, EV_MSC,
MSC_RAW, pst_adpd->ptr_data[cnt + 3] + 1);
input_sync(pst_adpd->hrmled_input_dev);
} else {
input_event(pst_adpd->hrm_input_dev, EV_REL,
REL_Z, sub_mode + 1);
input_event(pst_adpd->hrm_input_dev, EV_MSC,
MSC_RAW, pst_adpd->ptr_data[cnt] + 1);
input_event(pst_adpd->hrm_input_dev, EV_MSC,
MSC_RAW, pst_adpd->ptr_data[cnt + 1] + 1);
input_event(pst_adpd->hrm_input_dev, EV_MSC,
MSC_RAW, pst_adpd->ptr_data[cnt + 2] + 1);
input_event(pst_adpd->hrm_input_dev, EV_MSC,
MSC_RAW, pst_adpd->ptr_data[cnt + 3] + 1);
input_sync(pst_adpd->hrm_input_dev);
}
}
} else {
for (cnt = 0; cnt < pst_adpd->fifo_size; cnt += 4) {
/* for TIA_ADC runtime Dark Calibration */
if (is_Float_Dark_Cal < FLOAT_DARK_CAL_CNT &&
is_Float_Dark_Cal > 1) {
for(k = 4; k < 8; k++) {
if (rawDarkCh[k] < pst_adpd->ptr_data[cnt+k-4]
|| !rawDarkCh[k])
rawDarkCh[k] = pst_adpd->ptr_data[cnt+k-4];
}
is_Float_Dark_Cal++;
continue;
} else if (is_Float_Dark_Cal >= FLOAT_DARK_CAL_CNT
&& is_Float_Dark_Cal < 100) {
is_Float_Dark_Cal = 100;
continue;
} else if (is_Float_Dark_Cal < FLOAT_DARK_CAL_CNT) {
is_Float_Dark_Cal++;
continue;
} else if (is_Float_Dark_Cal == 100) {
reg_write(pst_adpd, 0x10,0x0001);
reg_write(pst_adpd, 0x14,0x0441);
reg_write(pst_adpd, 0x10,0x0002);
is_Float_Dark_Cal++;
}
/* for making float mode saturated at the point */
for(ch = 4; ch < 8; ++ch) {
rawDataCh[ch] =
pst_adpd->ptr_data[cnt+ch] - rawDarkCh[ch];
rawDataCh[ch] =
((int)rawDataCh[ch] < 0) ? 0 : rawDataCh[ch];
if ((int)rawDataCh[ch] >=
(FLOAT_STR_CONTROL - rawDarkCh[ch]))
rawDataCh[ch] =
FLOAT_STR_CONTROL - rawDarkCh[ch];
}
input_event(pst_adpd->hrm_input_dev, EV_REL,
REL_Z, sub_mode + 1);
input_event(pst_adpd->hrm_input_dev, EV_MSC,
MSC_RAW, rawDataCh[4]);
input_event(pst_adpd->hrm_input_dev, EV_MSC,
MSC_RAW, rawDataCh[5]);
input_event(pst_adpd->hrm_input_dev, EV_MSC,
MSC_RAW, rawDataCh[6]);
uncoated_ch3 = rawDataCh[6];
input_event(pst_adpd->hrm_input_dev, EV_MSC,
MSC_RAW, rawDataCh[7]);
input_sync(pst_adpd->hrm_input_dev);
coated_ch4 = rawDataCh[7];
}
}
break;
default:
break;
};
}
/**
This function is used for handling FIFO when interrupt occured
@param pst_adpd the ADPD143 data structure
@return void
*/
static void
adpd143_data_handler(struct adpd143_data *pst_adpd)
{
unsigned short usr_mode = 0;
unsigned short mode = 0;
unsigned short sub_mode = 0;
mutex_lock(&pst_adpd->mutex);
usr_mode = atomic_read(&pst_adpd->adpd_mode);
mode = GET_USR_MODE(usr_mode);
sub_mode = GET_USR_SUB_MODE(usr_mode);
ADPD143_info("mode - 0x%x,\t sub_mode - 0x%x\n", mode, sub_mode);
adpd143_rd_intr_fifo(pst_adpd);
if (pst_adpd->intr_status_val == 0) {
mutex_unlock(&pst_adpd->mutex);
return;
}
adpd143_clr_intr_status(pst_adpd, mode);
switch (mode) {
case IDLE_USR:
ADPD143_dbg("IDLE_MODE\n");
adpd143_rd_fifo_data(pst_adpd);
break;
case SAMPLE_USR:
ADPD143_info("SAMPLE MODE\n");
adpd143_rd_fifo_data(pst_adpd);
adpd143_sample_event(pst_adpd);
break;
/* for supporting TIA_ADC mode */
case TIA_ADC_USR:
ADPD143_info("SAMPLE TIA ADC MODE\n");
adpd143_rd_fifo_data(pst_adpd);
adpd143_sample_event(pst_adpd);
break;
default:
ADPD143_info("DEFAULT MODE\n");
adpd143_rd_fifo_data(pst_adpd);
break;
};
mutex_unlock(&pst_adpd->mutex);
}
/**
This function is a handler for WorkQueue
@param ptr_work linux work structure
@return void
*/
static void
adpd143_wq_handler(struct work_struct *ptr_work)
{
struct adpd143_data *pst_adpd = container_of(ptr_work,
struct adpd143_data, work);
struct timeval wkq_start;
struct timeval wkq_comp;
int diff_usec = 0;
do_gettimeofday(&wkq_start);
diff_usec = timeval_compare(&wkq_start,
&pst_adpd->stats.stamp.interrupt_trigger);
if (diff_usec > 1) {
if (diff_usec >
atomic_read(&pst_adpd->stats.wq_schedule_time_peak_usec))
atomic_set(&pst_adpd->stats.wq_schedule_time_peak_usec,
diff_usec);
atomic_set(&pst_adpd->stats.wq_schedule_time_last_usec,
diff_usec);
ewma_add(&pst_adpd->stats.wq_schedule_time_avg_usec, diff_usec);
}
adpd143_data_handler(pst_adpd);
do_gettimeofday(&wkq_comp);
diff_usec = timeval_compare(&wkq_comp, &wkq_start);
if (diff_usec > 1) {
if (diff_usec >
atomic_read(&pst_adpd->stats.data_process_time_peak_usec))
atomic_set(
&pst_adpd->stats.data_process_time_peak_usec,
diff_usec);
atomic_set(&pst_adpd->stats.data_process_time_last_usec,
diff_usec);
ewma_add(&pst_adpd->stats.data_process_time_avg_usec,
diff_usec);
}
}
/**
This function is used for handling Interrupt from ADPD143
@param irq is Interrupt number
@param dev_id is pointer point to ADPD143 data structure
@return irqreturn_t is a Interrupt flag
*/
static irqreturn_t
adpd143_isr_handler(int irq, void *dev_id)
{
struct adpd143_data *pst_adpd = dev_id;
atomic_inc(&pst_adpd->stats.interrupts);
if (!work_pending(&pst_adpd->work)) {
do_gettimeofday(&pst_adpd->stats.stamp.interrupt_trigger);
ADPD143_info("%s\n", __func__);
if (!queue_work(pst_adpd->ptr_adpd143_wq_st, &pst_adpd->work))
atomic_inc(&pst_adpd->stats.wq_pending);
} else {
atomic_inc(&pst_adpd->stats.wq_pending);
ADPD143_info("work_pending !!\n");
}
return IRQ_HANDLED;
}
/**
This function is used for updating the ADPD143 structure after configuration
@param pst_adpd the ADPD143 data structure
@return void
*/
static void
adpd143_update_config(struct adpd143_data *pst_adpd)
{
return;
}
/**
This function is used for loading the configuration data to ADPD143 chip
0 - From file "/data/misc/adpd143_configuration.dcfg"
1 - From Static defined Array
@param pst_adpd the ADPD143 data structure
@param config configuration command
@return int status
*/
static int
adpd143_configuration(struct adpd143_data *pst_adpd, unsigned char config)
{
struct adpd_platform_data *ptr_config;
unsigned short addr;
unsigned short data;
unsigned short cnt = 0;
int ret = 0;
/* must be removed in TIA mode */
/* adpd143_mode_switching(pst_adpd, 0); */
if (config == FRM_FILE) {
ret = adpd143_read_config_file(pst_adpd);
/* ADPD143_info("ARRAY_SIZE - %d\n", size);*/
} else {
ret = FRM_ARR;
}
if (ret == 0)
ptr_config = pst_adpd->ptr_config;
else
ptr_config = &adpd143_config_data;
for (cnt = 0; cnt < ptr_config->config_size; cnt++) {
addr = (unsigned short) ((0xFFFF0000 &
ptr_config->config_data[cnt]) >> 16);
data = (unsigned short) (0x0000FFFF &
ptr_config->config_data[cnt]);
ADPD143_dbg("addr[0x%04x] = 0x%04x\n", addr, data);
reg_write(pst_adpd, addr, data);
}
adpd143_update_config(pst_adpd);
return 0;
}
static int
adpd143_TIA_ADC_configuration(struct adpd143_data *pst_adpd, unsigned char config)
{
struct adpd_platform_data *ptr_config;
unsigned short addr;
unsigned short data;
unsigned short cnt = 0;
int ret = 0;
pr_info("%s start", __func__);
if (config == FRM_FILE) {
ret = adpd143_read_config_file(pst_adpd);
/* ADPD143_info("ARRAY_SIZE - %d\n", size);*/
} else {
ret = FRM_ARR;
}
if (ret == 0)
ptr_config = pst_adpd->ptr_config;
else
ptr_config = &adpd143_tia_adc_config_data;
for (cnt = 0; cnt < ptr_config->config_size; cnt++) {
addr = (unsigned short) ((0xFFFF0000 &
ptr_config->config_data[cnt]) >> 16);
data = (unsigned short) (0x0000FFFF &
ptr_config->config_data[cnt]);
ADPD143_dbg("addr[0x%04x] = 0x%04x\n", addr, data);
reg_write(pst_adpd, addr, data);
}
adpd143_update_config(pst_adpd);
return 0;
}
/* read & write efs for hrm sensor */
static int osc_trim_efs_register_open(struct adpd143_data *pst_adpd)
{
struct file *osc_filp = NULL;
char buffer[60] = {0, };
int err = 0;
int osc_trim_32k, osc_trim_32m;
int osc_trim_addr26, osc_trim_addr28, osc_trim_addr29;
mm_segment_t old_fs;
old_fs = get_fs();
set_fs(KERNEL_DS);
osc_filp = filp_open(OSCILLATOR_TRIM_FILE_PATH, O_RDONLY, 0666);
if (IS_ERR(osc_filp)) {
err = PTR_ERR(osc_filp);
if (err != -ENOENT)
pr_err("%s: Can't open oscillator trim file\n",
__func__);
set_fs(old_fs);
return err;
}
err = osc_filp->f_op->read(osc_filp,
(char *)buffer,
60 * sizeof(char), &osc_filp->f_pos);
if (err != (60 * sizeof(char))) {
pr_err("%s: Can't read the oscillator trim data from file\n",
__func__);
err = -EIO;
}
sscanf(buffer, "%d,%d,%d,%d,%d", &osc_trim_32k, &osc_trim_32m,
&osc_trim_addr26, &osc_trim_addr28, &osc_trim_addr29);
pr_info("%s: (%d,%d,%d,%d,%d)\n", __func__, osc_trim_32k,
osc_trim_32m, osc_trim_addr26, osc_trim_addr28, osc_trim_addr29);
pst_adpd->osc_trim_32K_value = osc_trim_32k;
pst_adpd->osc_trim_32M_value = osc_trim_32m;
pst_adpd->osc_trim_addr26_value = osc_trim_addr26;
pst_adpd->osc_trim_addr28_value = osc_trim_addr28;
pst_adpd->osc_trim_addr29_value = osc_trim_addr29;
filp_close(osc_filp, current->files);
set_fs(old_fs);
return err;
}
static int osc_trim_efs_register_save(struct adpd143_data *pst_adpd)
{
struct file *osc_filp = NULL;
mm_segment_t old_fs;
char buffer[60] = {0, };
int osc_trim_32k, osc_trim_32m;
int osc_trim_addr26, osc_trim_addr28, osc_trim_addr29;
int err = 0;
old_fs = get_fs();
set_fs(KERNEL_DS);
osc_filp = filp_open(OSCILLATOR_TRIM_FILE_PATH,
O_CREAT | O_TRUNC | O_WRONLY, 0666);
if (IS_ERR(osc_filp)) {
pr_err("%s: Can't open oscillator trim file\n",
__func__);
set_fs(old_fs);
err = PTR_ERR(osc_filp);
return err;
}
osc_trim_32k = reg_read(pst_adpd, OSC_TRIM_32K_REG);
osc_trim_32m = reg_read(pst_adpd, OSC_TRIM_32M_REG);
osc_trim_addr26 = reg_read(pst_adpd, OSC_TRIM_ADDR26_REG);
osc_trim_addr28 = reg_read(pst_adpd, OSC_TRIM_ADDR28_REG);
osc_trim_addr29 = reg_read(pst_adpd, OSC_TRIM_ADDR29_REG);
sprintf(buffer, "%d,%d,%d,%d,%d", osc_trim_32k, osc_trim_32m,
osc_trim_addr26, osc_trim_addr28, osc_trim_addr29);
pr_info("%s: (%d,%d,%d,%d,%d)\n", __func__, osc_trim_32k, osc_trim_32m,
osc_trim_addr26, osc_trim_addr28, osc_trim_addr29);
err = osc_filp->f_op->write(osc_filp,
(char *)&buffer,
60 * sizeof(char), &osc_filp->f_pos);
if (err != (60 * sizeof(char))) {
pr_err("%s: Can't write the oscillator trim data to file\n",
__func__);
err = -EIO;
}
pst_adpd->osc_trim_32K_value = osc_trim_32k;
pst_adpd->osc_trim_32M_value = osc_trim_32m;
pst_adpd->osc_trim_addr26_value = osc_trim_addr26;
pst_adpd->osc_trim_addr28_value = osc_trim_addr28;
pst_adpd->osc_trim_addr29_value = osc_trim_addr29;
filp_close(osc_filp, current->files);
set_fs(old_fs);
return err;
}
/**
This function clears all the statistic counters.
@param pst_adpd the ADPD143 data structure
@return void
*/
static void
adpd_stat_reset(struct adpd143_data *pst_adpd)
{
atomic_set(&pst_adpd->stats.interrupts, 0);
atomic_set(&pst_adpd->stats.wq_pending, 0);
atomic_set(&pst_adpd->stats.wq_schedule_time_peak_usec, 0);
atomic_set(&pst_adpd->stats.wq_schedule_time_last_usec, 0);
atomic_set(&pst_adpd->stats.data_process_time_peak_usec, 0);
atomic_set(&pst_adpd->stats.data_process_time_last_usec, 0);
atomic_set(&pst_adpd->stats.fifo_requires_sync, 0);
atomic_set(&pst_adpd->stats.fifo_bytes[0], 0);
atomic_set(&pst_adpd->stats.fifo_bytes[1], 0);
atomic_set(&pst_adpd->stats.fifo_bytes[2], 0);
atomic_set(&pst_adpd->stats.fifo_bytes[3], 0);
ewma_init(&pst_adpd->stats.wq_schedule_time_avg_usec, 2048, 128);
ewma_init(&pst_adpd->stats.data_process_time_avg_usec, 2048, 128);
}
/* SAMPLE - SYSFS ATTRIBUTE*/
/**
This function is used for getting the status of the sample enable bit
@param dev linux device structure
@param attr pointer point linux device_attribute structure
@param buf pointer point the buffer
@return ssize_t size of data presnt in the buffer
*/
static ssize_t
hrm_attr_get_enable(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct adpd143_data *pst_adpd = dev_get_drvdata(dev);
int val = atomic_read(&pst_adpd->hrm_enabled);
return sprintf(buf, "%d\n", val);
}
/**
This function is used for enabling the Sample mode
@param dev linux device structure
@param attr pointer point linux device_attribute structure
@param buf pointer point the buffer
@param size buffer size
@return ssize_t size of data written to the buffer
*/
static ssize_t
hrm_attr_set_enable(struct device *dev, struct device_attribute *attr,
const char *buf, size_t size)
{
struct adpd143_data *pst_adpd = dev_get_drvdata(dev);
unsigned short parse_data[2];
unsigned short mode = 0;
unsigned short osc_trim_32k, osc_trim_32m;
unsigned short osc_trim_addr26 = 0, osc_trim_addr28 = 0, osc_trim_addr29 = 0;
int err;
int rc = 0;
int val;
int n = sscanf(buf, "%d", &val);
(void)n;
memset(parse_data, 0, sizeof(parse_data));
if (pst_adpd->osc_trim_open_enable == 1) {
err = osc_trim_efs_register_open(pst_adpd);
if (err < 0) {
pr_err("%s: osc_trim_efs_register() empty(%d)\n",
__func__, err);
osc_trim_32k = OSC_DEFAULT_32K_SET;
osc_trim_32m = OSC_DEFAULT_32M_SET;
} else {
osc_trim_32k = (unsigned short)pst_adpd->osc_trim_32K_value;
osc_trim_32m = (unsigned short)pst_adpd->osc_trim_32M_value;
osc_trim_addr26 = (unsigned short)pst_adpd->osc_trim_addr26_value;
osc_trim_addr28 = (unsigned short)pst_adpd->osc_trim_addr28_value;
osc_trim_addr29 = (unsigned short)pst_adpd->osc_trim_addr29_value;
reg_write(pst_adpd, OSC_TRIM_ADDR26_REG, osc_trim_addr26);
reg_write(pst_adpd, OSC_TRIM_ADDR28_REG, osc_trim_addr28);
reg_write(pst_adpd, OSC_TRIM_ADDR29_REG, osc_trim_addr29);
}
pr_info("%s: 32K[%02x], 32M[%02x], addr26[%02x], addr28[%02x], addr29[%02x]\n",
__func__, osc_trim_32k, osc_trim_32m, osc_trim_addr26,
osc_trim_addr28, osc_trim_addr29);
reg_write(pst_adpd, OSC_TRIM_32K_REG, osc_trim_32k);
reg_write(pst_adpd, OSC_TRIM_32M_REG, osc_trim_32m);
pst_adpd->osc_trim_open_enable = 0;
}
if (val == 1) {
pr_info("%s: enable HRM.\n", __func__);
if (pst_adpd->led_en != -1)
gpio_set_value(pst_adpd->led_en, 1);
else if (!IS_ERR(pst_adpd->leda)) {
rc = regulator_enable(pst_adpd->leda);
if (rc)
pr_info(KERN_ERR "%s: adpd enable failed(%d)\n",
__func__, rc);
}
cmd_parsing("0x31", 1, parse_data);
atomic_set(&pst_adpd->hrm_enabled, HRM_SAMPLE_MODE);
} else if (val == 2) {
pr_info("%s: enable Ambient Light Measurement.\n",
__func__);
if (pst_adpd->led_en != -1)
gpio_set_value(pst_adpd->led_en, 1);
else if (!IS_ERR(pst_adpd->leda))
rc = regulator_enable(pst_adpd->leda);
if (rc)
pr_info(KERN_ERR "%s: adpd enable ALM failed(%d)\n",
__func__, rc);
cmd_parsing("0x51", 1, parse_data);
atomic_set(&pst_adpd->hrm_enabled, HRM_TIA_ADC_MODE);
} else {
pr_info("%s: disable.\n", __func__);
if (pst_adpd->led_en != -1)
gpio_set_value(pst_adpd->led_en, 0);
else if (!IS_ERR(pst_adpd->leda)) {
rc = regulator_disable(pst_adpd->leda);
if (rc)
pr_info(KERN_ERR "%s: adpd disable failed(%d)\n",
__func__, rc);
}
cmd_parsing("0x0", 1, parse_data);
atomic_set(&pst_adpd->hrm_enabled, HRM_IDLE_MODE);
}
mode = GET_USR_MODE(parse_data[0]);
if (GET_USR_MODE(parse_data[0]) < MAX_MODE) {
if ((GET_USR_SUB_MODE(parse_data[0])) <
__mode_recv_frm_usr[mode].size) {
adpd143_mode_switching(pst_adpd, parse_data[0]);
} else {
ADPD143_dbg("Sub mode Out of bound\n");
adpd143_mode_switching(pst_adpd, 0);
}
} else {
ADPD143_dbg("Mode out of bound\n");
adpd143_mode_switching(pst_adpd, 0);
}
return size;
}
/* GENERAL - SYSFS ATTRIBUTE*/
/**
This function is used for getting the status of the adpd_mode
@param dev linux device structure
@param attr pointer point linux device_attribute structure
@param buf pointer point the buffer
@return ssize_t size of data presnt in the buffer
*/
static ssize_t
attr_get_mode(struct device *dev, struct device_attribute *attr, char *buf)
{
struct adpd143_data *pst_adpd = dev_get_drvdata(dev);
int val = atomic_read(&pst_adpd->adpd_mode);
return sprintf(buf, "%d\n", val);
}
/**
This function is used for switching ADPD143 mode
@param dev linux device structure
@param attr pointer point linux device_attribute structure
@param buf pointer point the buffer
@param size buffer size
@return ssize_t size of data written to the buffer
*/
static ssize_t
attr_set_mode(struct device *dev, struct device_attribute *attr,
const char *buf, size_t size)
{
struct adpd143_data *pst_adpd = dev_get_drvdata(dev);
unsigned short parse_data[2];
unsigned short mode = 0;
memset(parse_data, 0, sizeof(parse_data));
cmd_parsing(buf, 1, parse_data);
ADPD143_info("Mode requested 0x%02x\n", parse_data[0]);
pr_info("%s: data0[%02x], data1[%02x]\n",
__func__, parse_data[0], parse_data[1]);
mode = GET_USR_MODE(parse_data[0]);
if (GET_USR_MODE(parse_data[0]) < MAX_MODE) {
if ((GET_USR_SUB_MODE(parse_data[0])) <
__mode_recv_frm_usr[mode].size) {
adpd143_mode_switching(pst_adpd, parse_data[0]);
} else {
ADPD143_dbg("Sub mode Out of bound\n");
adpd143_mode_switching(pst_adpd, 0);
}
} else {
ADPD143_dbg("Mode out of bound\n");
adpd143_mode_switching(pst_adpd, 0);
}
return size;
}
/**
This function is used for reading the register value
@param dev linux device structure
@param attr pointer point linux device_attribute structure
@param buf pointer point the buffer
@return ssize_t size of data presnt in the buffer
*/
static ssize_t
attr_reg_read_get(struct device *dev, struct device_attribute *attr, char *buf)
{
struct adpd143_data *pst_adpd = dev_get_drvdata(dev);
ADPD143_dbg("Regval: 0x%4x\n", pst_adpd->sysfslastreadval);
return sprintf(buf, "0x%04x\n", pst_adpd->sysfslastreadval);
}
/**
This function is used for writing the register for reading back
@param dev linux device structure
@param attr pointer point linux device_attribute structure
@param buf pointer point the buffer
@param size buffer size
@return ssize_t size of data written to the buffer
*/
static ssize_t
attr_reg_read_set(struct device *dev, struct device_attribute *attr,
const char *buf, size_t size)
{
struct adpd143_data *pst_adpd = dev_get_drvdata(dev);
unsigned short addr, cnt;
unsigned short parse_data[4];
unsigned short ret;
memset(parse_data, 0, sizeof(unsigned short) * 4);
cmd_parsing(buf, 2, parse_data);
addr = parse_data[0];
cnt = parse_data[1];
mutex_lock(&pst_adpd->mutex);
pst_adpd->sysfs_I2C_regaddr = addr;
ret = adpd143_sysfs_I2C_read(pst_adpd);
if (ret != 0xFFFF) {
ADPD143_dbg("RegRead_Store: addr = 0x%04X,value = 0x%04X\n",
addr, ret);
pst_adpd->sysfslastreadval = ret;
} else {
ADPD143_dbg("%s: Error\n", __func__);
pst_adpd->sysfslastreadval = (unsigned short) -1;
}
mutex_unlock(&pst_adpd->mutex);
return size;
}
static int adpd_power_enable(struct adpd143_data *data, int en)
{
int rc = 0;
struct regulator *regulator_led_3p3;
struct regulator *regulator_vdd_1p8;
regulator_vdd_1p8 = regulator_get(NULL, data->vdd_1p8);
if (IS_ERR(regulator_vdd_1p8) || regulator_vdd_1p8 == NULL) {
pr_err("%s: vdd_1p8 regulator_get fail\n", __func__);
return -ENODEV;
}
regulator_led_3p3 = regulator_get(NULL, data->led_3p3);
if (IS_ERR(regulator_led_3p3) || regulator_led_3p3 == NULL) {
pr_err("%s: vdd_3p3 regulator_get fail\n", __func__);
regulator_put(regulator_vdd_1p8);
return -ENODEV;
}
pr_info("%s: onoff = %d\n", __func__, en);
if (en == HRM_LDO_ON) {
rc = regulator_set_voltage(regulator_vdd_1p8, 1800000, 1800000);
if (rc < 0) {
pr_err("%s: set vdd_1p8 failed, rc=%d\n",
__func__, rc);
goto done;
}
rc = regulator_enable(regulator_vdd_1p8);
if (rc) {
pr_err("%s: enable vdd_1p8 failed, rc=%d\n",
__func__, rc);
goto done;
}
rc = regulator_set_voltage(regulator_led_3p3, 3300000, 3300000);
if (rc < 0) {
pr_err("%s: set led_3p3 failed, rc=%d\n",
__func__, rc);
goto done;
}
rc = regulator_enable(regulator_led_3p3);
if (rc) {
pr_err("%s: enable led_3p3 failed, rc=%d\n",
__func__, rc);
goto done;
}
} else {
rc = regulator_disable(regulator_vdd_1p8);
if (rc) {
pr_err("%s: disable vdd_1p8 failed, rc=%d\n",
__func__, rc);
goto done;
}
rc = regulator_disable(regulator_led_3p3);
if (rc) {
pr_err("%s: disable led_3p3 failed, rc=%d\n",
__func__, rc);
goto done;
}
}
done:
regulator_put(regulator_led_3p3);
regulator_put(regulator_vdd_1p8);
return rc;
}
static int adpd_parse_dt(struct adpd143_data *data, struct device *dev)
{
struct device_node *this_node= dev->of_node;
enum of_gpio_flags flags;
int rc;
if (this_node == NULL)
return -ENODEV;
data->hrm_int = of_get_named_gpio_flags(this_node,"adpd143,irq_gpio", 0, &flags);
pr_err("%s: get hrm_int(data->hrm_int)(%d) \n", __func__, data->hrm_int);
if (data->hrm_int < 0) {
pr_err("%s: get hrm_int(%d) error\n", __func__, data->hrm_int);
return -ENODEV;
}
rc = gpio_request(data->hrm_int, "hrm_int");
if (rc) {
pr_err("%s: failed to request hrm_int\n", __func__);
goto err_int_gpio_req;
}
rc = gpio_direction_input(data->hrm_int);
if (rc) {
pr_err("%s: failed to set hrm_int as input\n", __func__);
goto err_int_gpio_direction_input;
}
if (of_property_read_string(this_node, "adpd143,i2c_1p8",
&data->i2c_1p8) < 0)
pr_err("%s - get i2c_1p8 error\n", __func__);
if (of_property_read_string(this_node, "adpd143,vdd_1p8",
&data->vdd_1p8) < 0)
pr_err("%s: get vdd_1p8 error\n", __func__);
if (of_property_read_string(this_node, "adpd143,led_3p3",
&data->led_3p3) < 0)
pr_err("%s: get led_3p3 error\n", __func__);
data->led_en =of_get_named_gpio_flags(this_node,"adpd143,led_en", 0, &flags);
pr_err("%s: get led_en(data->led_en)(%d) \n", __func__, data->led_en);
if (data->led_en < 0) {
pr_err("%s: get led_en(%d) error\n", __func__, data->led_en);
data->led_en = -1;
data->leda = devm_regulator_get(dev, "reg_vled");
if (IS_ERR(data->leda)) {
pr_err("%s: regulator HRM_VLED fail \n",__func__);
}
} else {
rc = gpio_request(data->led_en,"led_en");
if (unlikely(rc < 0)) {
pr_err("%s: gpio %d request failed (%d)\n",
__func__, data->led_en, rc);
goto err_int_gpio_direction_input;
}
rc = gpio_direction_output(data->led_en, 0);
if (unlikely(rc < 0)) {
pr_err("%s: failed to set gpio %d as input (%d)\n",
__func__, data->led_en, rc);
goto err_gpio_direction_output;
}
}
data->p = pinctrl_get_select_default(dev);
if (IS_ERR(data->p)) {
pr_err("%s: failed pinctrl_get\n", __func__);
return -EINVAL;
}
data->pins_sleep = pinctrl_lookup_state(data->p, PINCTRL_STATE_SLEEP);
if(IS_ERR(data->pins_sleep)) {
pr_err("%s : could not get pins sleep_state (%li)\n",
__func__, PTR_ERR(data->pins_sleep));
pinctrl_put(data->p);
return -EINVAL;
}
data->pins_idle = pinctrl_lookup_state(data->p, PINCTRL_STATE_IDLE);
if(IS_ERR(data->pins_idle)) {
pr_err("%s : could not get pins idle_state (%li)\n",
__func__, PTR_ERR(data->pins_idle));
pinctrl_put(data->p);
return -EINVAL;
}
return 0;
err_gpio_direction_output:
gpio_free(data->led_en);
err_int_gpio_direction_input:
gpio_free(data->hrm_int);
err_int_gpio_req:
return rc;
}
/**
This function is used for writing a particular data to the register
@param dev linux device structure
@param attr pointer point linux device_attribute structure
@param buf pointer point the buffer
@param size buffer size
@return ssize_t size of data written to the buffer
*/
static ssize_t
attr_reg_write_set(struct device *dev, struct device_attribute *attr,
const char *buf, size_t size)
{
struct adpd143_data *pst_adpd = dev_get_drvdata(dev);
unsigned short cnt;
unsigned short parse_data[4];
unsigned short ret;
memset(parse_data, 0, sizeof(unsigned short) * 4);
cmd_parsing(buf, 3, parse_data);
if (parse_data[1] != 1) {
ADPD143_dbg("few many argument!!\n");
goto err_reg_write_argument;
}
pst_adpd->sysfs_I2C_regaddr = parse_data[0];
cnt = parse_data[1];
pst_adpd->sysfs_I2C_regval = parse_data[2];
mutex_lock(&pst_adpd->mutex);
ret = adpd143_sysfs_I2C_write(pst_adpd);
if (ret == pst_adpd->sysfs_I2C_regval) {
ADPD143_dbg("Reg[0x%04x] = 0x%04x\n",
pst_adpd->sysfs_I2C_regaddr,
pst_adpd->sysfs_I2C_regval);
} else {
ADPD143_dbg("Reg write error!!\n");
}
adpd143_update_config(pst_adpd);
mutex_unlock(&pst_adpd->mutex);
err_reg_write_argument:
return size;
}
/**
This function is used for getting the status of configuration
TBD
@param dev linux device structure
@param attr pointer point linux device_attribute structure
@param buf pointer point the buffer
@return ssize_t size of data presnt in the buffer
*/
static ssize_t
attr_config_get(struct device *dev, struct device_attribute *attr, char *buf)
{
return sprintf(buf, "status of config thread\n");
}
/**
This function is used for wrting the configuration value to the register
0 - write the configuration data present in file to ADPD143
1 - write the configuration data present in Array to ADPD143
@param dev linux device structure
@param attr pointer point linux device_attribute structure
@param buf pointer point the buffer
@param size buffer size
@return ssize_t size of data written to the buffer
*/
static ssize_t
attr_config_set(struct device *dev, struct device_attribute *attr,
const char *buf, size_t size)
{
struct adpd143_data *pst_adpd = dev_get_drvdata(dev);
unsigned short parse_data[1];
memset(parse_data, 0, sizeof(unsigned short) * 1);
cmd_parsing(buf, 1, parse_data);
if (parse_data[0] == FRM_ARR)
adpd143_configuration(pst_adpd, FRM_ARR);
else if (parse_data[0] == FRM_FILE)
adpd143_configuration(pst_adpd, FRM_FILE);
else
ADPD143_dbg("set 1 to config\n");
return size;
}
/**
This function is used for getting the status of adpd143 and driver
@param dev linux device structure
@param attr pointer point linux device_attribute structure
@param buf pointer point the buffer
@return ssize_t size of data presnt in the buffer
*/
static ssize_t
attr_stat_get(struct device *dev, struct device_attribute *attr, char *buf)
{
struct adpd143_data *pst_adpd = dev_get_drvdata(dev);
unsigned int interrupts = atomic_read(&pst_adpd->stats.interrupts);
unsigned int wq_pending = atomic_read(&pst_adpd->stats.wq_pending);
unsigned int wq_schedule_time_peak_usec =
atomic_read(&pst_adpd->stats.wq_schedule_time_peak_usec);
unsigned int wq_schedule_time_last_usec =
atomic_read(&pst_adpd->stats.wq_schedule_time_last_usec);
unsigned int data_process_time_peak_usec =
atomic_read(&pst_adpd->stats.data_process_time_peak_usec);
unsigned int data_process_time_last_usec =
atomic_read(&pst_adpd->stats.data_process_time_last_usec);
return sprintf(buf, "\
interrupts : %u\n\
wq_pending : %u\n\
wq_schedule_time_peak_usec : %u\n\
wq_schedule_time_avg_usec : %d\n\
wq_schedule_time_last_usec : %u\n\
data_process_time_peak_usec : %u\n\
data_process_time_avg_usec : %d\n\
data_process_time_last_usec : %u\n\
fifo_requires_sync : %d\n\
fifo bytes history : [%d %d %d %d]\n\
ADPD143 driver version : %s\n\
ADPD143 Release date : %s\n",
interrupts, wq_pending,
wq_schedule_time_peak_usec,
(int)ewma_read(&pst_adpd->stats.wq_schedule_time_avg_usec),
wq_schedule_time_last_usec,
data_process_time_peak_usec,
(int)ewma_read(&pst_adpd->stats.data_process_time_avg_usec),
data_process_time_last_usec,
atomic_read(&pst_adpd->stats.fifo_requires_sync),
atomic_read(&pst_adpd->stats.fifo_bytes[0]),
atomic_read(&pst_adpd->stats.fifo_bytes[1]),
atomic_read(&pst_adpd->stats.fifo_bytes[2]),
atomic_read(&pst_adpd->stats.fifo_bytes[3]),
ADPD143_VERSION,
ADPD143_RELEASE_DATE);
}
#define ADPD143_STAT_RESET 1
/**
This function is used for wrting the adpd stat value to zero
@param dev linux device structure
@param attr pointer point linux device_attribute structure
@param buf pointer point the buffer
@param size buffer size
@return ssize_t size of data written to the buffer
*/
static ssize_t
attr_stat_set(struct device *dev, struct device_attribute *attr,
const char *buf, size_t size)
{
struct adpd143_data *pst_adpd = dev_get_drvdata(dev);
unsigned short parse_data[1];
memset(parse_data, 0, sizeof(unsigned short) * 1);
cmd_parsing(buf, 1, parse_data);
if (parse_data[0] == ADPD143_STAT_RESET) {
ADPD143_dbg("Resetting statistics\n");
adpd_stat_reset(pst_adpd);
}
return size;
}
/**
array of hrm attributes
*/
static struct device_attribute hrm_attributes[] = {
__ATTR(enable, 0664, hrm_attr_get_enable, hrm_attr_set_enable),
};
/**
This function is used for creating sysfs attribute for hrm
@param dev linux device structure
@return int status of attribute creation
*/
static int
create_sysfs_interfaces_hrm(struct device *dev)
{
int i;
for (i = 0; i < ARRAY_SIZE(hrm_attributes); i++)
if (device_create_file(dev, hrm_attributes + i))
goto err_sysfs_interface_hrm;
return 0;
err_sysfs_interface_hrm:
for (; i >= 0; i--)
device_remove_file(dev, hrm_attributes + i);
dev_err(dev, "%s: Unable to create interface\n", __func__);
return -1;
}
/* SAMPLE - SYSFS ATTRIBUTE*/
/**
This function is used for getting the status of the sample enable bit
@param dev linux device structure
@param attr pointer point linux device_attribute structure
@param buf pointer point the buffer
@return ssize_t size of data presnt in the buffer
*/
static ssize_t
hrmled_attr_get_enable(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct adpd143_data *pst_adpd = dev_get_drvdata(dev);
int val = atomic_read(&pst_adpd->hrmled_enabled);
return sprintf(buf, "%d\n", val);
}
/**
This function is used for enabling the Sample mode
@param dev linux device structure
@param attr pointer point linux device_attribute structure
@param buf pointer point the buffer
@param size buffer size
@return ssize_t size of data written to the buffer
*/
static ssize_t
hrmled_attr_set_enable(struct device *dev, struct device_attribute *attr,
const char *buf, size_t size)
{
struct adpd143_data *pst_adpd = dev_get_drvdata(dev);
unsigned short parse_data[2];
unsigned short mode = 0;
int val;
int n = sscanf(buf, "%d", &val);
(void)n;
memset(parse_data, 0, sizeof(parse_data));
pr_err("%s: pst_adpd->pre_hrmled_enable:%d, val:%d\n",
__func__, pst_adpd->pre_hrmled_enable, val);
if (pst_adpd->pre_hrmled_enable != val) {
switch(val) {
case IRRED_OFF:
pr_info("%s: IRRED_OFF.\n", __func__);
cmd_parsing("0x0", 1, parse_data);
atomic_set(&pst_adpd->hrmled_enabled, IRRED_OFF);
break;
case IR_MODE:
pr_info("%s: IR_MODE.\n", __func__);
cmd_parsing("0x32", 1, parse_data);
atomic_set(&pst_adpd->hrmled_enabled, IR_MODE);
break;
case RED_MODE:
pr_info("%s: RED_MODE.\n", __func__);
cmd_parsing("0x30", 1, parse_data);
atomic_set(&pst_adpd->hrmled_enabled, RED_MODE);
break;
case IRRED_MODE:
pr_info("%s: IRRED_MODE.\n", __func__);
cmd_parsing("0x31", 1, parse_data);
atomic_set(&pst_adpd->hrmled_enabled, IRRED_MODE);
break;
default:
pr_err("%s: invalid value\n", __func__);
return -EINVAL;
}
}
mode = GET_USR_MODE(parse_data[0]);
if (GET_USR_MODE(parse_data[0]) < MAX_MODE) {
if ((GET_USR_SUB_MODE(parse_data[0])) <
__mode_recv_frm_usr[mode].size) {
adpd143_mode_switching(pst_adpd, parse_data[0]);
} else {
ADPD143_dbg("Sub mode Out of bound\n");
adpd143_mode_switching(pst_adpd, 0);
}
} else {
ADPD143_dbg("Mode out of bound\n");
adpd143_mode_switching(pst_adpd, 0);
}
pst_adpd->pre_hrmled_enable = val;
return size;
}
/**
array of hrmled attributes
*/
static struct device_attribute hrmled_attributes[] = {
__ATTR(enable, 0664, hrmled_attr_get_enable, hrmled_attr_set_enable),
};
/**
This function is used for creating sysfs attribute for hrmled
@param dev linux device structure
@return int status of attribute creation
*/
static int
create_sysfs_interfaces_hrmled(struct device *dev)
{
int i;
for (i = 0; i < ARRAY_SIZE(hrmled_attributes); i++)
if (device_create_file(dev, hrmled_attributes + i))
goto err_sysfs_interface_hrmled;
return 0;
err_sysfs_interface_hrmled:
for (; i >= 0; i--)
device_remove_file(dev, hrmled_attributes + i);
dev_err(dev, "%s: Unable to create interface\n", __func__);
return -1;
}
/**
This function is used for removing sysfs attribute for sample
@param dev linux device structure
@return void
*/
static void
remove_sysfs_interfaces_hrm(struct device *dev)
{
int i;
for (i = 0; i < ARRAY_SIZE(hrm_attributes); i++)
device_remove_file(dev, hrm_attributes + i);
}
/**
This function is used for removing sysfs attribute for sample
@param dev linux device structure
@return void
*/
static void
remove_sysfs_interfaces_hrmled(struct device *dev)
{
int i;
for (i = 0; i < ARRAY_SIZE(hrmled_attributes); i++)
device_remove_file(dev, hrmled_attributes + i);
}
/**
This function is used for creating sysfs attribute
@param dev linux device structure
@return int status of attribute creation
*/
static int
create_sysfs_interfaces(struct device *dev)
{
return 0;
}
/**
This function is used for removing sysfs attribute
@param dev linux device structure
@return void
*/
static void
remove_sysfs_interfaces(struct device *dev)
{
}
/**
This function is used for registering input event for Sample
@param pst_adpd pointer point ADPD143 data structure
@return s32 status of this function
*/
static s32
adpd143_input_init_sample(struct adpd143_data *pst_adpd)
{
int err;
/* for hrm sensor */
pst_adpd->hrm_input_dev = input_allocate_device();
if (!pst_adpd->hrm_input_dev) {
err = -ENOMEM;
dev_err(&pst_adpd->client->dev,
"hrm input dev allocation fail\n");
goto err_hrm_allocate;
}
pst_adpd->hrm_input_dev->name = MODULE_NAME_HRM;
input_set_drvdata(pst_adpd->hrm_input_dev, pst_adpd);
__set_bit(EV_MSC, pst_adpd->hrm_input_dev->evbit);
__set_bit(EV_REL, pst_adpd->hrm_input_dev->evbit);
__set_bit(MSC_RAW, pst_adpd->hrm_input_dev->mscbit);
__set_bit(REL_X, pst_adpd->hrm_input_dev->relbit);
__set_bit(REL_Y, pst_adpd->hrm_input_dev->relbit);
__set_bit(REL_Z, pst_adpd->hrm_input_dev->relbit);
__set_bit(REL_MISC, pst_adpd->hrm_input_dev->relbit);
err = input_register_device(pst_adpd->hrm_input_dev);
if (err) {
dev_err(&pst_adpd->client->dev,
"unable to register input dev %s\n",
pst_adpd->hrm_input_dev->name);
goto err_hrm_register_failed;
}
err = sensors_create_symlink(pst_adpd->hrm_input_dev);
if (err < 0) {
pr_err("%s: create_symlink error\n", __func__);
goto err_hrm_register_failed;
}
/* for hrmled sensor */
pst_adpd->hrmled_input_dev = input_allocate_device();
if (!pst_adpd->hrmled_input_dev) {
err = -ENOMEM;
dev_err(&pst_adpd->client->dev,
"hrmled input dev allocation fail\n");
goto err_hrmled_allocate;
}
pst_adpd->hrmled_input_dev->name = MODULE_NAME_HRMLED;
input_set_drvdata(pst_adpd->hrmled_input_dev, pst_adpd);
__set_bit(EV_MSC, pst_adpd->hrmled_input_dev->evbit);
__set_bit(EV_REL, pst_adpd->hrmled_input_dev->evbit);
__set_bit(MSC_RAW, pst_adpd->hrmled_input_dev->mscbit);
__set_bit(REL_X, pst_adpd->hrmled_input_dev->relbit);
__set_bit(REL_Y, pst_adpd->hrmled_input_dev->relbit);
__set_bit(REL_Z, pst_adpd->hrmled_input_dev->relbit);
__set_bit(REL_MISC, pst_adpd->hrmled_input_dev->relbit);
err = input_register_device(pst_adpd->hrmled_input_dev);
if (err) {
dev_err(&pst_adpd->client->dev,
"unable to register input dev %s\n",
pst_adpd->hrmled_input_dev->name);
goto err_hrmled_register_failed;
}
err = sensors_create_symlink(pst_adpd->hrmled_input_dev);
if (err < 0) {
pr_err("%s: create_symlink error\n", __func__);
goto err_hrmled_register_failed;
}
return 0;
err_hrmled_register_failed:
input_free_device(pst_adpd->hrmled_input_dev);
err_hrmled_allocate:
err_hrm_register_failed:
input_free_device(pst_adpd->hrm_input_dev);
err_hrm_allocate:
return err;
}
/**
This function is used for unregistering input event for Sample
@param pst_adpd pointer point ADPD143 data structure
@return void
*/
static void
adpd143_input_cleanup_sample(struct adpd143_data *pst_adpd)
{
input_set_drvdata(pst_adpd->hrm_input_dev, NULL);
input_unregister_device(pst_adpd->hrm_input_dev);
input_free_device(pst_adpd->hrm_input_dev);
input_set_drvdata(pst_adpd->hrmled_input_dev, NULL);
input_unregister_device(pst_adpd->hrmled_input_dev);
input_free_device(pst_adpd->hrmled_input_dev);
}
/**
This function is used for registering input event for ADPD143
@param pst_adpd pointer point ADPD143 data structure
@return s32 status of the function
*/
static s32
adpd143_input_init(struct adpd143_data *pst_adpd)
{
return adpd143_input_init_sample(pst_adpd);
}
/**
This function is used for unregistering input event done for ADPD143
@param pst_adpd pointer point ADPD143 data structure
@return void
*/
static void
adpd143_input_cleanup(struct adpd143_data *pst_adpd)
{
adpd143_input_cleanup_sample(pst_adpd);
}
/**
This function is used for registering sysfs attribute for ADPD143
@param pst_adpd pointer point ADPD143 data structure
@return s32 status of the called function
*/
static s32
adpd143_sysfs_init(struct adpd143_data *pst_adpd)
{
if (create_sysfs_interfaces(&pst_adpd->client->dev))
goto err_sysfs_create_gen;
if (create_sysfs_interfaces_hrm(&pst_adpd->hrm_input_dev->dev))
goto err_sysfs_create_sample;
if (create_sysfs_interfaces_hrmled(&pst_adpd->hrmled_input_dev->dev))
goto err_sysfs_create_sample;
return 0;
err_sysfs_create_sample:
remove_sysfs_interfaces(&pst_adpd->client->dev);
err_sysfs_create_gen:
return -1;
}
/**
This function is used for unregistering sysfs attribute for ADPD143
@param pst_adpd pointer point ADPD143 data structure
@return void
*/
static void
adpd143_sysfs_cleanup(struct adpd143_data *pst_adpd)
{
remove_sysfs_interfaces(&pst_adpd->client->dev);
remove_sysfs_interfaces_hrm(&pst_adpd->hrm_input_dev->dev);
remove_sysfs_interfaces_hrmled(&pst_adpd->hrmled_input_dev->dev);
}
/**
This function is used for assigning initial assignment value to
ADPD143 data structure
@param pst_adpd pointer point ADPD143 data structure
@return void
*/
static void
adpd143_struct_assign(struct adpd143_data *pst_adpd)
{
pst_adpd->ptr_data = data_buffer;
}
/**
This function is used for initializing ADPD143
@param pst_adpd pointer point ADPD143 data structure
@param id pointer point i2c device id
@return s32 status of the called function
*/
static s32
adpd143_initialization(struct adpd143_data *pst_adpd,
const struct i2c_device_id *id)
{
int err = 0;
if (adpd143_input_init(pst_adpd)) {
err = -1;
pr_err("%s: err line %d\n", __func__, __LINE__);
goto err_input_init;
}
if (adpd143_sysfs_init(pst_adpd)) {
pr_err("%s: err line %d\n", __func__, __LINE__);
err = -1;
goto err_sysfs_init;
}
adpd143_struct_assign(pst_adpd);
memset(&pst_adpd->stats, 0, sizeof(pst_adpd->stats));
adpd_stat_reset(pst_adpd);
INIT_WORK(&pst_adpd->work, adpd143_wq_handler);
pst_adpd->ptr_adpd143_wq_st =
create_workqueue("adpd143_wq");
if (!pst_adpd->ptr_adpd143_wq_st) {
err = -ENOMEM;
pr_err("%s %d\n", __func__, __LINE__);
goto err_wq_creation_init;
}
if (!pst_adpd->client->irq) {
pr_err("%s %d\n", __func__, __LINE__);
goto err_work_queue_init;
}
pst_adpd->hrm_int = pst_adpd->client->irq;
pst_adpd->irq = pst_adpd->hrm_int;
irq_set_irq_type(pst_adpd->irq, IRQ_TYPE_EDGE_FALLING);
err = request_irq(pst_adpd->irq, adpd143_isr_handler,
IRQF_TRIGGER_FALLING, dev_name(&pst_adpd->client->dev),
pst_adpd);
if (err) {
ADPD143_dbg("irq %d busy?\n", pst_adpd->irq);
goto err_work_queue_init;
}
disable_irq_nosync(pst_adpd->irq);
pst_adpd->ptr_config = kzalloc(sizeof(struct adpd_platform_data),
GFP_KERNEL);
if (pst_adpd->ptr_config == NULL) {
err = -ENOMEM;
pr_err("%s %d\n", __func__, __LINE__);
goto err_work_queue_init;
}
enable_irq(pst_adpd->irq);
adpd143_configuration(pst_adpd, 1);
adpd143_mode_switching(pst_adpd, 0); /* turn off : idle mode, temp*/
pst_adpd->osc_trim_open_enable = 1;
pst_adpd->pre_hrmled_enable = 0;
pst_adpd->sample_cnt = 0;
return 0;
//err_gpio_direction_input:
//gpio_free(pst_adpd->hrm_int);
err_work_queue_init:
destroy_workqueue(pst_adpd->ptr_adpd143_wq_st);
err_wq_creation_init:
err_sysfs_init:
adpd143_input_cleanup(pst_adpd);
err_input_init:
return err;
}
/**
This function is used for cleanup ADPD143
@param pst_adpd pointer point ADPD143 data structure
@return void
*/
static void
adpd143_initialization_cleanup(struct adpd143_data *pst_adpd)
{
adpd143_mode_switching(pst_adpd, 0);
free_irq(pst_adpd->irq, pst_adpd);
destroy_workqueue(pst_adpd->ptr_adpd143_wq_st);
adpd143_sysfs_cleanup(pst_adpd);
adpd143_input_cleanup(pst_adpd);
kobject_uevent(&pst_adpd->client->dev.kobj, KOBJ_OFFLINE);
}
#ifdef CONFIG_PM
static s32
adpd143_i2c_suspend(struct device *dev)
{
struct adpd143_data *pst_adpd = dev_get_drvdata(dev);
unsigned short parse_data[2];
unsigned short mode = 0;
pr_info("%s \n", __func__);
adpd143_pin_control(pst_adpd, false);
memset(parse_data, 0, sizeof(parse_data));
if (atomic_read(&pst_adpd->hrmled_enabled) ||
atomic_read(&pst_adpd->hrm_enabled)) {
cmd_parsing("0x0", 1, parse_data);
mode = GET_USR_MODE(parse_data[0]);
if (GET_USR_MODE(parse_data[0]) < MAX_MODE) {
if ((GET_USR_SUB_MODE(parse_data[0])) <
__mode_recv_frm_usr[mode].size) {
adpd143_mode_switching(pst_adpd, parse_data[0]);
} else {
ADPD143_dbg("Sub mode Out of bound\n");
adpd143_mode_switching(pst_adpd, 0);
}
} else {
ADPD143_dbg("Mode out of bound\n");
adpd143_mode_switching(pst_adpd, 0);
}
}
return 0;
}
static s32
adpd143_i2c_resume(struct device *dev)
{
struct adpd143_data *pst_adpd = dev_get_drvdata(dev);
unsigned short parse_data[2];
unsigned short mode = 0;
pr_info("%s \n", __func__);
adpd143_pin_control(pst_adpd, true);
memset(parse_data, 0, sizeof(parse_data));
if (atomic_read(&pst_adpd->hrm_enabled)) {
switch (atomic_read(&pst_adpd->hrm_enabled)) {
case HRM_SAMPLE_MODE:
cmd_parsing("0x31", 1, parse_data);
break;
case HRM_TIA_ADC_MODE:
cmd_parsing("0x51", 1, parse_data);
break;
default:
pr_err("%s: invalid value\n", __func__);
return -EINVAL;
}
goto mode_switching;
}
if (atomic_read(&pst_adpd->hrmled_enabled)) {
switch (atomic_read(&pst_adpd->hrmled_enabled)) {
case IR_MODE:
pr_info("%s: IR_MODE.\n", __func__);
cmd_parsing("0x32", 1, parse_data);
break;
case RED_MODE:
pr_info("%s: RED_MODE.\n", __func__);
cmd_parsing("0x30", 1, parse_data);
break;
case IRRED_MODE:
pr_info("%s: IRRED_MODE.\n", __func__);
cmd_parsing("0x31", 1, parse_data);
break;
default:
pr_err("%s: invalid value\n", __func__);
return -EINVAL;
}
goto mode_switching;
}
ADPD143_dbg("No active hrm sensor\n");
return 0;
mode_switching:
mode = GET_USR_MODE(parse_data[0]);
if (GET_USR_MODE(parse_data[0]) < MAX_MODE) {
if ((GET_USR_SUB_MODE(parse_data[0])) <
__mode_recv_frm_usr[mode].size) {
adpd143_mode_switching(pst_adpd, parse_data[0]);
} else {
ADPD143_dbg("Sub mode Out of bound\n");
adpd143_mode_switching(pst_adpd, 0);
}
} else {
ADPD143_dbg("Mode out of bound\n");
adpd143_mode_switching(pst_adpd, 0);
}
return 0;
}
#else
#define adpd143_i2c_resume NULL
#define adpd143_i2c_suspend NULL
#endif /* CONFIG_PM */
/**
This function is used for i2c read communication between ADPD143 and AP
@param pst_adpd pointer point ADPD143 data structure
@param reg_addr address need to be fetch
@param len number byte to be read
@param buf pointer point the read out data.
@return s32 status of the called function
*/
static int
adpd143_i2c_read(struct adpd143_data *pst_adpd, u8 reg_addr, int len,
u16 *buf)
{
int err;
int tries = 0;
int icnt = 0;
struct i2c_msg msgs[] = {
{
.addr = pst_adpd->client->addr,
.flags = pst_adpd->client->flags & I2C_M_TEN,
.len = 1,
.buf = (s8 *)&reg_addr,
},
{
.addr = pst_adpd->client->addr,
.flags = (pst_adpd->client->flags & I2C_M_TEN) |
I2C_M_RD,
.len = len * sizeof(unsigned short),
.buf = (s8 *)buf,
},
};
do {
err = i2c_transfer(pst_adpd->client->adapter, msgs, 2);
if (err != 2)
msleep_interruptible(I2C_RETRY_DELAY);
} while ((err != 2) && (++tries < I2C_RETRIES));
if (err != 2) {
dev_err(&pst_adpd->client->dev, "read transfer error\n");
err = -EIO;
} else {
err = 0;
}
for (icnt = 0; icnt < len; icnt++) {
/*convert big endian to CPU format*/
buf[icnt] = be16_to_cpu(buf[icnt]);
}
return err;
}
/**
This function is used for i2c write communication between ADPD143 and AP
@param pst_adpd pointer point ADPD143 data structure
@param reg_addr address need to be fetch
@param len number byte to be read
@param data value to be written on the register.
@return s32 status of the called function
*/
static int
adpd143_i2c_write(struct adpd143_data *pst_adpd, u8 reg_addr, int len,
u16 data)
{
struct i2c_msg msgs[1];
int err;
int tries = 0;
unsigned short data_to_write = cpu_to_be16(data);
char buf[4];
buf[0] = (s8) reg_addr;
memcpy(buf + 1, &data_to_write, sizeof(unsigned short));
msgs[0].addr = pst_adpd->client->addr;
msgs[0].flags = pst_adpd->client->flags & I2C_M_TEN;
msgs[0].len = 1 + (1 * sizeof(unsigned short));
msgs[0].buf = buf;
do {
err = i2c_transfer(pst_adpd->client->adapter, msgs, 1);
if (err != 1)
msleep_interruptible(I2C_RETRY_DELAY);
} while ((err != 1) && (++tries < I2C_RETRIES));
if (err != 1) {
dev_err(&pst_adpd->client->dev, "write transfer error\n");
err = -EIO;
} else {
err = 0;
}
return err;
}
/* set sysfs for hrm sensor */
static ssize_t adpd143_name_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
pr_info("%s: %s \n", __func__, CHIP_NAME);
return snprintf(buf, PAGE_SIZE, "%s\n", CHIP_NAME);
}
static ssize_t adpd143_vendor_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
pr_info("%s: %s \n", __func__, VENDOR);
return snprintf(buf, PAGE_SIZE, "%s\n", VENDOR);
}
static ssize_t eol_test_result_store(struct device *dev,
struct device_attribute *attr, const char *buf, size_t size);
static ssize_t eol_test_store(struct device *dev,
struct device_attribute *attr, const char *buf, size_t size)
{
struct adpd143_data *pst_adpd = dev_get_drvdata(dev);
if (sysfs_streq(buf, "1")) /* eol_test start */
pst_adpd->eol_test_is_enable = 1;
else if (sysfs_streq(buf, "0")) /* eol_test stop */
pst_adpd->eol_test_is_enable = 0;
else {
pr_debug("%s: invalid value %d\n", __func__, *buf);
return -EINVAL;
}
pst_adpd->eol_test_status = 0;
pr_info("%s: (%c), value(%u) \n",
__func__, *buf, pst_adpd->eol_test_is_enable);
return size;
}
static ssize_t eol_test_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct adpd143_data *pst_adpd = dev_get_drvdata(dev);
return snprintf(buf, PAGE_SIZE, "%u\n", pst_adpd->eol_test_is_enable);
}
static ssize_t eol_test_result_store(struct device *dev,
struct device_attribute *attr, const char *buf, size_t size)
{
struct adpd143_data *pst_adpd = dev_get_drvdata(dev);
int err;
unsigned int buf_len;
buf_len = strlen(buf) + 1;
if (buf_len > MAX_EOL_RESULT)
buf_len = MAX_EOL_RESULT;
mutex_lock(&pst_adpd->storelock);
if (pst_adpd->eol_test_result != NULL)
kfree(pst_adpd->eol_test_result);
pst_adpd->eol_test_result = kzalloc(sizeof(char) * buf_len, GFP_KERNEL);
if (pst_adpd->eol_test_result == NULL) {
pr_err("%s: couldn't allocate memory\n", __func__);
mutex_unlock(&pst_adpd->storelock);
return -ENOMEM;
}
strncpy(pst_adpd->eol_test_result, buf, buf_len);
mutex_unlock(&pst_adpd->storelock);
pr_info("%s: result = %s, buf_len(%u)\n",
__func__, pst_adpd->eol_test_result, buf_len);
pst_adpd->eol_test_status = 1;
err = osc_trim_efs_register_save(pst_adpd);
if (err < 0) {
pr_err("%s: osc_trim_efs_register_save() empty(%d)\n",
__func__, err);
}
return size;
}
static ssize_t eol_test_result_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct adpd143_data *pst_adpd = dev_get_drvdata(dev);
if (pst_adpd->eol_test_result == NULL) {
pr_info("%s: data->eol_test_result is NULL\n",
__func__);
pst_adpd->eol_test_status = 0;
return snprintf(buf, PAGE_SIZE, "%s\n", "NO_EOL_TEST");
}
pr_info("%s: result = %s\n",
__func__, pst_adpd->eol_test_result);
pst_adpd->eol_test_status = 0;
return snprintf(buf, PAGE_SIZE, "%s\n", pst_adpd->eol_test_result);
}
static ssize_t eol_test_status_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct adpd143_data *pst_adpd = dev_get_drvdata(dev);
return snprintf(buf, PAGE_SIZE, "%u\n", pst_adpd->eol_test_status);
}
static ssize_t adpd143_eol_lib_ver_store(struct device *dev,
struct device_attribute *attr, const char *buf, size_t size)
{
struct adpd143_data *pst_adpd = dev_get_drvdata(dev);
unsigned int buf_len;
buf_len = strlen(buf) + 1;
if (buf_len > MAX_LIB_VER)
buf_len = MAX_LIB_VER;
mutex_lock(&pst_adpd->storelock);
if (pst_adpd->eol_lib_ver != NULL)
kfree(pst_adpd->eol_lib_ver);
pst_adpd->eol_lib_ver = kzalloc(sizeof(char) * buf_len, GFP_KERNEL);
if (pst_adpd->eol_lib_ver == NULL) {
pr_err("%s: couldn't allocate memory\n", __func__);
mutex_unlock(&pst_adpd->storelock);
return -ENOMEM;
}
strncpy(pst_adpd->eol_lib_ver, buf, buf_len);
mutex_unlock(&pst_adpd->storelock);
pr_info("%s: eol_lib_ver = %s\n", __func__, pst_adpd->eol_lib_ver);
return size;
}
static ssize_t adpd143_eol_lib_ver_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct adpd143_data *pst_adpd = dev_get_drvdata(dev);
if (pst_adpd->eol_lib_ver == NULL) {
pr_info("%s: data->eol_lib_ver is NULL\n", __func__);
return snprintf(buf, PAGE_SIZE, "%s\n", "NULL");
}
pr_info("%s: eol_lib_ver = %s\n", __func__, pst_adpd->eol_lib_ver);
return snprintf(buf, PAGE_SIZE, "%s\n", pst_adpd->eol_lib_ver);
}
static ssize_t adpd143_elf_lib_ver_store(struct device *dev,
struct device_attribute *attr, const char *buf, size_t size)
{
struct adpd143_data *pst_adpd = dev_get_drvdata(dev);
unsigned int buf_len;
buf_len = strlen(buf) + 1;
if (buf_len > MAX_LIB_VER)
buf_len = MAX_LIB_VER;
mutex_lock(&pst_adpd->storelock);
if (pst_adpd->elf_lib_ver != NULL)
kfree(pst_adpd->elf_lib_ver);
pst_adpd->elf_lib_ver = kzalloc(sizeof(char) * buf_len, GFP_KERNEL);
if (pst_adpd->elf_lib_ver == NULL) {
pr_err("%s: couldn't allocate memory\n", __func__);
mutex_unlock(&pst_adpd->storelock);
return -ENOMEM;
}
strncpy(pst_adpd->elf_lib_ver, buf, buf_len);
mutex_unlock(&pst_adpd->storelock);
return size;
}
static ssize_t adpd143_elf_lib_ver_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct adpd143_data *pst_adpd = dev_get_drvdata(dev);
if (pst_adpd->elf_lib_ver == NULL) {
pr_info("%s: data->elf_lib_ver is NULL\n", __func__);
return snprintf(buf, PAGE_SIZE, "%s\n", "NULL");
}
pr_info("%s: elf_lib_ver = %s\n", __func__, pst_adpd->elf_lib_ver);
return snprintf(buf, PAGE_SIZE, "%s\n", pst_adpd->elf_lib_ver);
}
static ssize_t adpd143_hrm_flush_store(struct device *dev,
struct device_attribute *attr, const char *buf, size_t size)
{
struct adpd143_data *pst_adpd = dev_get_drvdata(dev);
int ret = 0;
u8 handle = 0;
ret = kstrtou8(buf, 10, &handle);
if (ret < 0) {
pr_err("%s: kstrtou8 failed.(%d)\n", __func__, ret);
return ret;
}
pr_info("%s: handle = %d\n", __func__, handle);
input_report_rel(pst_adpd->hrm_input_dev, REL_MISC, handle);
return size;
}
static ssize_t adpd143_alc_enable_store(struct device *dev,
struct device_attribute *attr, const char *buf, size_t size)
{
struct adpd143_data *pst_adpd = dev_get_drvdata(dev);
u8 val;
unsigned short mode = 0;
unsigned short parse_data[2];
int rc = 0;
rc = kstrtou8(buf, 10, &val);
pr_info("%s: enable Ambient Light Measurement val:%d.\n",
__func__, val);
if (val >= ALC_TIA_MODE && val <= ALC_FLOAT_MODE) {
if (pst_adpd->led_en != -1)
gpio_set_value(pst_adpd->led_en, 1);
else if (!IS_ERR(pst_adpd->leda))
rc = regulator_enable(pst_adpd->leda);
if (rc) {
pr_info(KERN_ERR "%s: enable ALC fail(%d)\n",
__func__, rc);
}
switch(val) {
case ALC_TIA_MODE:
pr_info("%s: mode:%d\n", __func__, ALC_TIA_MODE);
cmd_parsing("0x50", 1, parse_data);
break;
case ALC_TNF_MODE:
pr_info("%s: mode:%d\n", __func__, ALC_TNF_MODE);
cmd_parsing("0x51", 1, parse_data);
break;
case ALC_FLOAT_MODE:
pr_info("%s: mode:%d\n", __func__, ALC_FLOAT_MODE);
cmd_parsing("0x52", 1, parse_data);
break;
default:
pr_info("%s: invalid mode\n", __func__);
cmd_parsing("0x0", 1, parse_data);
break;
}
atomic_set(&pst_adpd->hrm_enabled, 0);
} else {
pr_info("%s: disable.\n", __func__);
if (pst_adpd->led_en != -1)
gpio_set_value(pst_adpd->led_en, 0);
else if (!IS_ERR(pst_adpd->leda))
rc = regulator_disable(pst_adpd->leda);
if (rc) {
pr_info(KERN_ERR "%s: disable failed (%d)\n",
__func__, rc);
}
cmd_parsing("0x0", 1, parse_data);
atomic_set(&pst_adpd->hrm_enabled, 0);
}
mode = GET_USR_MODE(parse_data[0]);
if (GET_USR_MODE(parse_data[0]) < MAX_MODE) {
if ((GET_USR_SUB_MODE(parse_data[0])) <
__mode_recv_frm_usr[mode].size) {
adpd143_mode_switching(pst_adpd, parse_data[0]);
} else {
ADPD143_dbg("Sub mode Out of bound\n");
adpd143_mode_switching(pst_adpd, 0);
}
} else {
ADPD143_dbg("Mode out of bound\n");
adpd143_mode_switching(pst_adpd, 0);
}
return size;
}
static ssize_t adpd143_alc_enable_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct adpd143_data *pst_adpd = dev_get_drvdata(dev);
if (pst_adpd->elf_lib_ver == NULL) {
pr_info("%s: data->elf_lib_ver is NULL\n", __func__);
return snprintf(buf, PAGE_SIZE, "%s\n", "NULL");
}
pr_info("%s: elf_lib_ver = %s\n", __func__, pst_adpd->elf_lib_ver);
return snprintf(buf, PAGE_SIZE, "%s\n", pst_adpd->elf_lib_ver);
}
static DEVICE_ATTR(name, S_IRUGO, adpd143_name_show, NULL);
static DEVICE_ATTR(vendor, S_IRUGO, adpd143_vendor_show, NULL);
static DEVICE_ATTR(eol_test, S_IRUGO | S_IWUSR | S_IWGRP,
eol_test_show, eol_test_store);
static DEVICE_ATTR(eol_test_result, S_IRUGO | S_IWUSR | S_IWGRP,
eol_test_result_show, eol_test_result_store);
static DEVICE_ATTR(eol_test_status, S_IRUGO, eol_test_status_show, NULL);
static DEVICE_ATTR(eol_lib_ver, S_IRUGO | S_IWUSR | S_IWGRP,
adpd143_eol_lib_ver_show, adpd143_eol_lib_ver_store);
static DEVICE_ATTR(elf_lib_ver, S_IRUGO | S_IWUSR | S_IWGRP,
adpd143_elf_lib_ver_show, adpd143_elf_lib_ver_store);
static DEVICE_ATTR(adpd_mode, S_IRUGO | S_IWUSR | S_IWGRP,
attr_get_mode, attr_set_mode);
static DEVICE_ATTR(adpd_reg_read, S_IRUGO | S_IWUSR | S_IWGRP,
attr_reg_read_get, attr_reg_read_set);
static DEVICE_ATTR(adpd_reg_write, S_IRUGO | S_IWUSR | S_IWGRP,
NULL, attr_reg_write_set);
static DEVICE_ATTR(adpd_configuration, S_IRUGO | S_IWUSR | S_IWGRP,
attr_config_get, attr_config_set);
static DEVICE_ATTR(adpd_stat, S_IRUGO | S_IWUSR | S_IWGRP,
attr_stat_get, attr_stat_set);
static DEVICE_ATTR(hrm_flush, S_IWUSR | S_IWGRP,
NULL, adpd143_hrm_flush_store);
static DEVICE_ATTR(alc_enable, S_IRUGO | S_IWUSR | S_IWGRP,
adpd143_alc_enable_show, adpd143_alc_enable_store);
static struct device_attribute *hrm_sensor_attrs[] = {
&dev_attr_name,
&dev_attr_vendor,
&dev_attr_eol_test,
&dev_attr_eol_test_result,
&dev_attr_eol_test_status,
&dev_attr_eol_lib_ver,
&dev_attr_elf_lib_ver,
&dev_attr_adpd_mode,
&dev_attr_adpd_reg_read,
&dev_attr_adpd_reg_write,
&dev_attr_adpd_configuration,
&dev_attr_adpd_stat,
&dev_attr_hrm_flush,
&dev_attr_alc_enable,
NULL,
};
static ssize_t adpd143_hrmled_name_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
return snprintf(buf, PAGE_SIZE, "%s\n", CHIP_NAME);
}
static ssize_t adpd143_hrmled_vendor_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
return snprintf(buf, PAGE_SIZE, "%s\n", VENDOR);
}
static ssize_t adpd143_hrmled_flush_store(struct device *dev,
struct device_attribute *attr, const char *buf, size_t size)
{
struct adpd143_data *pst_adpd = dev_get_drvdata(dev);
int ret = 0;
u8 handle = 0;
ret = kstrtou8(buf, 10, &handle);
if (ret < 0) {
pr_err("%s: kstrtou8 failed.(%d)\n", __func__, ret);
return ret;
}
pr_info("%s: handle = %d\n", __func__, handle);
input_report_rel(pst_adpd->hrmled_input_dev, REL_MISC, handle);
return size;
}
static struct device_attribute dev_attr_hrmled_name =
__ATTR(name, S_IRUGO, adpd143_hrmled_name_show, NULL);
static struct device_attribute dev_attr_hrmled_vendor =
__ATTR(vendor, S_IRUGO, adpd143_hrmled_vendor_show, NULL);
static DEVICE_ATTR(hrmled_flush, S_IWUSR | S_IWGRP,
NULL, adpd143_hrmled_flush_store);
static struct device_attribute *hrmled_sensor_attrs[] = {
&dev_attr_hrmled_name,
&dev_attr_hrmled_vendor,
&dev_attr_hrmled_flush,
NULL,
};
/**
This function is used for ADPD143 probe function
@param client pointer point to the linux i2c client structure
@param id pointer point to the linux i2c device id
@return s32 status of the probe function
*/
static s32
adpd_i2c_probe(struct i2c_client *client, const struct i2c_device_id *id)
{
struct adpd143_data *pst_adpd = NULL;
struct adpd_platform_data *pdata = NULL;
int err = 0, i = 0;
unsigned short u16_regval = 0;
struct regulator *regulator_i2c_1p8;
pr_err("%s: is called Success\n", __func__);
if (!i2c_check_functionality(client->adapter, I2C_FUNC_I2C)) {
dev_err(&client->dev, "client not i2c capable\n");
err = -ENODEV;
pr_err("[SENSOR] %s: exit_check_functionality.\n", __func__);
goto exit_check_functionality_failed;
}
pst_adpd = kzalloc(sizeof(struct adpd143_data), GFP_KERNEL);
if (pst_adpd == NULL) {
err = -ENOMEM;
pr_err("[SENSOR] %s: exit_mem_allocate.\n", __func__);
goto exit_mem_allocate_failed;
}
if (client->dev.of_node) {
pdata = devm_kzalloc (&client->dev ,
sizeof(struct adpd_platform_data), GFP_KERNEL);
if (!pdata) {
dev_err(&client->dev, "Failed to allocate memory\n");
if (pst_adpd)
kfree(pst_adpd);
return -ENOMEM;
}
} else
pdata = client->dev.platform_data;
if (!pdata) {
pr_err("%s: missing pdata!\n", __func__);
if (pst_adpd)
kfree(pst_adpd);
return err;
}
err = adpd_parse_dt(pst_adpd, &client->dev);
if (err) {
pr_err("%s: parse dt fail\n", __func__);
goto adpd_parse_dt_err;
}
if (pst_adpd->i2c_1p8 != NULL) {
regulator_i2c_1p8 = regulator_get(NULL, pst_adpd->i2c_1p8);
if (IS_ERR(regulator_i2c_1p8) || regulator_i2c_1p8 == NULL) {
pr_err("%s - i2c_1p8 regulator_get fail\n", __func__);
goto err_regulator_enable;
}
if (!regulator_is_enabled(regulator_i2c_1p8)) {
err = regulator_enable(regulator_i2c_1p8);
if (err) {
pr_err("enable i2c_1p8 failed, err=%d\n", err);
goto err_regulator_enable;
}
}
}
adpd_power_enable(pst_adpd, 1);
err = adpd_power_enable(pst_adpd, 1);
if (err < 0)
pr_err("%s: adpd_power_enable fail err = %d\n", __func__, err);
msleep(100);
mutex_init(&pst_adpd->mutex);
mutex_init(&pst_adpd->storelock);
pst_adpd->client = client;
pst_adpd->ptr_config = pdata;
pst_adpd->read = adpd143_i2c_read;
pst_adpd->write = adpd143_i2c_write;
/*Need to allocate and assign data then use the below function */
i2c_set_clientdata(client, (struct adpd143_data *)pst_adpd);
/*chip ID verification */
u16_regval = reg_read(pst_adpd, ADPD_CHIPID_ADDR);
switch (u16_regval) {
case ADPD_CHIPID(3):
case ADPD_CHIPID(4):
for(i=0; i<8; i++) rawDarkCh[i] = rawDataCh[i] = 0;
err = 0;
ADPD143_dbg("chipID value = 0x%x\n", u16_regval);
break;
default:
err = 1;
break;
};
if (err) {
ADPD143_dbg("chipID value = 0x%x\n", u16_regval);
pr_err("[SENSOR] %s: exit_chipid_verification.\n", __func__);
goto exit_chipid_verification;
}
ADPD143_info("chipID value = 0x%x\n", u16_regval);
//pst_adpd->dev = &client->dev;
pr_info("%s: start \n", __func__);
if (adpd143_initialization(pst_adpd, id)) {
pr_err("[SENSOR] %s: exit_adpd143_init_exit.\n", __func__);
goto exit_adpd143_init;
}
/* set sysfs for hrm sensor */
err = sensors_register(&pst_adpd->dev, pst_adpd, hrm_sensor_attrs,
"hrm_sensor");
if (err) {
pr_err("[SENSOR] %s: cound not register hrm_sensor(%d).\n",
__func__, err);
goto hrm_sensor_register_failed;
}
/* set sysfs for hrm sensor */
err = sensors_register(&pst_adpd->dev, pst_adpd, hrmled_sensor_attrs,
"hrmled_sensor");
if (err) {
pr_err("[SENSOR] %s: cound not register hrmled_sensor(%d).\n",
__func__, err);
goto hrmled_sensor_register_failed;
}
pr_info("%s: success\n", __func__);
goto done;
hrmled_sensor_register_failed:
sensors_unregister(pst_adpd->dev, hrm_sensor_attrs);
hrm_sensor_register_failed:
exit_adpd143_init:
exit_chipid_verification:
mutex_destroy(&pst_adpd->mutex);
adpd_power_enable(pst_adpd, 0);
err_regulator_enable:
adpd_parse_dt_err:
exit_mem_allocate_failed:
kfree(pst_adpd);
exit_check_functionality_failed:
dev_err(&client->dev, "%s: Driver Init failed\n", ADPD_DEV_NAME);
pr_err("%s: failed\n", __func__);
done:
return err;
}
/**
This function is used for ADPD143 remove function
@param client pointer point to the linux i2c client structure
@return s32 status of the remove function
*/
static s32
adpd_i2c_remove(struct i2c_client *client)
{
struct adpd143_data *pst_adpd = i2c_get_clientdata(client);
ADPD143_dbg("%s\n", __func__);
adpd143_initialization_cleanup(pst_adpd);
gpio_free(pst_adpd->hrm_int);
kfree(pst_adpd->ptr_config);
kfree(pst_adpd);
pst_adpd = NULL;
i2c_set_clientdata(client, NULL);
return 0;
}
#ifdef CONFIG_PM
/**
device power management operation structure
*/
static const struct dev_pm_ops adpd_pm_ops = {
.resume = adpd143_i2c_resume,
.suspend = adpd143_i2c_suspend,
};
#endif
/**
This table tell which framework it supported
@brief the name has to get matched to the board configuration file setup
*/
/*static struct i2c_device_id adpd_id[] = { {ADPD_DEV_NAME, 0}, {} };
MODULE_DEVICE_TABLE(i2c, adpd_id);*/
static struct of_device_id adpd_match_table[] = {
{ .compatible = "adpd143",},
{},
};
MODULE_DEVICE_TABLE(i2c, adpd_match_table);
static const struct i2c_device_id adpd143_device_id[] = {
{ "adpd143", 0 },
{ }
};
/**
i2c operation structure
*/
struct i2c_driver adpd143_i2c_driver = {
.driver = {
.name = ADPD_DEV_NAME,
.owner = THIS_MODULE,
#ifdef CONFIG_PM
.pm = &adpd_pm_ops,
#endif
.of_match_table = adpd_match_table,
},
.probe = adpd_i2c_probe,
.remove = adpd_i2c_remove,
.id_table = adpd143_device_id,
};
static struct i2c_client *i2c_client;
#ifdef ADPD_AUTO_PROBE
static int
i2c_check_dev_attach(char *slave_name, unsigned short *slave_addrs,
unsigned short cnt)
{
struct i2c_board_info info;
struct i2c_adapter *i2c_adapter = NULL;
int ret = 0;
unsigned short *scan_device = NULL;
unsigned short count = 0;
/*need to check whether we need to free the memory */
scan_device = kzalloc(sizeof(unsigned short) * (cnt + 2), GFP_KERNEL);
if (IS_ERR(scan_device)) {
ret = -ENOMEM; /* out of memory */
goto i2c_check_attach_mem_fail;
}
memset(scan_device, '\0', sizeof(unsigned short) * (cnt + 2));
for (count = 0; count < cnt; count++) {
*(scan_device + count) = *(slave_addrs + count);
ADPD143_info("list of slave addr = 0x%x\n",
*(scan_device + count));
}
*(scan_device + count) = I2C_CLIENT_END;
count = 0;
do {
i2c_adapter = i2c_get_adapter(count);
if (i2c_adapter != NULL) {
memset(&info, 0, sizeof(struct i2c_board_info));
strlcpy(info.type, slave_name /*"adpd143" */ ,
I2C_NAME_SIZE);
/*need to check i2c_new_device instead of
i2c_new_probed_device*/
i2c_client =
i2c_new_probed_device(i2c_adapter, &info,
(const unsigned short *)
scan_device, NULL);
if (i2c_client != NULL) {
ADPD143_dbg("I2C busnum - %d\n", count);
ADPD143_dbg(
"device is attached to the bus i2c-%d\n",
count);
} else {
}
i2c_put_adapter(i2c_adapter);
} else {
ADPD143_info("Not valid adapter\n");
}
count++;
} while (i2c_client == NULL && count < 20);
kfree(scan_device);
if (i2c_client == NULL) {
/*No such device or address */
return -ENXIO;
} else {
return 0;
}
i2c_check_attach_mem_fail:
return ret;
}
#endif
/**
This function is get called when the module is inserted
@return inti status of the adpd143_multisensor_init
*/
static int __init
adpd143_multisensor_init(void)
{
#ifdef ADPD_AUTO_PROBE
ADPD143_dbg("%s\n", __func__);
unsigned short addr[] = { ADPD143_SLAVE_ADDR };
if (!i2c_check_dev_attach(ADPD_DEV_NAME, addr, 1)) {
return i2c_add_driver(&adpd143_i2c_driver);
} else {
pr_err("i2c bus connect error\n");
return -1;
}
#else
ADPD143_dbg("%s\n", __func__);
return i2c_add_driver(&adpd143_i2c_driver);
#endif
}
/**
This function is get called when the module is removed
@return void
*/
static void __exit
adpd143_multisensor_exit(void)
{
ADPD143_dbg("%s\n", __func__);
i2c_del_driver(&adpd143_i2c_driver);
if (i2c_client)
i2c_unregister_device(i2c_client);
}
module_init(adpd143_multisensor_init);
module_exit(adpd143_multisensor_exit);
MODULE_DESCRIPTION();
MODULE_LICENSE("GPL");
MODULE_AUTHOR("");