android_kernel_samsung_msm8976/drivers/tty/serial/msm_serial_hs_lite.c

2075 lines
53 KiB
C

/*
* drivers/serial/msm_serial.c - driver for msm7k serial device and console
*
* Copyright (C) 2007 Google, Inc.
* Copyright (c) 2010-2014, The Linux Foundation. All rights reserved.
*
* This software is licensed under the terms of the GNU General Public
* License version 2, as published by the Free Software Foundation, and
* may be copied, distributed, and modified under those terms.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
/* Acknowledgements:
* This file is based on msm_serial.c, originally
* Written by Robert Love <rlove@google.com> */
#define pr_fmt(fmt) "%s: " fmt, __func__
#if defined(CONFIG_SERIAL_MSM_HSL_CONSOLE) && defined(CONFIG_MAGIC_SYSRQ)
#define SUPPORT_SYSRQ
#endif
#include <linux/atomic.h>
#include <linux/hrtimer.h>
#include <linux/module.h>
#include <linux/io.h>
#include <linux/ioport.h>
#include <linux/irq.h>
#include <linux/init.h>
#include <linux/delay.h>
#include <linux/console.h>
#include <linux/tty.h>
#include <linux/tty_flip.h>
#include <linux/serial_core.h>
#include <linux/serial.h>
#include <linux/nmi.h>
#include <linux/clk.h>
#include <linux/platform_device.h>
#include <linux/pm_runtime.h>
#include <linux/gpio.h>
#include <linux/debugfs.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/of_gpio.h>
#include <linux/wakelock.h>
#include <linux/types.h>
#include <asm/byteorder.h>
#include <linux/platform_data/qcom-serial_hs_lite.h>
#include <linux/msm-bus.h>
#include "msm_serial_hs_hwreg.h"
/*
* There are 3 different kind of UART Core available on MSM.
* High Speed UART (i.e. Legacy HSUART), GSBI based HSUART
* and BSLP based HSUART.
*/
enum uart_core_type {
LEGACY_HSUART,
GSBI_HSUART,
BLSP_HSUART,
};
#define DUMP_UART_PACKET 1
#define FULL_DUMP_UART_PACKET 0
#if DUMP_UART_PACKET
static char rx_buf[64]; /* 64 is rx fifo size */
static char tx_buf[64]; /* 64 is tx fifo size */
#endif
/*
* UART can be used in 2-wire or 4-wire mode.
* Use uart_func_mode to set 2-wire or 4-wire mode.
*/
enum uart_func_mode {
UART_TWO_WIRE, /* can't support HW Flow control. */
UART_FOUR_WIRE,/* can support HW Flow control. */
};
struct msm_hsl_port {
struct uart_port uart;
char name[16];
struct clk *clk;
struct clk *pclk;
struct dentry *loopback_dir;
unsigned int imr;
unsigned int *uart_csr_code;
unsigned int *gsbi_mapbase;
unsigned int *mapped_gsbi;
unsigned int old_snap_state;
unsigned long ver_id;
int tx_timeout;
struct mutex clk_mutex;
enum uart_core_type uart_type;
enum uart_func_mode func_mode;
struct wake_lock port_open_wake_lock;
int clk_enable_count;
u32 bus_perf_client;
/* BLSP UART required BUS Scaling data */
struct msm_bus_scale_pdata *bus_scale_table;
};
#define UARTDM_VERSION_11_13 0
#define UARTDM_VERSION_14 1
#define UART_TO_MSM(uart_port) ((struct msm_hsl_port *) uart_port)
#define is_console(port) ((port)->cons && \
(port)->cons->index == (port)->line)
static const unsigned int regmap[][UARTDM_LAST] = {
[UARTDM_VERSION_11_13] = {
[UARTDM_MR1] = UARTDM_MR1_ADDR,
[UARTDM_MR2] = UARTDM_MR2_ADDR,
[UARTDM_IMR] = UARTDM_IMR_ADDR,
[UARTDM_SR] = UARTDM_SR_ADDR,
[UARTDM_CR] = UARTDM_CR_ADDR,
[UARTDM_CSR] = UARTDM_CSR_ADDR,
[UARTDM_IPR] = UARTDM_IPR_ADDR,
[UARTDM_ISR] = UARTDM_ISR_ADDR,
[UARTDM_RX_TOTAL_SNAP] = UARTDM_RX_TOTAL_SNAP_ADDR,
[UARTDM_TFWR] = UARTDM_TFWR_ADDR,
[UARTDM_RFWR] = UARTDM_RFWR_ADDR,
[UARTDM_RF] = UARTDM_RF_ADDR,
[UARTDM_TF] = UARTDM_TF_ADDR,
[UARTDM_MISR] = UARTDM_MISR_ADDR,
[UARTDM_DMRX] = UARTDM_DMRX_ADDR,
[UARTDM_NCF_TX] = UARTDM_NCF_TX_ADDR,
[UARTDM_DMEN] = UARTDM_DMEN_ADDR,
[UARTDM_TXFS] = UARTDM_TXFS_ADDR,
[UARTDM_RXFS] = UARTDM_RXFS_ADDR,
},
[UARTDM_VERSION_14] = {
[UARTDM_MR1] = 0x0,
[UARTDM_MR2] = 0x4,
[UARTDM_IMR] = 0xb0,
[UARTDM_SR] = 0xa4,
[UARTDM_CR] = 0xa8,
[UARTDM_CSR] = 0xa0,
[UARTDM_IPR] = 0x18,
[UARTDM_ISR] = 0xb4,
[UARTDM_RX_TOTAL_SNAP] = 0xbc,
[UARTDM_TFWR] = 0x1c,
[UARTDM_RFWR] = 0x20,
[UARTDM_RF] = 0x140,
[UARTDM_TF] = 0x100,
[UARTDM_MISR] = 0xac,
[UARTDM_DMRX] = 0x34,
[UARTDM_NCF_TX] = 0x40,
[UARTDM_DMEN] = 0x3c,
[UARTDM_TXFS] = 0x4c,
[UARTDM_RXFS] = 0x50,
},
};
static struct of_device_id msm_hsl_match_table[] = {
{ .compatible = "qcom,msm-lsuart-v14",
.data = (void *)UARTDM_VERSION_14,
},
{}
};
#ifdef CONFIG_SERIAL_MSM_HSL_CONSOLE
static int get_console_state(struct uart_port *port);
#else
static inline int get_console_state(struct uart_port *port) { return -ENODEV; };
#endif
static struct dentry *debug_base;
static inline void wait_for_xmitr(struct uart_port *port);
static inline void msm_hsl_write(struct uart_port *port,
unsigned int val, unsigned int off)
{
__iowmb();
__raw_writel_no_log((__force __u32)cpu_to_le32(val),
port->membase + off);
}
static inline unsigned int msm_hsl_read(struct uart_port *port,
unsigned int off)
{
unsigned int v = le32_to_cpu((__force __le32)__raw_readl_no_log(
port->membase + off));
__iormb();
return v;
}
static unsigned int msm_serial_hsl_has_gsbi(struct uart_port *port)
{
return (UART_TO_MSM(port)->uart_type == GSBI_HSUART);
}
/**
* set_gsbi_uart_func_mode: Check the currently used GSBI UART mode
* and set the new required GSBI UART Mode if it is different.
* @port: uart port
*/
static void set_gsbi_uart_func_mode(struct uart_port *port)
{
struct msm_hsl_port *msm_hsl_port = UART_TO_MSM(port);
unsigned int set_gsbi_uart_mode = GSBI_PROTOCOL_I2C_UART;
unsigned int cur_gsbi_uart_mode;
if (msm_hsl_port->func_mode == UART_FOUR_WIRE)
set_gsbi_uart_mode = GSBI_PROTOCOL_UART;
if (msm_hsl_port->pclk)
clk_prepare_enable(msm_hsl_port->pclk);
/* Read current used GSBI UART Mode and set only if it is different. */
cur_gsbi_uart_mode = ioread32(msm_hsl_port->mapped_gsbi +
GSBI_CONTROL_ADDR);
if ((cur_gsbi_uart_mode & set_gsbi_uart_mode) != set_gsbi_uart_mode)
/*
* Programmed GSBI based UART protocol mode i.e. I2C/UART
* Shared Mode or UART Mode.
*/
iowrite32(set_gsbi_uart_mode,
msm_hsl_port->mapped_gsbi + GSBI_CONTROL_ADDR);
if (msm_hsl_port->pclk)
clk_disable_unprepare(msm_hsl_port->pclk);
}
/**
* msm_hsl_config_uart_tx_rx_gpios - Configures UART Tx and RX GPIOs
* @port: uart port
*/
static int msm_hsl_config_uart_tx_rx_gpios(struct uart_port *port)
{
struct platform_device *pdev = to_platform_device(port->dev);
const struct msm_serial_hslite_platform_data *pdata =
pdev->dev.platform_data;
int ret;
if (pdata) {
ret = gpio_request(pdata->uart_tx_gpio,
"UART_TX_GPIO");
if (unlikely(ret)) {
pr_err("gpio request failed for:%d\n",
pdata->uart_tx_gpio);
goto exit_uart_config;
}
ret = gpio_request(pdata->uart_rx_gpio, "UART_RX_GPIO");
if (unlikely(ret)) {
pr_err("gpio request failed for:%d\n",
pdata->uart_rx_gpio);
gpio_free(pdata->uart_tx_gpio);
goto exit_uart_config;
}
} else {
pr_err("Pdata is NULL.\n");
ret = -EINVAL;
}
exit_uart_config:
return ret;
}
/**
* msm_hsl_unconfig_uart_tx_rx_gpios: Unconfigures UART Tx and RX GPIOs
* @port: uart port
*/
static void msm_hsl_unconfig_uart_tx_rx_gpios(struct uart_port *port)
{
struct platform_device *pdev = to_platform_device(port->dev);
const struct msm_serial_hslite_platform_data *pdata =
pdev->dev.platform_data;
if (pdata) {
gpio_free(pdata->uart_tx_gpio);
gpio_free(pdata->uart_rx_gpio);
} else {
pr_err("Error:Pdata is NULL.\n");
}
}
/**
* msm_hsl_config_uart_hwflow_gpios: Configures UART HWFlow GPIOs
* @port: uart port
*/
static int msm_hsl_config_uart_hwflow_gpios(struct uart_port *port)
{
struct platform_device *pdev = to_platform_device(port->dev);
const struct msm_serial_hslite_platform_data *pdata =
pdev->dev.platform_data;
int ret = -EINVAL;
if (pdata) {
ret = gpio_request(pdata->uart_cts_gpio,
"UART_CTS_GPIO");
if (unlikely(ret)) {
pr_err("gpio request failed for:%d\n",
pdata->uart_cts_gpio);
goto exit_config_uart;
}
ret = gpio_request(pdata->uart_rfr_gpio,
"UART_RFR_GPIO");
if (unlikely(ret)) {
pr_err("gpio request failed for:%d\n",
pdata->uart_rfr_gpio);
gpio_free(pdata->uart_cts_gpio);
goto exit_config_uart;
}
} else {
pr_err("Error: Pdata is NULL.\n");
}
exit_config_uart:
return ret;
}
/**
* msm_hsl_unconfig_uart_hwflow_gpios: Unonfigures UART HWFlow GPIOs
* @port: uart port
*/
static void msm_hsl_unconfig_uart_hwflow_gpios(struct uart_port *port)
{
struct platform_device *pdev = to_platform_device(port->dev);
const struct msm_serial_hslite_platform_data *pdata =
pdev->dev.platform_data;
if (pdata) {
gpio_free(pdata->uart_cts_gpio);
gpio_free(pdata->uart_rfr_gpio);
} else {
pr_err("Error: Pdata is NULL.\n");
}
}
/**
* msm_hsl_config_uart_gpios: Configures UART GPIOs and returns success or
* Failure
* @port: uart port
*/
static int msm_hsl_config_uart_gpios(struct uart_port *port)
{
struct msm_hsl_port *msm_hsl_port = UART_TO_MSM(port);
int ret;
/* Configure UART Tx and Rx GPIOs */
ret = msm_hsl_config_uart_tx_rx_gpios(port);
if (!ret) {
if (msm_hsl_port->func_mode == UART_FOUR_WIRE) {
/*if 4-wire uart, configure CTS and RFR GPIOs */
ret = msm_hsl_config_uart_hwflow_gpios(port);
if (ret)
msm_hsl_unconfig_uart_tx_rx_gpios(port);
}
} else {
msm_hsl_unconfig_uart_tx_rx_gpios(port);
}
return ret;
}
/**
* msm_hsl_unconfig_uart_gpios: Unconfigures UART GPIOs
* @port: uart port
*/
static void msm_hsl_unconfig_uart_gpios(struct uart_port *port)
{
struct msm_hsl_port *msm_hsl_port = UART_TO_MSM(port);
msm_hsl_unconfig_uart_tx_rx_gpios(port);
if (msm_hsl_port->func_mode == UART_FOUR_WIRE)
msm_hsl_unconfig_uart_hwflow_gpios(port);
}
static int get_line(struct platform_device *pdev)
{
struct msm_hsl_port *msm_hsl_port = platform_get_drvdata(pdev);
return msm_hsl_port->uart.line;
}
static int bus_vote(uint32_t client, int vector)
{
int ret = 0;
if (!client)
return ret;
pr_debug("Voting for bus scaling:%d\n", vector);
ret = msm_bus_scale_client_update_request(client, vector);
if (ret)
pr_err("Failed to request bus bw vector %d\n", vector);
return ret;
}
static int clk_en(struct uart_port *port, int enable)
{
struct msm_hsl_port *msm_hsl_port = UART_TO_MSM(port);
int ret = 0;
if (enable) {
msm_hsl_port->clk_enable_count++;
ret = bus_vote(msm_hsl_port->bus_perf_client,
!!msm_hsl_port->clk_enable_count);
if (ret)
goto err;
ret = clk_prepare_enable(msm_hsl_port->clk);
if (ret)
goto err_bus;
if (msm_hsl_port->pclk) {
ret = clk_prepare_enable(msm_hsl_port->pclk);
if (ret)
goto err_clk_disable;
}
} else {
msm_hsl_port->clk_enable_count--;
clk_disable_unprepare(msm_hsl_port->clk);
if (msm_hsl_port->pclk)
clk_disable_unprepare(msm_hsl_port->pclk);
ret = bus_vote(msm_hsl_port->bus_perf_client,
!!msm_hsl_port->clk_enable_count);
}
return ret;
err_clk_disable:
clk_disable_unprepare(msm_hsl_port->clk);
err_bus:
bus_vote(msm_hsl_port->bus_perf_client,
!!(msm_hsl_port->clk_enable_count - 1));
err:
msm_hsl_port->clk_enable_count--;
return ret;
}
static int msm_hsl_loopback_enable_set(void *data, u64 val)
{
struct msm_hsl_port *msm_hsl_port = data;
struct uart_port *port = &(msm_hsl_port->uart);
unsigned int vid;
unsigned long flags;
int ret = 0;
ret = clk_set_rate(msm_hsl_port->clk, port->uartclk);
if (!ret) {
clk_en(port, 1);
} else {
pr_err("Error: setting uartclk rate as %u\n",
port->uartclk);
return -EINVAL;
}
vid = msm_hsl_port->ver_id;
if (val) {
spin_lock_irqsave(&port->lock, flags);
ret = msm_hsl_read(port, regmap[vid][UARTDM_MR2]);
ret |= UARTDM_MR2_LOOP_MODE_BMSK;
msm_hsl_write(port, ret, regmap[vid][UARTDM_MR2]);
spin_unlock_irqrestore(&port->lock, flags);
} else {
spin_lock_irqsave(&port->lock, flags);
ret = msm_hsl_read(port, regmap[vid][UARTDM_MR2]);
ret &= ~UARTDM_MR2_LOOP_MODE_BMSK;
msm_hsl_write(port, ret, regmap[vid][UARTDM_MR2]);
spin_unlock_irqrestore(&port->lock, flags);
}
clk_en(port, 0);
return 0;
}
static int msm_hsl_loopback_enable_get(void *data, u64 *val)
{
struct msm_hsl_port *msm_hsl_port = data;
struct uart_port *port = &(msm_hsl_port->uart);
unsigned long flags;
int ret = 0;
ret = clk_set_rate(msm_hsl_port->clk, port->uartclk);
if (!ret) {
clk_en(port, 1);
} else {
pr_err("Error setting uartclk rate as %u\n",
port->uartclk);
return -EINVAL;
}
spin_lock_irqsave(&port->lock, flags);
ret = msm_hsl_read(port, regmap[msm_hsl_port->ver_id][UARTDM_MR2]);
spin_unlock_irqrestore(&port->lock, flags);
clk_en(port, 0);
*val = (ret & UARTDM_MR2_LOOP_MODE_BMSK) ? 1 : 0;
return 0;
}
DEFINE_SIMPLE_ATTRIBUTE(loopback_enable_fops, msm_hsl_loopback_enable_get,
msm_hsl_loopback_enable_set, "%llu\n");
/*
* msm_serial_hsl debugfs node: <debugfs_root>/msm_serial_hsl/loopback.<id>
* writing 1 turns on internal loopback mode in HW. Useful for automation
* test scripts.
* writing 0 disables the internal loopback mode. Default is disabled.
*/
static void msm_hsl_debugfs_init(struct msm_hsl_port *msm_uport,
int id)
{
char node_name[15];
snprintf(node_name, sizeof(node_name), "loopback.%d", id);
msm_uport->loopback_dir = debugfs_create_file(node_name,
S_IRUGO | S_IWUSR,
debug_base,
msm_uport,
&loopback_enable_fops);
if (IS_ERR_OR_NULL(msm_uport->loopback_dir))
pr_err("Cannot create loopback.%d debug entry", id);
}
static void msm_hsl_stop_tx(struct uart_port *port)
{
struct msm_hsl_port *msm_hsl_port = UART_TO_MSM(port);
msm_hsl_port->imr &= ~UARTDM_ISR_TXLEV_BMSK;
msm_hsl_write(port, msm_hsl_port->imr,
regmap[msm_hsl_port->ver_id][UARTDM_IMR]);
}
static void msm_hsl_start_tx(struct uart_port *port)
{
struct msm_hsl_port *msm_hsl_port = UART_TO_MSM(port);
if (port->suspended) {
pr_err("%s: System is in Suspend state\n", __func__);
return;
}
msm_hsl_port->imr |= UARTDM_ISR_TXLEV_BMSK;
msm_hsl_write(port, msm_hsl_port->imr,
regmap[msm_hsl_port->ver_id][UARTDM_IMR]);
}
static void msm_hsl_stop_rx(struct uart_port *port)
{
struct msm_hsl_port *msm_hsl_port = UART_TO_MSM(port);
msm_hsl_port->imr &= ~(UARTDM_ISR_RXLEV_BMSK |
UARTDM_ISR_RXSTALE_BMSK);
msm_hsl_write(port, msm_hsl_port->imr,
regmap[msm_hsl_port->ver_id][UARTDM_IMR]);
}
static void msm_hsl_enable_ms(struct uart_port *port)
{
struct msm_hsl_port *msm_hsl_port = UART_TO_MSM(port);
msm_hsl_port->imr |= UARTDM_ISR_DELTA_CTS_BMSK;
msm_hsl_write(port, msm_hsl_port->imr,
regmap[msm_hsl_port->ver_id][UARTDM_IMR]);
}
static void handle_rx(struct uart_port *port, unsigned int misr)
{
struct tty_struct *tty = port->state->port.tty;
unsigned int vid;
unsigned int sr;
int count = 0;
struct msm_hsl_port *msm_hsl_port = UART_TO_MSM(port);
#if DUMP_UART_PACKET
int rx_buf_count = 0;
memset(rx_buf, 0xFF, 64);
#endif
vid = msm_hsl_port->ver_id;
/*
* Handle overrun. My understanding of the hardware is that overrun
* is not tied to the RX buffer, so we handle the case out of band.
*/
if ((msm_hsl_read(port, regmap[vid][UARTDM_SR]) &
UARTDM_SR_OVERRUN_BMSK)) {
port->icount.overrun++;
tty_insert_flip_char(tty->port, 0, TTY_OVERRUN);
msm_hsl_write(port, RESET_ERROR_STATUS,
regmap[vid][UARTDM_CR]);
}
if (misr & UARTDM_ISR_RXSTALE_BMSK) {
count = msm_hsl_read(port,
regmap[vid][UARTDM_RX_TOTAL_SNAP]) -
msm_hsl_port->old_snap_state;
msm_hsl_port->old_snap_state = 0;
} else {
count = 4 * (msm_hsl_read(port, regmap[vid][UARTDM_RFWR]));
msm_hsl_port->old_snap_state += count;
}
/* and now the main RX loop */
while (count > 0) {
unsigned int c;
char flag = TTY_NORMAL;
sr = msm_hsl_read(port, regmap[vid][UARTDM_SR]);
if ((sr & UARTDM_SR_RXRDY_BMSK) == 0) {
msm_hsl_port->old_snap_state -= count;
break;
}
c = msm_hsl_read(port, regmap[vid][UARTDM_RF]);
if (sr & UARTDM_SR_RX_BREAK_BMSK) {
port->icount.brk++;
if (uart_handle_break(port))
continue;
} else if (sr & UARTDM_SR_PAR_FRAME_BMSK) {
port->icount.frame++;
} else {
port->icount.rx++;
}
/* Mask conditions we're ignorning. */
sr &= port->read_status_mask;
if (sr & UARTDM_SR_RX_BREAK_BMSK)
flag = TTY_BREAK;
else if (sr & UARTDM_SR_PAR_FRAME_BMSK)
flag = TTY_FRAME;
#if DUMP_UART_PACKET
if (count < 4) {
if (rx_buf_count <= (sizeof(rx_buf) - count)) {
memcpy(rx_buf+rx_buf_count, &c, count);
rx_buf_count += count;
}
} else {
if (rx_buf_count <= (sizeof(rx_buf) - sizeof(int))) {
memcpy(rx_buf+rx_buf_count, &c, sizeof(int));
rx_buf_count += sizeof(int);
}
}
#endif
/* TODO: handle sysrq */
/* if (!uart_handle_sysrq_char(port, c)) */
tty_insert_flip_string(tty->port, (char *) &c,
(count > 4) ? 4 : count);
count -= 4;
}
#if DUMP_UART_PACKET
/* skip insignificanty packet */
#if FULL_DUMP_UART_PACKET
print_hex_dump(KERN_DEBUG, "RX UART: ",
16, 1, DUMP_PREFIX_ADDRESS,
rx_buf, rx_buf_count, 1);
#else
if (rx_buf_count > 4) {
if (!is_console(port))
print_hex_dump(KERN_DEBUG, "RX UART: ", 16,
1, DUMP_PREFIX_ADDRESS, rx_buf,
rx_buf_count > 16 ? 16 : rx_buf_count, 1);
}
#endif
#endif
tty_flip_buffer_push(tty->port);
}
static void handle_tx(struct uart_port *port)
{
struct circ_buf *xmit = &port->state->xmit;
int sent_tx;
int tx_count;
int x;
unsigned int tf_pointer = 0;
unsigned int vid;
#if DUMP_UART_PACKET
int tx_buf_count = 0;
memset(tx_buf, 0xFF, 64);
#endif
vid = UART_TO_MSM(port)->ver_id;
tx_count = uart_circ_chars_pending(xmit);
if (tx_count > (UART_XMIT_SIZE - xmit->tail))
tx_count = UART_XMIT_SIZE - xmit->tail;
if (tx_count >= port->fifosize)
tx_count = port->fifosize;
/* Handle x_char */
if (port->x_char) {
wait_for_xmitr(port);
msm_hsl_write(port, tx_count + 1, regmap[vid][UARTDM_NCF_TX]);
msm_hsl_read(port, regmap[vid][UARTDM_NCF_TX]);
msm_hsl_write(port, port->x_char, regmap[vid][UARTDM_TF]);
port->icount.tx++;
port->x_char = 0;
} else if (tx_count) {
wait_for_xmitr(port);
msm_hsl_write(port, tx_count, regmap[vid][UARTDM_NCF_TX]);
msm_hsl_read(port, regmap[vid][UARTDM_NCF_TX]);
}
if (!tx_count) {
msm_hsl_stop_tx(port);
return;
}
while (tf_pointer < tx_count) {
if (unlikely(!(msm_hsl_read(port, regmap[vid][UARTDM_SR]) &
UARTDM_SR_TXRDY_BMSK)))
continue;
switch (tx_count - tf_pointer) {
case 1: {
x = xmit->buf[xmit->tail];
port->icount.tx++;
break;
}
case 2: {
x = xmit->buf[xmit->tail]
| xmit->buf[xmit->tail+1] << 8;
port->icount.tx += 2;
break;
}
case 3: {
x = xmit->buf[xmit->tail]
| xmit->buf[xmit->tail+1] << 8
| xmit->buf[xmit->tail + 2] << 16;
port->icount.tx += 3;
break;
}
default: {
x = *((int *)&(xmit->buf[xmit->tail]));
port->icount.tx += 4;
break;
}
}
#if DUMP_UART_PACKET
if ((tx_count - tf_pointer) < 4) {
if (tx_buf_count <= (sizeof(tx_buf) - (tx_count - tf_pointer))) {
memcpy(tx_buf+tx_buf_count, &x, tx_count - tf_pointer);
tx_buf_count += (tx_count - tf_pointer);
}
} else {
if (tx_buf_count <= (sizeof(tx_buf) - sizeof(int))) {
memcpy(tx_buf+tx_buf_count, &x, sizeof(int));
tx_buf_count += sizeof(int);
}
}
#endif
msm_hsl_write(port, x, regmap[vid][UARTDM_TF]);
xmit->tail = ((tx_count - tf_pointer < 4) ?
(tx_count - tf_pointer + xmit->tail) :
(xmit->tail + 4)) & (UART_XMIT_SIZE - 1);
tf_pointer += 4;
sent_tx = 1;
}
#if DUMP_UART_PACKET
/* skip echo packet */
#if FULL_DUMP_UART_PACKET
print_hex_dump(KERN_DEBUG, "TX UART: ",
16, 1, DUMP_PREFIX_ADDRESS,
tx_buf, tx_count, 1);
#else
if (tx_count > 4) {
if (!is_console(port))
print_hex_dump(KERN_DEBUG, "TX UART: ",
16, 1, DUMP_PREFIX_ADDRESS,
tx_buf, tx_count > 16 ? 16 : tx_count, 1);
}
#endif
#endif
if (uart_circ_empty(xmit))
msm_hsl_stop_tx(port);
if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
uart_write_wakeup(port);
}
static void handle_delta_cts(struct uart_port *port)
{
unsigned int vid = UART_TO_MSM(port)->ver_id;
msm_hsl_write(port, RESET_CTS, regmap[vid][UARTDM_CR]);
port->icount.cts++;
wake_up_interruptible(&port->state->port.delta_msr_wait);
}
static irqreturn_t msm_hsl_irq(int irq, void *dev_id)
{
struct uart_port *port = dev_id;
struct msm_hsl_port *msm_hsl_port = UART_TO_MSM(port);
unsigned int vid;
unsigned int misr;
unsigned long flags;
spin_lock_irqsave(&port->lock, flags);
vid = msm_hsl_port->ver_id;
misr = msm_hsl_read(port, regmap[vid][UARTDM_MISR]);
/* disable interrupt */
msm_hsl_write(port, 0, regmap[vid][UARTDM_IMR]);
if (misr & (UARTDM_ISR_RXSTALE_BMSK | UARTDM_ISR_RXLEV_BMSK)) {
handle_rx(port, misr);
if (misr & (UARTDM_ISR_RXSTALE_BMSK))
msm_hsl_write(port, RESET_STALE_INT,
regmap[vid][UARTDM_CR]);
msm_hsl_write(port, 6500, regmap[vid][UARTDM_DMRX]);
msm_hsl_write(port, STALE_EVENT_ENABLE, regmap[vid][UARTDM_CR]);
}
if (misr & UARTDM_ISR_TXLEV_BMSK)
handle_tx(port);
if (misr & UARTDM_ISR_DELTA_CTS_BMSK)
handle_delta_cts(port);
/* restore interrupt */
msm_hsl_write(port, msm_hsl_port->imr, regmap[vid][UARTDM_IMR]);
spin_unlock_irqrestore(&port->lock, flags);
return IRQ_HANDLED;
}
static unsigned int msm_hsl_tx_empty(struct uart_port *port)
{
unsigned int ret;
unsigned int vid = UART_TO_MSM(port)->ver_id;
ret = (msm_hsl_read(port, regmap[vid][UARTDM_SR]) &
UARTDM_SR_TXEMT_BMSK) ? TIOCSER_TEMT : 0;
return ret;
}
static void msm_hsl_reset(struct uart_port *port)
{
unsigned int vid = UART_TO_MSM(port)->ver_id;
/* reset everything */
msm_hsl_write(port, RESET_RX, regmap[vid][UARTDM_CR]);
msm_hsl_write(port, RESET_TX, regmap[vid][UARTDM_CR]);
msm_hsl_write(port, RESET_ERROR_STATUS, regmap[vid][UARTDM_CR]);
msm_hsl_write(port, RESET_BREAK_INT, regmap[vid][UARTDM_CR]);
msm_hsl_write(port, RESET_CTS, regmap[vid][UARTDM_CR]);
msm_hsl_write(port, RFR_LOW, regmap[vid][UARTDM_CR]);
}
static unsigned int msm_hsl_get_mctrl(struct uart_port *port)
{
return TIOCM_CAR | TIOCM_CTS | TIOCM_DSR | TIOCM_RTS;
}
static void msm_hsl_set_mctrl(struct uart_port *port, unsigned int mctrl)
{
unsigned int vid = UART_TO_MSM(port)->ver_id;
unsigned int mr;
unsigned int loop_mode;
mr = msm_hsl_read(port, regmap[vid][UARTDM_MR1]);
if (!(mctrl & TIOCM_RTS)) {
mr &= ~UARTDM_MR1_RX_RDY_CTL_BMSK;
msm_hsl_write(port, mr, regmap[vid][UARTDM_MR1]);
msm_hsl_write(port, RFR_HIGH, regmap[vid][UARTDM_CR]);
} else {
mr |= UARTDM_MR1_RX_RDY_CTL_BMSK;
msm_hsl_write(port, mr, regmap[vid][UARTDM_MR1]);
}
loop_mode = TIOCM_LOOP & mctrl;
if (loop_mode) {
mr = msm_hsl_read(port, regmap[vid][UARTDM_MR2]);
mr |= UARTDM_MR2_LOOP_MODE_BMSK;
msm_hsl_write(port, mr, regmap[vid][UARTDM_MR2]);
/* Reset TX */
msm_hsl_reset(port);
/* Turn on Uart Receiver & Transmitter*/
msm_hsl_write(port, UARTDM_CR_RX_EN_BMSK
| UARTDM_CR_TX_EN_BMSK, regmap[vid][UARTDM_CR]);
}
}
static void msm_hsl_break_ctl(struct uart_port *port, int break_ctl)
{
unsigned int vid = UART_TO_MSM(port)->ver_id;
if (break_ctl)
msm_hsl_write(port, START_BREAK, regmap[vid][UARTDM_CR]);
else
msm_hsl_write(port, STOP_BREAK, regmap[vid][UARTDM_CR]);
}
/**
* msm_hsl_set_baud_rate: set requested baud rate
* @port: uart port
* @baud: baud rate to set (in bps)
*/
static void msm_hsl_set_baud_rate(struct uart_port *port,
unsigned int baud)
{
unsigned int baud_code, rxstale, watermark;
unsigned int data;
unsigned int vid;
struct msm_hsl_port *msm_hsl_port = UART_TO_MSM(port);
switch (baud) {
case 300:
baud_code = UARTDM_CSR_75;
rxstale = 1;
break;
case 600:
baud_code = UARTDM_CSR_150;
rxstale = 1;
break;
case 1200:
baud_code = UARTDM_CSR_300;
rxstale = 1;
break;
case 2400:
baud_code = UARTDM_CSR_600;
rxstale = 1;
break;
case 4800:
baud_code = UARTDM_CSR_1200;
rxstale = 1;
break;
case 9600:
baud_code = UARTDM_CSR_2400;
rxstale = 2;
break;
case 14400:
baud_code = UARTDM_CSR_3600;
rxstale = 3;
break;
case 19200:
baud_code = UARTDM_CSR_4800;
rxstale = 4;
break;
case 28800:
baud_code = UARTDM_CSR_7200;
rxstale = 6;
break;
case 38400:
baud_code = UARTDM_CSR_9600;
rxstale = 8;
break;
case 57600:
baud_code = UARTDM_CSR_14400;
rxstale = 16;
break;
case 115200:
baud_code = UARTDM_CSR_28800;
rxstale = 31;
break;
case 230400:
baud_code = UARTDM_CSR_57600;
rxstale = 31;
break;
case 460800:
baud_code = UARTDM_CSR_115200;
rxstale = 31;
break;
case 4000000:
case 3686400:
case 3200000:
case 3500000:
case 3000000:
case 2500000:
case 1500000:
case 1152000:
case 1000000:
case 921600:
baud_code = 0xff;
rxstale = 31;
break;
default: /*115200 baud rate */
baud_code = UARTDM_CSR_28800;
rxstale = 31;
break;
}
vid = msm_hsl_port->ver_id;
msm_hsl_write(port, baud_code, regmap[vid][UARTDM_CSR]);
/*
* uart baud rate depends on CSR and MND Values
* we are updating CSR before and then calling
* clk_set_rate which updates MND Values. Hence
* dsb requires here.
*/
mb();
/*
* Check requested baud rate and for higher baud rate than 460800,
* calculate required uart clock frequency and set the same.
*/
if (baud > 460800)
port->uartclk = baud * 16;
else
port->uartclk = 7372800;
if (clk_set_rate(msm_hsl_port->clk, port->uartclk)) {
pr_err("Error: setting uartclk rate %u\n", port->uartclk);
WARN_ON(1);
return;
}
/* Set timeout to be ~600x the character transmit time */
msm_hsl_port->tx_timeout = (1000000000 / baud) * 6;
/* RX stale watermark */
watermark = UARTDM_IPR_STALE_LSB_BMSK & rxstale;
watermark |= UARTDM_IPR_STALE_TIMEOUT_MSB_BMSK & (rxstale << 2);
msm_hsl_write(port, watermark, regmap[vid][UARTDM_IPR]);
/* Set RX watermark
* Configure Rx Watermark as 3/4 size of Rx FIFO.
* RFWR register takes value in Words for UARTDM Core
* whereas it is consider to be in Bytes for UART Core.
* Hence configuring Rx Watermark as 48 Words.
*/
watermark = (port->fifosize * 3) / 4;
msm_hsl_write(port, watermark, regmap[vid][UARTDM_RFWR]);
/* set TX watermark */
msm_hsl_write(port, 0, regmap[vid][UARTDM_TFWR]);
msm_hsl_write(port, CR_PROTECTION_EN, regmap[vid][UARTDM_CR]);
msm_hsl_reset(port);
data = UARTDM_CR_TX_EN_BMSK;
data |= UARTDM_CR_RX_EN_BMSK;
/* enable TX & RX */
msm_hsl_write(port, data, regmap[vid][UARTDM_CR]);
msm_hsl_write(port, RESET_STALE_INT, regmap[vid][UARTDM_CR]);
/* turn on RX and CTS interrupts */
msm_hsl_port->imr = UARTDM_ISR_RXSTALE_BMSK
| UARTDM_ISR_DELTA_CTS_BMSK | UARTDM_ISR_RXLEV_BMSK;
msm_hsl_write(port, msm_hsl_port->imr, regmap[vid][UARTDM_IMR]);
msm_hsl_write(port, 6500, regmap[vid][UARTDM_DMRX]);
msm_hsl_write(port, STALE_EVENT_ENABLE, regmap[vid][UARTDM_CR]);
}
static void msm_hsl_init_clock(struct uart_port *port)
{
clk_en(port, 1);
}
static void msm_hsl_deinit_clock(struct uart_port *port)
{
clk_en(port, 0);
}
static int msm_hsl_startup(struct uart_port *port)
{
struct msm_hsl_port *msm_hsl_port = UART_TO_MSM(port);
struct platform_device *pdev = to_platform_device(port->dev);
const struct msm_serial_hslite_platform_data *pdata =
pdev->dev.platform_data;
unsigned int data, rfr_level;
unsigned int vid;
int ret;
unsigned long flags;
snprintf(msm_hsl_port->name, sizeof(msm_hsl_port->name),
"msm_serial_hsl%d", port->line);
if (!(is_console(port)) || (!port->cons) ||
(port->cons && (!(port->cons->flags & CON_ENABLED)))) {
if (msm_serial_hsl_has_gsbi(port))
set_gsbi_uart_func_mode(port);
if (pdata && pdata->use_pm)
wake_lock(&msm_hsl_port->port_open_wake_lock);
if (pdata && pdata->config_gpio) {
ret = msm_hsl_config_uart_gpios(port);
if (ret) {
msm_hsl_unconfig_uart_gpios(port);
goto release_wakelock;
}
}
}
/*
* Set RFR Level as 3/4 of UARTDM FIFO Size
* i.e. 48 Words = 192 bytes as Rx FIFO is 64 words ( 256 bytes).
*/
if (likely(port->fifosize > 48))
rfr_level = port->fifosize - 16;
else
rfr_level = port->fifosize;
spin_lock_irqsave(&port->lock, flags);
vid = msm_hsl_port->ver_id;
/* set automatic RFR level */
data = msm_hsl_read(port, regmap[vid][UARTDM_MR1]);
data &= ~UARTDM_MR1_AUTO_RFR_LEVEL1_BMSK;
data &= ~UARTDM_MR1_AUTO_RFR_LEVEL0_BMSK;
data |= UARTDM_MR1_AUTO_RFR_LEVEL1_BMSK & (rfr_level << 2);
data |= UARTDM_MR1_AUTO_RFR_LEVEL0_BMSK & rfr_level;
msm_hsl_write(port, data, regmap[vid][UARTDM_MR1]);
spin_unlock_irqrestore(&port->lock, flags);
ret = request_irq(port->irq, msm_hsl_irq, IRQF_TRIGGER_HIGH,
msm_hsl_port->name, port);
if (unlikely(ret)) {
pr_err("failed to request_irq\n");
msm_hsl_unconfig_uart_gpios(port);
goto release_wakelock;
}
return ret;
release_wakelock:
if (pdata && pdata->use_pm)
wake_unlock(&msm_hsl_port->port_open_wake_lock);
return ret;
}
static void msm_hsl_shutdown(struct uart_port *port)
{
struct msm_hsl_port *msm_hsl_port = UART_TO_MSM(port);
struct platform_device *pdev = to_platform_device(port->dev);
const struct msm_serial_hslite_platform_data *pdata =
pdev->dev.platform_data;
msm_hsl_port->imr = 0;
/* disable interrupts */
msm_hsl_write(port, 0, regmap[msm_hsl_port->ver_id][UARTDM_IMR]);
free_irq(port->irq, port);
if (!(is_console(port)) || (!port->cons) ||
(port->cons && (!(port->cons->flags & CON_ENABLED)))) {
/* Free UART GPIOs */
if (pdata && pdata->config_gpio)
msm_hsl_unconfig_uart_gpios(port);
if (pdata && pdata->use_pm)
wake_unlock(&msm_hsl_port->port_open_wake_lock);
}
}
static void msm_hsl_set_termios(struct uart_port *port,
struct ktermios *termios,
struct ktermios *old)
{
unsigned int baud, mr;
unsigned int vid;
struct msm_hsl_port *msm_hsl_port = UART_TO_MSM(port);
if (!termios->c_cflag)
return;
mutex_lock(&msm_hsl_port->clk_mutex);
/*
* Calculate and set baud rate
* 300 is the minimum and 4 Mbps is the maximum baud rate
* supported by driver.
*/
baud = uart_get_baud_rate(port, termios, old, 200, 4000000);
/*
* Due to non-availability of 3.2 Mbps baud rate as standard baud rate
* with TTY/serial core. Map 200 BAUD to 3.2 Mbps
*/
if (baud == 200)
baud = 3200000;
msm_hsl_set_baud_rate(port, baud);
vid = UART_TO_MSM(port)->ver_id;
/* calculate parity */
mr = msm_hsl_read(port, regmap[vid][UARTDM_MR2]);
mr &= ~UARTDM_MR2_PARITY_MODE_BMSK;
if (termios->c_cflag & PARENB) {
if (termios->c_cflag & PARODD)
mr |= ODD_PARITY;
else if (termios->c_cflag & CMSPAR)
mr |= SPACE_PARITY;
else
mr |= EVEN_PARITY;
}
/* calculate bits per char */
mr &= ~UARTDM_MR2_BITS_PER_CHAR_BMSK;
switch (termios->c_cflag & CSIZE) {
case CS5:
mr |= FIVE_BPC;
break;
case CS6:
mr |= SIX_BPC;
break;
case CS7:
mr |= SEVEN_BPC;
break;
case CS8:
default:
mr |= EIGHT_BPC;
break;
}
/* calculate stop bits */
mr &= ~(STOP_BIT_ONE | STOP_BIT_TWO);
if (termios->c_cflag & CSTOPB)
mr |= STOP_BIT_TWO;
else
mr |= STOP_BIT_ONE;
/* set parity, bits per char, and stop bit */
msm_hsl_write(port, mr, regmap[vid][UARTDM_MR2]);
/* calculate and set hardware flow control */
mr = msm_hsl_read(port, regmap[vid][UARTDM_MR1]);
mr &= ~(UARTDM_MR1_CTS_CTL_BMSK | UARTDM_MR1_RX_RDY_CTL_BMSK);
if (termios->c_cflag & CRTSCTS) {
mr |= UARTDM_MR1_CTS_CTL_BMSK;
mr |= UARTDM_MR1_RX_RDY_CTL_BMSK;
}
msm_hsl_write(port, mr, regmap[vid][UARTDM_MR1]);
/* Configure status bits to ignore based on termio flags. */
port->read_status_mask = 0;
if (termios->c_iflag & INPCK)
port->read_status_mask |= UARTDM_SR_PAR_FRAME_BMSK;
if (termios->c_iflag & (BRKINT | PARMRK))
port->read_status_mask |= UARTDM_SR_RX_BREAK_BMSK;
uart_update_timeout(port, termios->c_cflag, baud);
mutex_unlock(&msm_hsl_port->clk_mutex);
}
static const char *msm_hsl_type(struct uart_port *port)
{
return "MSM";
}
static void msm_hsl_release_port(struct uart_port *port)
{
struct msm_hsl_port *msm_hsl_port = UART_TO_MSM(port);
struct platform_device *pdev = to_platform_device(port->dev);
struct resource *uart_resource;
resource_size_t size;
uart_resource = platform_get_resource_byname(pdev, IORESOURCE_MEM,
"uartdm_resource");
if (!uart_resource)
uart_resource = platform_get_resource(pdev, IORESOURCE_MEM, 0);
if (unlikely(!uart_resource))
return;
size = uart_resource->end - uart_resource->start + 1;
release_mem_region(port->mapbase, size);
iounmap(port->membase);
port->membase = NULL;
if (msm_serial_hsl_has_gsbi(port)) {
iowrite32(GSBI_PROTOCOL_IDLE, msm_hsl_port->mapped_gsbi +
GSBI_CONTROL_ADDR);
iounmap(msm_hsl_port->mapped_gsbi);
msm_hsl_port->mapped_gsbi = NULL;
}
}
static int msm_hsl_request_port(struct uart_port *port)
{
struct msm_hsl_port *msm_hsl_port = UART_TO_MSM(port);
struct platform_device *pdev = to_platform_device(port->dev);
struct resource *uart_resource;
struct resource *gsbi_resource;
resource_size_t size;
uart_resource = platform_get_resource_byname(pdev, IORESOURCE_MEM,
"uartdm_resource");
if (!uart_resource)
uart_resource = platform_get_resource(pdev, IORESOURCE_MEM, 0);
if (unlikely(!uart_resource)) {
pr_err("can't get uartdm resource\n");
return -ENXIO;
}
size = uart_resource->end - uart_resource->start + 1;
if (unlikely(!request_mem_region(port->mapbase, size,
"msm_serial_hsl"))) {
pr_err("can't get mem region for uartdm\n");
return -EBUSY;
}
port->membase = ioremap(port->mapbase, size);
if (!port->membase) {
release_mem_region(port->mapbase, size);
return -EBUSY;
}
if (msm_serial_hsl_has_gsbi(port)) {
gsbi_resource = platform_get_resource_byname(pdev,
IORESOURCE_MEM,
"gsbi_resource");
if (!gsbi_resource)
gsbi_resource = platform_get_resource(pdev,
IORESOURCE_MEM, 1);
if (unlikely(!gsbi_resource)) {
pr_err("can't get gsbi resource\n");
return -ENXIO;
}
size = gsbi_resource->end - gsbi_resource->start + 1;
msm_hsl_port->mapped_gsbi = ioremap(gsbi_resource->start,
size);
if (!msm_hsl_port->mapped_gsbi) {
return -EBUSY;
}
}
return 0;
}
static void msm_hsl_config_port(struct uart_port *port, int flags)
{
if (flags & UART_CONFIG_TYPE) {
port->type = PORT_MSM;
if (msm_hsl_request_port(port))
return;
}
/* Configure required GSBI based UART protocol. */
if (msm_serial_hsl_has_gsbi(port))
set_gsbi_uart_func_mode(port);
}
static int msm_hsl_verify_port(struct uart_port *port,
struct serial_struct *ser)
{
if (unlikely(ser->type != PORT_UNKNOWN && ser->type != PORT_MSM))
return -EINVAL;
if (unlikely(port->irq != ser->irq))
return -EINVAL;
return 0;
}
static void msm_hsl_power(struct uart_port *port, unsigned int state,
unsigned int oldstate)
{
int ret;
struct msm_hsl_port *msm_hsl_port = UART_TO_MSM(port);
struct platform_device *pdev = to_platform_device(port->dev);
const struct msm_serial_hslite_platform_data *pdata =
pdev->dev.platform_data;
switch (state) {
case 0:
ret = clk_set_rate(msm_hsl_port->clk, port->uartclk);
if (ret)
pr_err("Error setting UART clock rate to %u\n",
port->uartclk);
clk_en(port, 1);
break;
case 3:
clk_en(port, 0);
if (pdata && pdata->set_uart_clk_zero) {
ret = clk_set_rate(msm_hsl_port->clk, 0);
if (ret)
pr_err("Error setting UART clock rate to zero.\n");
}
break;
default:
pr_err("Unknown PM state %d\n", state);
}
}
static struct uart_ops msm_hsl_uart_pops = {
.tx_empty = msm_hsl_tx_empty,
.set_mctrl = msm_hsl_set_mctrl,
.get_mctrl = msm_hsl_get_mctrl,
.stop_tx = msm_hsl_stop_tx,
.start_tx = msm_hsl_start_tx,
.stop_rx = msm_hsl_stop_rx,
.enable_ms = msm_hsl_enable_ms,
.break_ctl = msm_hsl_break_ctl,
.startup = msm_hsl_startup,
.shutdown = msm_hsl_shutdown,
.set_termios = msm_hsl_set_termios,
.type = msm_hsl_type,
.release_port = msm_hsl_release_port,
.request_port = msm_hsl_request_port,
.config_port = msm_hsl_config_port,
.verify_port = msm_hsl_verify_port,
.pm = msm_hsl_power,
};
static struct msm_hsl_port msm_hsl_uart_ports[] = {
{
.uart = {
.iotype = UPIO_MEM,
.ops = &msm_hsl_uart_pops,
.flags = UPF_BOOT_AUTOCONF,
.fifosize = 64,
.line = 0,
},
},
{
.uart = {
.iotype = UPIO_MEM,
.ops = &msm_hsl_uart_pops,
.flags = UPF_BOOT_AUTOCONF,
.fifosize = 64,
.line = 1,
},
},
{
.uart = {
.iotype = UPIO_MEM,
.ops = &msm_hsl_uart_pops,
.flags = UPF_BOOT_AUTOCONF,
.fifosize = 64,
.line = 2,
},
},
};
#define UART_NR ARRAY_SIZE(msm_hsl_uart_ports)
static inline struct uart_port *get_port_from_line(unsigned int line)
{
return &msm_hsl_uart_ports[line].uart;
}
static unsigned int msm_hsl_console_state[8];
static void dump_hsl_regs(struct uart_port *port)
{
struct msm_hsl_port *msm_hsl_port = UART_TO_MSM(port);
unsigned int vid = msm_hsl_port->ver_id;
unsigned int sr, isr, mr1, mr2, ncf, txfs, rxfs, con_state;
sr = msm_hsl_read(port, regmap[vid][UARTDM_SR]);
isr = msm_hsl_read(port, regmap[vid][UARTDM_ISR]);
mr1 = msm_hsl_read(port, regmap[vid][UARTDM_MR1]);
mr2 = msm_hsl_read(port, regmap[vid][UARTDM_MR2]);
ncf = msm_hsl_read(port, regmap[vid][UARTDM_NCF_TX]);
txfs = msm_hsl_read(port, regmap[vid][UARTDM_TXFS]);
rxfs = msm_hsl_read(port, regmap[vid][UARTDM_RXFS]);
con_state = get_console_state(port);
msm_hsl_console_state[0] = sr;
msm_hsl_console_state[1] = isr;
msm_hsl_console_state[2] = mr1;
msm_hsl_console_state[3] = mr2;
msm_hsl_console_state[4] = ncf;
msm_hsl_console_state[5] = txfs;
msm_hsl_console_state[6] = rxfs;
msm_hsl_console_state[7] = con_state;
pr_info("Timeout: %d uS\n", msm_hsl_port->tx_timeout);
pr_info("SR: %08x\n", sr);
pr_info("ISR: %08x\n", isr);
pr_info("MR1: %08x\n", mr1);
pr_info("MR2: %08x\n", mr2);
pr_info("NCF: %08x\n", ncf);
pr_info("TXFS: %08x\n", txfs);
pr_info("RXFS: %08x\n", rxfs);
pr_info("Console state: %d\n", con_state);
}
/*
* Wait for transmitter & holding register to empty
* Derived from wait_for_xmitr in 8250 serial driver by Russell King */
static inline void wait_for_xmitr(struct uart_port *port)
{
struct msm_hsl_port *msm_hsl_port = UART_TO_MSM(port);
unsigned int vid = msm_hsl_port->ver_id;
int count = 0;
if (!(msm_hsl_read(port, regmap[vid][UARTDM_SR]) &
UARTDM_SR_TXEMT_BMSK)) {
while (!(msm_hsl_read(port, regmap[vid][UARTDM_ISR]) &
UARTDM_ISR_TX_READY_BMSK) &&
!(msm_hsl_read(port, regmap[vid][UARTDM_SR]) &
UARTDM_SR_TXEMT_BMSK)) {
udelay(1);
touch_nmi_watchdog();
cpu_relax();
if (++count == msm_hsl_port->tx_timeout) {
pr_info("%s: UART TX Stuck, Resetting TX\n",
__func__);
msm_hsl_write(port, RESET_TX,
regmap[vid][UARTDM_CR]);
mb();
dump_hsl_regs(port);
break;
}
}
msm_hsl_write(port, CLEAR_TX_READY, regmap[vid][UARTDM_CR]);
}
}
#ifdef CONFIG_SERIAL_MSM_HSL_CONSOLE
static void msm_hsl_console_putchar(struct uart_port *port, int ch)
{
unsigned int vid = UART_TO_MSM(port)->ver_id;
wait_for_xmitr(port);
msm_hsl_write(port, 1, regmap[vid][UARTDM_NCF_TX]);
/*
* Dummy read to add 1 AHB clock delay to fix UART hardware bug.
* Bug: Delay required on TX-transfer-init. after writing to
* NO_CHARS_FOR_TX register.
*/
msm_hsl_read(port, regmap[vid][UARTDM_SR]);
msm_hsl_write(port, ch, regmap[vid][UARTDM_TF]);
}
static void msm_hsl_console_write(struct console *co, const char *s,
unsigned int count)
{
struct uart_port *port;
struct msm_hsl_port *msm_hsl_port;
unsigned int vid;
int locked;
BUG_ON(co->index < 0 || co->index >= UART_NR);
port = get_port_from_line(co->index);
msm_hsl_port = UART_TO_MSM(port);
vid = msm_hsl_port->ver_id;
/* not pretty, but we can end up here via various convoluted paths */
if (port->sysrq || oops_in_progress)
locked = spin_trylock(&port->lock);
else {
locked = 1;
spin_lock(&port->lock);
}
msm_hsl_write(port, 0, regmap[vid][UARTDM_IMR]);
uart_console_write(port, s, count, msm_hsl_console_putchar);
msm_hsl_write(port, msm_hsl_port->imr, regmap[vid][UARTDM_IMR]);
if (locked == 1)
spin_unlock(&port->lock);
}
static int msm_hsl_console_setup(struct console *co, char *options)
{
struct uart_port *port;
unsigned int vid;
int baud = 0, flow, bits, parity, mr2;
int ret;
if (unlikely(co->index >= UART_NR || co->index < 0))
return -ENXIO;
port = get_port_from_line(co->index);
vid = UART_TO_MSM(port)->ver_id;
if (unlikely(!port->membase))
return -ENXIO;
port->cons = co;
pm_runtime_get_noresume(port->dev);
#ifndef CONFIG_PM_RUNTIME
msm_hsl_init_clock(port);
#endif
pm_runtime_resume(port->dev);
if (options)
uart_parse_options(options, &baud, &parity, &bits, &flow);
bits = 8;
parity = 'n';
flow = 'n';
msm_hsl_write(port, UARTDM_MR2_BITS_PER_CHAR_8 | STOP_BIT_ONE,
regmap[vid][UARTDM_MR2]); /* 8N1 */
if (baud < 300 || baud > 115200)
baud = 115200;
msm_hsl_set_baud_rate(port, baud);
ret = uart_set_options(port, co, baud, parity, bits, flow);
mr2 = msm_hsl_read(port, regmap[vid][UARTDM_MR2]);
mr2 |= UARTDM_MR2_RX_ERROR_CHAR_OFF;
mr2 |= UARTDM_MR2_RX_BREAK_ZERO_CHAR_OFF;
msm_hsl_write(port, mr2, regmap[vid][UARTDM_MR2]);
msm_hsl_reset(port);
/* Enable transmitter */
msm_hsl_write(port, CR_PROTECTION_EN, regmap[vid][UARTDM_CR]);
msm_hsl_write(port, UARTDM_CR_TX_EN_BMSK, regmap[vid][UARTDM_CR]);
msm_hsl_write(port, 1, regmap[vid][UARTDM_NCF_TX]);
msm_hsl_read(port, regmap[vid][UARTDM_NCF_TX]);
pr_info("console setup on port #%d\n", port->line);
return ret;
}
static struct uart_driver msm_hsl_uart_driver;
static struct console msm_hsl_console = {
.name = "ttyHSL",
.write = msm_hsl_console_write,
.device = uart_console_device,
.setup = msm_hsl_console_setup,
.flags = CON_PRINTBUFFER,
.index = -1,
.data = &msm_hsl_uart_driver,
};
#define MSM_HSL_CONSOLE (&msm_hsl_console)
/*
* get_console_state - check the per-port serial console state.
* @port: uart_port structure describing the port
*
* Return the state of serial console availability on port.
* return 1: If serial console is enabled on particular UART port.
* return 0: If serial console is disabled on particular UART port.
*/
static int get_console_state(struct uart_port *port)
{
if (is_console(port) && (port->cons->flags & CON_ENABLED))
return 1;
else
return 0;
}
/* show_msm_console - provide per-port serial console state. */
static ssize_t show_msm_console(struct device *dev,
struct device_attribute *attr, char *buf)
{
int enable;
struct uart_port *port;
struct platform_device *pdev = to_platform_device(dev);
port = get_port_from_line(get_line(pdev));
enable = get_console_state(port);
return snprintf(buf, sizeof(enable), "%d\n", enable);
}
/*
* set_msm_console - allow to enable/disable serial console on port.
*
* writing 1 enables serial console on UART port.
* writing 0 disables serial console on UART port.
*/
static ssize_t set_msm_console(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
int enable, cur_state;
struct uart_port *port;
struct platform_device *pdev = to_platform_device(dev);
port = get_port_from_line(get_line(pdev));
cur_state = get_console_state(port);
enable = buf[0] - '0';
if (enable == cur_state)
return count;
switch (enable) {
case 0:
pr_debug("Calling stop_console\n");
console_stop(port->cons);
pr_debug("Calling unregister_console\n");
unregister_console(port->cons);
pm_runtime_put_sync(&pdev->dev);
pm_runtime_disable(&pdev->dev);
/*
* Disable UART Core clk
* 3 - to disable the UART clock
* Thid parameter is not used here, but used in serial core.
*/
msm_hsl_power(port, 3, 1);
break;
case 1:
pr_debug("Calling register_console\n");
/*
* Disable UART Core clk
* 0 - to enable the UART clock
* Thid parameter is not used here, but used in serial core.
*/
msm_hsl_power(port, 0, 1);
pm_runtime_enable(&pdev->dev);
register_console(port->cons);
break;
default:
return -EINVAL;
}
return count;
}
static DEVICE_ATTR(console, S_IWUSR | S_IRUGO, show_msm_console,
set_msm_console);
#else
#define MSM_HSL_CONSOLE NULL
#endif
static struct uart_driver msm_hsl_uart_driver = {
.owner = THIS_MODULE,
.driver_name = "msm_serial_hsl",
.dev_name = "ttyHSL",
.nr = UART_NR,
.cons = MSM_HSL_CONSOLE,
};
static struct msm_serial_hslite_platform_data
*msm_hsl_dt_to_pdata(struct platform_device *pdev)
{
int ret;
struct device_node *node = pdev->dev.of_node;
struct msm_serial_hslite_platform_data *pdata;
pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
if (!pdata) {
pr_err("unable to allocate memory for platform data\n");
return ERR_PTR(-ENOMEM);
}
ret = of_property_read_u32(node, "qcom,config-gpio",
&pdata->config_gpio);
if (ret && ret != -EINVAL) {
pr_err("Error with config_gpio property.\n");
return ERR_PTR(ret);
}
if (pdata->config_gpio) {
pdata->uart_tx_gpio = of_get_named_gpio(node,
"qcom,tx-gpio", 0);
if (pdata->uart_tx_gpio < 0)
return ERR_PTR(pdata->uart_tx_gpio);
pdata->uart_rx_gpio = of_get_named_gpio(node,
"qcom,rx-gpio", 0);
if (pdata->uart_rx_gpio < 0)
return ERR_PTR(pdata->uart_rx_gpio);
/* check if 4-wire UART, then get cts/rfr GPIOs. */
if (pdata->config_gpio == 4) {
pdata->uart_cts_gpio = of_get_named_gpio(node,
"qcom,cts-gpio", 0);
if (pdata->uart_cts_gpio < 0)
return ERR_PTR(pdata->uart_cts_gpio);
pdata->uart_rfr_gpio = of_get_named_gpio(node,
"qcom,rfr-gpio", 0);
if (pdata->uart_rfr_gpio < 0)
return ERR_PTR(pdata->uart_rfr_gpio);
}
}
pdata->use_pm = of_property_read_bool(node, "qcom,use-pm");
return pdata;
}
static atomic_t msm_serial_hsl_next_id = ATOMIC_INIT(0);
static int msm_serial_hsl_probe(struct platform_device *pdev)
{
struct msm_hsl_port *msm_hsl_port;
struct resource *uart_resource;
struct resource *gsbi_resource;
struct uart_port *port;
struct msm_serial_hslite_platform_data *pdata;
const struct of_device_id *match;
u32 line;
int ret;
if (pdev->id == -1)
pdev->id = atomic_inc_return(&msm_serial_hsl_next_id) - 1;
/* Use line (ttyHSLx) number from pdata or device tree if specified */
pdata = pdev->dev.platform_data;
if (pdata)
line = pdata->line;
else
line = pdev->id;
/* Use line number from device tree alias if present */
if (pdev->dev.of_node) {
dev_dbg(&pdev->dev, "device tree enabled\n");
ret = of_alias_get_id(pdev->dev.of_node, "serial");
if (ret >= 0)
line = ret;
pdata = msm_hsl_dt_to_pdata(pdev);
if (IS_ERR(pdata))
return PTR_ERR(pdata);
pdev->dev.platform_data = pdata;
}
if (unlikely(line < 0 || line >= UART_NR))
return -ENXIO;
pr_info("detected port #%d (ttyHSL%d)\n", pdev->id, line);
port = get_port_from_line(line);
port->dev = &pdev->dev;
port->uartclk = 7372800;
msm_hsl_port = UART_TO_MSM(port);
msm_hsl_port->clk = clk_get(&pdev->dev, "core_clk");
if (unlikely(IS_ERR(msm_hsl_port->clk))) {
ret = PTR_ERR(msm_hsl_port->clk);
if (ret != -EPROBE_DEFER)
pr_err("Error getting clk\n");
return ret;
}
/* Interface clock is not required by all UART configurations.
* GSBI UART and BLSP UART needs interface clock but Legacy UART
* do not require interface clock. Hence, do not fail probe with
* iface clk_get failure.
*/
msm_hsl_port->pclk = clk_get(&pdev->dev, "iface_clk");
if (unlikely(IS_ERR(msm_hsl_port->pclk))) {
ret = PTR_ERR(msm_hsl_port->pclk);
if (ret == -EPROBE_DEFER) {
clk_put(msm_hsl_port->clk);
return ret;
} else {
msm_hsl_port->pclk = NULL;
}
}
/* Identify UART functional mode as 2-wire or 4-wire. */
if (pdata && pdata->config_gpio == 4)
msm_hsl_port->func_mode = UART_FOUR_WIRE;
else
msm_hsl_port->func_mode = UART_TWO_WIRE;
match = of_match_device(msm_hsl_match_table, &pdev->dev);
if (!match) {
msm_hsl_port->ver_id = UARTDM_VERSION_11_13;
} else {
msm_hsl_port->ver_id = (unsigned long)match->data;
/*
* BLSP based UART configuration is available with
* UARTDM v14 Revision. Hence set uart_type as UART_BLSP.
*/
msm_hsl_port->uart_type = BLSP_HSUART;
msm_hsl_port->bus_scale_table = msm_bus_cl_get_pdata(pdev);
if (!msm_hsl_port->bus_scale_table) {
pr_err("Bus scaling is disabled\n");
} else {
msm_hsl_port->bus_perf_client =
msm_bus_scale_register_client(
msm_hsl_port->bus_scale_table);
if (IS_ERR(&msm_hsl_port->bus_perf_client)) {
pr_err("Bus client register failed.\n");
ret = -EINVAL;
goto err;
}
}
}
gsbi_resource = platform_get_resource_byname(pdev,
IORESOURCE_MEM,
"gsbi_resource");
if (!gsbi_resource)
gsbi_resource = platform_get_resource(pdev, IORESOURCE_MEM, 1);
if (gsbi_resource)
msm_hsl_port->uart_type = GSBI_HSUART;
else
msm_hsl_port->uart_type = LEGACY_HSUART;
uart_resource = platform_get_resource_byname(pdev,
IORESOURCE_MEM,
"uartdm_resource");
if (!uart_resource)
uart_resource = platform_get_resource(pdev, IORESOURCE_MEM, 0);
if (unlikely(!uart_resource)) {
pr_err("getting uartdm_resource failed\n");
return -ENXIO;
}
port->mapbase = uart_resource->start;
port->irq = platform_get_irq(pdev, 0);
if (unlikely((int)port->irq < 0)) {
pr_err("getting irq failed\n");
return -ENXIO;
}
device_set_wakeup_capable(&pdev->dev, 1);
platform_set_drvdata(pdev, port);
pm_runtime_enable(port->dev);
#ifdef CONFIG_SERIAL_MSM_HSL_CONSOLE
ret = device_create_file(&pdev->dev, &dev_attr_console);
if (unlikely(ret))
pr_err("Can't create console attribute\n");
#endif
msm_hsl_debugfs_init(msm_hsl_port, get_line(pdev));
mutex_init(&msm_hsl_port->clk_mutex);
if (pdata && pdata->use_pm)
wake_lock_init(&msm_hsl_port->port_open_wake_lock,
WAKE_LOCK_SUSPEND,
"msm_serial_hslite_port_open");
/* Temporarily increase the refcount on the GSBI clock to avoid a race
* condition with the earlyprintk handover mechanism.
*/
if (msm_hsl_port->pclk)
clk_prepare_enable(msm_hsl_port->pclk);
ret = uart_add_one_port(&msm_hsl_uart_driver, port);
if (msm_hsl_port->pclk)
clk_disable_unprepare(msm_hsl_port->pclk);
err:
return ret;
}
static int msm_serial_hsl_remove(struct platform_device *pdev)
{
struct msm_hsl_port *msm_hsl_port = platform_get_drvdata(pdev);
const struct msm_serial_hslite_platform_data *pdata =
pdev->dev.platform_data;
struct uart_port *port;
port = get_port_from_line(get_line(pdev));
#ifdef CONFIG_SERIAL_MSM_HSL_CONSOLE
device_remove_file(&pdev->dev, &dev_attr_console);
#endif
pm_runtime_put_sync(&pdev->dev);
pm_runtime_disable(&pdev->dev);
if (pdata && pdata->use_pm)
wake_lock_destroy(&msm_hsl_port->port_open_wake_lock);
device_set_wakeup_capable(&pdev->dev, 0);
platform_set_drvdata(pdev, NULL);
mutex_destroy(&msm_hsl_port->clk_mutex);
uart_remove_one_port(&msm_hsl_uart_driver, port);
clk_put(msm_hsl_port->pclk);
clk_put(msm_hsl_port->clk);
debugfs_remove(msm_hsl_port->loopback_dir);
return 0;
}
#ifdef CONFIG_PM
static int msm_serial_hsl_suspend(struct device *dev)
{
struct platform_device *pdev = to_platform_device(dev);
struct uart_port *port;
port = get_port_from_line(get_line(pdev));
if (port) {
if (is_console(port))
msm_hsl_deinit_clock(port);
uart_suspend_port(&msm_hsl_uart_driver, port);
if (device_may_wakeup(dev))
enable_irq_wake(port->irq);
}
return 0;
}
static int msm_serial_hsl_resume(struct device *dev)
{
struct platform_device *pdev = to_platform_device(dev);
struct uart_port *port;
port = get_port_from_line(get_line(pdev));
if (port) {
uart_resume_port(&msm_hsl_uart_driver, port);
if (device_may_wakeup(dev))
disable_irq_wake(port->irq);
if (is_console(port))
msm_hsl_init_clock(port);
}
return 0;
}
#else
#define msm_serial_hsl_suspend NULL
#define msm_serial_hsl_resume NULL
#endif
static int msm_hsl_runtime_suspend(struct device *dev)
{
struct platform_device *pdev = to_platform_device(dev);
struct uart_port *port;
port = get_port_from_line(get_line(pdev));
dev_dbg(dev, "pm_runtime: suspending\n");
msm_hsl_deinit_clock(port);
return 0;
}
static int msm_hsl_runtime_resume(struct device *dev)
{
struct platform_device *pdev = to_platform_device(dev);
struct uart_port *port;
port = get_port_from_line(get_line(pdev));
dev_dbg(dev, "pm_runtime: resuming\n");
msm_hsl_init_clock(port);
return 0;
}
static struct dev_pm_ops msm_hsl_dev_pm_ops = {
.suspend = msm_serial_hsl_suspend,
.resume = msm_serial_hsl_resume,
.runtime_suspend = msm_hsl_runtime_suspend,
.runtime_resume = msm_hsl_runtime_resume,
};
static struct platform_driver msm_hsl_platform_driver = {
.probe = msm_serial_hsl_probe,
.remove = msm_serial_hsl_remove,
.driver = {
.name = "msm_serial_hsl",
.owner = THIS_MODULE,
.pm = &msm_hsl_dev_pm_ops,
.of_match_table = msm_hsl_match_table,
},
};
static int __init msm_serial_hsl_init(void)
{
int ret;
ret = uart_register_driver(&msm_hsl_uart_driver);
if (unlikely(ret))
return ret;
debug_base = debugfs_create_dir("msm_serial_hsl", NULL);
if (IS_ERR_OR_NULL(debug_base))
pr_err("Cannot create debugfs dir\n");
ret = platform_driver_register(&msm_hsl_platform_driver);
if (unlikely(ret))
uart_unregister_driver(&msm_hsl_uart_driver);
pr_info("driver initialized\n");
return ret;
}
static void __exit msm_serial_hsl_exit(void)
{
debugfs_remove_recursive(debug_base);
#ifdef CONFIG_SERIAL_MSM_HSL_CONSOLE
unregister_console(&msm_hsl_console);
#endif
platform_driver_unregister(&msm_hsl_platform_driver);
uart_unregister_driver(&msm_hsl_uart_driver);
}
module_init(msm_serial_hsl_init);
module_exit(msm_serial_hsl_exit);
MODULE_DESCRIPTION("Driver for msm HSUART serial device");
MODULE_LICENSE("GPL v2");