android_kernel_samsung_msm8976/drivers/mmc/core/mmc.c

2369 lines
62 KiB
C

/*
* linux/drivers/mmc/core/mmc.c
*
* Copyright (C) 2003-2004 Russell King, All Rights Reserved.
* Copyright (C) 2005-2007 Pierre Ossman, All Rights Reserved.
* MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <linux/bitops.h>
#include <linux/err.h>
#include <linux/slab.h>
#include <linux/stat.h>
#include <linux/mmc/host.h>
#include <linux/mmc/card.h>
#include <linux/mmc/mmc.h>
#include <linux/pm_runtime.h>
#include <linux/reboot.h>
#include "core.h"
#include "bus.h"
#include "mmc_ops.h"
#include "sd_ops.h"
static const unsigned int tran_exp[] = {
10000, 100000, 1000000, 10000000,
0, 0, 0, 0
};
static const unsigned char tran_mant[] = {
0, 10, 12, 13, 15, 20, 25, 30,
35, 40, 45, 50, 55, 60, 70, 80,
};
static const unsigned int tacc_exp[] = {
1, 10, 100, 1000, 10000, 100000, 1000000, 10000000,
};
static const unsigned int tacc_mant[] = {
0, 10, 12, 13, 15, 20, 25, 30,
35, 40, 45, 50, 55, 60, 70, 80,
};
#define UNSTUFF_BITS(resp,start,size) \
({ \
const int __size = size; \
const u32 __mask = (__size < 32 ? 1 << __size : 0) - 1; \
const int __off = 3 - ((start) / 32); \
const int __shft = (start) & 31; \
u32 __res; \
\
__res = resp[__off] >> __shft; \
if (__size + __shft > 32) \
__res |= resp[__off-1] << ((32 - __shft) % 32); \
__res & __mask; \
})
static const struct mmc_fixup mmc_fixups[] = {
/* Disable HPI feature for Kingstone card */
MMC_FIXUP_EXT_CSD_REV("MMC16G", CID_MANFID_KINGSTON, CID_OEMID_ANY,
add_quirk, MMC_QUIRK_BROKEN_HPI, 5),
MMC_FIXUP("MMC16G", CID_MANFID_KINGSTON, CID_OEMID_ANY, add_quirk_mmc,
MMC_QUIRK_CACHE_DISABLE),
END_FIXUP
};
/*
* Given the decoded CSD structure, decode the raw CID to our CID structure.
*/
static int mmc_decode_cid(struct mmc_card *card)
{
u32 *resp = card->raw_cid;
/*
* The selection of the format here is based upon published
* specs from sandisk and from what people have reported.
*/
switch (card->csd.mmca_vsn) {
case 0: /* MMC v1.0 - v1.2 */
case 1: /* MMC v1.4 */
card->cid.manfid = UNSTUFF_BITS(resp, 104, 24);
card->cid.prod_name[0] = UNSTUFF_BITS(resp, 96, 8);
card->cid.prod_name[1] = UNSTUFF_BITS(resp, 88, 8);
card->cid.prod_name[2] = UNSTUFF_BITS(resp, 80, 8);
card->cid.prod_name[3] = UNSTUFF_BITS(resp, 72, 8);
card->cid.prod_name[4] = UNSTUFF_BITS(resp, 64, 8);
card->cid.prod_name[5] = UNSTUFF_BITS(resp, 56, 8);
card->cid.prod_name[6] = UNSTUFF_BITS(resp, 48, 8);
card->cid.hwrev = UNSTUFF_BITS(resp, 44, 4);
card->cid.fwrev = UNSTUFF_BITS(resp, 40, 4);
card->cid.serial = UNSTUFF_BITS(resp, 16, 24);
card->cid.month = UNSTUFF_BITS(resp, 12, 4);
card->cid.year = UNSTUFF_BITS(resp, 8, 4) + 1997;
break;
case 2: /* MMC v2.0 - v2.2 */
case 3: /* MMC v3.1 - v3.3 */
case 4: /* MMC v4 */
card->cid.manfid = UNSTUFF_BITS(resp, 120, 8);
card->cid.oemid = UNSTUFF_BITS(resp, 104, 16);
card->cid.prod_name[0] = UNSTUFF_BITS(resp, 96, 8);
card->cid.prod_name[1] = UNSTUFF_BITS(resp, 88, 8);
card->cid.prod_name[2] = UNSTUFF_BITS(resp, 80, 8);
card->cid.prod_name[3] = UNSTUFF_BITS(resp, 72, 8);
card->cid.prod_name[4] = UNSTUFF_BITS(resp, 64, 8);
card->cid.prod_name[5] = UNSTUFF_BITS(resp, 56, 8);
card->cid.prv = UNSTUFF_BITS(resp, 48, 8);
card->cid.serial = UNSTUFF_BITS(resp, 16, 32);
card->cid.month = UNSTUFF_BITS(resp, 12, 4);
card->cid.year = UNSTUFF_BITS(resp, 8, 4) + 1997;
break;
default:
pr_err("%s: card has unknown MMCA version %d\n",
mmc_hostname(card->host), card->csd.mmca_vsn);
return -EINVAL;
}
return 0;
}
static void mmc_set_erase_size(struct mmc_card *card)
{
if (card->ext_csd.erase_group_def & 1)
card->erase_size = card->ext_csd.hc_erase_size;
else
card->erase_size = card->csd.erase_size;
mmc_init_erase(card);
}
/*
* Given a 128-bit response, decode to our card CSD structure.
*/
static int mmc_decode_csd(struct mmc_card *card)
{
struct mmc_csd *csd = &card->csd;
unsigned int e, m, a, b;
u32 *resp = card->raw_csd;
/*
* We only understand CSD structure v1.1 and v1.2.
* v1.2 has extra information in bits 15, 11 and 10.
* We also support eMMC v4.4 & v4.41.
*/
csd->structure = UNSTUFF_BITS(resp, 126, 2);
if (csd->structure == 0) {
pr_err("%s: unrecognised CSD structure version %d\n",
mmc_hostname(card->host), csd->structure);
return -EINVAL;
}
csd->mmca_vsn = UNSTUFF_BITS(resp, 122, 4);
m = UNSTUFF_BITS(resp, 115, 4);
e = UNSTUFF_BITS(resp, 112, 3);
csd->tacc_ns = (tacc_exp[e] * tacc_mant[m] + 9) / 10;
csd->tacc_clks = UNSTUFF_BITS(resp, 104, 8) * 100;
m = UNSTUFF_BITS(resp, 99, 4);
e = UNSTUFF_BITS(resp, 96, 3);
csd->max_dtr = tran_exp[e] * tran_mant[m];
csd->cmdclass = UNSTUFF_BITS(resp, 84, 12);
e = UNSTUFF_BITS(resp, 47, 3);
m = UNSTUFF_BITS(resp, 62, 12);
csd->capacity = (1 + m) << (e + 2);
csd->read_blkbits = UNSTUFF_BITS(resp, 80, 4);
csd->read_partial = UNSTUFF_BITS(resp, 79, 1);
csd->write_misalign = UNSTUFF_BITS(resp, 78, 1);
csd->read_misalign = UNSTUFF_BITS(resp, 77, 1);
csd->r2w_factor = UNSTUFF_BITS(resp, 26, 3);
csd->write_blkbits = UNSTUFF_BITS(resp, 22, 4);
csd->write_partial = UNSTUFF_BITS(resp, 21, 1);
if (csd->write_blkbits >= 9) {
a = UNSTUFF_BITS(resp, 42, 5);
b = UNSTUFF_BITS(resp, 37, 5);
csd->erase_size = (a + 1) * (b + 1);
csd->erase_size <<= csd->write_blkbits - 9;
}
return 0;
}
/*
* Read extended CSD.
*/
static int mmc_get_ext_csd(struct mmc_card *card, u8 **new_ext_csd)
{
int err;
u8 *ext_csd;
BUG_ON(!card);
BUG_ON(!new_ext_csd);
*new_ext_csd = NULL;
if (card->csd.mmca_vsn < CSD_SPEC_VER_4)
return 0;
/*
* As the ext_csd is so large and mostly unused, we don't store the
* raw block in mmc_card.
*/
ext_csd = kmalloc(512, GFP_KERNEL);
if (!ext_csd) {
pr_err("%s: could not allocate a buffer to "
"receive the ext_csd.\n", mmc_hostname(card->host));
return -ENOMEM;
}
err = mmc_send_ext_csd(card, ext_csd);
if (err) {
kfree(ext_csd);
*new_ext_csd = NULL;
/* If the host or the card can't do the switch,
* fail more gracefully. */
if ((err != -EINVAL)
&& (err != -ENOSYS)
&& (err != -EFAULT))
return err;
/*
* High capacity cards should have this "magic" size
* stored in their CSD.
*/
if (card->csd.capacity == (4096 * 512)) {
pr_err("%s: unable to read EXT_CSD "
"on a possible high capacity card. "
"Card will be ignored.\n",
mmc_hostname(card->host));
} else {
pr_warning("%s: unable to read "
"EXT_CSD, performance might "
"suffer.\n",
mmc_hostname(card->host));
err = 0;
}
} else
*new_ext_csd = ext_csd;
return err;
}
static void mmc_select_card_type(struct mmc_card *card)
{
struct mmc_host *host = card->host;
u8 card_type = card->ext_csd.raw_card_type & EXT_CSD_CARD_TYPE_MASK;
u32 caps = host->caps, caps2 = host->caps2;
unsigned int hs_max_dtr = 0;
if (card_type & EXT_CSD_CARD_TYPE_26)
hs_max_dtr = MMC_HIGH_26_MAX_DTR;
if (caps & MMC_CAP_MMC_HIGHSPEED &&
card_type & EXT_CSD_CARD_TYPE_52)
hs_max_dtr = MMC_HIGH_52_MAX_DTR;
if ((caps & MMC_CAP_1_8V_DDR &&
card_type & EXT_CSD_CARD_TYPE_DDR_1_8V) ||
(caps & MMC_CAP_1_2V_DDR &&
card_type & EXT_CSD_CARD_TYPE_DDR_1_2V))
hs_max_dtr = MMC_HIGH_DDR_MAX_DTR;
if ((caps2 & MMC_CAP2_HS200_1_8V_SDR &&
card_type & EXT_CSD_CARD_TYPE_SDR_1_8V) ||
(caps2 & MMC_CAP2_HS200_1_2V_SDR &&
card_type & EXT_CSD_CARD_TYPE_SDR_1_2V))
hs_max_dtr = MMC_HS200_MAX_DTR;
if ((caps2 & MMC_CAP2_HS400_1_8V &&
card_type & EXT_CSD_CARD_TYPE_HS400_1_8V) ||
(caps2 & MMC_CAP2_HS400_1_2V &&
card_type & EXT_CSD_CARD_TYPE_HS400_1_2V))
hs_max_dtr = MMC_HS400_MAX_DTR;
card->ext_csd.hs_max_dtr = hs_max_dtr;
card->ext_csd.card_type = card_type;
}
/* eMMC 5.0 or later only */
/*
* mmc_merge_ext_csd - merge some ext_csd field to a variable.
* @ext_csd : pointer of ext_csd.(1 Byte/field)
* @continuous : if you want to merge continuous field, set true.
* @count : a number of ext_csd field to merge(=< 8)
* @args : list of ext_csd index or first index.
*/
static unsigned long long mmc_merge_ext_csd(u8 *ext_csd, bool continuous, int count, ...)
{
unsigned long long merge_ext_csd = 0;
va_list args;
int i = 0;
int index;
va_start(args, count);
index = va_arg(args, int);
for (i = 0; i < count; i++) {
if (continuous) {
merge_ext_csd = merge_ext_csd << 8 | ext_csd[index + count - 1 - i];
} else {
merge_ext_csd = merge_ext_csd << 8 | ext_csd[index];
index = va_arg(args, int);
}
}
va_end(args);
return merge_ext_csd;
}
/* Minimum partition switch timeout in milliseconds */
#define MMC_MIN_PART_SWITCH_TIME 300
/*
* Decode extended CSD.
*/
static int mmc_read_ext_csd(struct mmc_card *card, u8 *ext_csd)
{
int err = 0, idx;
unsigned int part_size;
u8 hc_erase_grp_sz = 0, hc_wp_grp_sz = 0;
BUG_ON(!card);
if (!ext_csd)
return 0;
/* Version is coded in the CSD_STRUCTURE byte in the EXT_CSD register */
card->ext_csd.raw_ext_csd_structure = ext_csd[EXT_CSD_STRUCTURE];
if (card->csd.structure == 3) {
if (card->ext_csd.raw_ext_csd_structure > 2) {
pr_err("%s: unrecognised EXT_CSD structure "
"version %d\n", mmc_hostname(card->host),
card->ext_csd.raw_ext_csd_structure);
err = -EINVAL;
goto out;
}
}
card->ext_csd.raw_strobe_support = ext_csd[EXT_CSD_STROBE_SUPPORT];
/*
* The EXT_CSD format is meant to be forward compatible. As long
* as CSD_STRUCTURE does not change, all values for EXT_CSD_REV
* are authorized, see JEDEC JESD84-B50 section B.8.
*/
card->ext_csd.rev = ext_csd[EXT_CSD_REV];
/* fixup device after ext_csd revision field is updated */
mmc_fixup_device(card, mmc_fixups);
card->ext_csd.raw_sectors[0] = ext_csd[EXT_CSD_SEC_CNT + 0];
card->ext_csd.raw_sectors[1] = ext_csd[EXT_CSD_SEC_CNT + 1];
card->ext_csd.raw_sectors[2] = ext_csd[EXT_CSD_SEC_CNT + 2];
card->ext_csd.raw_sectors[3] = ext_csd[EXT_CSD_SEC_CNT + 3];
if (card->ext_csd.rev >= 2) {
card->ext_csd.sectors =
ext_csd[EXT_CSD_SEC_CNT + 0] << 0 |
ext_csd[EXT_CSD_SEC_CNT + 1] << 8 |
ext_csd[EXT_CSD_SEC_CNT + 2] << 16 |
ext_csd[EXT_CSD_SEC_CNT + 3] << 24;
/* Cards with density > 2GiB are sector addressed */
if (card->ext_csd.sectors > (2u * 1024 * 1024 * 1024) / 512)
mmc_card_set_blockaddr(card);
}
card->ext_csd.raw_card_type = ext_csd[EXT_CSD_CARD_TYPE];
mmc_select_card_type(card);
card->ext_csd.raw_drive_strength = ext_csd[EXT_CSD_DRIVE_STRENGTH];
card->ext_csd.raw_s_a_timeout = ext_csd[EXT_CSD_S_A_TIMEOUT];
card->ext_csd.raw_erase_timeout_mult =
ext_csd[EXT_CSD_ERASE_TIMEOUT_MULT];
card->ext_csd.raw_hc_erase_grp_size =
ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE];
if (card->ext_csd.rev >= 3) {
u8 sa_shift = ext_csd[EXT_CSD_S_A_TIMEOUT];
card->ext_csd.part_config = ext_csd[EXT_CSD_PART_CONFIG];
/* EXT_CSD value is in units of 10ms, but we store in ms */
card->ext_csd.part_time = 10 * ext_csd[EXT_CSD_PART_SWITCH_TIME];
/* Some eMMC set the value too low so set a minimum */
if (card->ext_csd.part_time &&
card->ext_csd.part_time < MMC_MIN_PART_SWITCH_TIME)
card->ext_csd.part_time = MMC_MIN_PART_SWITCH_TIME;
/* Sleep / awake timeout in 100ns units */
if (sa_shift > 0 && sa_shift <= 0x17)
card->ext_csd.sa_timeout =
1 << ext_csd[EXT_CSD_S_A_TIMEOUT];
card->ext_csd.erase_group_def =
ext_csd[EXT_CSD_ERASE_GROUP_DEF];
card->ext_csd.hc_erase_timeout = 300 *
ext_csd[EXT_CSD_ERASE_TIMEOUT_MULT];
card->ext_csd.hc_erase_size =
ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE] << 10;
card->ext_csd.rel_sectors = ext_csd[EXT_CSD_REL_WR_SEC_C];
/*
* There are two boot regions of equal size, defined in
* multiples of 128K.
*/
if (ext_csd[EXT_CSD_BOOT_MULT] && mmc_boot_partition_access(card->host)) {
for (idx = 0; idx < MMC_NUM_BOOT_PARTITION; idx++) {
part_size = ext_csd[EXT_CSD_BOOT_MULT] << 17;
mmc_part_add(card, part_size,
EXT_CSD_PART_CONFIG_ACC_BOOT0 + idx,
"boot%d", idx, true,
MMC_BLK_DATA_AREA_BOOT);
}
}
}
card->ext_csd.raw_hc_erase_gap_size =
ext_csd[EXT_CSD_HC_WP_GRP_SIZE];
card->ext_csd.raw_sec_trim_mult =
ext_csd[EXT_CSD_SEC_TRIM_MULT];
card->ext_csd.raw_sec_erase_mult =
ext_csd[EXT_CSD_SEC_ERASE_MULT];
card->ext_csd.raw_sec_feature_support =
ext_csd[EXT_CSD_SEC_FEATURE_SUPPORT];
card->ext_csd.raw_trim_mult =
ext_csd[EXT_CSD_TRIM_MULT];
card->ext_csd.raw_partition_support = ext_csd[EXT_CSD_PARTITION_SUPPORT];
if (card->ext_csd.rev >= 4) {
/*
* Enhanced area feature support -- check whether the eMMC
* card has the Enhanced area enabled. If so, export enhanced
* area offset and size to user by adding sysfs interface.
*/
if ((ext_csd[EXT_CSD_PARTITION_SUPPORT] & 0x2) &&
(ext_csd[EXT_CSD_PARTITION_ATTRIBUTE] & 0x1)) {
hc_erase_grp_sz =
ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE];
hc_wp_grp_sz =
ext_csd[EXT_CSD_HC_WP_GRP_SIZE];
card->ext_csd.enhanced_area_en = 1;
/*
* calculate the enhanced data area offset, in bytes
*/
card->ext_csd.enhanced_area_offset =
(ext_csd[139] << 24) + (ext_csd[138] << 16) +
(ext_csd[137] << 8) + ext_csd[136];
if (mmc_card_blockaddr(card))
card->ext_csd.enhanced_area_offset <<= 9;
/*
* calculate the enhanced data area size, in kilobytes
*/
card->ext_csd.enhanced_area_size =
(ext_csd[142] << 16) + (ext_csd[141] << 8) +
ext_csd[140];
card->ext_csd.enhanced_area_size *=
(size_t)(hc_erase_grp_sz * hc_wp_grp_sz);
card->ext_csd.enhanced_area_size <<= 9;
} else {
/*
* If the enhanced area is not enabled, disable these
* device attributes.
*/
card->ext_csd.enhanced_area_offset = -EINVAL;
card->ext_csd.enhanced_area_size = -EINVAL;
}
/*
* General purpose partition feature support --
* If ext_csd has the size of general purpose partitions,
* set size, part_cfg, partition name in mmc_part.
*/
if (ext_csd[EXT_CSD_PARTITION_SUPPORT] &
EXT_CSD_PART_SUPPORT_PART_EN) {
if (card->ext_csd.enhanced_area_en != 1) {
hc_erase_grp_sz =
ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE];
hc_wp_grp_sz =
ext_csd[EXT_CSD_HC_WP_GRP_SIZE];
card->ext_csd.enhanced_area_en = 1;
}
for (idx = 0; idx < MMC_NUM_GP_PARTITION; idx++) {
if (!ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3] &&
!ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 1] &&
!ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 2])
continue;
part_size =
(ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 2]
<< 16) +
(ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 1]
<< 8) +
ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3];
part_size *= (size_t)(hc_erase_grp_sz *
hc_wp_grp_sz);
mmc_part_add(card, part_size << 19,
EXT_CSD_PART_CONFIG_ACC_GP0 + idx,
"gp%d", idx, false,
MMC_BLK_DATA_AREA_GP);
}
}
card->ext_csd.sec_trim_mult =
ext_csd[EXT_CSD_SEC_TRIM_MULT];
card->ext_csd.sec_erase_mult =
ext_csd[EXT_CSD_SEC_ERASE_MULT];
card->ext_csd.sec_feature_support =
ext_csd[EXT_CSD_SEC_FEATURE_SUPPORT];
card->ext_csd.trim_timeout = 300 *
ext_csd[EXT_CSD_TRIM_MULT];
/*
* Note that the call to mmc_part_add above defaults to read
* only. If this default assumption is changed, the call must
* take into account the value of boot_locked below.
*/
card->ext_csd.boot_ro_lock = ext_csd[EXT_CSD_BOOT_WP];
card->ext_csd.boot_ro_lockable = true;
}
if (card->ext_csd.rev >= 5) {
/* check whether the eMMC card supports HPI */
if ((ext_csd[EXT_CSD_HPI_FEATURES] & 0x1) &&
!(card->quirks & MMC_QUIRK_BROKEN_HPI)) {
card->ext_csd.hpi = 1;
if (ext_csd[EXT_CSD_HPI_FEATURES] & 0x2)
card->ext_csd.hpi_cmd = MMC_STOP_TRANSMISSION;
else
card->ext_csd.hpi_cmd = MMC_SEND_STATUS;
/*
* Indicate the maximum timeout to close
* a command interrupted by HPI
*/
card->ext_csd.out_of_int_time =
ext_csd[EXT_CSD_OUT_OF_INTERRUPT_TIME] * 10;
}
/*
* check whether the eMMC card supports BKOPS.
* If HPI is not supported then BKOPs shouldn't be enabled.
*/
if ((ext_csd[EXT_CSD_BKOPS_SUPPORT] & 0x1) &&
card->ext_csd.hpi) {
card->ext_csd.bkops = 1;
card->ext_csd.bkops_en = ext_csd[EXT_CSD_BKOPS_EN];
card->ext_csd.raw_bkops_status =
ext_csd[EXT_CSD_BKOPS_STATUS];
if (!(mmc_card_get_bkops_en_manual(card)) &&
card->host->caps2 & MMC_CAP2_INIT_BKOPS) {
mmc_card_set_bkops_en_manual(card);
err = mmc_switch(card,
EXT_CSD_CMD_SET_NORMAL,
EXT_CSD_BKOPS_EN,
card->ext_csd.bkops_en , 0);
if (err) {
pr_warn("%s: Enabling BKOPS failed\n",
mmc_hostname(card->host));
mmc_card_clr_bkops_en_manual(card);
}
}
}
pr_info("%s: BKOPS_EN bit = %d\n",
mmc_hostname(card->host), card->ext_csd.bkops_en);
card->ext_csd.rel_param = ext_csd[EXT_CSD_WR_REL_PARAM];
card->ext_csd.rst_n_function = ext_csd[EXT_CSD_RST_N_FUNCTION];
/*
* Some eMMC vendors violate eMMC 5.0 spec and set
* REL_WR_SEC_C register to 0x10 to indicate the
* ability of RPMB throughput improvement thus lead
* to failure when TZ module write data to RPMB
* partition. So check bit[4] of EXT_CSD[166] and
* if it is not set then change value of REL_WR_SEC_C
* to 0x1 directly ignoring value of EXT_CSD[222].
*/
if (!(card->ext_csd.rel_param &
EXT_CSD_WR_REL_PARAM_EN_RPMB_REL_WR))
card->ext_csd.rel_sectors = 0x1;
/*
* RPMB regions are defined in multiples of 128K.
*/
card->ext_csd.raw_rpmb_size_mult = ext_csd[EXT_CSD_RPMB_MULT];
if (ext_csd[EXT_CSD_RPMB_MULT] && mmc_host_cmd23(card->host)) {
mmc_part_add(card, ext_csd[EXT_CSD_RPMB_MULT] << 17,
EXT_CSD_PART_CONFIG_ACC_RPMB,
"rpmb", 0, false,
MMC_BLK_DATA_AREA_RPMB);
}
}
card->ext_csd.raw_erased_mem_count = ext_csd[EXT_CSD_ERASED_MEM_CONT];
if (ext_csd[EXT_CSD_ERASED_MEM_CONT])
card->erased_byte = 0xFF;
else
card->erased_byte = 0x0;
/* eMMC v4.5 or later */
if (card->ext_csd.rev >= 6) {
card->ext_csd.feature_support |= MMC_DISCARD_FEATURE;
card->ext_csd.generic_cmd6_time = 10 *
ext_csd[EXT_CSD_GENERIC_CMD6_TIME];
card->ext_csd.power_off_longtime = 10 *
ext_csd[EXT_CSD_POWER_OFF_LONG_TIME];
card->ext_csd.cache_size =
ext_csd[EXT_CSD_CACHE_SIZE + 0] << 0 |
ext_csd[EXT_CSD_CACHE_SIZE + 1] << 8 |
ext_csd[EXT_CSD_CACHE_SIZE + 2] << 16 |
ext_csd[EXT_CSD_CACHE_SIZE + 3] << 24;
if (ext_csd[EXT_CSD_DATA_SECTOR_SIZE] == 1)
card->ext_csd.data_sector_size = 4096;
else
card->ext_csd.data_sector_size = 512;
if ((ext_csd[EXT_CSD_DATA_TAG_SUPPORT] & 1) &&
(ext_csd[EXT_CSD_TAG_UNIT_SIZE] <= 8)) {
card->ext_csd.data_tag_unit_size =
((unsigned int) 1 << ext_csd[EXT_CSD_TAG_UNIT_SIZE]) *
(card->ext_csd.data_sector_size);
} else {
card->ext_csd.data_tag_unit_size = 0;
}
card->ext_csd.max_packed_writes =
ext_csd[EXT_CSD_MAX_PACKED_WRITES];
card->ext_csd.max_packed_reads =
ext_csd[EXT_CSD_MAX_PACKED_READS];
} else {
card->ext_csd.data_sector_size = 512;
}
if (card->ext_csd.rev >= 7) {
card->ext_csd.cmdq_support = ext_csd[EXT_CSD_CMDQ_SUPPORT];
card->ext_csd.fw_version = ext_csd[EXT_CSD_FW_VERSION];
pr_info("%s: eMMC FW version: 0x%02x\n",
mmc_hostname(card->host),
card->ext_csd.fw_version);
if (card->ext_csd.cmdq_support) {
/*
* Queue Depth = N + 1,
* see JEDEC JESD84-B51 section 7.4.19
*/
card->ext_csd.cmdq_depth =
ext_csd[EXT_CSD_CMDQ_DEPTH] + 1;
pr_info("%s: CMDQ supported: depth: %d\n",
mmc_hostname(card->host),
card->ext_csd.cmdq_depth);
}
card->ext_csd.enhanced_rpmb_supported =
(card->ext_csd.rel_param &
EXT_CSD_WR_REL_PARAM_EN_RPMB_REL_WR);
card->ext_csd.smart_info = mmc_merge_ext_csd(ext_csd, false, 8,
EXT_CSD_DEVICE_LIFE_TIME_EST_TYPE_B,
EXT_CSD_DEVICE_LIFE_TIME_EST_TYPE_A,
EXT_CSD_PRE_EOL_INFO,
EXT_CSD_OPTIMAL_TRIM_UNIT_SIZE,
EXT_CSD_DEVICE_VERSION + 1,
EXT_CSD_DEVICE_VERSION,
EXT_CSD_HC_ERASE_GRP_SIZE,
EXT_CSD_HC_WP_GRP_SIZE);
card->ext_csd.fwdate = mmc_merge_ext_csd(ext_csd, true, 8,
EXT_CSD_FW_VERSION);
} else {
card->ext_csd.cmdq_support = 0;
card->ext_csd.cmdq_depth = 0;
}
out:
return err;
}
static inline void mmc_free_ext_csd(u8 *ext_csd)
{
kfree(ext_csd);
}
static int mmc_compare_ext_csds(struct mmc_card *card, unsigned bus_width)
{
u8 *bw_ext_csd;
int err;
if (bus_width == MMC_BUS_WIDTH_1)
return 0;
err = mmc_get_ext_csd(card, &bw_ext_csd);
if (err || bw_ext_csd == NULL) {
err = -EINVAL;
goto out;
}
/* only compare read only fields */
err = !((card->ext_csd.raw_partition_support ==
bw_ext_csd[EXT_CSD_PARTITION_SUPPORT]) &&
(card->ext_csd.raw_erased_mem_count ==
bw_ext_csd[EXT_CSD_ERASED_MEM_CONT]) &&
(card->ext_csd.rev ==
bw_ext_csd[EXT_CSD_REV]) &&
(card->ext_csd.raw_ext_csd_structure ==
bw_ext_csd[EXT_CSD_STRUCTURE]) &&
(card->ext_csd.raw_card_type ==
bw_ext_csd[EXT_CSD_CARD_TYPE]) &&
(card->ext_csd.raw_s_a_timeout ==
bw_ext_csd[EXT_CSD_S_A_TIMEOUT]) &&
(card->ext_csd.raw_hc_erase_gap_size ==
bw_ext_csd[EXT_CSD_HC_WP_GRP_SIZE]) &&
(card->ext_csd.raw_erase_timeout_mult ==
bw_ext_csd[EXT_CSD_ERASE_TIMEOUT_MULT]) &&
(card->ext_csd.raw_hc_erase_grp_size ==
bw_ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE]) &&
(card->ext_csd.raw_sec_trim_mult ==
bw_ext_csd[EXT_CSD_SEC_TRIM_MULT]) &&
(card->ext_csd.raw_sec_erase_mult ==
bw_ext_csd[EXT_CSD_SEC_ERASE_MULT]) &&
(card->ext_csd.raw_sec_feature_support ==
bw_ext_csd[EXT_CSD_SEC_FEATURE_SUPPORT]) &&
(card->ext_csd.raw_trim_mult ==
bw_ext_csd[EXT_CSD_TRIM_MULT]) &&
(card->ext_csd.raw_sectors[0] ==
bw_ext_csd[EXT_CSD_SEC_CNT + 0]) &&
(card->ext_csd.raw_sectors[1] ==
bw_ext_csd[EXT_CSD_SEC_CNT + 1]) &&
(card->ext_csd.raw_sectors[2] ==
bw_ext_csd[EXT_CSD_SEC_CNT + 2]) &&
(card->ext_csd.raw_sectors[3] ==
bw_ext_csd[EXT_CSD_SEC_CNT + 3]));
if (err)
err = -EINVAL;
out:
mmc_free_ext_csd(bw_ext_csd);
return err;
}
MMC_DEV_ATTR(cid, "%08x%08x%08x%08x\n", card->raw_cid[0], card->raw_cid[1],
card->raw_cid[2], card->raw_cid[3]);
MMC_DEV_ATTR(csd, "%08x%08x%08x%08x\n", card->raw_csd[0], card->raw_csd[1],
card->raw_csd[2], card->raw_csd[3]);
MMC_DEV_ATTR(date, "%02d/%04d\n", card->cid.month, card->cid.year);
MMC_DEV_ATTR(erase_size, "%u\n", card->erase_size << 9);
MMC_DEV_ATTR(preferred_erase_size, "%u\n", card->pref_erase << 9);
MMC_DEV_ATTR(fwrev, "0x%x\n", card->cid.fwrev);
MMC_DEV_ATTR(hwrev, "0x%x\n", card->cid.hwrev);
MMC_DEV_ATTR(manfid, "0x%06x\n", card->cid.manfid);
MMC_DEV_ATTR(name, "%s\n", card->cid.prod_name);
MMC_DEV_ATTR(oemid, "0x%04x\n", card->cid.oemid);
MMC_DEV_ATTR(prv, "0x%x\n", card->cid.prv);
MMC_DEV_ATTR(serial, "0x%08x\n", card->cid.serial);
MMC_DEV_ATTR(enhanced_area_offset, "%llu\n",
card->ext_csd.enhanced_area_offset);
MMC_DEV_ATTR(enhanced_area_size, "%u\n", card->ext_csd.enhanced_area_size);
MMC_DEV_ATTR(raw_rpmb_size_mult, "%#x\n", card->ext_csd.raw_rpmb_size_mult);
MMC_DEV_ATTR(enhanced_rpmb_supported, "%#x\n",
card->ext_csd.enhanced_rpmb_supported);
MMC_DEV_ATTR(rel_sectors, "%#x\n", card->ext_csd.rel_sectors);
MMC_DEV_ATTR(smart, "0x%016llx\n", card->ext_csd.smart_info);
MMC_DEV_ATTR(fwdate, "0x%016llx\n", card->ext_csd.fwdate);
MMC_DEV_ATTR(hpi_support, "%d\n", card->ext_csd.hpi);
MMC_DEV_ATTR(hpi_enable, "%d\n", card->ext_csd.hpi_en);
MMC_DEV_ATTR(hpi_command, "%d\n", card->ext_csd.hpi_cmd);
MMC_DEV_ATTR(bkops_support, "%d\n", card->ext_csd.bkops);
MMC_DEV_ATTR(bkops_enable, "%d\n", card->ext_csd.bkops_en);
MMC_DEV_ATTR(caps, "0x%08x\n", (unsigned int)(card->host->caps));
MMC_DEV_ATTR(caps2, "0x%08x\n", card->host->caps2);
MMC_DEV_ATTR(erase_type, "MMC_CAP_ERASE %s, type %s, SECURE %s, Sanitize %s\n",
card->host->caps & MMC_CAP_ERASE ? "enabled" : "disabled",
mmc_can_discard(card) ? "DISCARD" :
(mmc_can_trim(card) ? "TRIM" : "NORMAL"),
(!(card->quirks & MMC_QUIRK_SEC_ERASE_TRIM_BROKEN) &&
mmc_can_secure_erase_trim(card)) ? "supportable" : "disabled",
mmc_can_sanitize(card) ? "enabled" : "disabled");
MMC_DEV_ATTR(packed_cmd, "packed_cmd %s / %s\n",
card->host->caps2 & MMC_CAP2_PACKED_WR ? "WR enabled" : "WR disabled",
card->host->caps2 & MMC_CAP2_PACKED_RD ? "RD enabled" : "RD disabled");
static struct attribute *mmc_std_attrs[] = {
&dev_attr_cid.attr,
&dev_attr_csd.attr,
&dev_attr_date.attr,
&dev_attr_erase_size.attr,
&dev_attr_preferred_erase_size.attr,
&dev_attr_fwrev.attr,
&dev_attr_hwrev.attr,
&dev_attr_manfid.attr,
&dev_attr_name.attr,
&dev_attr_oemid.attr,
&dev_attr_prv.attr,
&dev_attr_serial.attr,
&dev_attr_enhanced_area_offset.attr,
&dev_attr_enhanced_area_size.attr,
&dev_attr_raw_rpmb_size_mult.attr,
&dev_attr_enhanced_rpmb_supported.attr,
&dev_attr_rel_sectors.attr,
&dev_attr_smart.attr,
&dev_attr_fwdate.attr,
&dev_attr_hpi_support.attr,
&dev_attr_hpi_enable.attr,
&dev_attr_hpi_command.attr,
&dev_attr_bkops_support.attr,
&dev_attr_bkops_enable.attr,
&dev_attr_caps.attr,
&dev_attr_caps2.attr,
&dev_attr_erase_type.attr,
&dev_attr_packed_cmd.attr,
NULL,
};
static struct attribute_group mmc_std_attr_group = {
.attrs = mmc_std_attrs,
};
static const struct attribute_group *mmc_attr_groups[] = {
&mmc_std_attr_group,
NULL,
};
static struct device_type mmc_type = {
.groups = mmc_attr_groups,
};
/*
* Select the PowerClass for the current bus width
* If power class is defined for 4/8 bit bus in the
* extended CSD register, select it by executing the
* mmc_switch command.
*/
static int mmc_select_powerclass(struct mmc_card *card,
unsigned int bus_width, u8 *ext_csd)
{
int err = 0;
unsigned int pwrclass_val;
unsigned int index = 0;
struct mmc_host *host;
BUG_ON(!card);
host = card->host;
BUG_ON(!host);
if (ext_csd == NULL)
return 0;
/* Power class selection is supported for versions >= 4.0 */
if (card->csd.mmca_vsn < CSD_SPEC_VER_4)
return 0;
/* Power class values are defined only for 4/8 bit bus */
if (bus_width == EXT_CSD_BUS_WIDTH_1)
return 0;
switch (1 << host->ios.vdd) {
case MMC_VDD_165_195:
if (host->ios.clock <= 26000000)
index = EXT_CSD_PWR_CL_26_195;
else if (host->ios.clock <= 52000000)
index = (bus_width <= EXT_CSD_BUS_WIDTH_8) ?
EXT_CSD_PWR_CL_52_195 :
EXT_CSD_PWR_CL_DDR_52_195;
else if (host->ios.clock <= 200000000)
index = EXT_CSD_PWR_CL_200_195;
break;
case MMC_VDD_27_28:
case MMC_VDD_28_29:
case MMC_VDD_29_30:
case MMC_VDD_30_31:
case MMC_VDD_31_32:
case MMC_VDD_32_33:
case MMC_VDD_33_34:
case MMC_VDD_34_35:
case MMC_VDD_35_36:
if (host->ios.clock <= 26000000)
index = EXT_CSD_PWR_CL_26_360;
else if (host->ios.clock <= 52000000)
index = (bus_width <= EXT_CSD_BUS_WIDTH_8) ?
EXT_CSD_PWR_CL_52_360 :
EXT_CSD_PWR_CL_DDR_52_360;
else if (host->ios.clock <= 200000000)
index = (bus_width == EXT_CSD_DDR_BUS_WIDTH_8) ?
EXT_CSD_PWR_CL_DDR_200_360 :
EXT_CSD_PWR_CL_200_360;
break;
default:
pr_warning("%s: Voltage range not supported "
"for power class.\n", mmc_hostname(host));
return -EINVAL;
}
pwrclass_val = ext_csd[index];
if (bus_width & (EXT_CSD_BUS_WIDTH_8 | EXT_CSD_DDR_BUS_WIDTH_8))
pwrclass_val = (pwrclass_val & EXT_CSD_PWR_CL_8BIT_MASK) >>
EXT_CSD_PWR_CL_8BIT_SHIFT;
else
pwrclass_val = (pwrclass_val & EXT_CSD_PWR_CL_4BIT_MASK) >>
EXT_CSD_PWR_CL_4BIT_SHIFT;
/* If the power class is different from the default value */
if (pwrclass_val > 0) {
err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
EXT_CSD_POWER_CLASS,
pwrclass_val,
card->ext_csd.generic_cmd6_time);
}
return err;
}
/*
* Select the correct bus width supported by both host and card
*/
static int mmc_select_bus_width(struct mmc_card *card, int ddr, u8 *ext_csd)
{
struct mmc_host *host;
static unsigned ext_csd_bits[][2] = {
{ EXT_CSD_BUS_WIDTH_8, EXT_CSD_DDR_BUS_WIDTH_8 },
{ EXT_CSD_BUS_WIDTH_4, EXT_CSD_DDR_BUS_WIDTH_4 },
{ EXT_CSD_BUS_WIDTH_1, EXT_CSD_BUS_WIDTH_1 },
};
static unsigned bus_widths[] = {
MMC_BUS_WIDTH_8,
MMC_BUS_WIDTH_4,
MMC_BUS_WIDTH_1
};
unsigned idx, bus_width = 0;
int err = 0;
host = card->host;
if ((card->csd.mmca_vsn < CSD_SPEC_VER_4) ||
!(host->caps & (MMC_CAP_4_BIT_DATA | MMC_CAP_8_BIT_DATA)))
goto out;
if (host->caps & MMC_CAP_8_BIT_DATA)
idx = 0;
else
idx = 1;
for (; idx < ARRAY_SIZE(bus_widths); idx++) {
bus_width = bus_widths[idx];
if (bus_width == MMC_BUS_WIDTH_1)
ddr = 0; /* no DDR for 1-bit width */
err = mmc_select_powerclass(card, ext_csd_bits[idx][0],
ext_csd);
if (err)
pr_warning("%s: power class selection to " \
"bus width %d failed\n",
mmc_hostname(host),
1 << bus_width);
err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
EXT_CSD_BUS_WIDTH,
ext_csd_bits[idx][0],
card->ext_csd.generic_cmd6_time);
if (!err) {
mmc_set_bus_width(host, bus_width);
/*
* If controller can't handle bus width test,
* compare ext_csd previously read in 1 bit mode
* against ext_csd at new bus width
*/
if (!(host->caps & MMC_CAP_BUS_WIDTH_TEST))
err = mmc_compare_ext_csds(card, bus_width);
else
err = mmc_bus_test(card, bus_width);
if (!err)
break;
}
}
if (!err && ddr) {
err = mmc_select_powerclass(card, ext_csd_bits[idx][1],
ext_csd);
if (err)
pr_warning("%s: power class selection to " \
"bus width %d ddr %d failed\n",
mmc_hostname(host),
1 << bus_width, ddr);
err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
EXT_CSD_BUS_WIDTH,
ext_csd_bits[idx][1],
card->ext_csd.generic_cmd6_time);
}
out:
return err;
}
/*
* Switch to HighSpeed mode and select wide bus if supported
*/
static int mmc_select_hs(struct mmc_card *card, u8 *ext_csd)
{
int err = 0;
struct mmc_host *host;
host = card->host;
if (!(host->caps & MMC_CAP_MMC_HIGHSPEED) ||
!(card->ext_csd.card_type & EXT_CSD_CARD_TYPE_52)) {
err = -EOPNOTSUPP;
goto out;
}
err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
EXT_CSD_HS_TIMING, 1,
card->ext_csd.generic_cmd6_time);
if (err && err != -EBADMSG)
goto out;
mmc_card_set_highspeed(card);
mmc_set_timing(host, MMC_TIMING_MMC_HS);
mmc_set_clock(host, MMC_HIGH_52_MAX_DTR);
err = mmc_select_bus_width(card, 0, ext_csd);
out:
if (err && err != -EOPNOTSUPP)
pr_warning("%s: Switch to HighSpeed mode failed (err:%d)\n",
mmc_hostname(host), err);
return err;
}
/*
* Select the desired buswidth and switch to HighSpeed DDR mode
* if bus width set without error
*/
static int mmc_select_hsddr(struct mmc_card *card, u8 *ext_csd)
{
int ddr = 0, err = 0;
struct mmc_host *host;
host = card->host;
if (!(host->caps & MMC_CAP_HSDDR) ||
!(card->ext_csd.card_type & EXT_CSD_CARD_TYPE_DDR_52)) {
err = -EOPNOTSUPP;
goto out;
}
err = mmc_select_hs(card, ext_csd);
if (err)
goto out;
mmc_card_clr_highspeed(card);
if ((card->ext_csd.card_type & EXT_CSD_CARD_TYPE_DDR_1_8V)
&& ((host->caps & (MMC_CAP_1_8V_DDR |
MMC_CAP_UHS_DDR50))
== (MMC_CAP_1_8V_DDR | MMC_CAP_UHS_DDR50)))
ddr = MMC_1_8V_DDR_MODE;
else if ((card->ext_csd.card_type & EXT_CSD_CARD_TYPE_DDR_1_2V)
&& ((host->caps & (MMC_CAP_1_2V_DDR |
MMC_CAP_UHS_DDR50))
== (MMC_CAP_1_2V_DDR | MMC_CAP_UHS_DDR50)))
ddr = MMC_1_2V_DDR_MODE;
err = mmc_select_bus_width(card, ddr, ext_csd);
if (err)
goto out;
if (host->ios.bus_width == MMC_BUS_WIDTH_1) {
pr_err("%s: failed to switch to wide bus\n",
mmc_hostname(host));
goto out;
}
/*
* eMMC cards can support 3.3V to 1.2V i/o (vccq)
* signaling.
*
* EXT_CSD_CARD_TYPE_DDR_1_8V means 3.3V or 1.8V vccq.
*
* 1.8V vccq at 3.3V core voltage (vcc) is not required
* in the JEDEC spec for DDR.
*
* Do not force change in vccq since we are obviously
* working and no change to vccq is needed.
*
* WARNING: eMMC rules are NOT the same as SD DDR
*/
if (ddr == MMC_1_2V_DDR_MODE) {
err = __mmc_set_signal_voltage(host,
MMC_SIGNAL_VOLTAGE_120);
if (err)
goto out;
}
mmc_card_set_ddr_mode(card);
mmc_set_timing(host, MMC_TIMING_UHS_DDR50);
mmc_set_bus_width(host, host->ios.bus_width);
out:
if (err && err != -EOPNOTSUPP)
pr_warning("%s: Switch to HighSpeed DDR mode failed (err:%d)\n",
mmc_hostname(host), err);
return err;
}
/*
* Select the desired buswidth and switch to HS200 mode
* if bus width set without error
*/
static int mmc_select_hs200(struct mmc_card *card, u8 *ext_csd)
{
int err = 0;
struct mmc_host *host;
host = card->host;
if (!(host->caps2 & MMC_CAP2_HS200) ||
!(card->ext_csd.card_type & EXT_CSD_CARD_TYPE_HS200)) {
err = -EOPNOTSUPP;
goto out;
}
if (card->ext_csd.card_type & EXT_CSD_CARD_TYPE_SDR_1_2V &&
host->caps2 & MMC_CAP2_HS200_1_2V_SDR)
if (__mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120))
err = __mmc_set_signal_voltage(host,
MMC_SIGNAL_VOLTAGE_180);
/* If fails try again during next card power cycle */
if (err)
goto out;
/*
* For devices supporting HS200 mode, the bus width has
* to be set before executing the tuning function. If
* set before tuning, then device will respond with CRC
* errors for responses on CMD line. So for HS200 the
* sequence will be
* 1. set bus width 4bit / 8 bit (1 bit not supported)
* 2. switch to HS200 mode
* 3. set the clock to > 52Mhz <=200MHz and
* 4. execute tuning for HS200
*/
err = mmc_select_bus_width(card, 0, ext_csd);
if (err) {
pr_err("%s: select bus width failed\n",
mmc_hostname(host));
goto out;
}
if (host->ios.bus_width == MMC_BUS_WIDTH_1) {
pr_err("%s: failed to switch to wide bus\n",
mmc_hostname(host));
goto out;
}
/* switch to HS200 mode if bus width set successfully */
err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
EXT_CSD_HS_TIMING, 2, 0);
if (err && err != -EBADMSG) {
pr_err("%s: HS200 switch failed\n",
mmc_hostname(host));
goto out;
}
/*
* When HS200 activation is performed as part of HS400 selection
* set the timing appropriately
*/
if (mmc_card_hs400(card))
mmc_set_timing(host, MMC_TIMING_MMC_HS400);
else
mmc_set_timing(host, MMC_TIMING_MMC_HS200);
mmc_set_clock(host, MMC_HS200_MAX_DTR);
if (host->ops->execute_tuning) {
mmc_host_clk_hold(host);
err = host->ops->execute_tuning(host,
MMC_SEND_TUNING_BLOCK_HS200);
mmc_host_clk_release(host);
}
if (err) {
pr_warning("%s: tuning execution failed\n",
mmc_hostname(host));
goto out;
}
mmc_card_set_hs200(card);
out:
if (err && err != -EOPNOTSUPP)
pr_warning("%s: Switch to HS200 mode failed (err:%d)\n",
mmc_hostname(host), err);
return err;
}
static int mmc_select_hs400_strobe(struct mmc_card *card, u8 *ext_csd)
{
int err = 0, ret = 0;
struct mmc_host *host = card->host;
if (!(host->caps2 & MMC_CAP2_HS400) || !host->ops->enhanced_strobe ||
!(card->ext_csd.card_type & EXT_CSD_CARD_TYPE_HS400) ||
!mmc_card_strobe(card)) {
err = -EOPNOTSUPP;
goto err;
}
if ((card->ext_csd.card_type & EXT_CSD_CARD_TYPE_HS400_1_2V)
&& (host->caps2 & MMC_CAP2_HS400_1_2V))
if (__mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120))
err = __mmc_set_signal_voltage(host,
MMC_SIGNAL_VOLTAGE_180);
/* If fails try again during next card power cycle */
if (err) {
pr_err("%s: err in __mmc_set_signal_voltage failed\n",
mmc_hostname(host));
goto err;
}
/*
* For HS400 enhanced strobe mode following sequence is being followed:
* - switch to HS mode.
* - select DDR bus width along with enhanced strobe mode enabled.
* - switch to HS400 mode and set clock to max.
* - call for host specific ops to enable enhanced strobe at host side.
*/
err = mmc_select_hs(card, ext_csd);
if (err) {
pr_warn("%s: switch to high-speed failed, err:%d\n",
mmc_hostname(host), err);
goto err;
}
mmc_card_clr_highspeed(card);
err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
EXT_CSD_BUS_WIDTH,
0x86,
card->ext_csd.generic_cmd6_time);
if (err) {
pr_warn("%s: switch to DDR bus width with enhanced strobe for hs400 failed, err:%d\n",
mmc_hostname(host), err);
goto err;
}
err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
EXT_CSD_HS_TIMING,
0x3,
card->ext_csd.generic_cmd6_time);
if (err) {
pr_warn("%s: switch to hs400 failed, err:%d\n",
mmc_hostname(host), err);
goto err;
}
mmc_set_timing(host, MMC_TIMING_MMC_HS400);
mmc_set_clock(host, MMC_HS400_MAX_DTR);
mmc_card_set_hs400(card);
mmc_host_clk_hold(host);
err = host->ops->enhanced_strobe(host);
mmc_host_clk_release(host);
/*
* Fall back to HS mode if hs400 enhanced
* strobe is unsuccessful.
* Lower the clock and adjust the timing
* to be able to switch to HighSpeed mode
*/
if (err) {
pr_debug("%s: strobe execution failed %d\n",
mmc_hostname(host), err);
mmc_card_clr_hs400(card);
mmc_set_timing(host, MMC_TIMING_LEGACY);
mmc_set_clock(host, MMC_HIGH_26_MAX_DTR);
ret = mmc_select_hs(card, ext_csd);
if (ret)
pr_warn("%s: select highspeed mode failed %d\n",
__func__, ret);
goto err;
}
mmc_card_set_hs400_strobe(card);
err:
return err;
}
static int mmc_select_hs400(struct mmc_card *card, u8 *ext_csd)
{
int err = 0;
struct mmc_host *host;
host = card->host;
if (!(host->caps2 & MMC_CAP2_HS400) ||
!(card->ext_csd.card_type & EXT_CSD_CARD_TYPE_HS400)) {
err = -EOPNOTSUPP;
goto out;
}
/*
* eMMC5.0 spec doesn't allow switching to HS400 mode from
* HS200 mode directly. Hence follow these steps to switch
* to HS400 mode:
* Enable HS200 mode
* Enable HighSpeed mode (The clk should be low enough
* to enable HighSpeed mode) - HS_TIMING is 0x1
* Enable DDR mode (Set bus width to 8-bit DDR)
* Enable HS400 mode (Set HS_TIMING to 0x3 and change
* frequency to <= 200MHz)
* Perform tuning if required
*/
mmc_card_set_hs400(card);
err = mmc_select_hs200(card, ext_csd);
if (err)
goto out;
mmc_card_clr_hs200(card);
if ((card->ext_csd.card_type & EXT_CSD_CARD_TYPE_HS400_1_2V)
&& (host->caps2 & MMC_CAP2_HS400_1_2V))
if (__mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120))
err = __mmc_set_signal_voltage(host,
MMC_SIGNAL_VOLTAGE_180);
/* If fails try again during next card power cycle */
if (err)
goto out;
/*
* Lower the clock and adjust the timing to be able
* to switch to HighSpeed mode
*/
mmc_set_timing(host, MMC_TIMING_LEGACY);
mmc_set_clock(host, MMC_HIGH_26_MAX_DTR);
/* Switch to 8-bit HighSpeed DDR mode */
err = mmc_select_hsddr(card, ext_csd);
if (err)
goto out;
mmc_card_clr_ddr_mode(card);
/*
* In HS400 mode only DDR 8-bit bus width is allowed.
*/
if (host->ios.bus_width != MMC_BUS_WIDTH_8) {
pr_err("%s: failed to switch to 8-bit bus width\n",
mmc_hostname(host));
goto out;
}
/* Switch to HS400 mode if bus width set successfully */
err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
EXT_CSD_HS_TIMING, 3, 0);
if (err && err != -EBADMSG) {
pr_err("%s: Setting HS_TIMING to HS400 failed (err:%d)\n",
mmc_hostname(host), err);
goto out;
}
mmc_set_timing(host, MMC_TIMING_MMC_HS400);
mmc_set_clock(host, MMC_HS400_MAX_DTR);
if (host->ops->execute_tuning) {
mmc_host_clk_hold(host);
err = host->ops->execute_tuning(host,
MMC_SEND_TUNING_BLOCK_HS400);
mmc_host_clk_release(host);
}
if (err) {
pr_err("%s: tuning execution failed (err:%d)\n",
mmc_hostname(host), err);
goto out;
}
mmc_card_set_hs400(card);
out:
if (err && err != -EOPNOTSUPP) {
pr_warning("%s: Switch to HS400 mode failed (err:%d)\n",
mmc_hostname(host), err);
mmc_card_clr_hs400(card);
}
return err;
}
int mmc_set_clock_bus_speed(struct mmc_card *card, unsigned long freq)
{
int err;
struct mmc_host *host = card->host;
if (freq < MMC_HS400_MAX_DTR) {
/*
* Lower the clock and adjust the timing to be able
* to switch to HighSpeed mode
*/
mmc_set_timing(card->host, MMC_TIMING_LEGACY);
mmc_set_clock(card->host, MMC_HIGH_26_MAX_DTR);
if (host->clk_scaling.lower_bus_speed_mode &
MMC_SCALING_LOWER_DDR52_MODE)
err = mmc_select_hsddr(card, card->cached_ext_csd);
else
err = mmc_select_hs(card, card->cached_ext_csd);
} else {
if (mmc_card_ddr_mode(card)) {
mmc_set_timing(card->host, MMC_TIMING_LEGACY);
mmc_set_clock(card->host, MMC_HIGH_26_MAX_DTR);
}
if (mmc_card_hs400_strobe(card))
err = mmc_select_hs400_strobe(card,
card->cached_ext_csd);
else
err = mmc_select_hs400(card, card->cached_ext_csd);
}
return err;
}
/**
* mmc_change_bus_speed() - Change MMC card bus frequency at runtime
* @host: pointer to mmc host structure
* @freq: pointer to desired frequency to be set
*
* Change the MMC card bus frequency at runtime after the card is
* initialized. Callers are expected to make sure of the card's
* state (DATA/RCV/TRANSFER) beforing changing the frequency at runtime.
*
* If the frequency to change is greater than max. supported by card,
* *freq is changed to max. supported by card and if it is less than min.
* supported by host, *freq is changed to min. supported by host.
*/
static int mmc_change_bus_speed(struct mmc_host *host, unsigned long *freq)
{
int err = 0;
struct mmc_card *card;
mmc_claim_host(host);
/*
* Assign card pointer after claiming host to avoid race
* conditions that may arise during removal of the card.
*/
card = host->card;
if (!card || !freq) {
err = -EINVAL;
goto out;
}
if (mmc_card_highspeed(card) || mmc_card_hs200(card)
|| mmc_card_ddr_mode(card)
|| mmc_card_hs400(card)) {
if (*freq > card->ext_csd.hs_max_dtr)
*freq = card->ext_csd.hs_max_dtr;
} else if (*freq > card->csd.max_dtr) {
*freq = card->csd.max_dtr;
}
if (*freq < host->f_min)
*freq = host->f_min;
if (mmc_card_hs400(card)) {
err = mmc_set_clock_bus_speed(card, *freq);
if (err)
goto out;
} else {
mmc_set_clock(host, (unsigned int) (*freq));
}
if (mmc_card_hs200(card) && card->host->ops->execute_tuning) {
/*
* We try to probe host driver for tuning for any
* frequency, it is host driver responsibility to
* perform actual tuning only when required.
*/
mmc_host_clk_hold(card->host);
err = card->host->ops->execute_tuning(card->host,
MMC_SEND_TUNING_BLOCK_HS200);
mmc_host_clk_release(card->host);
if (err) {
pr_warn("%s: %s: tuning execution failed %d. Restoring to previous clock %lu\n",
mmc_hostname(card->host), __func__, err,
host->clk_scaling.curr_freq);
mmc_set_clock(host, host->clk_scaling.curr_freq);
}
}
out:
mmc_release_host(host);
return err;
}
static int mmc_reboot_notify(struct notifier_block *notify_block,
unsigned long event, void *unused)
{
struct mmc_card *card = container_of(
notify_block, struct mmc_card, reboot_notify);
card->pon_type = (event != SYS_RESTART) ? MMC_LONG_PON : MMC_SHRT_PON;
return NOTIFY_OK;
}
/*
* Activate highest bus speed mode supported by both host and card.
* On failure activate the next supported highest bus speed mode.
*/
static int mmc_select_bus_speed(struct mmc_card *card, u8 *ext_csd)
{
int err = 0;
BUG_ON(!card);
if (!mmc_select_hs400_strobe(card, ext_csd))
goto out;
if (!mmc_select_hs400(card, ext_csd))
goto out;
if (!mmc_select_hs200(card, ext_csd))
goto out;
if (!mmc_select_hsddr(card, ext_csd))
goto out;
if (!mmc_select_hs(card, ext_csd))
goto out;
/*
* Select the default speed and wide bus if supported
*/
mmc_set_clock(card->host, card->csd.max_dtr);
err = mmc_select_bus_width(card, 0, ext_csd);
out:
return err;
}
static int mmc_select_cmdq(struct mmc_card *card)
{
struct mmc_host *host = card->host;
int ret = 0;
if (!host->cmdq_ops) {
pr_err("%s: host controller doesn't support CMDQ\n",
mmc_hostname(host));
return 0;
}
ret = mmc_set_blocklen(card, MMC_CARD_CMDQ_BLK_SIZE);
if (ret)
goto out;
ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_CMDQ, 1,
card->ext_csd.generic_cmd6_time);
if (ret)
goto out;
mmc_card_set_cmdq(card);
mmc_host_clk_hold(card->host);
ret = host->cmdq_ops->enable(card->host);
if (ret) {
pr_err("%s: failed (%d) enabling CMDQ on host\n",
mmc_hostname(host), ret);
mmc_card_clr_cmdq(card);
ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_CMDQ, 0,
card->ext_csd.generic_cmd6_time);
if (ret) {
mmc_host_clk_release(card->host);
goto out;
}
}
mmc_host_clk_release(card->host);
pr_info("%s: CMDQ enabled on card\n", mmc_hostname(host));
out:
return ret;
}
/*
* Handle the detection and initialisation of a card.
*
* In the case of a resume, "oldcard" will contain the card
* we're trying to reinitialise.
*/
static int mmc_init_card(struct mmc_host *host, u32 ocr,
struct mmc_card *oldcard)
{
struct mmc_card *card;
int err = 0;
u32 cid[4];
u32 rocr;
u8 *ext_csd = NULL;
BUG_ON(!host);
WARN_ON(!host->claimed);
/* Set correct bus mode for MMC before attempting init */
if (!mmc_host_is_spi(host))
mmc_set_bus_mode(host, MMC_BUSMODE_OPENDRAIN);
/*
* Since we're changing the OCR value, we seem to
* need to tell some cards to go back to the idle
* state. We wait 1ms to give cards time to
* respond.
* mmc_go_idle is needed for eMMC that are asleep
*/
reinit:
mmc_go_idle(host);
/* The extra bit indicates that we support high capacity */
err = mmc_send_op_cond(host, ocr | (1 << 30), &rocr);
if (err) {
pr_err("%s: %s: mmc_send_op_cond() fails %d\n",
mmc_hostname(host), __func__, err);
goto err;
}
/*
* For SPI, enable CRC as appropriate.
*/
if (mmc_host_is_spi(host)) {
err = mmc_spi_set_crc(host, use_spi_crc);
if (err) {
pr_err("%s: %s: mmc_spi_set_crc() fails %d\n",
mmc_hostname(host), __func__, err);
goto err;
}
}
/*
* Fetch CID from card.
*/
if (mmc_host_is_spi(host))
err = mmc_send_cid(host, cid);
else
err = mmc_all_send_cid(host, cid);
if (err) {
pr_err("%s: %s: mmc_send_cid() fails %d\n",
mmc_hostname(host), __func__, err);
goto err;
}
if (oldcard) {
if (memcmp(cid, oldcard->raw_cid, sizeof(cid)) != 0) {
err = -ENOENT;
pr_err("%s: %s: CID memcmp failed %d\n",
mmc_hostname(host), __func__, err);
goto err;
}
card = oldcard;
} else {
/*
* Allocate card structure.
*/
card = mmc_alloc_card(host, &mmc_type);
if (IS_ERR(card)) {
err = PTR_ERR(card);
pr_err("%s: %s: no memory to allocate for card %d\n",
mmc_hostname(host), __func__, err);
goto err;
}
card->type = MMC_TYPE_MMC;
card->rca = 1;
memcpy(card->raw_cid, cid, sizeof(card->raw_cid));
card->reboot_notify.notifier_call = mmc_reboot_notify;
host->card = card;
}
/*
* For native busses: set card RCA and quit open drain mode.
*/
if (!mmc_host_is_spi(host)) {
err = mmc_set_relative_addr(card);
if (err) {
pr_err("%s: %s: mmc_set_relative_addr() fails %d\n",
mmc_hostname(host), __func__, err);
goto free_card;
}
mmc_set_bus_mode(host, MMC_BUSMODE_PUSHPULL);
}
if (!oldcard) {
/*
* Fetch CSD from card.
*/
err = mmc_send_csd(card, card->raw_csd);
if (err) {
pr_err("%s: %s: mmc_send_csd() fails %d\n",
mmc_hostname(host), __func__, err);
goto free_card;
}
err = mmc_decode_csd(card);
if (err) {
pr_err("%s: %s: mmc_decode_csd() fails %d\n",
mmc_hostname(host), __func__, err);
goto free_card;
}
err = mmc_decode_cid(card);
if (err) {
pr_err("%s: %s: mmc_decode_cid() fails %d\n",
mmc_hostname(host), __func__, err);
goto free_card;
}
}
/*
* Select card, as all following commands rely on that.
*/
if (!mmc_host_is_spi(host)) {
err = mmc_select_card(card);
if (err) {
pr_err("%s: %s: mmc_select_card() fails %d\n",
mmc_hostname(host), __func__, err);
goto free_card;
}
}
if (!oldcard) {
/*
* Fetch and process extended CSD.
*/
err = mmc_get_ext_csd(card, &ext_csd);
if (err) {
pr_err("%s: %s: mmc_get_ext_csd() fails %d\n",
mmc_hostname(host), __func__, err);
goto free_card;
}
card->cached_ext_csd = ext_csd;
err = mmc_read_ext_csd(card, ext_csd);
if (err) {
pr_err("%s: %s: mmc_read_ext_csd() fails %d\n",
mmc_hostname(host), __func__, err);
goto free_card;
}
/* If doing byte addressing, check if required to do sector
* addressing. Handle the case of <2GB cards needing sector
* addressing. See section 8.1 JEDEC Standard JED84-A441;
* ocr register has bit 30 set for sector addressing.
*/
if (!(mmc_card_blockaddr(card)) && (rocr & (1<<30)))
mmc_card_set_blockaddr(card);
/* Erase size depends on CSD and Extended CSD */
mmc_set_erase_size(card);
if (card->ext_csd.sectors && (rocr & MMC_CARD_SECTOR_ADDR))
mmc_card_set_blockaddr(card);
}
/*
* If enhanced_area_en is TRUE, host needs to enable ERASE_GRP_DEF
* bit. This bit will be lost every time after a reset or power off.
*/
if (card->ext_csd.enhanced_area_en ||
(card->ext_csd.rev >= 3 && (host->caps2 & MMC_CAP2_HC_ERASE_SZ))) {
err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
EXT_CSD_ERASE_GROUP_DEF, 1,
card->ext_csd.generic_cmd6_time);
if (err && err != -EBADMSG) {
pr_err("%s: %s: mmc_switch() for ERASE_GRP_DEF fails %d\n",
mmc_hostname(host), __func__, err);
goto free_card;
}
if (err) {
err = 0;
/*
* Just disable enhanced area off & sz
* will try to enable ERASE_GROUP_DEF
* during next time reinit
*/
card->ext_csd.enhanced_area_offset = -EINVAL;
card->ext_csd.enhanced_area_size = -EINVAL;
} else {
card->ext_csd.erase_group_def = 1;
/*
* enable ERASE_GRP_DEF successfully.
* This will affect the erase size, so
* here need to reset erase size
*/
mmc_set_erase_size(card);
}
}
/*
* Ensure eMMC user default partition is enabled
*/
if (card->ext_csd.part_config & EXT_CSD_PART_CONFIG_ACC_MASK) {
card->ext_csd.part_config &= ~EXT_CSD_PART_CONFIG_ACC_MASK;
err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_PART_CONFIG,
card->ext_csd.part_config,
card->ext_csd.part_time);
if (err && err != -EBADMSG) {
pr_err("%s: %s: mmc_switch() for PART_CONFIG fails %d\n",
mmc_hostname(host), __func__, err);
goto free_card;
}
card->part_curr = card->ext_csd.part_config &
EXT_CSD_PART_CONFIG_ACC_MASK;
}
/*
* Enable power_off_notification byte in the ext_csd register
*/
if (card->ext_csd.rev >= 6) {
err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
EXT_CSD_POWER_OFF_NOTIFICATION,
EXT_CSD_POWER_ON,
card->ext_csd.generic_cmd6_time);
if (err && err != -EBADMSG) {
pr_err("%s: %s: mmc_switch() for POWER_ON PON fails %d\n",
mmc_hostname(host), __func__, err);
goto free_card;
}
/*
* The err can be -EBADMSG or 0,
* so check for success and update the flag
*/
if (!err)
card->ext_csd.power_off_notification = EXT_CSD_POWER_ON;
}
/*
* Activate highest bus speed mode supported by both host and card.
*/
err = mmc_select_bus_speed(card, ext_csd);
if (err) {
pr_err("%s: %s: mmc_select_bus_speed() fails %d\n",
mmc_hostname(host), __func__, err);
goto free_card;
}
/*
* Enable HPI feature (if supported)
*/
if (card->ext_csd.hpi) {
err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
EXT_CSD_HPI_MGMT, 1,
card->ext_csd.generic_cmd6_time);
if (err && err != -EBADMSG) {
pr_err("%s: %s: mmc_switch() for HPI_MGMT fails %d\n",
mmc_hostname(host), __func__, err);
goto free_card;
}
if (err) {
pr_warning("%s: Enabling HPI failed\n",
mmc_hostname(card->host));
err = 0;
} else
card->ext_csd.hpi_en = 1;
}
/*
* If cache size is higher than 0, this indicates
* the existence of cache and it can be turned on.
* If HPI is not supported then cache shouldn't be enabled.
*/
if ((host->caps2 & MMC_CAP2_CACHE_CTRL) &&
(card->ext_csd.cache_size > 0) && card->ext_csd.hpi_en &&
((card->quirks & MMC_QUIRK_CACHE_DISABLE) == 0)) {
err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
EXT_CSD_CACHE_CTRL, 1,
card->ext_csd.generic_cmd6_time);
if (err && err != -EBADMSG) {
pr_err("%s: %s: mmc_switch() for CACHE_CTRL fails %d\n",
mmc_hostname(host), __func__, err);
goto free_card;
}
/*
* Only if no error, cache is turned on successfully.
*/
if (err) {
pr_warning("%s: Cache is supported, "
"but failed to turn on (%d)\n",
mmc_hostname(card->host), err);
card->ext_csd.cache_ctrl = 0;
err = 0;
} else {
card->ext_csd.cache_ctrl = 1;
}
}
/*
* The mandatory minimum values are defined for packed command.
* read: 5, write: 3
*/
if (card->ext_csd.max_packed_writes >= 3 &&
card->ext_csd.max_packed_reads >= 5 &&
host->caps2 & MMC_CAP2_PACKED_CMD) {
err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
EXT_CSD_EXP_EVENTS_CTRL,
EXT_CSD_PACKED_EVENT_EN,
card->ext_csd.generic_cmd6_time);
if (err && err != -EBADMSG) {
pr_err("%s: %s: mmc_switch() for EXP_EVENTS_CTRL fails %d\n",
mmc_hostname(host), __func__, err);
goto free_card;
}
if (err) {
pr_warn("%s: Enabling packed event failed\n",
mmc_hostname(card->host));
card->ext_csd.packed_event_en = 0;
err = 0;
} else {
card->ext_csd.packed_event_en = 1;
}
}
if (!oldcard) {
if ((host->caps2 & MMC_CAP2_PACKED_CMD) &&
(card->ext_csd.max_packed_writes > 0)) {
/*
* We would like to keep the statistics in an index
* that equals the num of packed requests
* (1 to max_packed_writes)
*/
card->wr_pack_stats.packing_events = kzalloc(
(card->ext_csd.max_packed_writes + 1) *
sizeof(*card->wr_pack_stats.packing_events),
GFP_KERNEL);
if (!card->wr_pack_stats.packing_events) {
pr_err("%s: %s: no memory for packing events\n",
mmc_hostname(host), __func__);
goto free_card;
}
}
if (mmc_card_get_bkops_en_manual(card)) {
INIT_DELAYED_WORK(&card->bkops_info.dw,
mmc_start_idle_time_bkops);
/*
* Calculate the time to start the BKOPs checking.
* The host controller can set this time in order to
* prevent a race condition before starting BKOPs
* and going into suspend.
* If the host controller didn't set this time,
* a default value is used.
*/
card->bkops_info.delay_ms = MMC_IDLE_BKOPS_TIME_MS;
if (card->bkops_info.host_delay_ms)
card->bkops_info.delay_ms =
card->bkops_info.host_delay_ms;
}
}
if (card->ext_csd.cmdq_support && (card->host->caps2 &
MMC_CAP2_CMD_QUEUE)) {
err = mmc_select_cmdq(card);
if (err) {
pr_err("%s: selecting CMDQ mode: failed: %d\n",
mmc_hostname(card->host), err);
card->ext_csd.cmdq_support = 0;
oldcard = card;
goto reinit;
}
}
return 0;
free_card:
if (!oldcard) {
host->card = NULL;
mmc_remove_card(card);
}
err:
return err;
}
static int mmc_can_poweroff_notify(const struct mmc_card *card)
{
return card &&
mmc_card_mmc(card) &&
(card->ext_csd.power_off_notification == EXT_CSD_POWER_ON);
}
static int mmc_poweroff_notify(struct mmc_card *card, unsigned int notify_type)
{
unsigned int timeout = card->ext_csd.generic_cmd6_time;
int err;
/* Use EXT_CSD_POWER_OFF_SHORT as default notification type. */
if (notify_type == EXT_CSD_POWER_OFF_LONG)
timeout = card->ext_csd.power_off_longtime;
err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
EXT_CSD_POWER_OFF_NOTIFICATION,
notify_type, timeout);
if (err)
pr_err("%s: Power Off Notification timed out, %u\n",
mmc_hostname(card->host), timeout);
/* Disable the power off notification after the switch operation. */
card->ext_csd.power_off_notification = EXT_CSD_NO_POWER_NOTIFICATION;
return err;
}
int mmc_send_pon(struct mmc_card *card)
{
int err = 0;
struct mmc_host *host = card->host;
if (!mmc_can_poweroff_notify(card))
goto out;
mmc_claim_host(host);
if (card->pon_type & MMC_LONG_PON)
err = mmc_poweroff_notify(host->card, EXT_CSD_POWER_OFF_LONG);
else if (card->pon_type & MMC_SHRT_PON)
err = mmc_poweroff_notify(host->card, EXT_CSD_POWER_OFF_SHORT);
if (err)
pr_warn("%s: error %d sending PON type %u",
mmc_hostname(host), err, card->pon_type);
mmc_release_host(host);
out:
return err;
}
/*
* Host is being removed. Free up the current card.
*/
static void mmc_remove(struct mmc_host *host)
{
BUG_ON(!host);
BUG_ON(!host->card);
unregister_reboot_notifier(&host->card->reboot_notify);
mmc_exit_clk_scaling(host);
mmc_remove_card(host->card);
mmc_claim_host(host);
host->card = NULL;
mmc_release_host(host);
}
/*
* Card detection - card is alive.
*/
static int mmc_alive(struct mmc_host *host)
{
return mmc_send_status(host->card, NULL);
}
/*
* Card detection callback from host.
*/
static void mmc_detect(struct mmc_host *host)
{
int err;
BUG_ON(!host);
BUG_ON(!host->card);
mmc_rpm_hold(host, &host->card->dev);
mmc_claim_host(host);
/*
* Just check if our card has been removed.
*/
err = _mmc_detect_card_removed(host);
mmc_release_host(host);
/*
* if detect fails, the device would be removed anyway;
* the rpm framework would mark the device state suspended.
*/
if (!err)
mmc_rpm_release(host, &host->card->dev);
if (err) {
mmc_remove(host);
mmc_claim_host(host);
mmc_detach_bus(host);
mmc_power_off(host);
mmc_release_host(host);
}
}
static int _mmc_suspend(struct mmc_host *host, bool is_suspend)
{
int err = 0;
unsigned int notify_type = is_suspend ? EXT_CSD_POWER_OFF_SHORT :
EXT_CSD_POWER_OFF_LONG;
BUG_ON(!host);
BUG_ON(!host->card);
if (!mmc_try_claim_host(host))
return -EBUSY;
err = mmc_flush_cache(host->card);
if (err)
goto out;
if (mmc_can_poweroff_notify(host->card) &&
((host->caps2 & MMC_CAP2_FULL_PWR_CYCLE) || !is_suspend))
err = mmc_poweroff_notify(host->card, notify_type);
else if (mmc_card_can_sleep(host))
err = mmc_card_sleep(host);
else if (!mmc_host_is_spi(host))
err = mmc_deselect_cards(host);
host->card->state &= ~(MMC_STATE_HIGHSPEED | MMC_STATE_HIGHSPEED_200);
out:
mmc_release_host(host);
return err;
}
/*
* Suspend callback from host.
*/
static int mmc_suspend(struct mmc_host *host)
{
return _mmc_suspend(host, true);
}
/*
* Resume callback from host.
*
* This function tries to determine if the same card is still present
* and, if so, restore all state to it.
*/
static int mmc_resume(struct mmc_host *host)
{
int err;
int retries;
BUG_ON(!host);
BUG_ON(!host->card);
mmc_claim_host(host);
retries = 3;
while (retries) {
err = mmc_init_card(host, host->ocr, host->card);
if (err) {
pr_err("%s: MMC card re-init failed rc = %d (retries = %d)\n",
mmc_hostname(host), err, retries);
retries--;
mmc_power_off(host);
usleep_range(5000, 5500);
mmc_power_up(host);
mmc_select_voltage(host, host->ocr);
continue;
}
break;
}
mmc_release_host(host);
/*
* We have done full initialization of the card,
* reset the clk scale stats and current frequency.
*/
if (mmc_can_scale_clk(host))
mmc_init_clk_scaling(host);
return err;
}
/*
* mmc_power_restore: Must be called with claim_host
* acquired by the caller.
*/
static int mmc_power_restore(struct mmc_host *host)
{
int ret;
/* Disable clk scaling to avoid switching frequencies intermittently */
mmc_disable_clk_scaling(host);
host->card->state &= ~(MMC_STATE_HIGHSPEED | MMC_STATE_HIGHSPEED_200);
ret = mmc_init_card(host, host->ocr, host->card);
if (mmc_can_scale_clk(host))
mmc_init_clk_scaling(host);
return ret;
}
static int mmc_sleep(struct mmc_host *host)
{
struct mmc_card *card = host->card;
int err = -ENOSYS;
if (card && card->ext_csd.rev >= 3 &&
card->part_curr == EXT_CSD_PART_CONFIG_ACC_RPMB) {
u8 part_config = card->ext_csd.part_config;
/*
* If the last access before suspend is RPMB access, then
* switch to default part config so that sleep command CMD5
* and deselect CMD7 can be sent to the card.
*/
part_config &= ~EXT_CSD_PART_CONFIG_ACC_MASK;
err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
EXT_CSD_PART_CONFIG,
part_config,
card->ext_csd.part_time);
if (err) {
pr_err("%s: %s: failed to switch to default part config %x\n",
mmc_hostname(host), __func__, part_config);
return err;
}
card->ext_csd.part_config = part_config;
card->part_curr = card->ext_csd.part_config &
EXT_CSD_PART_CONFIG_ACC_MASK;
}
if (card && card->ext_csd.rev >= 3) {
err = mmc_card_sleepawake(host, 1);
if (err < 0)
pr_warn("%s: Error %d while putting card into sleep",
mmc_hostname(host), err);
}
return err;
}
static int mmc_awake(struct mmc_host *host)
{
struct mmc_card *card = host->card;
int err = -ENOSYS;
if (card && card->ext_csd.rev >= 3) {
err = mmc_card_sleepawake(host, 0);
if (err < 0)
pr_debug("%s: Error %d while awaking sleeping card",
mmc_hostname(host), err);
}
return err;
}
static const struct mmc_bus_ops mmc_ops = {
.awake = mmc_awake,
.sleep = mmc_sleep,
.remove = mmc_remove,
.detect = mmc_detect,
.suspend = NULL,
.resume = NULL,
.power_restore = mmc_power_restore,
.alive = mmc_alive,
.change_bus_speed = mmc_change_bus_speed,
};
static const struct mmc_bus_ops mmc_ops_unsafe = {
.awake = mmc_awake,
.sleep = mmc_sleep,
.remove = mmc_remove,
.detect = mmc_detect,
.suspend = mmc_suspend,
.resume = mmc_resume,
.power_restore = mmc_power_restore,
.alive = mmc_alive,
.change_bus_speed = mmc_change_bus_speed,
};
static void mmc_attach_bus_ops(struct mmc_host *host)
{
const struct mmc_bus_ops *bus_ops;
if (!mmc_card_is_removable(host))
bus_ops = &mmc_ops_unsafe;
else
bus_ops = &mmc_ops;
mmc_attach_bus(host, bus_ops);
}
/*
* Starting point for MMC card init.
*/
int mmc_attach_mmc(struct mmc_host *host)
{
int err;
u32 ocr;
BUG_ON(!host);
WARN_ON(!host->claimed);
/* Set correct bus mode for MMC before attempting attach */
if (!mmc_host_is_spi(host))
mmc_set_bus_mode(host, MMC_BUSMODE_OPENDRAIN);
err = mmc_send_op_cond(host, 0, &ocr);
if (err)
return err;
mmc_attach_bus_ops(host);
if (host->ocr_avail_mmc)
host->ocr_avail = host->ocr_avail_mmc;
/*
* We need to get OCR a different way for SPI.
*/
if (mmc_host_is_spi(host)) {
err = mmc_spi_read_ocr(host, 1, &ocr);
if (err)
goto err;
}
/*
* Sanity check the voltages that the card claims to
* support.
*/
if (ocr & 0x7F) {
pr_warning("%s: card claims to support voltages "
"below the defined range. These will be ignored.\n",
mmc_hostname(host));
ocr &= ~0x7F;
}
host->ocr = mmc_select_voltage(host, ocr);
/*
* Can we support the voltage of the card?
*/
if (!host->ocr) {
err = -EINVAL;
goto err;
}
/*
* Detect and init the card.
*/
err = mmc_init_card(host, host->ocr, NULL);
if (err)
goto err;
mmc_release_host(host);
err = mmc_add_card(host->card);
mmc_claim_host(host);
if (err)
goto remove_card;
mmc_init_clk_scaling(host);
register_reboot_notifier(&host->card->reboot_notify);
return 0;
remove_card:
mmc_release_host(host);
mmc_remove_card(host->card);
mmc_claim_host(host);
host->card = NULL;
err:
mmc_detach_bus(host);
pr_err("%s: error %d whilst initialising MMC card\n",
mmc_hostname(host), err);
return err;
}