android_kernel_samsung_msm8976/drivers/gpu/drm/radeon/r100.c

4118 lines
116 KiB
C
Raw Normal View History

drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 12:42:42 +00:00
/*
* Copyright 2008 Advanced Micro Devices, Inc.
* Copyright 2008 Red Hat Inc.
* Copyright 2009 Jerome Glisse.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: Dave Airlie
* Alex Deucher
* Jerome Glisse
*/
#include <linux/seq_file.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 08:04:11 +00:00
#include <linux/slab.h>
#include <drm/drmP.h>
#include <drm/radeon_drm.h>
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 12:42:42 +00:00
#include "radeon_reg.h"
#include "radeon.h"
#include "radeon_asic.h"
#include "r100d.h"
#include "rs100d.h"
#include "rv200d.h"
#include "rv250d.h"
#include "atom.h"
#include <linux/firmware.h>
#include <linux/platform_device.h>
#include <linux/module.h>
#include "r100_reg_safe.h"
#include "rn50_reg_safe.h"
/* Firmware Names */
#define FIRMWARE_R100 "radeon/R100_cp.bin"
#define FIRMWARE_R200 "radeon/R200_cp.bin"
#define FIRMWARE_R300 "radeon/R300_cp.bin"
#define FIRMWARE_R420 "radeon/R420_cp.bin"
#define FIRMWARE_RS690 "radeon/RS690_cp.bin"
#define FIRMWARE_RS600 "radeon/RS600_cp.bin"
#define FIRMWARE_R520 "radeon/R520_cp.bin"
MODULE_FIRMWARE(FIRMWARE_R100);
MODULE_FIRMWARE(FIRMWARE_R200);
MODULE_FIRMWARE(FIRMWARE_R300);
MODULE_FIRMWARE(FIRMWARE_R420);
MODULE_FIRMWARE(FIRMWARE_RS690);
MODULE_FIRMWARE(FIRMWARE_RS600);
MODULE_FIRMWARE(FIRMWARE_R520);
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 12:42:42 +00:00
#include "r100_track.h"
/* This files gather functions specifics to:
* r100,rv100,rs100,rv200,rs200,r200,rv250,rs300,rv280
* and others in some cases.
*/
static bool r100_is_in_vblank(struct radeon_device *rdev, int crtc)
{
if (crtc == 0) {
if (RREG32(RADEON_CRTC_STATUS) & RADEON_CRTC_VBLANK_CUR)
return true;
else
return false;
} else {
if (RREG32(RADEON_CRTC2_STATUS) & RADEON_CRTC2_VBLANK_CUR)
return true;
else
return false;
}
}
static bool r100_is_counter_moving(struct radeon_device *rdev, int crtc)
{
u32 vline1, vline2;
if (crtc == 0) {
vline1 = (RREG32(RADEON_CRTC_VLINE_CRNT_VLINE) >> 16) & RADEON_CRTC_V_TOTAL;
vline2 = (RREG32(RADEON_CRTC_VLINE_CRNT_VLINE) >> 16) & RADEON_CRTC_V_TOTAL;
} else {
vline1 = (RREG32(RADEON_CRTC2_VLINE_CRNT_VLINE) >> 16) & RADEON_CRTC_V_TOTAL;
vline2 = (RREG32(RADEON_CRTC2_VLINE_CRNT_VLINE) >> 16) & RADEON_CRTC_V_TOTAL;
}
if (vline1 != vline2)
return true;
else
return false;
}
/**
* r100_wait_for_vblank - vblank wait asic callback.
*
* @rdev: radeon_device pointer
* @crtc: crtc to wait for vblank on
*
* Wait for vblank on the requested crtc (r1xx-r4xx).
*/
void r100_wait_for_vblank(struct radeon_device *rdev, int crtc)
{
unsigned i = 0;
if (crtc >= rdev->num_crtc)
return;
if (crtc == 0) {
if (!(RREG32(RADEON_CRTC_GEN_CNTL) & RADEON_CRTC_EN))
return;
} else {
if (!(RREG32(RADEON_CRTC2_GEN_CNTL) & RADEON_CRTC2_EN))
return;
}
/* depending on when we hit vblank, we may be close to active; if so,
* wait for another frame.
*/
while (r100_is_in_vblank(rdev, crtc)) {
if (i++ % 100 == 0) {
if (!r100_is_counter_moving(rdev, crtc))
break;
}
}
while (!r100_is_in_vblank(rdev, crtc)) {
if (i++ % 100 == 0) {
if (!r100_is_counter_moving(rdev, crtc))
break;
}
}
}
/**
* r100_pre_page_flip - pre-pageflip callback.
*
* @rdev: radeon_device pointer
* @crtc: crtc to prepare for pageflip on
*
* Pre-pageflip callback (r1xx-r4xx).
* Enables the pageflip irq (vblank irq).
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 12:42:42 +00:00
*/
void r100_pre_page_flip(struct radeon_device *rdev, int crtc)
{
/* enable the pflip int */
radeon_irq_kms_pflip_irq_get(rdev, crtc);
}
/**
* r100_post_page_flip - pos-pageflip callback.
*
* @rdev: radeon_device pointer
* @crtc: crtc to cleanup pageflip on
*
* Post-pageflip callback (r1xx-r4xx).
* Disables the pageflip irq (vblank irq).
*/
void r100_post_page_flip(struct radeon_device *rdev, int crtc)
{
/* disable the pflip int */
radeon_irq_kms_pflip_irq_put(rdev, crtc);
}
/**
* r100_page_flip - pageflip callback.
*
* @rdev: radeon_device pointer
* @crtc_id: crtc to cleanup pageflip on
* @crtc_base: new address of the crtc (GPU MC address)
*
* Does the actual pageflip (r1xx-r4xx).
* During vblank we take the crtc lock and wait for the update_pending
* bit to go high, when it does, we release the lock, and allow the
* double buffered update to take place.
* Returns the current update pending status.
*/
u32 r100_page_flip(struct radeon_device *rdev, int crtc_id, u64 crtc_base)
{
struct radeon_crtc *radeon_crtc = rdev->mode_info.crtcs[crtc_id];
u32 tmp = ((u32)crtc_base) | RADEON_CRTC_OFFSET__OFFSET_LOCK;
int i;
/* Lock the graphics update lock */
/* update the scanout addresses */
WREG32(RADEON_CRTC_OFFSET + radeon_crtc->crtc_offset, tmp);
/* Wait for update_pending to go high. */
for (i = 0; i < rdev->usec_timeout; i++) {
if (RREG32(RADEON_CRTC_OFFSET + radeon_crtc->crtc_offset) & RADEON_CRTC_OFFSET__GUI_TRIG_OFFSET)
break;
udelay(1);
}
DRM_DEBUG("Update pending now high. Unlocking vupdate_lock.\n");
/* Unlock the lock, so double-buffering can take place inside vblank */
tmp &= ~RADEON_CRTC_OFFSET__OFFSET_LOCK;
WREG32(RADEON_CRTC_OFFSET + radeon_crtc->crtc_offset, tmp);
/* Return current update_pending status: */
return RREG32(RADEON_CRTC_OFFSET + radeon_crtc->crtc_offset) & RADEON_CRTC_OFFSET__GUI_TRIG_OFFSET;
}
/**
* r100_pm_get_dynpm_state - look up dynpm power state callback.
*
* @rdev: radeon_device pointer
*
* Look up the optimal power state based on the
* current state of the GPU (r1xx-r5xx).
* Used for dynpm only.
*/
void r100_pm_get_dynpm_state(struct radeon_device *rdev)
{
int i;
rdev->pm.dynpm_can_upclock = true;
rdev->pm.dynpm_can_downclock = true;
switch (rdev->pm.dynpm_planned_action) {
case DYNPM_ACTION_MINIMUM:
rdev->pm.requested_power_state_index = 0;
rdev->pm.dynpm_can_downclock = false;
break;
case DYNPM_ACTION_DOWNCLOCK:
if (rdev->pm.current_power_state_index == 0) {
rdev->pm.requested_power_state_index = rdev->pm.current_power_state_index;
rdev->pm.dynpm_can_downclock = false;
} else {
if (rdev->pm.active_crtc_count > 1) {
for (i = 0; i < rdev->pm.num_power_states; i++) {
if (rdev->pm.power_state[i].flags & RADEON_PM_STATE_SINGLE_DISPLAY_ONLY)
continue;
else if (i >= rdev->pm.current_power_state_index) {
rdev->pm.requested_power_state_index = rdev->pm.current_power_state_index;
break;
} else {
rdev->pm.requested_power_state_index = i;
break;
}
}
} else
rdev->pm.requested_power_state_index =
rdev->pm.current_power_state_index - 1;
}
/* don't use the power state if crtcs are active and no display flag is set */
if ((rdev->pm.active_crtc_count > 0) &&
(rdev->pm.power_state[rdev->pm.requested_power_state_index].clock_info[0].flags &
RADEON_PM_MODE_NO_DISPLAY)) {
rdev->pm.requested_power_state_index++;
}
break;
case DYNPM_ACTION_UPCLOCK:
if (rdev->pm.current_power_state_index == (rdev->pm.num_power_states - 1)) {
rdev->pm.requested_power_state_index = rdev->pm.current_power_state_index;
rdev->pm.dynpm_can_upclock = false;
} else {
if (rdev->pm.active_crtc_count > 1) {
for (i = (rdev->pm.num_power_states - 1); i >= 0; i--) {
if (rdev->pm.power_state[i].flags & RADEON_PM_STATE_SINGLE_DISPLAY_ONLY)
continue;
else if (i <= rdev->pm.current_power_state_index) {
rdev->pm.requested_power_state_index = rdev->pm.current_power_state_index;
break;
} else {
rdev->pm.requested_power_state_index = i;
break;
}
}
} else
rdev->pm.requested_power_state_index =
rdev->pm.current_power_state_index + 1;
}
break;
case DYNPM_ACTION_DEFAULT:
rdev->pm.requested_power_state_index = rdev->pm.default_power_state_index;
rdev->pm.dynpm_can_upclock = false;
break;
case DYNPM_ACTION_NONE:
default:
DRM_ERROR("Requested mode for not defined action\n");
return;
}
/* only one clock mode per power state */
rdev->pm.requested_clock_mode_index = 0;
DRM_DEBUG_DRIVER("Requested: e: %d m: %d p: %d\n",
rdev->pm.power_state[rdev->pm.requested_power_state_index].
clock_info[rdev->pm.requested_clock_mode_index].sclk,
rdev->pm.power_state[rdev->pm.requested_power_state_index].
clock_info[rdev->pm.requested_clock_mode_index].mclk,
rdev->pm.power_state[rdev->pm.requested_power_state_index].
pcie_lanes);
}
/**
* r100_pm_init_profile - Initialize power profiles callback.
*
* @rdev: radeon_device pointer
*
* Initialize the power states used in profile mode
* (r1xx-r3xx).
* Used for profile mode only.
*/
void r100_pm_init_profile(struct radeon_device *rdev)
{
/* default */
rdev->pm.profiles[PM_PROFILE_DEFAULT_IDX].dpms_off_ps_idx = rdev->pm.default_power_state_index;
rdev->pm.profiles[PM_PROFILE_DEFAULT_IDX].dpms_on_ps_idx = rdev->pm.default_power_state_index;
rdev->pm.profiles[PM_PROFILE_DEFAULT_IDX].dpms_off_cm_idx = 0;
rdev->pm.profiles[PM_PROFILE_DEFAULT_IDX].dpms_on_cm_idx = 0;
/* low sh */
rdev->pm.profiles[PM_PROFILE_LOW_SH_IDX].dpms_off_ps_idx = 0;
rdev->pm.profiles[PM_PROFILE_LOW_SH_IDX].dpms_on_ps_idx = 0;
rdev->pm.profiles[PM_PROFILE_LOW_SH_IDX].dpms_off_cm_idx = 0;
rdev->pm.profiles[PM_PROFILE_LOW_SH_IDX].dpms_on_cm_idx = 0;
/* mid sh */
rdev->pm.profiles[PM_PROFILE_MID_SH_IDX].dpms_off_ps_idx = 0;
rdev->pm.profiles[PM_PROFILE_MID_SH_IDX].dpms_on_ps_idx = 0;
rdev->pm.profiles[PM_PROFILE_MID_SH_IDX].dpms_off_cm_idx = 0;
rdev->pm.profiles[PM_PROFILE_MID_SH_IDX].dpms_on_cm_idx = 0;
/* high sh */
rdev->pm.profiles[PM_PROFILE_HIGH_SH_IDX].dpms_off_ps_idx = 0;
rdev->pm.profiles[PM_PROFILE_HIGH_SH_IDX].dpms_on_ps_idx = rdev->pm.default_power_state_index;
rdev->pm.profiles[PM_PROFILE_HIGH_SH_IDX].dpms_off_cm_idx = 0;
rdev->pm.profiles[PM_PROFILE_HIGH_SH_IDX].dpms_on_cm_idx = 0;
/* low mh */
rdev->pm.profiles[PM_PROFILE_LOW_MH_IDX].dpms_off_ps_idx = 0;
rdev->pm.profiles[PM_PROFILE_LOW_MH_IDX].dpms_on_ps_idx = rdev->pm.default_power_state_index;
rdev->pm.profiles[PM_PROFILE_LOW_MH_IDX].dpms_off_cm_idx = 0;
rdev->pm.profiles[PM_PROFILE_LOW_MH_IDX].dpms_on_cm_idx = 0;
/* mid mh */
rdev->pm.profiles[PM_PROFILE_MID_MH_IDX].dpms_off_ps_idx = 0;
rdev->pm.profiles[PM_PROFILE_MID_MH_IDX].dpms_on_ps_idx = rdev->pm.default_power_state_index;
rdev->pm.profiles[PM_PROFILE_MID_MH_IDX].dpms_off_cm_idx = 0;
rdev->pm.profiles[PM_PROFILE_MID_MH_IDX].dpms_on_cm_idx = 0;
/* high mh */
rdev->pm.profiles[PM_PROFILE_HIGH_MH_IDX].dpms_off_ps_idx = 0;
rdev->pm.profiles[PM_PROFILE_HIGH_MH_IDX].dpms_on_ps_idx = rdev->pm.default_power_state_index;
rdev->pm.profiles[PM_PROFILE_HIGH_MH_IDX].dpms_off_cm_idx = 0;
rdev->pm.profiles[PM_PROFILE_HIGH_MH_IDX].dpms_on_cm_idx = 0;
}
/**
* r100_pm_misc - set additional pm hw parameters callback.
*
* @rdev: radeon_device pointer
*
* Set non-clock parameters associated with a power state
* (voltage, pcie lanes, etc.) (r1xx-r4xx).
*/
void r100_pm_misc(struct radeon_device *rdev)
{
int requested_index = rdev->pm.requested_power_state_index;
struct radeon_power_state *ps = &rdev->pm.power_state[requested_index];
struct radeon_voltage *voltage = &ps->clock_info[0].voltage;
u32 tmp, sclk_cntl, sclk_cntl2, sclk_more_cntl;
if ((voltage->type == VOLTAGE_GPIO) && (voltage->gpio.valid)) {
if (ps->misc & ATOM_PM_MISCINFO_VOLTAGE_DROP_SUPPORT) {
tmp = RREG32(voltage->gpio.reg);
if (voltage->active_high)
tmp |= voltage->gpio.mask;
else
tmp &= ~(voltage->gpio.mask);
WREG32(voltage->gpio.reg, tmp);
if (voltage->delay)
udelay(voltage->delay);
} else {
tmp = RREG32(voltage->gpio.reg);
if (voltage->active_high)
tmp &= ~voltage->gpio.mask;
else
tmp |= voltage->gpio.mask;
WREG32(voltage->gpio.reg, tmp);
if (voltage->delay)
udelay(voltage->delay);
}
}
sclk_cntl = RREG32_PLL(SCLK_CNTL);
sclk_cntl2 = RREG32_PLL(SCLK_CNTL2);
sclk_cntl2 &= ~REDUCED_SPEED_SCLK_SEL(3);
sclk_more_cntl = RREG32_PLL(SCLK_MORE_CNTL);
sclk_more_cntl &= ~VOLTAGE_DELAY_SEL(3);
if (ps->misc & ATOM_PM_MISCINFO_ASIC_REDUCED_SPEED_SCLK_EN) {
sclk_more_cntl |= REDUCED_SPEED_SCLK_EN;
if (ps->misc & ATOM_PM_MISCINFO_DYN_CLK_3D_IDLE)
sclk_cntl2 |= REDUCED_SPEED_SCLK_MODE;
else
sclk_cntl2 &= ~REDUCED_SPEED_SCLK_MODE;
if (ps->misc & ATOM_PM_MISCINFO_DYNAMIC_CLOCK_DIVIDER_BY_2)
sclk_cntl2 |= REDUCED_SPEED_SCLK_SEL(0);
else if (ps->misc & ATOM_PM_MISCINFO_DYNAMIC_CLOCK_DIVIDER_BY_4)
sclk_cntl2 |= REDUCED_SPEED_SCLK_SEL(2);
} else
sclk_more_cntl &= ~REDUCED_SPEED_SCLK_EN;
if (ps->misc & ATOM_PM_MISCINFO_ASIC_DYNAMIC_VOLTAGE_EN) {
sclk_more_cntl |= IO_CG_VOLTAGE_DROP;
if (voltage->delay) {
sclk_more_cntl |= VOLTAGE_DROP_SYNC;
switch (voltage->delay) {
case 33:
sclk_more_cntl |= VOLTAGE_DELAY_SEL(0);
break;
case 66:
sclk_more_cntl |= VOLTAGE_DELAY_SEL(1);
break;
case 99:
sclk_more_cntl |= VOLTAGE_DELAY_SEL(2);
break;
case 132:
sclk_more_cntl |= VOLTAGE_DELAY_SEL(3);
break;
}
} else
sclk_more_cntl &= ~VOLTAGE_DROP_SYNC;
} else
sclk_more_cntl &= ~IO_CG_VOLTAGE_DROP;
if (ps->misc & ATOM_PM_MISCINFO_DYNAMIC_HDP_BLOCK_EN)
sclk_cntl &= ~FORCE_HDP;
else
sclk_cntl |= FORCE_HDP;
WREG32_PLL(SCLK_CNTL, sclk_cntl);
WREG32_PLL(SCLK_CNTL2, sclk_cntl2);
WREG32_PLL(SCLK_MORE_CNTL, sclk_more_cntl);
/* set pcie lanes */
if ((rdev->flags & RADEON_IS_PCIE) &&
!(rdev->flags & RADEON_IS_IGP) &&
rdev->asic->pm.set_pcie_lanes &&
(ps->pcie_lanes !=
rdev->pm.power_state[rdev->pm.current_power_state_index].pcie_lanes)) {
radeon_set_pcie_lanes(rdev,
ps->pcie_lanes);
DRM_DEBUG_DRIVER("Setting: p: %d\n", ps->pcie_lanes);
}
}
/**
* r100_pm_prepare - pre-power state change callback.
*
* @rdev: radeon_device pointer
*
* Prepare for a power state change (r1xx-r4xx).
*/
void r100_pm_prepare(struct radeon_device *rdev)
{
struct drm_device *ddev = rdev->ddev;
struct drm_crtc *crtc;
struct radeon_crtc *radeon_crtc;
u32 tmp;
/* disable any active CRTCs */
list_for_each_entry(crtc, &ddev->mode_config.crtc_list, head) {
radeon_crtc = to_radeon_crtc(crtc);
if (radeon_crtc->enabled) {
if (radeon_crtc->crtc_id) {
tmp = RREG32(RADEON_CRTC2_GEN_CNTL);
tmp |= RADEON_CRTC2_DISP_REQ_EN_B;
WREG32(RADEON_CRTC2_GEN_CNTL, tmp);
} else {
tmp = RREG32(RADEON_CRTC_GEN_CNTL);
tmp |= RADEON_CRTC_DISP_REQ_EN_B;
WREG32(RADEON_CRTC_GEN_CNTL, tmp);
}
}
}
}
/**
* r100_pm_finish - post-power state change callback.
*
* @rdev: radeon_device pointer
*
* Clean up after a power state change (r1xx-r4xx).
*/
void r100_pm_finish(struct radeon_device *rdev)
{
struct drm_device *ddev = rdev->ddev;
struct drm_crtc *crtc;
struct radeon_crtc *radeon_crtc;
u32 tmp;
/* enable any active CRTCs */
list_for_each_entry(crtc, &ddev->mode_config.crtc_list, head) {
radeon_crtc = to_radeon_crtc(crtc);
if (radeon_crtc->enabled) {
if (radeon_crtc->crtc_id) {
tmp = RREG32(RADEON_CRTC2_GEN_CNTL);
tmp &= ~RADEON_CRTC2_DISP_REQ_EN_B;
WREG32(RADEON_CRTC2_GEN_CNTL, tmp);
} else {
tmp = RREG32(RADEON_CRTC_GEN_CNTL);
tmp &= ~RADEON_CRTC_DISP_REQ_EN_B;
WREG32(RADEON_CRTC_GEN_CNTL, tmp);
}
}
}
}
/**
* r100_gui_idle - gui idle callback.
*
* @rdev: radeon_device pointer
*
* Check of the GUI (2D/3D engines) are idle (r1xx-r5xx).
* Returns true if idle, false if not.
*/
bool r100_gui_idle(struct radeon_device *rdev)
{
if (RREG32(RADEON_RBBM_STATUS) & RADEON_RBBM_ACTIVE)
return false;
else
return true;
}
/* hpd for digital panel detect/disconnect */
/**
* r100_hpd_sense - hpd sense callback.
*
* @rdev: radeon_device pointer
* @hpd: hpd (hotplug detect) pin
*
* Checks if a digital monitor is connected (r1xx-r4xx).
* Returns true if connected, false if not connected.
*/
bool r100_hpd_sense(struct radeon_device *rdev, enum radeon_hpd_id hpd)
{
bool connected = false;
switch (hpd) {
case RADEON_HPD_1:
if (RREG32(RADEON_FP_GEN_CNTL) & RADEON_FP_DETECT_SENSE)
connected = true;
break;
case RADEON_HPD_2:
if (RREG32(RADEON_FP2_GEN_CNTL) & RADEON_FP2_DETECT_SENSE)
connected = true;
break;
default:
break;
}
return connected;
}
/**
* r100_hpd_set_polarity - hpd set polarity callback.
*
* @rdev: radeon_device pointer
* @hpd: hpd (hotplug detect) pin
*
* Set the polarity of the hpd pin (r1xx-r4xx).
*/
void r100_hpd_set_polarity(struct radeon_device *rdev,
enum radeon_hpd_id hpd)
{
u32 tmp;
bool connected = r100_hpd_sense(rdev, hpd);
switch (hpd) {
case RADEON_HPD_1:
tmp = RREG32(RADEON_FP_GEN_CNTL);
if (connected)
tmp &= ~RADEON_FP_DETECT_INT_POL;
else
tmp |= RADEON_FP_DETECT_INT_POL;
WREG32(RADEON_FP_GEN_CNTL, tmp);
break;
case RADEON_HPD_2:
tmp = RREG32(RADEON_FP2_GEN_CNTL);
if (connected)
tmp &= ~RADEON_FP2_DETECT_INT_POL;
else
tmp |= RADEON_FP2_DETECT_INT_POL;
WREG32(RADEON_FP2_GEN_CNTL, tmp);
break;
default:
break;
}
}
/**
* r100_hpd_init - hpd setup callback.
*
* @rdev: radeon_device pointer
*
* Setup the hpd pins used by the card (r1xx-r4xx).
* Set the polarity, and enable the hpd interrupts.
*/
void r100_hpd_init(struct radeon_device *rdev)
{
struct drm_device *dev = rdev->ddev;
struct drm_connector *connector;
unsigned enable = 0;
list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
struct radeon_connector *radeon_connector = to_radeon_connector(connector);
enable |= 1 << radeon_connector->hpd.hpd;
radeon_hpd_set_polarity(rdev, radeon_connector->hpd.hpd);
}
radeon_irq_kms_enable_hpd(rdev, enable);
}
/**
* r100_hpd_fini - hpd tear down callback.
*
* @rdev: radeon_device pointer
*
* Tear down the hpd pins used by the card (r1xx-r4xx).
* Disable the hpd interrupts.
*/
void r100_hpd_fini(struct radeon_device *rdev)
{
struct drm_device *dev = rdev->ddev;
struct drm_connector *connector;
unsigned disable = 0;
list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
struct radeon_connector *radeon_connector = to_radeon_connector(connector);
disable |= 1 << radeon_connector->hpd.hpd;
}
radeon_irq_kms_disable_hpd(rdev, disable);
}
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 12:42:42 +00:00
/*
* PCI GART
*/
void r100_pci_gart_tlb_flush(struct radeon_device *rdev)
{
/* TODO: can we do somethings here ? */
/* It seems hw only cache one entry so we should discard this
* entry otherwise if first GPU GART read hit this entry it
* could end up in wrong address. */
}
int r100_pci_gart_init(struct radeon_device *rdev)
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 12:42:42 +00:00
{
int r;
if (rdev->gart.ptr) {
WARN(1, "R100 PCI GART already initialized\n");
return 0;
}
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 12:42:42 +00:00
/* Initialize common gart structure */
r = radeon_gart_init(rdev);
if (r)
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 12:42:42 +00:00
return r;
rdev->gart.table_size = rdev->gart.num_gpu_pages * 4;
rdev->asic->gart.tlb_flush = &r100_pci_gart_tlb_flush;
rdev->asic->gart.set_page = &r100_pci_gart_set_page;
return radeon_gart_table_ram_alloc(rdev);
}
int r100_pci_gart_enable(struct radeon_device *rdev)
{
uint32_t tmp;
radeon_gart_restore(rdev);
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 12:42:42 +00:00
/* discard memory request outside of configured range */
tmp = RREG32(RADEON_AIC_CNTL) | RADEON_DIS_OUT_OF_PCI_GART_ACCESS;
WREG32(RADEON_AIC_CNTL, tmp);
/* set address range for PCI address translate */
WREG32(RADEON_AIC_LO_ADDR, rdev->mc.gtt_start);
WREG32(RADEON_AIC_HI_ADDR, rdev->mc.gtt_end);
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 12:42:42 +00:00
/* set PCI GART page-table base address */
WREG32(RADEON_AIC_PT_BASE, rdev->gart.table_addr);
tmp = RREG32(RADEON_AIC_CNTL) | RADEON_PCIGART_TRANSLATE_EN;
WREG32(RADEON_AIC_CNTL, tmp);
r100_pci_gart_tlb_flush(rdev);
DRM_INFO("PCI GART of %uM enabled (table at 0x%016llX).\n",
(unsigned)(rdev->mc.gtt_size >> 20),
(unsigned long long)rdev->gart.table_addr);
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 12:42:42 +00:00
rdev->gart.ready = true;
return 0;
}
void r100_pci_gart_disable(struct radeon_device *rdev)
{
uint32_t tmp;
/* discard memory request outside of configured range */
tmp = RREG32(RADEON_AIC_CNTL) | RADEON_DIS_OUT_OF_PCI_GART_ACCESS;
WREG32(RADEON_AIC_CNTL, tmp & ~RADEON_PCIGART_TRANSLATE_EN);
WREG32(RADEON_AIC_LO_ADDR, 0);
WREG32(RADEON_AIC_HI_ADDR, 0);
}
int r100_pci_gart_set_page(struct radeon_device *rdev, int i, uint64_t addr)
{
u32 *gtt = rdev->gart.ptr;
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 12:42:42 +00:00
if (i < 0 || i > rdev->gart.num_gpu_pages) {
return -EINVAL;
}
gtt[i] = cpu_to_le32(lower_32_bits(addr));
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 12:42:42 +00:00
return 0;
}
void r100_pci_gart_fini(struct radeon_device *rdev)
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 12:42:42 +00:00
{
radeon_gart_fini(rdev);
r100_pci_gart_disable(rdev);
radeon_gart_table_ram_free(rdev);
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 12:42:42 +00:00
}
int r100_irq_set(struct radeon_device *rdev)
{
uint32_t tmp = 0;
if (!rdev->irq.installed) {
WARN(1, "Can't enable IRQ/MSI because no handler is installed\n");
WREG32(R_000040_GEN_INT_CNTL, 0);
return -EINVAL;
}
if (atomic_read(&rdev->irq.ring_int[RADEON_RING_TYPE_GFX_INDEX])) {
tmp |= RADEON_SW_INT_ENABLE;
}
if (rdev->irq.crtc_vblank_int[0] ||
atomic_read(&rdev->irq.pflip[0])) {
tmp |= RADEON_CRTC_VBLANK_MASK;
}
if (rdev->irq.crtc_vblank_int[1] ||
atomic_read(&rdev->irq.pflip[1])) {
tmp |= RADEON_CRTC2_VBLANK_MASK;
}
if (rdev->irq.hpd[0]) {
tmp |= RADEON_FP_DETECT_MASK;
}
if (rdev->irq.hpd[1]) {
tmp |= RADEON_FP2_DETECT_MASK;
}
WREG32(RADEON_GEN_INT_CNTL, tmp);
/* read back to post the write */
RREG32(RADEON_GEN_INT_CNTL);
return 0;
}
void r100_irq_disable(struct radeon_device *rdev)
{
u32 tmp;
WREG32(R_000040_GEN_INT_CNTL, 0);
/* Wait and acknowledge irq */
mdelay(1);
tmp = RREG32(R_000044_GEN_INT_STATUS);
WREG32(R_000044_GEN_INT_STATUS, tmp);
}
static uint32_t r100_irq_ack(struct radeon_device *rdev)
{
uint32_t irqs = RREG32(RADEON_GEN_INT_STATUS);
uint32_t irq_mask = RADEON_SW_INT_TEST |
RADEON_CRTC_VBLANK_STAT | RADEON_CRTC2_VBLANK_STAT |
RADEON_FP_DETECT_STAT | RADEON_FP2_DETECT_STAT;
if (irqs) {
WREG32(RADEON_GEN_INT_STATUS, irqs);
}
return irqs & irq_mask;
}
int r100_irq_process(struct radeon_device *rdev)
{
uint32_t status, msi_rearm;
bool queue_hotplug = false;
status = r100_irq_ack(rdev);
if (!status) {
return IRQ_NONE;
}
if (rdev->shutdown) {
return IRQ_NONE;
}
while (status) {
/* SW interrupt */
if (status & RADEON_SW_INT_TEST) {
radeon_fence_process(rdev, RADEON_RING_TYPE_GFX_INDEX);
}
/* Vertical blank interrupts */
if (status & RADEON_CRTC_VBLANK_STAT) {
if (rdev->irq.crtc_vblank_int[0]) {
drm_handle_vblank(rdev->ddev, 0);
rdev->pm.vblank_sync = true;
wake_up(&rdev->irq.vblank_queue);
}
if (atomic_read(&rdev->irq.pflip[0]))
radeon_crtc_handle_flip(rdev, 0);
}
if (status & RADEON_CRTC2_VBLANK_STAT) {
if (rdev->irq.crtc_vblank_int[1]) {
drm_handle_vblank(rdev->ddev, 1);
rdev->pm.vblank_sync = true;
wake_up(&rdev->irq.vblank_queue);
}
if (atomic_read(&rdev->irq.pflip[1]))
radeon_crtc_handle_flip(rdev, 1);
}
if (status & RADEON_FP_DETECT_STAT) {
queue_hotplug = true;
DRM_DEBUG("HPD1\n");
}
if (status & RADEON_FP2_DETECT_STAT) {
queue_hotplug = true;
DRM_DEBUG("HPD2\n");
}
status = r100_irq_ack(rdev);
}
if (queue_hotplug)
schedule_work(&rdev->hotplug_work);
if (rdev->msi_enabled) {
switch (rdev->family) {
case CHIP_RS400:
case CHIP_RS480:
msi_rearm = RREG32(RADEON_AIC_CNTL) & ~RS400_MSI_REARM;
WREG32(RADEON_AIC_CNTL, msi_rearm);
WREG32(RADEON_AIC_CNTL, msi_rearm | RS400_MSI_REARM);
break;
default:
WREG32(RADEON_MSI_REARM_EN, RV370_MSI_REARM_EN);
break;
}
}
return IRQ_HANDLED;
}
u32 r100_get_vblank_counter(struct radeon_device *rdev, int crtc)
{
if (crtc == 0)
return RREG32(RADEON_CRTC_CRNT_FRAME);
else
return RREG32(RADEON_CRTC2_CRNT_FRAME);
}
/* Who ever call radeon_fence_emit should call ring_lock and ask
* for enough space (today caller are ib schedule and buffer move) */
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 12:42:42 +00:00
void r100_fence_ring_emit(struct radeon_device *rdev,
struct radeon_fence *fence)
{
struct radeon_ring *ring = &rdev->ring[fence->ring];
/* We have to make sure that caches are flushed before
* CPU might read something from VRAM. */
radeon_ring_write(ring, PACKET0(RADEON_RB3D_DSTCACHE_CTLSTAT, 0));
radeon_ring_write(ring, RADEON_RB3D_DC_FLUSH_ALL);
radeon_ring_write(ring, PACKET0(RADEON_RB3D_ZCACHE_CTLSTAT, 0));
radeon_ring_write(ring, RADEON_RB3D_ZC_FLUSH_ALL);
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 12:42:42 +00:00
/* Wait until IDLE & CLEAN */
radeon_ring_write(ring, PACKET0(RADEON_WAIT_UNTIL, 0));
radeon_ring_write(ring, RADEON_WAIT_2D_IDLECLEAN | RADEON_WAIT_3D_IDLECLEAN);
radeon_ring_write(ring, PACKET0(RADEON_HOST_PATH_CNTL, 0));
radeon_ring_write(ring, rdev->config.r100.hdp_cntl |
RADEON_HDP_READ_BUFFER_INVALIDATE);
radeon_ring_write(ring, PACKET0(RADEON_HOST_PATH_CNTL, 0));
radeon_ring_write(ring, rdev->config.r100.hdp_cntl);
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 12:42:42 +00:00
/* Emit fence sequence & fire IRQ */
radeon_ring_write(ring, PACKET0(rdev->fence_drv[fence->ring].scratch_reg, 0));
radeon_ring_write(ring, fence->seq);
radeon_ring_write(ring, PACKET0(RADEON_GEN_INT_STATUS, 0));
radeon_ring_write(ring, RADEON_SW_INT_FIRE);
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 12:42:42 +00:00
}
void r100_semaphore_ring_emit(struct radeon_device *rdev,
struct radeon_ring *ring,
struct radeon_semaphore *semaphore,
bool emit_wait)
{
/* Unused on older asics, since we don't have semaphores or multiple rings */
BUG();
}
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 12:42:42 +00:00
int r100_copy_blit(struct radeon_device *rdev,
uint64_t src_offset,
uint64_t dst_offset,
unsigned num_gpu_pages,
struct radeon_fence **fence)
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 12:42:42 +00:00
{
struct radeon_ring *ring = &rdev->ring[RADEON_RING_TYPE_GFX_INDEX];
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 12:42:42 +00:00
uint32_t cur_pages;
uint32_t stride_bytes = RADEON_GPU_PAGE_SIZE;
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 12:42:42 +00:00
uint32_t pitch;
uint32_t stride_pixels;
unsigned ndw;
int num_loops;
int r = 0;
/* radeon limited to 16k stride */
stride_bytes &= 0x3fff;
/* radeon pitch is /64 */
pitch = stride_bytes / 64;
stride_pixels = stride_bytes / 4;
num_loops = DIV_ROUND_UP(num_gpu_pages, 8191);
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 12:42:42 +00:00
/* Ask for enough room for blit + flush + fence */
ndw = 64 + (10 * num_loops);
r = radeon_ring_lock(rdev, ring, ndw);
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 12:42:42 +00:00
if (r) {
DRM_ERROR("radeon: moving bo (%d) asking for %u dw.\n", r, ndw);
return -EINVAL;
}
while (num_gpu_pages > 0) {
cur_pages = num_gpu_pages;
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 12:42:42 +00:00
if (cur_pages > 8191) {
cur_pages = 8191;
}
num_gpu_pages -= cur_pages;
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 12:42:42 +00:00
/* pages are in Y direction - height
page width in X direction - width */
radeon_ring_write(ring, PACKET3(PACKET3_BITBLT_MULTI, 8));
radeon_ring_write(ring,
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 12:42:42 +00:00
RADEON_GMC_SRC_PITCH_OFFSET_CNTL |
RADEON_GMC_DST_PITCH_OFFSET_CNTL |
RADEON_GMC_SRC_CLIPPING |
RADEON_GMC_DST_CLIPPING |
RADEON_GMC_BRUSH_NONE |
(RADEON_COLOR_FORMAT_ARGB8888 << 8) |
RADEON_GMC_SRC_DATATYPE_COLOR |
RADEON_ROP3_S |
RADEON_DP_SRC_SOURCE_MEMORY |
RADEON_GMC_CLR_CMP_CNTL_DIS |
RADEON_GMC_WR_MSK_DIS);
radeon_ring_write(ring, (pitch << 22) | (src_offset >> 10));
radeon_ring_write(ring, (pitch << 22) | (dst_offset >> 10));
radeon_ring_write(ring, (0x1fff) | (0x1fff << 16));
radeon_ring_write(ring, 0);
radeon_ring_write(ring, (0x1fff) | (0x1fff << 16));
radeon_ring_write(ring, num_gpu_pages);
radeon_ring_write(ring, num_gpu_pages);
radeon_ring_write(ring, cur_pages | (stride_pixels << 16));
}
radeon_ring_write(ring, PACKET0(RADEON_DSTCACHE_CTLSTAT, 0));
radeon_ring_write(ring, RADEON_RB2D_DC_FLUSH_ALL);
radeon_ring_write(ring, PACKET0(RADEON_WAIT_UNTIL, 0));
radeon_ring_write(ring,
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 12:42:42 +00:00
RADEON_WAIT_2D_IDLECLEAN |
RADEON_WAIT_HOST_IDLECLEAN |
RADEON_WAIT_DMA_GUI_IDLE);
if (fence) {
r = radeon_fence_emit(rdev, fence, RADEON_RING_TYPE_GFX_INDEX);
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 12:42:42 +00:00
}
radeon_ring_unlock_commit(rdev, ring);
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 12:42:42 +00:00
return r;
}
static int r100_cp_wait_for_idle(struct radeon_device *rdev)
{
unsigned i;
u32 tmp;
for (i = 0; i < rdev->usec_timeout; i++) {
tmp = RREG32(R_000E40_RBBM_STATUS);
if (!G_000E40_CP_CMDSTRM_BUSY(tmp)) {
return 0;
}
udelay(1);
}
return -1;
}
void r100_ring_start(struct radeon_device *rdev, struct radeon_ring *ring)
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 12:42:42 +00:00
{
int r;
r = radeon_ring_lock(rdev, ring, 2);
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 12:42:42 +00:00
if (r) {
return;
}
radeon_ring_write(ring, PACKET0(RADEON_ISYNC_CNTL, 0));
radeon_ring_write(ring,
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 12:42:42 +00:00
RADEON_ISYNC_ANY2D_IDLE3D |
RADEON_ISYNC_ANY3D_IDLE2D |
RADEON_ISYNC_WAIT_IDLEGUI |
RADEON_ISYNC_CPSCRATCH_IDLEGUI);
radeon_ring_unlock_commit(rdev, ring);
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 12:42:42 +00:00
}
/* Load the microcode for the CP */
static int r100_cp_init_microcode(struct radeon_device *rdev)
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 12:42:42 +00:00
{
struct platform_device *pdev;
const char *fw_name = NULL;
int err;
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 12:42:42 +00:00
DRM_DEBUG_KMS("\n");
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 12:42:42 +00:00
pdev = platform_device_register_simple("radeon_cp", 0, NULL, 0);
err = IS_ERR(pdev);
if (err) {
printk(KERN_ERR "radeon_cp: Failed to register firmware\n");
return -EINVAL;
}
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 12:42:42 +00:00
if ((rdev->family == CHIP_R100) || (rdev->family == CHIP_RV100) ||
(rdev->family == CHIP_RV200) || (rdev->family == CHIP_RS100) ||
(rdev->family == CHIP_RS200)) {
DRM_INFO("Loading R100 Microcode\n");
fw_name = FIRMWARE_R100;
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 12:42:42 +00:00
} else if ((rdev->family == CHIP_R200) ||
(rdev->family == CHIP_RV250) ||
(rdev->family == CHIP_RV280) ||
(rdev->family == CHIP_RS300)) {
DRM_INFO("Loading R200 Microcode\n");
fw_name = FIRMWARE_R200;
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 12:42:42 +00:00
} else if ((rdev->family == CHIP_R300) ||
(rdev->family == CHIP_R350) ||
(rdev->family == CHIP_RV350) ||
(rdev->family == CHIP_RV380) ||
(rdev->family == CHIP_RS400) ||
(rdev->family == CHIP_RS480)) {
DRM_INFO("Loading R300 Microcode\n");
fw_name = FIRMWARE_R300;
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 12:42:42 +00:00
} else if ((rdev->family == CHIP_R420) ||
(rdev->family == CHIP_R423) ||
(rdev->family == CHIP_RV410)) {
DRM_INFO("Loading R400 Microcode\n");
fw_name = FIRMWARE_R420;
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 12:42:42 +00:00
} else if ((rdev->family == CHIP_RS690) ||
(rdev->family == CHIP_RS740)) {
DRM_INFO("Loading RS690/RS740 Microcode\n");
fw_name = FIRMWARE_RS690;
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 12:42:42 +00:00
} else if (rdev->family == CHIP_RS600) {
DRM_INFO("Loading RS600 Microcode\n");
fw_name = FIRMWARE_RS600;
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 12:42:42 +00:00
} else if ((rdev->family == CHIP_RV515) ||
(rdev->family == CHIP_R520) ||
(rdev->family == CHIP_RV530) ||
(rdev->family == CHIP_R580) ||
(rdev->family == CHIP_RV560) ||
(rdev->family == CHIP_RV570)) {
DRM_INFO("Loading R500 Microcode\n");
fw_name = FIRMWARE_R520;
}
err = request_firmware(&rdev->me_fw, fw_name, &pdev->dev);
platform_device_unregister(pdev);
if (err) {
printk(KERN_ERR "radeon_cp: Failed to load firmware \"%s\"\n",
fw_name);
} else if (rdev->me_fw->size % 8) {
printk(KERN_ERR
"radeon_cp: Bogus length %zu in firmware \"%s\"\n",
rdev->me_fw->size, fw_name);
err = -EINVAL;
release_firmware(rdev->me_fw);
rdev->me_fw = NULL;
}
return err;
}
static void r100_cp_load_microcode(struct radeon_device *rdev)
{
const __be32 *fw_data;
int i, size;
if (r100_gui_wait_for_idle(rdev)) {
printk(KERN_WARNING "Failed to wait GUI idle while "
"programming pipes. Bad things might happen.\n");
}
if (rdev->me_fw) {
size = rdev->me_fw->size / 4;
fw_data = (const __be32 *)&rdev->me_fw->data[0];
WREG32(RADEON_CP_ME_RAM_ADDR, 0);
for (i = 0; i < size; i += 2) {
WREG32(RADEON_CP_ME_RAM_DATAH,
be32_to_cpup(&fw_data[i]));
WREG32(RADEON_CP_ME_RAM_DATAL,
be32_to_cpup(&fw_data[i + 1]));
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 12:42:42 +00:00
}
}
}
int r100_cp_init(struct radeon_device *rdev, unsigned ring_size)
{
struct radeon_ring *ring = &rdev->ring[RADEON_RING_TYPE_GFX_INDEX];
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 12:42:42 +00:00
unsigned rb_bufsz;
unsigned rb_blksz;
unsigned max_fetch;
unsigned pre_write_timer;
unsigned pre_write_limit;
unsigned indirect2_start;
unsigned indirect1_start;
uint32_t tmp;
int r;
if (r100_debugfs_cp_init(rdev)) {
DRM_ERROR("Failed to register debugfs file for CP !\n");
}
if (!rdev->me_fw) {
r = r100_cp_init_microcode(rdev);
if (r) {
DRM_ERROR("Failed to load firmware!\n");
return r;
}
}
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 12:42:42 +00:00
/* Align ring size */
rb_bufsz = drm_order(ring_size / 8);
ring_size = (1 << (rb_bufsz + 1)) * 4;
r100_cp_load_microcode(rdev);
r = radeon_ring_init(rdev, ring, ring_size, RADEON_WB_CP_RPTR_OFFSET,
RADEON_CP_RB_RPTR, RADEON_CP_RB_WPTR,
0, 0x7fffff, RADEON_CP_PACKET2);
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 12:42:42 +00:00
if (r) {
return r;
}
/* Each time the cp read 1024 bytes (16 dword/quadword) update
* the rptr copy in system ram */
rb_blksz = 9;
/* cp will read 128bytes at a time (4 dwords) */
max_fetch = 1;
ring->align_mask = 16 - 1;
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 12:42:42 +00:00
/* Write to CP_RB_WPTR will be delayed for pre_write_timer clocks */
pre_write_timer = 64;
/* Force CP_RB_WPTR write if written more than one time before the
* delay expire
*/
pre_write_limit = 0;
/* Setup the cp cache like this (cache size is 96 dwords) :
* RING 0 to 15
* INDIRECT1 16 to 79
* INDIRECT2 80 to 95
* So ring cache size is 16dwords (> (2 * max_fetch = 2 * 4dwords))
* indirect1 cache size is 64dwords (> (2 * max_fetch = 2 * 4dwords))
* indirect2 cache size is 16dwords (> (2 * max_fetch = 2 * 4dwords))
* Idea being that most of the gpu cmd will be through indirect1 buffer
* so it gets the bigger cache.
*/
indirect2_start = 80;
indirect1_start = 16;
/* cp setup */
WREG32(0x718, pre_write_timer | (pre_write_limit << 28));
tmp = (REG_SET(RADEON_RB_BUFSZ, rb_bufsz) |
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 12:42:42 +00:00
REG_SET(RADEON_RB_BLKSZ, rb_blksz) |
REG_SET(RADEON_MAX_FETCH, max_fetch));
#ifdef __BIG_ENDIAN
tmp |= RADEON_BUF_SWAP_32BIT;
#endif
WREG32(RADEON_CP_RB_CNTL, tmp | RADEON_RB_NO_UPDATE);
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 12:42:42 +00:00
/* Set ring address */
DRM_INFO("radeon: ring at 0x%016lX\n", (unsigned long)ring->gpu_addr);
WREG32(RADEON_CP_RB_BASE, ring->gpu_addr);
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 12:42:42 +00:00
/* Force read & write ptr to 0 */
WREG32(RADEON_CP_RB_CNTL, tmp | RADEON_RB_RPTR_WR_ENA | RADEON_RB_NO_UPDATE);
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 12:42:42 +00:00
WREG32(RADEON_CP_RB_RPTR_WR, 0);
ring->wptr = 0;
WREG32(RADEON_CP_RB_WPTR, ring->wptr);
/* set the wb address whether it's enabled or not */
WREG32(R_00070C_CP_RB_RPTR_ADDR,
S_00070C_RB_RPTR_ADDR((rdev->wb.gpu_addr + RADEON_WB_CP_RPTR_OFFSET) >> 2));
WREG32(R_000774_SCRATCH_ADDR, rdev->wb.gpu_addr + RADEON_WB_SCRATCH_OFFSET);
if (rdev->wb.enabled)
WREG32(R_000770_SCRATCH_UMSK, 0xff);
else {
tmp |= RADEON_RB_NO_UPDATE;
WREG32(R_000770_SCRATCH_UMSK, 0);
}
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 12:42:42 +00:00
WREG32(RADEON_CP_RB_CNTL, tmp);
udelay(10);
ring->rptr = RREG32(RADEON_CP_RB_RPTR);
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 12:42:42 +00:00
/* Set cp mode to bus mastering & enable cp*/
WREG32(RADEON_CP_CSQ_MODE,
REG_SET(RADEON_INDIRECT2_START, indirect2_start) |
REG_SET(RADEON_INDIRECT1_START, indirect1_start));
WREG32(RADEON_CP_RB_WPTR_DELAY, 0);
WREG32(RADEON_CP_CSQ_MODE, 0x00004D4D);
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 12:42:42 +00:00
WREG32(RADEON_CP_CSQ_CNTL, RADEON_CSQ_PRIBM_INDBM);
/* at this point everything should be setup correctly to enable master */
pci_set_master(rdev->pdev);
radeon_ring_start(rdev, RADEON_RING_TYPE_GFX_INDEX, &rdev->ring[RADEON_RING_TYPE_GFX_INDEX]);
r = radeon_ring_test(rdev, RADEON_RING_TYPE_GFX_INDEX, ring);
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 12:42:42 +00:00
if (r) {
DRM_ERROR("radeon: cp isn't working (%d).\n", r);
return r;
}
ring->ready = true;
radeon_ttm_set_active_vram_size(rdev, rdev->mc.real_vram_size);
drm/radeon: Prevent leak of scratch register on resume from suspend Cards typically have 5-7 scratch registers; one of these is reserved for rdev->rptr_save_reg. Unfortunately the reservation is done in function r100_cp_init, which is called by all drivers except r600 - and this function is also invoked on resume from suspend. After several resumes, no scratch registers are free and graphics acceleration is disabled. Dmesg then reports either: *ERROR* radeon: cp failed to get scratch reg (-22). *ERROR* radeon: cp isn't working(-22). radeon 0000:01:00.0: failed initializing CP (-22). or: *ERROR* radeon: failed to get scratch reg (-22). *ERROR* radeon: failed testing IB on GFX ring (-22). *ERROR* ib ring test failed (-22). The chain of calls on boot for all except r600 is: radeon_init -> ... -> (rXXX_init) -> rXXX_startup -> r100_cp_init The chain of calls on resume for all except r600 is: rXXX_resume -> rXXX_startup -> r100_cp_init. R600 correctly allocates rptr_save_reg in r600_init (ie once only, not in resume). However moving the code into the init functions for all drivers means touching 4 drivers. So instead, this patch just adds a test in r100_cp_init to avoid reallocating on resume. As the rdev structure is allocated via kzalloc in radeon_driver_load_kms, and zero is not a valid registerid, zero safely implies not-yet-allocated. This issue appears to have been introduced in c7eff978 (3.6.0-rcN) Signed-off-by: Simon Kitching <skitching@vonos.net> Signed-off-by: Alex Deucher <alexander.deucher@amd.com>
2012-09-20 16:59:16 +00:00
if (!ring->rptr_save_reg /* not resuming from suspend */
&& radeon_ring_supports_scratch_reg(rdev, ring)) {
r = radeon_scratch_get(rdev, &ring->rptr_save_reg);
if (r) {
DRM_ERROR("failed to get scratch reg for rptr save (%d).\n", r);
ring->rptr_save_reg = 0;
}
}
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 12:42:42 +00:00
return 0;
}
void r100_cp_fini(struct radeon_device *rdev)
{
if (r100_cp_wait_for_idle(rdev)) {
DRM_ERROR("Wait for CP idle timeout, shutting down CP.\n");
}
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 12:42:42 +00:00
/* Disable ring */
r100_cp_disable(rdev);
radeon_scratch_free(rdev, rdev->ring[RADEON_RING_TYPE_GFX_INDEX].rptr_save_reg);
radeon_ring_fini(rdev, &rdev->ring[RADEON_RING_TYPE_GFX_INDEX]);
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 12:42:42 +00:00
DRM_INFO("radeon: cp finalized\n");
}
void r100_cp_disable(struct radeon_device *rdev)
{
/* Disable ring */
radeon_ttm_set_active_vram_size(rdev, rdev->mc.visible_vram_size);
rdev->ring[RADEON_RING_TYPE_GFX_INDEX].ready = false;
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 12:42:42 +00:00
WREG32(RADEON_CP_CSQ_MODE, 0);
WREG32(RADEON_CP_CSQ_CNTL, 0);
WREG32(R_000770_SCRATCH_UMSK, 0);
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 12:42:42 +00:00
if (r100_gui_wait_for_idle(rdev)) {
printk(KERN_WARNING "Failed to wait GUI idle while "
"programming pipes. Bad things might happen.\n");
}
}
/*
* CS functions
*/
int r100_reloc_pitch_offset(struct radeon_cs_parser *p,
struct radeon_cs_packet *pkt,
unsigned idx,
unsigned reg)
{
int r;
u32 tile_flags = 0;
u32 tmp;
struct radeon_cs_reloc *reloc;
u32 value;
r = radeon_cs_packet_next_reloc(p, &reloc, 0);
if (r) {
DRM_ERROR("No reloc for ib[%d]=0x%04X\n",
idx, reg);
radeon_cs_dump_packet(p, pkt);
return r;
}
value = radeon_get_ib_value(p, idx);
tmp = value & 0x003fffff;
tmp += (((u32)reloc->lobj.gpu_offset) >> 10);
if (!(p->cs_flags & RADEON_CS_KEEP_TILING_FLAGS)) {
if (reloc->lobj.tiling_flags & RADEON_TILING_MACRO)
tile_flags |= RADEON_DST_TILE_MACRO;
if (reloc->lobj.tiling_flags & RADEON_TILING_MICRO) {
if (reg == RADEON_SRC_PITCH_OFFSET) {
DRM_ERROR("Cannot src blit from microtiled surface\n");
radeon_cs_dump_packet(p, pkt);
return -EINVAL;
}
tile_flags |= RADEON_DST_TILE_MICRO;
}
tmp |= tile_flags;
p->ib.ptr[idx] = (value & 0x3fc00000) | tmp;
} else
p->ib.ptr[idx] = (value & 0xffc00000) | tmp;
return 0;
}
int r100_packet3_load_vbpntr(struct radeon_cs_parser *p,
struct radeon_cs_packet *pkt,
int idx)
{
unsigned c, i;
struct radeon_cs_reloc *reloc;
struct r100_cs_track *track;
int r = 0;
volatile uint32_t *ib;
u32 idx_value;
ib = p->ib.ptr;
track = (struct r100_cs_track *)p->track;
c = radeon_get_ib_value(p, idx++) & 0x1F;
if (c > 16) {
DRM_ERROR("Only 16 vertex buffers are allowed %d\n",
pkt->opcode);
radeon_cs_dump_packet(p, pkt);
return -EINVAL;
}
track->num_arrays = c;
for (i = 0; i < (c - 1); i+=2, idx+=3) {
r = radeon_cs_packet_next_reloc(p, &reloc, 0);
if (r) {
DRM_ERROR("No reloc for packet3 %d\n",
pkt->opcode);
radeon_cs_dump_packet(p, pkt);
return r;
}
idx_value = radeon_get_ib_value(p, idx);
ib[idx+1] = radeon_get_ib_value(p, idx + 1) + ((u32)reloc->lobj.gpu_offset);
track->arrays[i + 0].esize = idx_value >> 8;
track->arrays[i + 0].robj = reloc->robj;
track->arrays[i + 0].esize &= 0x7F;
r = radeon_cs_packet_next_reloc(p, &reloc, 0);
if (r) {
DRM_ERROR("No reloc for packet3 %d\n",
pkt->opcode);
radeon_cs_dump_packet(p, pkt);
return r;
}
ib[idx+2] = radeon_get_ib_value(p, idx + 2) + ((u32)reloc->lobj.gpu_offset);
track->arrays[i + 1].robj = reloc->robj;
track->arrays[i + 1].esize = idx_value >> 24;
track->arrays[i + 1].esize &= 0x7F;
}
if (c & 1) {
r = radeon_cs_packet_next_reloc(p, &reloc, 0);
if (r) {
DRM_ERROR("No reloc for packet3 %d\n",
pkt->opcode);
radeon_cs_dump_packet(p, pkt);
return r;
}
idx_value = radeon_get_ib_value(p, idx);
ib[idx+1] = radeon_get_ib_value(p, idx + 1) + ((u32)reloc->lobj.gpu_offset);
track->arrays[i + 0].robj = reloc->robj;
track->arrays[i + 0].esize = idx_value >> 8;
track->arrays[i + 0].esize &= 0x7F;
}
return r;
}
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 12:42:42 +00:00
int r100_cs_parse_packet0(struct radeon_cs_parser *p,
struct radeon_cs_packet *pkt,
const unsigned *auth, unsigned n,
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 12:42:42 +00:00
radeon_packet0_check_t check)
{
unsigned reg;
unsigned i, j, m;
unsigned idx;
int r;
idx = pkt->idx + 1;
reg = pkt->reg;
/* Check that register fall into register range
* determined by the number of entry (n) in the
* safe register bitmap.
*/
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 12:42:42 +00:00
if (pkt->one_reg_wr) {
if ((reg >> 7) > n) {
return -EINVAL;
}
} else {
if (((reg + (pkt->count << 2)) >> 7) > n) {
return -EINVAL;
}
}
for (i = 0; i <= pkt->count; i++, idx++) {
j = (reg >> 7);
m = 1 << ((reg >> 2) & 31);
if (auth[j] & m) {
r = check(p, pkt, idx, reg);
if (r) {
return r;
}
}
if (pkt->one_reg_wr) {
if (!(auth[j] & m)) {
break;
}
} else {
reg += 4;
}
}
return 0;
}
/**
* r100_cs_packet_next_vline() - parse userspace VLINE packet
* @parser: parser structure holding parsing context.
*
* Userspace sends a special sequence for VLINE waits.
* PACKET0 - VLINE_START_END + value
* PACKET0 - WAIT_UNTIL +_value
* RELOC (P3) - crtc_id in reloc.
*
* This function parses this and relocates the VLINE START END
* and WAIT UNTIL packets to the correct crtc.
* It also detects a switched off crtc and nulls out the
* wait in that case.
*/
int r100_cs_packet_parse_vline(struct radeon_cs_parser *p)
{
struct drm_mode_object *obj;
struct drm_crtc *crtc;
struct radeon_crtc *radeon_crtc;
struct radeon_cs_packet p3reloc, waitreloc;
int crtc_id;
int r;
uint32_t header, h_idx, reg;
volatile uint32_t *ib;
ib = p->ib.ptr;
/* parse the wait until */
r = radeon_cs_packet_parse(p, &waitreloc, p->idx);
if (r)
return r;
/* check its a wait until and only 1 count */
if (waitreloc.reg != RADEON_WAIT_UNTIL ||
waitreloc.count != 0) {
DRM_ERROR("vline wait had illegal wait until segment\n");
return -EINVAL;
}
if (radeon_get_ib_value(p, waitreloc.idx + 1) != RADEON_WAIT_CRTC_VLINE) {
DRM_ERROR("vline wait had illegal wait until\n");
return -EINVAL;
}
/* jump over the NOP */
r = radeon_cs_packet_parse(p, &p3reloc, p->idx + waitreloc.count + 2);
if (r)
return r;
h_idx = p->idx - 2;
p->idx += waitreloc.count + 2;
p->idx += p3reloc.count + 2;
header = radeon_get_ib_value(p, h_idx);
crtc_id = radeon_get_ib_value(p, h_idx + 5);
reg = R100_CP_PACKET0_GET_REG(header);
obj = drm_mode_object_find(p->rdev->ddev, crtc_id, DRM_MODE_OBJECT_CRTC);
if (!obj) {
DRM_ERROR("cannot find crtc %d\n", crtc_id);
return -EINVAL;
}
crtc = obj_to_crtc(obj);
radeon_crtc = to_radeon_crtc(crtc);
crtc_id = radeon_crtc->crtc_id;
if (!crtc->enabled) {
/* if the CRTC isn't enabled - we need to nop out the wait until */
ib[h_idx + 2] = PACKET2(0);
ib[h_idx + 3] = PACKET2(0);
} else if (crtc_id == 1) {
switch (reg) {
case AVIVO_D1MODE_VLINE_START_END:
header &= ~R300_CP_PACKET0_REG_MASK;
header |= AVIVO_D2MODE_VLINE_START_END >> 2;
break;
case RADEON_CRTC_GUI_TRIG_VLINE:
header &= ~R300_CP_PACKET0_REG_MASK;
header |= RADEON_CRTC2_GUI_TRIG_VLINE >> 2;
break;
default:
DRM_ERROR("unknown crtc reloc\n");
return -EINVAL;
}
ib[h_idx] = header;
ib[h_idx + 3] |= RADEON_ENG_DISPLAY_SELECT_CRTC1;
}
return 0;
}
static int r100_get_vtx_size(uint32_t vtx_fmt)
{
int vtx_size;
vtx_size = 2;
/* ordered according to bits in spec */
if (vtx_fmt & RADEON_SE_VTX_FMT_W0)
vtx_size++;
if (vtx_fmt & RADEON_SE_VTX_FMT_FPCOLOR)
vtx_size += 3;
if (vtx_fmt & RADEON_SE_VTX_FMT_FPALPHA)
vtx_size++;
if (vtx_fmt & RADEON_SE_VTX_FMT_PKCOLOR)
vtx_size++;
if (vtx_fmt & RADEON_SE_VTX_FMT_FPSPEC)
vtx_size += 3;
if (vtx_fmt & RADEON_SE_VTX_FMT_FPFOG)
vtx_size++;
if (vtx_fmt & RADEON_SE_VTX_FMT_PKSPEC)
vtx_size++;
if (vtx_fmt & RADEON_SE_VTX_FMT_ST0)
vtx_size += 2;
if (vtx_fmt & RADEON_SE_VTX_FMT_ST1)
vtx_size += 2;
if (vtx_fmt & RADEON_SE_VTX_FMT_Q1)
vtx_size++;
if (vtx_fmt & RADEON_SE_VTX_FMT_ST2)
vtx_size += 2;
if (vtx_fmt & RADEON_SE_VTX_FMT_Q2)
vtx_size++;
if (vtx_fmt & RADEON_SE_VTX_FMT_ST3)
vtx_size += 2;
if (vtx_fmt & RADEON_SE_VTX_FMT_Q3)
vtx_size++;
if (vtx_fmt & RADEON_SE_VTX_FMT_Q0)
vtx_size++;
/* blend weight */
if (vtx_fmt & (0x7 << 15))
vtx_size += (vtx_fmt >> 15) & 0x7;
if (vtx_fmt & RADEON_SE_VTX_FMT_N0)
vtx_size += 3;
if (vtx_fmt & RADEON_SE_VTX_FMT_XY1)
vtx_size += 2;
if (vtx_fmt & RADEON_SE_VTX_FMT_Z1)
vtx_size++;
if (vtx_fmt & RADEON_SE_VTX_FMT_W1)
vtx_size++;
if (vtx_fmt & RADEON_SE_VTX_FMT_N1)
vtx_size++;
if (vtx_fmt & RADEON_SE_VTX_FMT_Z)
vtx_size++;
return vtx_size;
}
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 12:42:42 +00:00
static int r100_packet0_check(struct radeon_cs_parser *p,
struct radeon_cs_packet *pkt,
unsigned idx, unsigned reg)
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 12:42:42 +00:00
{
struct radeon_cs_reloc *reloc;
struct r100_cs_track *track;
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 12:42:42 +00:00
volatile uint32_t *ib;
uint32_t tmp;
int r;
int i, face;
u32 tile_flags = 0;
u32 idx_value;
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 12:42:42 +00:00
ib = p->ib.ptr;
track = (struct r100_cs_track *)p->track;
idx_value = radeon_get_ib_value(p, idx);
switch (reg) {
case RADEON_CRTC_GUI_TRIG_VLINE:
r = r100_cs_packet_parse_vline(p);
if (r) {
DRM_ERROR("No reloc for ib[%d]=0x%04X\n",
idx, reg);
radeon_cs_dump_packet(p, pkt);
return r;
}
break;
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 12:42:42 +00:00
/* FIXME: only allow PACKET3 blit? easier to check for out of
* range access */
case RADEON_DST_PITCH_OFFSET:
case RADEON_SRC_PITCH_OFFSET:
r = r100_reloc_pitch_offset(p, pkt, idx, reg);
if (r)
return r;
break;
case RADEON_RB3D_DEPTHOFFSET:
r = radeon_cs_packet_next_reloc(p, &reloc, 0);
if (r) {
DRM_ERROR("No reloc for ib[%d]=0x%04X\n",
idx, reg);
radeon_cs_dump_packet(p, pkt);
return r;
}
track->zb.robj = reloc->robj;
track->zb.offset = idx_value;
track->zb_dirty = true;
ib[idx] = idx_value + ((u32)reloc->lobj.gpu_offset);
break;
case RADEON_RB3D_COLOROFFSET:
r = radeon_cs_packet_next_reloc(p, &reloc, 0);
if (r) {
DRM_ERROR("No reloc for ib[%d]=0x%04X\n",
idx, reg);
radeon_cs_dump_packet(p, pkt);
return r;
}
track->cb[0].robj = reloc->robj;
track->cb[0].offset = idx_value;
track->cb_dirty = true;
ib[idx] = idx_value + ((u32)reloc->lobj.gpu_offset);
break;
case RADEON_PP_TXOFFSET_0:
case RADEON_PP_TXOFFSET_1:
case RADEON_PP_TXOFFSET_2:
i = (reg - RADEON_PP_TXOFFSET_0) / 24;
r = radeon_cs_packet_next_reloc(p, &reloc, 0);
if (r) {
DRM_ERROR("No reloc for ib[%d]=0x%04X\n",
idx, reg);
radeon_cs_dump_packet(p, pkt);
return r;
}
if (!(p->cs_flags & RADEON_CS_KEEP_TILING_FLAGS)) {
if (reloc->lobj.tiling_flags & RADEON_TILING_MACRO)
tile_flags |= RADEON_TXO_MACRO_TILE;
if (reloc->lobj.tiling_flags & RADEON_TILING_MICRO)
tile_flags |= RADEON_TXO_MICRO_TILE_X2;
tmp = idx_value & ~(0x7 << 2);
tmp |= tile_flags;
ib[idx] = tmp + ((u32)reloc->lobj.gpu_offset);
} else
ib[idx] = idx_value + ((u32)reloc->lobj.gpu_offset);
track->textures[i].robj = reloc->robj;
track->tex_dirty = true;
break;
case RADEON_PP_CUBIC_OFFSET_T0_0:
case RADEON_PP_CUBIC_OFFSET_T0_1:
case RADEON_PP_CUBIC_OFFSET_T0_2:
case RADEON_PP_CUBIC_OFFSET_T0_3:
case RADEON_PP_CUBIC_OFFSET_T0_4:
i = (reg - RADEON_PP_CUBIC_OFFSET_T0_0) / 4;
r = radeon_cs_packet_next_reloc(p, &reloc, 0);
if (r) {
DRM_ERROR("No reloc for ib[%d]=0x%04X\n",
idx, reg);
radeon_cs_dump_packet(p, pkt);
return r;
}
track->textures[0].cube_info[i].offset = idx_value;
ib[idx] = idx_value + ((u32)reloc->lobj.gpu_offset);
track->textures[0].cube_info[i].robj = reloc->robj;
track->tex_dirty = true;
break;
case RADEON_PP_CUBIC_OFFSET_T1_0:
case RADEON_PP_CUBIC_OFFSET_T1_1:
case RADEON_PP_CUBIC_OFFSET_T1_2:
case RADEON_PP_CUBIC_OFFSET_T1_3:
case RADEON_PP_CUBIC_OFFSET_T1_4:
i = (reg - RADEON_PP_CUBIC_OFFSET_T1_0) / 4;
r = radeon_cs_packet_next_reloc(p, &reloc, 0);
if (r) {
DRM_ERROR("No reloc for ib[%d]=0x%04X\n",
idx, reg);
radeon_cs_dump_packet(p, pkt);
return r;
}
track->textures[1].cube_info[i].offset = idx_value;
ib[idx] = idx_value + ((u32)reloc->lobj.gpu_offset);
track->textures[1].cube_info[i].robj = reloc->robj;
track->tex_dirty = true;
break;
case RADEON_PP_CUBIC_OFFSET_T2_0:
case RADEON_PP_CUBIC_OFFSET_T2_1:
case RADEON_PP_CUBIC_OFFSET_T2_2:
case RADEON_PP_CUBIC_OFFSET_T2_3:
case RADEON_PP_CUBIC_OFFSET_T2_4:
i = (reg - RADEON_PP_CUBIC_OFFSET_T2_0) / 4;
r = radeon_cs_packet_next_reloc(p, &reloc, 0);
if (r) {
DRM_ERROR("No reloc for ib[%d]=0x%04X\n",
idx, reg);
radeon_cs_dump_packet(p, pkt);
return r;
}
track->textures[2].cube_info[i].offset = idx_value;
ib[idx] = idx_value + ((u32)reloc->lobj.gpu_offset);
track->textures[2].cube_info[i].robj = reloc->robj;
track->tex_dirty = true;
break;
case RADEON_RE_WIDTH_HEIGHT:
track->maxy = ((idx_value >> 16) & 0x7FF);
track->cb_dirty = true;
track->zb_dirty = true;
break;
case RADEON_RB3D_COLORPITCH:
r = radeon_cs_packet_next_reloc(p, &reloc, 0);
if (r) {
DRM_ERROR("No reloc for ib[%d]=0x%04X\n",
idx, reg);
radeon_cs_dump_packet(p, pkt);
return r;
}
if (!(p->cs_flags & RADEON_CS_KEEP_TILING_FLAGS)) {
if (reloc->lobj.tiling_flags & RADEON_TILING_MACRO)
tile_flags |= RADEON_COLOR_TILE_ENABLE;
if (reloc->lobj.tiling_flags & RADEON_TILING_MICRO)
tile_flags |= RADEON_COLOR_MICROTILE_ENABLE;
tmp = idx_value & ~(0x7 << 16);
tmp |= tile_flags;
ib[idx] = tmp;
} else
ib[idx] = idx_value;
track->cb[0].pitch = idx_value & RADEON_COLORPITCH_MASK;
track->cb_dirty = true;
break;
case RADEON_RB3D_DEPTHPITCH:
track->zb.pitch = idx_value & RADEON_DEPTHPITCH_MASK;
track->zb_dirty = true;
break;
case RADEON_RB3D_CNTL:
switch ((idx_value >> RADEON_RB3D_COLOR_FORMAT_SHIFT) & 0x1f) {
case 7:
case 8:
case 9:
case 11:
case 12:
track->cb[0].cpp = 1;
break;
case 3:
case 4:
case 15:
track->cb[0].cpp = 2;
break;
case 6:
track->cb[0].cpp = 4;
break;
default:
DRM_ERROR("Invalid color buffer format (%d) !\n",
((idx_value >> RADEON_RB3D_COLOR_FORMAT_SHIFT) & 0x1f));
return -EINVAL;
}
track->z_enabled = !!(idx_value & RADEON_Z_ENABLE);
track->cb_dirty = true;
track->zb_dirty = true;
break;
case RADEON_RB3D_ZSTENCILCNTL:
switch (idx_value & 0xf) {
case 0:
track->zb.cpp = 2;
break;
case 2:
case 3:
case 4:
case 5:
case 9:
case 11:
track->zb.cpp = 4;
break;
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 12:42:42 +00:00
default:
break;
}
track->zb_dirty = true;
break;
case RADEON_RB3D_ZPASS_ADDR:
r = radeon_cs_packet_next_reloc(p, &reloc, 0);
if (r) {
DRM_ERROR("No reloc for ib[%d]=0x%04X\n",
idx, reg);
radeon_cs_dump_packet(p, pkt);
return r;
}
ib[idx] = idx_value + ((u32)reloc->lobj.gpu_offset);
break;
case RADEON_PP_CNTL:
{
uint32_t temp = idx_value >> 4;
for (i = 0; i < track->num_texture; i++)
track->textures[i].enabled = !!(temp & (1 << i));
track->tex_dirty = true;
}
break;
case RADEON_SE_VF_CNTL:
track->vap_vf_cntl = idx_value;
break;
case RADEON_SE_VTX_FMT:
track->vtx_size = r100_get_vtx_size(idx_value);
break;
case RADEON_PP_TEX_SIZE_0:
case RADEON_PP_TEX_SIZE_1:
case RADEON_PP_TEX_SIZE_2:
i = (reg - RADEON_PP_TEX_SIZE_0) / 8;
track->textures[i].width = (idx_value & RADEON_TEX_USIZE_MASK) + 1;
track->textures[i].height = ((idx_value & RADEON_TEX_VSIZE_MASK) >> RADEON_TEX_VSIZE_SHIFT) + 1;
track->tex_dirty = true;
break;
case RADEON_PP_TEX_PITCH_0:
case RADEON_PP_TEX_PITCH_1:
case RADEON_PP_TEX_PITCH_2:
i = (reg - RADEON_PP_TEX_PITCH_0) / 8;
track->textures[i].pitch = idx_value + 32;
track->tex_dirty = true;
break;
case RADEON_PP_TXFILTER_0:
case RADEON_PP_TXFILTER_1:
case RADEON_PP_TXFILTER_2:
i = (reg - RADEON_PP_TXFILTER_0) / 24;
track->textures[i].num_levels = ((idx_value & RADEON_MAX_MIP_LEVEL_MASK)
>> RADEON_MAX_MIP_LEVEL_SHIFT);
tmp = (idx_value >> 23) & 0x7;
if (tmp == 2 || tmp == 6)
track->textures[i].roundup_w = false;
tmp = (idx_value >> 27) & 0x7;
if (tmp == 2 || tmp == 6)
track->textures[i].roundup_h = false;
track->tex_dirty = true;
break;
case RADEON_PP_TXFORMAT_0:
case RADEON_PP_TXFORMAT_1:
case RADEON_PP_TXFORMAT_2:
i = (reg - RADEON_PP_TXFORMAT_0) / 24;
if (idx_value & RADEON_TXFORMAT_NON_POWER2) {
track->textures[i].use_pitch = 1;
} else {
track->textures[i].use_pitch = 0;
track->textures[i].width = 1 << ((idx_value >> RADEON_TXFORMAT_WIDTH_SHIFT) & RADEON_TXFORMAT_WIDTH_MASK);
track->textures[i].height = 1 << ((idx_value >> RADEON_TXFORMAT_HEIGHT_SHIFT) & RADEON_TXFORMAT_HEIGHT_MASK);
}
if (idx_value & RADEON_TXFORMAT_CUBIC_MAP_ENABLE)
track->textures[i].tex_coord_type = 2;
switch ((idx_value & RADEON_TXFORMAT_FORMAT_MASK)) {
case RADEON_TXFORMAT_I8:
case RADEON_TXFORMAT_RGB332:
case RADEON_TXFORMAT_Y8:
track->textures[i].cpp = 1;
track->textures[i].compress_format = R100_TRACK_COMP_NONE;
break;
case RADEON_TXFORMAT_AI88:
case RADEON_TXFORMAT_ARGB1555:
case RADEON_TXFORMAT_RGB565:
case RADEON_TXFORMAT_ARGB4444:
case RADEON_TXFORMAT_VYUY422:
case RADEON_TXFORMAT_YVYU422:
case RADEON_TXFORMAT_SHADOW16:
case RADEON_TXFORMAT_LDUDV655:
case RADEON_TXFORMAT_DUDV88:
track->textures[i].cpp = 2;
track->textures[i].compress_format = R100_TRACK_COMP_NONE;
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 12:42:42 +00:00
break;
case RADEON_TXFORMAT_ARGB8888:
case RADEON_TXFORMAT_RGBA8888:
case RADEON_TXFORMAT_SHADOW32:
case RADEON_TXFORMAT_LDUDUV8888:
track->textures[i].cpp = 4;
track->textures[i].compress_format = R100_TRACK_COMP_NONE;
break;
case RADEON_TXFORMAT_DXT1:
track->textures[i].cpp = 1;
track->textures[i].compress_format = R100_TRACK_COMP_DXT1;
break;
case RADEON_TXFORMAT_DXT23:
case RADEON_TXFORMAT_DXT45:
track->textures[i].cpp = 1;
track->textures[i].compress_format = R100_TRACK_COMP_DXT35;
break;
}
track->textures[i].cube_info[4].width = 1 << ((idx_value >> 16) & 0xf);
track->textures[i].cube_info[4].height = 1 << ((idx_value >> 20) & 0xf);
track->tex_dirty = true;
break;
case RADEON_PP_CUBIC_FACES_0:
case RADEON_PP_CUBIC_FACES_1:
case RADEON_PP_CUBIC_FACES_2:
tmp = idx_value;
i = (reg - RADEON_PP_CUBIC_FACES_0) / 4;
for (face = 0; face < 4; face++) {
track->textures[i].cube_info[face].width = 1 << ((tmp >> (face * 8)) & 0xf);
track->textures[i].cube_info[face].height = 1 << ((tmp >> ((face * 8) + 4)) & 0xf);
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 12:42:42 +00:00
}
track->tex_dirty = true;
break;
default:
printk(KERN_ERR "Forbidden register 0x%04X in cs at %d\n",
reg, idx);
return -EINVAL;
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 12:42:42 +00:00
}
return 0;
}
int r100_cs_track_check_pkt3_indx_buffer(struct radeon_cs_parser *p,
struct radeon_cs_packet *pkt,
struct radeon_bo *robj)
{
unsigned idx;
u32 value;
idx = pkt->idx + 1;
value = radeon_get_ib_value(p, idx + 2);
if ((value + 1) > radeon_bo_size(robj)) {
DRM_ERROR("[drm] Buffer too small for PACKET3 INDX_BUFFER "
"(need %u have %lu) !\n",
value + 1,
radeon_bo_size(robj));
return -EINVAL;
}
return 0;
}
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 12:42:42 +00:00
static int r100_packet3_check(struct radeon_cs_parser *p,
struct radeon_cs_packet *pkt)
{
struct radeon_cs_reloc *reloc;
struct r100_cs_track *track;
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 12:42:42 +00:00
unsigned idx;
volatile uint32_t *ib;
int r;
ib = p->ib.ptr;
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 12:42:42 +00:00
idx = pkt->idx + 1;
track = (struct r100_cs_track *)p->track;
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 12:42:42 +00:00
switch (pkt->opcode) {
case PACKET3_3D_LOAD_VBPNTR:
r = r100_packet3_load_vbpntr(p, pkt, idx);
if (r)
return r;
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 12:42:42 +00:00
break;
case PACKET3_INDX_BUFFER:
r = radeon_cs_packet_next_reloc(p, &reloc, 0);
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 12:42:42 +00:00
if (r) {
DRM_ERROR("No reloc for packet3 %d\n", pkt->opcode);
radeon_cs_dump_packet(p, pkt);
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 12:42:42 +00:00
return r;
}
ib[idx+1] = radeon_get_ib_value(p, idx+1) + ((u32)reloc->lobj.gpu_offset);
r = r100_cs_track_check_pkt3_indx_buffer(p, pkt, reloc->robj);
if (r) {
return r;
}
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 12:42:42 +00:00
break;
case 0x23:
/* 3D_RNDR_GEN_INDX_PRIM on r100/r200 */
r = radeon_cs_packet_next_reloc(p, &reloc, 0);
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 12:42:42 +00:00
if (r) {
DRM_ERROR("No reloc for packet3 %d\n", pkt->opcode);
radeon_cs_dump_packet(p, pkt);
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 12:42:42 +00:00
return r;
}
ib[idx] = radeon_get_ib_value(p, idx) + ((u32)reloc->lobj.gpu_offset);
track->num_arrays = 1;
track->vtx_size = r100_get_vtx_size(radeon_get_ib_value(p, idx + 2));
track->arrays[0].robj = reloc->robj;
track->arrays[0].esize = track->vtx_size;
track->max_indx = radeon_get_ib_value(p, idx+1);
track->vap_vf_cntl = radeon_get_ib_value(p, idx+3);
track->immd_dwords = pkt->count - 1;
r = r100_cs_track_check(p->rdev, track);
if (r)
return r;
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 12:42:42 +00:00
break;
case PACKET3_3D_DRAW_IMMD:
if (((radeon_get_ib_value(p, idx + 1) >> 4) & 0x3) != 3) {
DRM_ERROR("PRIM_WALK must be 3 for IMMD draw\n");
return -EINVAL;
}
track->vtx_size = r100_get_vtx_size(radeon_get_ib_value(p, idx + 0));
track->vap_vf_cntl = radeon_get_ib_value(p, idx + 1);
track->immd_dwords = pkt->count - 1;
r = r100_cs_track_check(p->rdev, track);
if (r)
return r;
break;
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 12:42:42 +00:00
/* triggers drawing using in-packet vertex data */
case PACKET3_3D_DRAW_IMMD_2:
if (((radeon_get_ib_value(p, idx) >> 4) & 0x3) != 3) {
DRM_ERROR("PRIM_WALK must be 3 for IMMD draw\n");
return -EINVAL;
}
track->vap_vf_cntl = radeon_get_ib_value(p, idx);
track->immd_dwords = pkt->count;
r = r100_cs_track_check(p->rdev, track);
if (r)
return r;
break;
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 12:42:42 +00:00
/* triggers drawing using in-packet vertex data */
case PACKET3_3D_DRAW_VBUF_2:
track->vap_vf_cntl = radeon_get_ib_value(p, idx);
r = r100_cs_track_check(p->rdev, track);
if (r)
return r;
break;
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 12:42:42 +00:00
/* triggers drawing of vertex buffers setup elsewhere */
case PACKET3_3D_DRAW_INDX_2:
track->vap_vf_cntl = radeon_get_ib_value(p, idx);
r = r100_cs_track_check(p->rdev, track);
if (r)
return r;
break;
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 12:42:42 +00:00
/* triggers drawing using indices to vertex buffer */
case PACKET3_3D_DRAW_VBUF:
track->vap_vf_cntl = radeon_get_ib_value(p, idx + 1);
r = r100_cs_track_check(p->rdev, track);
if (r)
return r;
break;
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 12:42:42 +00:00
/* triggers drawing of vertex buffers setup elsewhere */
case PACKET3_3D_DRAW_INDX:
track->vap_vf_cntl = radeon_get_ib_value(p, idx + 1);
r = r100_cs_track_check(p->rdev, track);
if (r)
return r;
break;
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 12:42:42 +00:00
/* triggers drawing using indices to vertex buffer */
case PACKET3_3D_CLEAR_HIZ:
case PACKET3_3D_CLEAR_ZMASK:
if (p->rdev->hyperz_filp != p->filp)
return -EINVAL;
break;
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 12:42:42 +00:00
case PACKET3_NOP:
break;
default:
DRM_ERROR("Packet3 opcode %x not supported\n", pkt->opcode);
return -EINVAL;
}
return 0;
}
int r100_cs_parse(struct radeon_cs_parser *p)
{
struct radeon_cs_packet pkt;
struct r100_cs_track *track;
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 12:42:42 +00:00
int r;
track = kzalloc(sizeof(*track), GFP_KERNEL);
if (!track)
return -ENOMEM;
r100_cs_track_clear(p->rdev, track);
p->track = track;
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 12:42:42 +00:00
do {
r = radeon_cs_packet_parse(p, &pkt, p->idx);
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 12:42:42 +00:00
if (r) {
return r;
}
p->idx += pkt.count + 2;
switch (pkt.type) {
case RADEON_PACKET_TYPE0:
if (p->rdev->family >= CHIP_R200)
r = r100_cs_parse_packet0(p, &pkt,
p->rdev->config.r100.reg_safe_bm,
p->rdev->config.r100.reg_safe_bm_size,
&r200_packet0_check);
else
r = r100_cs_parse_packet0(p, &pkt,
p->rdev->config.r100.reg_safe_bm,
p->rdev->config.r100.reg_safe_bm_size,
&r100_packet0_check);
break;
case RADEON_PACKET_TYPE2:
break;
case RADEON_PACKET_TYPE3:
r = r100_packet3_check(p, &pkt);
break;
default:
DRM_ERROR("Unknown packet type %d !\n",
pkt.type);
return -EINVAL;
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 12:42:42 +00:00
}
if (r)
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 12:42:42 +00:00
return r;
} while (p->idx < p->chunks[p->chunk_ib_idx].length_dw);
return 0;
}
static void r100_cs_track_texture_print(struct r100_cs_track_texture *t)
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 12:42:42 +00:00
{
DRM_ERROR("pitch %d\n", t->pitch);
DRM_ERROR("use_pitch %d\n", t->use_pitch);
DRM_ERROR("width %d\n", t->width);
DRM_ERROR("width_11 %d\n", t->width_11);
DRM_ERROR("height %d\n", t->height);
DRM_ERROR("height_11 %d\n", t->height_11);
DRM_ERROR("num levels %d\n", t->num_levels);
DRM_ERROR("depth %d\n", t->txdepth);
DRM_ERROR("bpp %d\n", t->cpp);
DRM_ERROR("coordinate type %d\n", t->tex_coord_type);
DRM_ERROR("width round to power of 2 %d\n", t->roundup_w);
DRM_ERROR("height round to power of 2 %d\n", t->roundup_h);
DRM_ERROR("compress format %d\n", t->compress_format);
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 12:42:42 +00:00
}
static int r100_track_compress_size(int compress_format, int w, int h)
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 12:42:42 +00:00
{
int block_width, block_height, block_bytes;
int wblocks, hblocks;
int min_wblocks;
int sz;
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 12:42:42 +00:00
block_width = 4;
block_height = 4;
switch (compress_format) {
case R100_TRACK_COMP_DXT1:
block_bytes = 8;
min_wblocks = 4;
break;
default:
case R100_TRACK_COMP_DXT35:
block_bytes = 16;
min_wblocks = 2;
break;
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 12:42:42 +00:00
}
hblocks = (h + block_height - 1) / block_height;
wblocks = (w + block_width - 1) / block_width;
if (wblocks < min_wblocks)
wblocks = min_wblocks;
sz = wblocks * hblocks * block_bytes;
return sz;
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 12:42:42 +00:00
}
static int r100_cs_track_cube(struct radeon_device *rdev,
struct r100_cs_track *track, unsigned idx)
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 12:42:42 +00:00
{
unsigned face, w, h;
struct radeon_bo *cube_robj;
unsigned long size;
unsigned compress_format = track->textures[idx].compress_format;
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 12:42:42 +00:00
for (face = 0; face < 5; face++) {
cube_robj = track->textures[idx].cube_info[face].robj;
w = track->textures[idx].cube_info[face].width;
h = track->textures[idx].cube_info[face].height;
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 12:42:42 +00:00
if (compress_format) {
size = r100_track_compress_size(compress_format, w, h);
} else
size = w * h;
size *= track->textures[idx].cpp;
size += track->textures[idx].cube_info[face].offset;
if (size > radeon_bo_size(cube_robj)) {
DRM_ERROR("Cube texture offset greater than object size %lu %lu\n",
size, radeon_bo_size(cube_robj));
r100_cs_track_texture_print(&track->textures[idx]);
return -1;
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 12:42:42 +00:00
}
}
return 0;
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 12:42:42 +00:00
}
static int r100_cs_track_texture_check(struct radeon_device *rdev,
struct r100_cs_track *track)
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 12:42:42 +00:00
{
struct radeon_bo *robj;
unsigned long size;
unsigned u, i, w, h, d;
int ret;
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 12:42:42 +00:00
for (u = 0; u < track->num_texture; u++) {
if (!track->textures[u].enabled)
continue;
if (track->textures[u].lookup_disable)
continue;
robj = track->textures[u].robj;
if (robj == NULL) {
DRM_ERROR("No texture bound to unit %u\n", u);
return -EINVAL;
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 12:42:42 +00:00
}
size = 0;
for (i = 0; i <= track->textures[u].num_levels; i++) {
if (track->textures[u].use_pitch) {
if (rdev->family < CHIP_R300)
w = (track->textures[u].pitch / track->textures[u].cpp) / (1 << i);
else
w = track->textures[u].pitch / (1 << i);
} else {
w = track->textures[u].width;
if (rdev->family >= CHIP_RV515)
w |= track->textures[u].width_11;
w = w / (1 << i);
if (track->textures[u].roundup_w)
w = roundup_pow_of_two(w);
}
h = track->textures[u].height;
if (rdev->family >= CHIP_RV515)
h |= track->textures[u].height_11;
h = h / (1 << i);
if (track->textures[u].roundup_h)
h = roundup_pow_of_two(h);
if (track->textures[u].tex_coord_type == 1) {
d = (1 << track->textures[u].txdepth) / (1 << i);
if (!d)
d = 1;
} else {
d = 1;
}
if (track->textures[u].compress_format) {
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 12:42:42 +00:00
size += r100_track_compress_size(track->textures[u].compress_format, w, h) * d;
/* compressed textures are block based */
} else
size += w * h * d;
}
size *= track->textures[u].cpp;
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 12:42:42 +00:00
switch (track->textures[u].tex_coord_type) {
case 0:
case 1:
break;
case 2:
if (track->separate_cube) {
ret = r100_cs_track_cube(rdev, track, u);
if (ret)
return ret;
} else
size *= 6;
break;
default:
DRM_ERROR("Invalid texture coordinate type %u for unit "
"%u\n", track->textures[u].tex_coord_type, u);
return -EINVAL;
}
if (size > radeon_bo_size(robj)) {
DRM_ERROR("Texture of unit %u needs %lu bytes but is "
"%lu\n", u, size, radeon_bo_size(robj));
r100_cs_track_texture_print(&track->textures[u]);
return -EINVAL;
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 12:42:42 +00:00
}
}
return 0;
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 12:42:42 +00:00
}
int r100_cs_track_check(struct radeon_device *rdev, struct r100_cs_track *track)
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 12:42:42 +00:00
{
unsigned i;
unsigned long size;
unsigned prim_walk;
unsigned nverts;
unsigned num_cb = track->cb_dirty ? track->num_cb : 0;
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 12:42:42 +00:00
if (num_cb && !track->zb_cb_clear && !track->color_channel_mask &&
!track->blend_read_enable)
num_cb = 0;
for (i = 0; i < num_cb; i++) {
if (track->cb[i].robj == NULL) {
DRM_ERROR("[drm] No buffer for color buffer %d !\n", i);
return -EINVAL;
}
size = track->cb[i].pitch * track->cb[i].cpp * track->maxy;
size += track->cb[i].offset;
if (size > radeon_bo_size(track->cb[i].robj)) {
DRM_ERROR("[drm] Buffer too small for color buffer %d "
"(need %lu have %lu) !\n", i, size,
radeon_bo_size(track->cb[i].robj));
DRM_ERROR("[drm] color buffer %d (%u %u %u %u)\n",
i, track->cb[i].pitch, track->cb[i].cpp,
track->cb[i].offset, track->maxy);
return -EINVAL;
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 12:42:42 +00:00
}
}
track->cb_dirty = false;
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 12:42:42 +00:00
if (track->zb_dirty && track->z_enabled) {
if (track->zb.robj == NULL) {
DRM_ERROR("[drm] No buffer for z buffer !\n");
return -EINVAL;
}
size = track->zb.pitch * track->zb.cpp * track->maxy;
size += track->zb.offset;
if (size > radeon_bo_size(track->zb.robj)) {
DRM_ERROR("[drm] Buffer too small for z buffer "
"(need %lu have %lu) !\n", size,
radeon_bo_size(track->zb.robj));
DRM_ERROR("[drm] zbuffer (%u %u %u %u)\n",
track->zb.pitch, track->zb.cpp,
track->zb.offset, track->maxy);
return -EINVAL;
}
}
track->zb_dirty = false;
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 12:42:42 +00:00
if (track->aa_dirty && track->aaresolve) {
if (track->aa.robj == NULL) {
DRM_ERROR("[drm] No buffer for AA resolve buffer %d !\n", i);
return -EINVAL;
}
/* I believe the format comes from colorbuffer0. */
size = track->aa.pitch * track->cb[0].cpp * track->maxy;
size += track->aa.offset;
if (size > radeon_bo_size(track->aa.robj)) {
DRM_ERROR("[drm] Buffer too small for AA resolve buffer %d "
"(need %lu have %lu) !\n", i, size,
radeon_bo_size(track->aa.robj));
DRM_ERROR("[drm] AA resolve buffer %d (%u %u %u %u)\n",
i, track->aa.pitch, track->cb[0].cpp,
track->aa.offset, track->maxy);
return -EINVAL;
}
}
track->aa_dirty = false;
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 12:42:42 +00:00
prim_walk = (track->vap_vf_cntl >> 4) & 0x3;
if (track->vap_vf_cntl & (1 << 14)) {
nverts = track->vap_alt_nverts;
} else {
nverts = (track->vap_vf_cntl >> 16) & 0xFFFF;
}
switch (prim_walk) {
case 1:
for (i = 0; i < track->num_arrays; i++) {
size = track->arrays[i].esize * track->max_indx * 4;
if (track->arrays[i].robj == NULL) {
DRM_ERROR("(PW %u) Vertex array %u no buffer "
"bound\n", prim_walk, i);
return -EINVAL;
}
if (size > radeon_bo_size(track->arrays[i].robj)) {
dev_err(rdev->dev, "(PW %u) Vertex array %u "
"need %lu dwords have %lu dwords\n",
prim_walk, i, size >> 2,
radeon_bo_size(track->arrays[i].robj)
>> 2);
DRM_ERROR("Max indices %u\n", track->max_indx);
return -EINVAL;
}
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 12:42:42 +00:00
}
break;
case 2:
for (i = 0; i < track->num_arrays; i++) {
size = track->arrays[i].esize * (nverts - 1) * 4;
if (track->arrays[i].robj == NULL) {
DRM_ERROR("(PW %u) Vertex array %u no buffer "
"bound\n", prim_walk, i);
return -EINVAL;
}
if (size > radeon_bo_size(track->arrays[i].robj)) {
dev_err(rdev->dev, "(PW %u) Vertex array %u "
"need %lu dwords have %lu dwords\n",
prim_walk, i, size >> 2,
radeon_bo_size(track->arrays[i].robj)
>> 2);
return -EINVAL;
}
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 12:42:42 +00:00
}
break;
case 3:
size = track->vtx_size * nverts;
if (size != track->immd_dwords) {
DRM_ERROR("IMMD draw %u dwors but needs %lu dwords\n",
track->immd_dwords, size);
DRM_ERROR("VAP_VF_CNTL.NUM_VERTICES %u, VTX_SIZE %u\n",
nverts, track->vtx_size);
return -EINVAL;
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 12:42:42 +00:00
}
break;
default:
DRM_ERROR("[drm] Invalid primitive walk %d for VAP_VF_CNTL\n",
prim_walk);
return -EINVAL;
}
if (track->tex_dirty) {
track->tex_dirty = false;
return r100_cs_track_texture_check(rdev, track);
}
return 0;
}
void r100_cs_track_clear(struct radeon_device *rdev, struct r100_cs_track *track)
{
unsigned i, face;
track->cb_dirty = true;
track->zb_dirty = true;
track->tex_dirty = true;
track->aa_dirty = true;
if (rdev->family < CHIP_R300) {
track->num_cb = 1;
if (rdev->family <= CHIP_RS200)
track->num_texture = 3;
else
track->num_texture = 6;
track->maxy = 2048;
track->separate_cube = 1;
} else {
track->num_cb = 4;
track->num_texture = 16;
track->maxy = 4096;
track->separate_cube = 0;
track->aaresolve = false;
track->aa.robj = NULL;
}
for (i = 0; i < track->num_cb; i++) {
track->cb[i].robj = NULL;
track->cb[i].pitch = 8192;
track->cb[i].cpp = 16;
track->cb[i].offset = 0;
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 12:42:42 +00:00
}
track->z_enabled = true;
track->zb.robj = NULL;
track->zb.pitch = 8192;
track->zb.cpp = 4;
track->zb.offset = 0;
track->vtx_size = 0x7F;
track->immd_dwords = 0xFFFFFFFFUL;
track->num_arrays = 11;
track->max_indx = 0x00FFFFFFUL;
for (i = 0; i < track->num_arrays; i++) {
track->arrays[i].robj = NULL;
track->arrays[i].esize = 0x7F;
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 12:42:42 +00:00
}
for (i = 0; i < track->num_texture; i++) {
track->textures[i].compress_format = R100_TRACK_COMP_NONE;
track->textures[i].pitch = 16536;
track->textures[i].width = 16536;
track->textures[i].height = 16536;
track->textures[i].width_11 = 1 << 11;
track->textures[i].height_11 = 1 << 11;
track->textures[i].num_levels = 12;
if (rdev->family <= CHIP_RS200) {
track->textures[i].tex_coord_type = 0;
track->textures[i].txdepth = 0;
} else {
track->textures[i].txdepth = 16;
track->textures[i].tex_coord_type = 1;
}
track->textures[i].cpp = 64;
track->textures[i].robj = NULL;
/* CS IB emission code makes sure texture unit are disabled */
track->textures[i].enabled = false;
track->textures[i].lookup_disable = false;
track->textures[i].roundup_w = true;
track->textures[i].roundup_h = true;
if (track->separate_cube)
for (face = 0; face < 5; face++) {
track->textures[i].cube_info[face].robj = NULL;
track->textures[i].cube_info[face].width = 16536;
track->textures[i].cube_info[face].height = 16536;
track->textures[i].cube_info[face].offset = 0;
}
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 12:42:42 +00:00
}
}
/*
* Global GPU functions
*/
static void r100_errata(struct radeon_device *rdev)
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 12:42:42 +00:00
{
rdev->pll_errata = 0;
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 12:42:42 +00:00
if (rdev->family == CHIP_RV200 || rdev->family == CHIP_RS200) {
rdev->pll_errata |= CHIP_ERRATA_PLL_DUMMYREADS;
}
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 12:42:42 +00:00
if (rdev->family == CHIP_RV100 ||
rdev->family == CHIP_RS100 ||
rdev->family == CHIP_RS200) {
rdev->pll_errata |= CHIP_ERRATA_PLL_DELAY;
}
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 12:42:42 +00:00
}
static int r100_rbbm_fifo_wait_for_entry(struct radeon_device *rdev, unsigned n)
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 12:42:42 +00:00
{
unsigned i;
uint32_t tmp;
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 12:42:42 +00:00
for (i = 0; i < rdev->usec_timeout; i++) {
tmp = RREG32(RADEON_RBBM_STATUS) & RADEON_RBBM_FIFOCNT_MASK;
if (tmp >= n) {
return 0;
}
DRM_UDELAY(1);
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 12:42:42 +00:00
}
return -1;
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 12:42:42 +00:00
}
int r100_gui_wait_for_idle(struct radeon_device *rdev)
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 12:42:42 +00:00
{
unsigned i;
uint32_t tmp;
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 12:42:42 +00:00
if (r100_rbbm_fifo_wait_for_entry(rdev, 64)) {
printk(KERN_WARNING "radeon: wait for empty RBBM fifo failed !"
" Bad things might happen.\n");
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 12:42:42 +00:00
}
for (i = 0; i < rdev->usec_timeout; i++) {
tmp = RREG32(RADEON_RBBM_STATUS);
if (!(tmp & RADEON_RBBM_ACTIVE)) {
return 0;
}
DRM_UDELAY(1);
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 12:42:42 +00:00
}
return -1;
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 12:42:42 +00:00
}
int r100_mc_wait_for_idle(struct radeon_device *rdev)
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 12:42:42 +00:00
{
unsigned i;
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 12:42:42 +00:00
uint32_t tmp;
for (i = 0; i < rdev->usec_timeout; i++) {
/* read MC_STATUS */
tmp = RREG32(RADEON_MC_STATUS);
if (tmp & RADEON_MC_IDLE) {
return 0;
}
DRM_UDELAY(1);
}
return -1;
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 12:42:42 +00:00
}
bool r100_gpu_is_lockup(struct radeon_device *rdev, struct radeon_ring *ring)
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 12:42:42 +00:00
{
u32 rbbm_status;
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 12:42:42 +00:00
rbbm_status = RREG32(R_000E40_RBBM_STATUS);
if (!G_000E40_GUI_ACTIVE(rbbm_status)) {
radeon_ring_lockup_update(ring);
return false;
}
/* force CP activities */
radeon_ring_force_activity(rdev, ring);
return radeon_ring_test_lockup(rdev, ring);
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 12:42:42 +00:00
}
/* required on r1xx, r2xx, r300, r(v)350, r420/r481, rs400/rs480 */
void r100_enable_bm(struct radeon_device *rdev)
{
uint32_t tmp;
/* Enable bus mastering */
tmp = RREG32(RADEON_BUS_CNTL) & ~RADEON_BUS_MASTER_DIS;
WREG32(RADEON_BUS_CNTL, tmp);
}
void r100_bm_disable(struct radeon_device *rdev)
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 12:42:42 +00:00
{
u32 tmp;
/* disable bus mastering */
tmp = RREG32(R_000030_BUS_CNTL);
WREG32(R_000030_BUS_CNTL, (tmp & 0xFFFFFFFF) | 0x00000044);
mdelay(1);
WREG32(R_000030_BUS_CNTL, (tmp & 0xFFFFFFFF) | 0x00000042);
mdelay(1);
WREG32(R_000030_BUS_CNTL, (tmp & 0xFFFFFFFF) | 0x00000040);
tmp = RREG32(RADEON_BUS_CNTL);
mdelay(1);
pci_clear_master(rdev->pdev);
mdelay(1);
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 12:42:42 +00:00
}
int r100_asic_reset(struct radeon_device *rdev)
{
struct r100_mc_save save;
u32 status, tmp;
int ret = 0;
status = RREG32(R_000E40_RBBM_STATUS);
if (!G_000E40_GUI_ACTIVE(status)) {
return 0;
}
r100_mc_stop(rdev, &save);
status = RREG32(R_000E40_RBBM_STATUS);
dev_info(rdev->dev, "(%s:%d) RBBM_STATUS=0x%08X\n", __func__, __LINE__, status);
/* stop CP */
WREG32(RADEON_CP_CSQ_CNTL, 0);
tmp = RREG32(RADEON_CP_RB_CNTL);
WREG32(RADEON_CP_RB_CNTL, tmp | RADEON_RB_RPTR_WR_ENA);
WREG32(RADEON_CP_RB_RPTR_WR, 0);
WREG32(RADEON_CP_RB_WPTR, 0);
WREG32(RADEON_CP_RB_CNTL, tmp);
/* save PCI state */
pci_save_state(rdev->pdev);
/* disable bus mastering */
r100_bm_disable(rdev);
WREG32(R_0000F0_RBBM_SOFT_RESET, S_0000F0_SOFT_RESET_SE(1) |
S_0000F0_SOFT_RESET_RE(1) |
S_0000F0_SOFT_RESET_PP(1) |
S_0000F0_SOFT_RESET_RB(1));
RREG32(R_0000F0_RBBM_SOFT_RESET);
mdelay(500);
WREG32(R_0000F0_RBBM_SOFT_RESET, 0);
mdelay(1);
status = RREG32(R_000E40_RBBM_STATUS);
dev_info(rdev->dev, "(%s:%d) RBBM_STATUS=0x%08X\n", __func__, __LINE__, status);
/* reset CP */
WREG32(R_0000F0_RBBM_SOFT_RESET, S_0000F0_SOFT_RESET_CP(1));
RREG32(R_0000F0_RBBM_SOFT_RESET);
mdelay(500);
WREG32(R_0000F0_RBBM_SOFT_RESET, 0);
mdelay(1);
status = RREG32(R_000E40_RBBM_STATUS);
dev_info(rdev->dev, "(%s:%d) RBBM_STATUS=0x%08X\n", __func__, __LINE__, status);
/* restore PCI & busmastering */
pci_restore_state(rdev->pdev);
r100_enable_bm(rdev);
/* Check if GPU is idle */
if (G_000E40_SE_BUSY(status) || G_000E40_RE_BUSY(status) ||
G_000E40_TAM_BUSY(status) || G_000E40_PB_BUSY(status)) {
dev_err(rdev->dev, "failed to reset GPU\n");
ret = -1;
} else
dev_info(rdev->dev, "GPU reset succeed\n");
r100_mc_resume(rdev, &save);
return ret;
}
void r100_set_common_regs(struct radeon_device *rdev)
{
struct drm_device *dev = rdev->ddev;
bool force_dac2 = false;
u32 tmp;
/* set these so they don't interfere with anything */
WREG32(RADEON_OV0_SCALE_CNTL, 0);
WREG32(RADEON_SUBPIC_CNTL, 0);
WREG32(RADEON_VIPH_CONTROL, 0);
WREG32(RADEON_I2C_CNTL_1, 0);
WREG32(RADEON_DVI_I2C_CNTL_1, 0);
WREG32(RADEON_CAP0_TRIG_CNTL, 0);
WREG32(RADEON_CAP1_TRIG_CNTL, 0);
/* always set up dac2 on rn50 and some rv100 as lots
* of servers seem to wire it up to a VGA port but
* don't report it in the bios connector
* table.
*/
switch (dev->pdev->device) {
/* RN50 */
case 0x515e:
case 0x5969:
force_dac2 = true;
break;
/* RV100*/
case 0x5159:
case 0x515a:
/* DELL triple head servers */
if ((dev->pdev->subsystem_vendor == 0x1028 /* DELL */) &&
((dev->pdev->subsystem_device == 0x016c) ||
(dev->pdev->subsystem_device == 0x016d) ||
(dev->pdev->subsystem_device == 0x016e) ||
(dev->pdev->subsystem_device == 0x016f) ||
(dev->pdev->subsystem_device == 0x0170) ||
(dev->pdev->subsystem_device == 0x017d) ||
(dev->pdev->subsystem_device == 0x017e) ||
(dev->pdev->subsystem_device == 0x0183) ||
(dev->pdev->subsystem_device == 0x018a) ||
(dev->pdev->subsystem_device == 0x019a)))
force_dac2 = true;
break;
}
if (force_dac2) {
u32 disp_hw_debug = RREG32(RADEON_DISP_HW_DEBUG);
u32 tv_dac_cntl = RREG32(RADEON_TV_DAC_CNTL);
u32 dac2_cntl = RREG32(RADEON_DAC_CNTL2);
/* For CRT on DAC2, don't turn it on if BIOS didn't
enable it, even it's detected.
*/
/* force it to crtc0 */
dac2_cntl &= ~RADEON_DAC2_DAC_CLK_SEL;
dac2_cntl |= RADEON_DAC2_DAC2_CLK_SEL;
disp_hw_debug |= RADEON_CRT2_DISP1_SEL;
/* set up the TV DAC */
tv_dac_cntl &= ~(RADEON_TV_DAC_PEDESTAL |
RADEON_TV_DAC_STD_MASK |
RADEON_TV_DAC_RDACPD |
RADEON_TV_DAC_GDACPD |
RADEON_TV_DAC_BDACPD |
RADEON_TV_DAC_BGADJ_MASK |
RADEON_TV_DAC_DACADJ_MASK);
tv_dac_cntl |= (RADEON_TV_DAC_NBLANK |
RADEON_TV_DAC_NHOLD |
RADEON_TV_DAC_STD_PS2 |
(0x58 << 16));
WREG32(RADEON_TV_DAC_CNTL, tv_dac_cntl);
WREG32(RADEON_DISP_HW_DEBUG, disp_hw_debug);
WREG32(RADEON_DAC_CNTL2, dac2_cntl);
}
/* switch PM block to ACPI mode */
tmp = RREG32_PLL(RADEON_PLL_PWRMGT_CNTL);
tmp &= ~RADEON_PM_MODE_SEL;
WREG32_PLL(RADEON_PLL_PWRMGT_CNTL, tmp);
}
/*
* VRAM info
*/
static void r100_vram_get_type(struct radeon_device *rdev)
{
uint32_t tmp;
rdev->mc.vram_is_ddr = false;
if (rdev->flags & RADEON_IS_IGP)
rdev->mc.vram_is_ddr = true;
else if (RREG32(RADEON_MEM_SDRAM_MODE_REG) & RADEON_MEM_CFG_TYPE_DDR)
rdev->mc.vram_is_ddr = true;
if ((rdev->family == CHIP_RV100) ||
(rdev->family == CHIP_RS100) ||
(rdev->family == CHIP_RS200)) {
tmp = RREG32(RADEON_MEM_CNTL);
if (tmp & RV100_HALF_MODE) {
rdev->mc.vram_width = 32;
} else {
rdev->mc.vram_width = 64;
}
if (rdev->flags & RADEON_SINGLE_CRTC) {
rdev->mc.vram_width /= 4;
rdev->mc.vram_is_ddr = true;
}
} else if (rdev->family <= CHIP_RV280) {
tmp = RREG32(RADEON_MEM_CNTL);
if (tmp & RADEON_MEM_NUM_CHANNELS_MASK) {
rdev->mc.vram_width = 128;
} else {
rdev->mc.vram_width = 64;
}
} else {
/* newer IGPs */
rdev->mc.vram_width = 128;
}
}
static u32 r100_get_accessible_vram(struct radeon_device *rdev)
{
u32 aper_size;
u8 byte;
aper_size = RREG32(RADEON_CONFIG_APER_SIZE);
/* Set HDP_APER_CNTL only on cards that are known not to be broken,
* that is has the 2nd generation multifunction PCI interface
*/
if (rdev->family == CHIP_RV280 ||
rdev->family >= CHIP_RV350) {
WREG32_P(RADEON_HOST_PATH_CNTL, RADEON_HDP_APER_CNTL,
~RADEON_HDP_APER_CNTL);
DRM_INFO("Generation 2 PCI interface, using max accessible memory\n");
return aper_size * 2;
}
/* Older cards have all sorts of funny issues to deal with. First
* check if it's a multifunction card by reading the PCI config
* header type... Limit those to one aperture size
*/
pci_read_config_byte(rdev->pdev, 0xe, &byte);
if (byte & 0x80) {
DRM_INFO("Generation 1 PCI interface in multifunction mode\n");
DRM_INFO("Limiting VRAM to one aperture\n");
return aper_size;
}
/* Single function older card. We read HDP_APER_CNTL to see how the BIOS
* have set it up. We don't write this as it's broken on some ASICs but
* we expect the BIOS to have done the right thing (might be too optimistic...)
*/
if (RREG32(RADEON_HOST_PATH_CNTL) & RADEON_HDP_APER_CNTL)
return aper_size * 2;
return aper_size;
}
void r100_vram_init_sizes(struct radeon_device *rdev)
{
u64 config_aper_size;
/* work out accessible VRAM */
rdev->mc.aper_base = pci_resource_start(rdev->pdev, 0);
rdev->mc.aper_size = pci_resource_len(rdev->pdev, 0);
rdev->mc.visible_vram_size = r100_get_accessible_vram(rdev);
/* FIXME we don't use the second aperture yet when we could use it */
if (rdev->mc.visible_vram_size > rdev->mc.aper_size)
rdev->mc.visible_vram_size = rdev->mc.aper_size;
config_aper_size = RREG32(RADEON_CONFIG_APER_SIZE);
if (rdev->flags & RADEON_IS_IGP) {
uint32_t tom;
/* read NB_TOM to get the amount of ram stolen for the GPU */
tom = RREG32(RADEON_NB_TOM);
rdev->mc.real_vram_size = (((tom >> 16) - (tom & 0xffff) + 1) << 16);
WREG32(RADEON_CONFIG_MEMSIZE, rdev->mc.real_vram_size);
rdev->mc.mc_vram_size = rdev->mc.real_vram_size;
} else {
rdev->mc.real_vram_size = RREG32(RADEON_CONFIG_MEMSIZE);
/* Some production boards of m6 will report 0
* if it's 8 MB
*/
if (rdev->mc.real_vram_size == 0) {
rdev->mc.real_vram_size = 8192 * 1024;
WREG32(RADEON_CONFIG_MEMSIZE, rdev->mc.real_vram_size);
}
/* Fix for RN50, M6, M7 with 8/16/32(??) MBs of VRAM -
* Novell bug 204882 + along with lots of ubuntu ones
*/
if (rdev->mc.aper_size > config_aper_size)
config_aper_size = rdev->mc.aper_size;
if (config_aper_size > rdev->mc.real_vram_size)
rdev->mc.mc_vram_size = config_aper_size;
else
rdev->mc.mc_vram_size = rdev->mc.real_vram_size;
}
}
void r100_vga_set_state(struct radeon_device *rdev, bool state)
{
uint32_t temp;
temp = RREG32(RADEON_CONFIG_CNTL);
if (state == false) {
temp &= ~RADEON_CFG_VGA_RAM_EN;
temp |= RADEON_CFG_VGA_IO_DIS;
} else {
temp &= ~RADEON_CFG_VGA_IO_DIS;
}
WREG32(RADEON_CONFIG_CNTL, temp);
}
static void r100_mc_init(struct radeon_device *rdev)
{
u64 base;
r100_vram_get_type(rdev);
r100_vram_init_sizes(rdev);
base = rdev->mc.aper_base;
if (rdev->flags & RADEON_IS_IGP)
base = (RREG32(RADEON_NB_TOM) & 0xffff) << 16;
radeon_vram_location(rdev, &rdev->mc, base);
rdev->mc.gtt_base_align = 0;
if (!(rdev->flags & RADEON_IS_AGP))
radeon_gtt_location(rdev, &rdev->mc);
radeon_update_bandwidth_info(rdev);
}
/*
* Indirect registers accessor
*/
void r100_pll_errata_after_index(struct radeon_device *rdev)
{
if (rdev->pll_errata & CHIP_ERRATA_PLL_DUMMYREADS) {
(void)RREG32(RADEON_CLOCK_CNTL_DATA);
(void)RREG32(RADEON_CRTC_GEN_CNTL);
}
}
static void r100_pll_errata_after_data(struct radeon_device *rdev)
{
/* This workarounds is necessary on RV100, RS100 and RS200 chips
* or the chip could hang on a subsequent access
*/
if (rdev->pll_errata & CHIP_ERRATA_PLL_DELAY) {
mdelay(5);
}
/* This function is required to workaround a hardware bug in some (all?)
* revisions of the R300. This workaround should be called after every
* CLOCK_CNTL_INDEX register access. If not, register reads afterward
* may not be correct.
*/
if (rdev->pll_errata & CHIP_ERRATA_R300_CG) {
uint32_t save, tmp;
save = RREG32(RADEON_CLOCK_CNTL_INDEX);
tmp = save & ~(0x3f | RADEON_PLL_WR_EN);
WREG32(RADEON_CLOCK_CNTL_INDEX, tmp);
tmp = RREG32(RADEON_CLOCK_CNTL_DATA);
WREG32(RADEON_CLOCK_CNTL_INDEX, save);
}
}
uint32_t r100_pll_rreg(struct radeon_device *rdev, uint32_t reg)
{
uint32_t data;
WREG8(RADEON_CLOCK_CNTL_INDEX, reg & 0x3f);
r100_pll_errata_after_index(rdev);
data = RREG32(RADEON_CLOCK_CNTL_DATA);
r100_pll_errata_after_data(rdev);
return data;
}
void r100_pll_wreg(struct radeon_device *rdev, uint32_t reg, uint32_t v)
{
WREG8(RADEON_CLOCK_CNTL_INDEX, ((reg & 0x3f) | RADEON_PLL_WR_EN));
r100_pll_errata_after_index(rdev);
WREG32(RADEON_CLOCK_CNTL_DATA, v);
r100_pll_errata_after_data(rdev);
}
static void r100_set_safe_registers(struct radeon_device *rdev)
{
if (ASIC_IS_RN50(rdev)) {
rdev->config.r100.reg_safe_bm = rn50_reg_safe_bm;
rdev->config.r100.reg_safe_bm_size = ARRAY_SIZE(rn50_reg_safe_bm);
} else if (rdev->family < CHIP_R200) {
rdev->config.r100.reg_safe_bm = r100_reg_safe_bm;
rdev->config.r100.reg_safe_bm_size = ARRAY_SIZE(r100_reg_safe_bm);
} else {
r200_set_safe_registers(rdev);
}
}
/*
* Debugfs info
*/
#if defined(CONFIG_DEBUG_FS)
static int r100_debugfs_rbbm_info(struct seq_file *m, void *data)
{
struct drm_info_node *node = (struct drm_info_node *) m->private;
struct drm_device *dev = node->minor->dev;
struct radeon_device *rdev = dev->dev_private;
uint32_t reg, value;
unsigned i;
seq_printf(m, "RBBM_STATUS 0x%08x\n", RREG32(RADEON_RBBM_STATUS));
seq_printf(m, "RBBM_CMDFIFO_STAT 0x%08x\n", RREG32(0xE7C));
seq_printf(m, "CP_STAT 0x%08x\n", RREG32(RADEON_CP_STAT));
for (i = 0; i < 64; i++) {
WREG32(RADEON_RBBM_CMDFIFO_ADDR, i | 0x100);
reg = (RREG32(RADEON_RBBM_CMDFIFO_DATA) - 1) >> 2;
WREG32(RADEON_RBBM_CMDFIFO_ADDR, i);
value = RREG32(RADEON_RBBM_CMDFIFO_DATA);
seq_printf(m, "[0x%03X] 0x%04X=0x%08X\n", i, reg, value);
}
return 0;
}
static int r100_debugfs_cp_ring_info(struct seq_file *m, void *data)
{
struct drm_info_node *node = (struct drm_info_node *) m->private;
struct drm_device *dev = node->minor->dev;
struct radeon_device *rdev = dev->dev_private;
struct radeon_ring *ring = &rdev->ring[RADEON_RING_TYPE_GFX_INDEX];
uint32_t rdp, wdp;
unsigned count, i, j;
radeon_ring_free_size(rdev, ring);
rdp = RREG32(RADEON_CP_RB_RPTR);
wdp = RREG32(RADEON_CP_RB_WPTR);
count = (rdp + ring->ring_size - wdp) & ring->ptr_mask;
seq_printf(m, "CP_STAT 0x%08x\n", RREG32(RADEON_CP_STAT));
seq_printf(m, "CP_RB_WPTR 0x%08x\n", wdp);
seq_printf(m, "CP_RB_RPTR 0x%08x\n", rdp);
seq_printf(m, "%u free dwords in ring\n", ring->ring_free_dw);
seq_printf(m, "%u dwords in ring\n", count);
if (ring->ready) {
for (j = 0; j <= count; j++) {
i = (rdp + j) & ring->ptr_mask;
seq_printf(m, "r[%04d]=0x%08x\n", i, ring->ring[i]);
}
}
return 0;
}
static int r100_debugfs_cp_csq_fifo(struct seq_file *m, void *data)
{
struct drm_info_node *node = (struct drm_info_node *) m->private;
struct drm_device *dev = node->minor->dev;
struct radeon_device *rdev = dev->dev_private;
uint32_t csq_stat, csq2_stat, tmp;
unsigned r_rptr, r_wptr, ib1_rptr, ib1_wptr, ib2_rptr, ib2_wptr;
unsigned i;
seq_printf(m, "CP_STAT 0x%08x\n", RREG32(RADEON_CP_STAT));
seq_printf(m, "CP_CSQ_MODE 0x%08x\n", RREG32(RADEON_CP_CSQ_MODE));
csq_stat = RREG32(RADEON_CP_CSQ_STAT);
csq2_stat = RREG32(RADEON_CP_CSQ2_STAT);
r_rptr = (csq_stat >> 0) & 0x3ff;
r_wptr = (csq_stat >> 10) & 0x3ff;
ib1_rptr = (csq_stat >> 20) & 0x3ff;
ib1_wptr = (csq2_stat >> 0) & 0x3ff;
ib2_rptr = (csq2_stat >> 10) & 0x3ff;
ib2_wptr = (csq2_stat >> 20) & 0x3ff;
seq_printf(m, "CP_CSQ_STAT 0x%08x\n", csq_stat);
seq_printf(m, "CP_CSQ2_STAT 0x%08x\n", csq2_stat);
seq_printf(m, "Ring rptr %u\n", r_rptr);
seq_printf(m, "Ring wptr %u\n", r_wptr);
seq_printf(m, "Indirect1 rptr %u\n", ib1_rptr);
seq_printf(m, "Indirect1 wptr %u\n", ib1_wptr);
seq_printf(m, "Indirect2 rptr %u\n", ib2_rptr);
seq_printf(m, "Indirect2 wptr %u\n", ib2_wptr);
/* FIXME: 0, 128, 640 depends on fifo setup see cp_init_kms
* 128 = indirect1_start * 8 & 640 = indirect2_start * 8 */
seq_printf(m, "Ring fifo:\n");
for (i = 0; i < 256; i++) {
WREG32(RADEON_CP_CSQ_ADDR, i << 2);
tmp = RREG32(RADEON_CP_CSQ_DATA);
seq_printf(m, "rfifo[%04d]=0x%08X\n", i, tmp);
}
seq_printf(m, "Indirect1 fifo:\n");
for (i = 256; i <= 512; i++) {
WREG32(RADEON_CP_CSQ_ADDR, i << 2);
tmp = RREG32(RADEON_CP_CSQ_DATA);
seq_printf(m, "ib1fifo[%04d]=0x%08X\n", i, tmp);
}
seq_printf(m, "Indirect2 fifo:\n");
for (i = 640; i < ib1_wptr; i++) {
WREG32(RADEON_CP_CSQ_ADDR, i << 2);
tmp = RREG32(RADEON_CP_CSQ_DATA);
seq_printf(m, "ib2fifo[%04d]=0x%08X\n", i, tmp);
}
return 0;
}
static int r100_debugfs_mc_info(struct seq_file *m, void *data)
{
struct drm_info_node *node = (struct drm_info_node *) m->private;
struct drm_device *dev = node->minor->dev;
struct radeon_device *rdev = dev->dev_private;
uint32_t tmp;
tmp = RREG32(RADEON_CONFIG_MEMSIZE);
seq_printf(m, "CONFIG_MEMSIZE 0x%08x\n", tmp);
tmp = RREG32(RADEON_MC_FB_LOCATION);
seq_printf(m, "MC_FB_LOCATION 0x%08x\n", tmp);
tmp = RREG32(RADEON_BUS_CNTL);
seq_printf(m, "BUS_CNTL 0x%08x\n", tmp);
tmp = RREG32(RADEON_MC_AGP_LOCATION);
seq_printf(m, "MC_AGP_LOCATION 0x%08x\n", tmp);
tmp = RREG32(RADEON_AGP_BASE);
seq_printf(m, "AGP_BASE 0x%08x\n", tmp);
tmp = RREG32(RADEON_HOST_PATH_CNTL);
seq_printf(m, "HOST_PATH_CNTL 0x%08x\n", tmp);
tmp = RREG32(0x01D0);
seq_printf(m, "AIC_CTRL 0x%08x\n", tmp);
tmp = RREG32(RADEON_AIC_LO_ADDR);
seq_printf(m, "AIC_LO_ADDR 0x%08x\n", tmp);
tmp = RREG32(RADEON_AIC_HI_ADDR);
seq_printf(m, "AIC_HI_ADDR 0x%08x\n", tmp);
tmp = RREG32(0x01E4);
seq_printf(m, "AIC_TLB_ADDR 0x%08x\n", tmp);
return 0;
}
static struct drm_info_list r100_debugfs_rbbm_list[] = {
{"r100_rbbm_info", r100_debugfs_rbbm_info, 0, NULL},
};
static struct drm_info_list r100_debugfs_cp_list[] = {
{"r100_cp_ring_info", r100_debugfs_cp_ring_info, 0, NULL},
{"r100_cp_csq_fifo", r100_debugfs_cp_csq_fifo, 0, NULL},
};
static struct drm_info_list r100_debugfs_mc_info_list[] = {
{"r100_mc_info", r100_debugfs_mc_info, 0, NULL},
};
#endif
int r100_debugfs_rbbm_init(struct radeon_device *rdev)
{
#if defined(CONFIG_DEBUG_FS)
return radeon_debugfs_add_files(rdev, r100_debugfs_rbbm_list, 1);
#else
return 0;
#endif
}
int r100_debugfs_cp_init(struct radeon_device *rdev)
{
#if defined(CONFIG_DEBUG_FS)
return radeon_debugfs_add_files(rdev, r100_debugfs_cp_list, 2);
#else
return 0;
#endif
}
int r100_debugfs_mc_info_init(struct radeon_device *rdev)
{
#if defined(CONFIG_DEBUG_FS)
return radeon_debugfs_add_files(rdev, r100_debugfs_mc_info_list, 1);
#else
return 0;
#endif
}
int r100_set_surface_reg(struct radeon_device *rdev, int reg,
uint32_t tiling_flags, uint32_t pitch,
uint32_t offset, uint32_t obj_size)
{
int surf_index = reg * 16;
int flags = 0;
if (rdev->family <= CHIP_RS200) {
if ((tiling_flags & (RADEON_TILING_MACRO|RADEON_TILING_MICRO))
== (RADEON_TILING_MACRO|RADEON_TILING_MICRO))
flags |= RADEON_SURF_TILE_COLOR_BOTH;
if (tiling_flags & RADEON_TILING_MACRO)
flags |= RADEON_SURF_TILE_COLOR_MACRO;
} else if (rdev->family <= CHIP_RV280) {
if (tiling_flags & (RADEON_TILING_MACRO))
flags |= R200_SURF_TILE_COLOR_MACRO;
if (tiling_flags & RADEON_TILING_MICRO)
flags |= R200_SURF_TILE_COLOR_MICRO;
} else {
if (tiling_flags & RADEON_TILING_MACRO)
flags |= R300_SURF_TILE_MACRO;
if (tiling_flags & RADEON_TILING_MICRO)
flags |= R300_SURF_TILE_MICRO;
}
if (tiling_flags & RADEON_TILING_SWAP_16BIT)
flags |= RADEON_SURF_AP0_SWP_16BPP | RADEON_SURF_AP1_SWP_16BPP;
if (tiling_flags & RADEON_TILING_SWAP_32BIT)
flags |= RADEON_SURF_AP0_SWP_32BPP | RADEON_SURF_AP1_SWP_32BPP;
/* when we aren't tiling the pitch seems to needs to be furtherdivided down. - tested on power5 + rn50 server */
if (tiling_flags & (RADEON_TILING_SWAP_16BIT | RADEON_TILING_SWAP_32BIT)) {
if (!(tiling_flags & (RADEON_TILING_MACRO | RADEON_TILING_MICRO)))
if (ASIC_IS_RN50(rdev))
pitch /= 16;
}
/* r100/r200 divide by 16 */
if (rdev->family < CHIP_R300)
flags |= pitch / 16;
else
flags |= pitch / 8;
DRM_DEBUG_KMS("writing surface %d %d %x %x\n", reg, flags, offset, offset+obj_size-1);
WREG32(RADEON_SURFACE0_INFO + surf_index, flags);
WREG32(RADEON_SURFACE0_LOWER_BOUND + surf_index, offset);
WREG32(RADEON_SURFACE0_UPPER_BOUND + surf_index, offset + obj_size - 1);
return 0;
}
void r100_clear_surface_reg(struct radeon_device *rdev, int reg)
{
int surf_index = reg * 16;
WREG32(RADEON_SURFACE0_INFO + surf_index, 0);
}
void r100_bandwidth_update(struct radeon_device *rdev)
{
fixed20_12 trcd_ff, trp_ff, tras_ff, trbs_ff, tcas_ff;
fixed20_12 sclk_ff, mclk_ff, sclk_eff_ff, sclk_delay_ff;
fixed20_12 peak_disp_bw, mem_bw, pix_clk, pix_clk2, temp_ff, crit_point_ff;
uint32_t temp, data, mem_trcd, mem_trp, mem_tras;
fixed20_12 memtcas_ff[8] = {
dfixed_init(1),
dfixed_init(2),
dfixed_init(3),
dfixed_init(0),
dfixed_init_half(1),
dfixed_init_half(2),
dfixed_init(0),
};
fixed20_12 memtcas_rs480_ff[8] = {
dfixed_init(0),
dfixed_init(1),
dfixed_init(2),
dfixed_init(3),
dfixed_init(0),
dfixed_init_half(1),
dfixed_init_half(2),
dfixed_init_half(3),
};
fixed20_12 memtcas2_ff[8] = {
dfixed_init(0),
dfixed_init(1),
dfixed_init(2),
dfixed_init(3),
dfixed_init(4),
dfixed_init(5),
dfixed_init(6),
dfixed_init(7),
};
fixed20_12 memtrbs[8] = {
dfixed_init(1),
dfixed_init_half(1),
dfixed_init(2),
dfixed_init_half(2),
dfixed_init(3),
dfixed_init_half(3),
dfixed_init(4),
dfixed_init_half(4)
};
fixed20_12 memtrbs_r4xx[8] = {
dfixed_init(4),
dfixed_init(5),
dfixed_init(6),
dfixed_init(7),
dfixed_init(8),
dfixed_init(9),
dfixed_init(10),
dfixed_init(11)
};
fixed20_12 min_mem_eff;
fixed20_12 mc_latency_sclk, mc_latency_mclk, k1;
fixed20_12 cur_latency_mclk, cur_latency_sclk;
fixed20_12 disp_latency, disp_latency_overhead, disp_drain_rate,
disp_drain_rate2, read_return_rate;
fixed20_12 time_disp1_drop_priority;
int c;
int cur_size = 16; /* in octawords */
int critical_point = 0, critical_point2;
/* uint32_t read_return_rate, time_disp1_drop_priority; */
int stop_req, max_stop_req;
struct drm_display_mode *mode1 = NULL;
struct drm_display_mode *mode2 = NULL;
uint32_t pixel_bytes1 = 0;
uint32_t pixel_bytes2 = 0;
radeon_update_display_priority(rdev);
if (rdev->mode_info.crtcs[0]->base.enabled) {
mode1 = &rdev->mode_info.crtcs[0]->base.mode;
pixel_bytes1 = rdev->mode_info.crtcs[0]->base.fb->bits_per_pixel / 8;
}
if (!(rdev->flags & RADEON_SINGLE_CRTC)) {
if (rdev->mode_info.crtcs[1]->base.enabled) {
mode2 = &rdev->mode_info.crtcs[1]->base.mode;
pixel_bytes2 = rdev->mode_info.crtcs[1]->base.fb->bits_per_pixel / 8;
}
}
min_mem_eff.full = dfixed_const_8(0);
/* get modes */
if ((rdev->disp_priority == 2) && ASIC_IS_R300(rdev)) {
uint32_t mc_init_misc_lat_timer = RREG32(R300_MC_INIT_MISC_LAT_TIMER);
mc_init_misc_lat_timer &= ~(R300_MC_DISP1R_INIT_LAT_MASK << R300_MC_DISP1R_INIT_LAT_SHIFT);
mc_init_misc_lat_timer &= ~(R300_MC_DISP0R_INIT_LAT_MASK << R300_MC_DISP0R_INIT_LAT_SHIFT);
/* check crtc enables */
if (mode2)
mc_init_misc_lat_timer |= (1 << R300_MC_DISP1R_INIT_LAT_SHIFT);
if (mode1)
mc_init_misc_lat_timer |= (1 << R300_MC_DISP0R_INIT_LAT_SHIFT);
WREG32(R300_MC_INIT_MISC_LAT_TIMER, mc_init_misc_lat_timer);
}
/*
* determine is there is enough bw for current mode
*/
sclk_ff = rdev->pm.sclk;
mclk_ff = rdev->pm.mclk;
temp = (rdev->mc.vram_width / 8) * (rdev->mc.vram_is_ddr ? 2 : 1);
temp_ff.full = dfixed_const(temp);
mem_bw.full = dfixed_mul(mclk_ff, temp_ff);
pix_clk.full = 0;
pix_clk2.full = 0;
peak_disp_bw.full = 0;
if (mode1) {
temp_ff.full = dfixed_const(1000);
pix_clk.full = dfixed_const(mode1->clock); /* convert to fixed point */
pix_clk.full = dfixed_div(pix_clk, temp_ff);
temp_ff.full = dfixed_const(pixel_bytes1);
peak_disp_bw.full += dfixed_mul(pix_clk, temp_ff);
}
if (mode2) {
temp_ff.full = dfixed_const(1000);
pix_clk2.full = dfixed_const(mode2->clock); /* convert to fixed point */
pix_clk2.full = dfixed_div(pix_clk2, temp_ff);
temp_ff.full = dfixed_const(pixel_bytes2);
peak_disp_bw.full += dfixed_mul(pix_clk2, temp_ff);
}
mem_bw.full = dfixed_mul(mem_bw, min_mem_eff);
if (peak_disp_bw.full >= mem_bw.full) {
DRM_ERROR("You may not have enough display bandwidth for current mode\n"
"If you have flickering problem, try to lower resolution, refresh rate, or color depth\n");
}
/* Get values from the EXT_MEM_CNTL register...converting its contents. */
temp = RREG32(RADEON_MEM_TIMING_CNTL);
if ((rdev->family == CHIP_RV100) || (rdev->flags & RADEON_IS_IGP)) { /* RV100, M6, IGPs */
mem_trcd = ((temp >> 2) & 0x3) + 1;
mem_trp = ((temp & 0x3)) + 1;
mem_tras = ((temp & 0x70) >> 4) + 1;
} else if (rdev->family == CHIP_R300 ||
rdev->family == CHIP_R350) { /* r300, r350 */
mem_trcd = (temp & 0x7) + 1;
mem_trp = ((temp >> 8) & 0x7) + 1;
mem_tras = ((temp >> 11) & 0xf) + 4;
} else if (rdev->family == CHIP_RV350 ||
rdev->family <= CHIP_RV380) {
/* rv3x0 */
mem_trcd = (temp & 0x7) + 3;
mem_trp = ((temp >> 8) & 0x7) + 3;
mem_tras = ((temp >> 11) & 0xf) + 6;
} else if (rdev->family == CHIP_R420 ||
rdev->family == CHIP_R423 ||
rdev->family == CHIP_RV410) {
/* r4xx */
mem_trcd = (temp & 0xf) + 3;
if (mem_trcd > 15)
mem_trcd = 15;
mem_trp = ((temp >> 8) & 0xf) + 3;
if (mem_trp > 15)
mem_trp = 15;
mem_tras = ((temp >> 12) & 0x1f) + 6;
if (mem_tras > 31)
mem_tras = 31;
} else { /* RV200, R200 */
mem_trcd = (temp & 0x7) + 1;
mem_trp = ((temp >> 8) & 0x7) + 1;
mem_tras = ((temp >> 12) & 0xf) + 4;
}
/* convert to FF */
trcd_ff.full = dfixed_const(mem_trcd);
trp_ff.full = dfixed_const(mem_trp);
tras_ff.full = dfixed_const(mem_tras);
/* Get values from the MEM_SDRAM_MODE_REG register...converting its */
temp = RREG32(RADEON_MEM_SDRAM_MODE_REG);
data = (temp & (7 << 20)) >> 20;
if ((rdev->family == CHIP_RV100) || rdev->flags & RADEON_IS_IGP) {
if (rdev->family == CHIP_RS480) /* don't think rs400 */
tcas_ff = memtcas_rs480_ff[data];
else
tcas_ff = memtcas_ff[data];
} else
tcas_ff = memtcas2_ff[data];
if (rdev->family == CHIP_RS400 ||
rdev->family == CHIP_RS480) {
/* extra cas latency stored in bits 23-25 0-4 clocks */
data = (temp >> 23) & 0x7;
if (data < 5)
tcas_ff.full += dfixed_const(data);
}
if (ASIC_IS_R300(rdev) && !(rdev->flags & RADEON_IS_IGP)) {
/* on the R300, Tcas is included in Trbs.
*/
temp = RREG32(RADEON_MEM_CNTL);
data = (R300_MEM_NUM_CHANNELS_MASK & temp);
if (data == 1) {
if (R300_MEM_USE_CD_CH_ONLY & temp) {
temp = RREG32(R300_MC_IND_INDEX);
temp &= ~R300_MC_IND_ADDR_MASK;
temp |= R300_MC_READ_CNTL_CD_mcind;
WREG32(R300_MC_IND_INDEX, temp);
temp = RREG32(R300_MC_IND_DATA);
data = (R300_MEM_RBS_POSITION_C_MASK & temp);
} else {
temp = RREG32(R300_MC_READ_CNTL_AB);
data = (R300_MEM_RBS_POSITION_A_MASK & temp);
}
} else {
temp = RREG32(R300_MC_READ_CNTL_AB);
data = (R300_MEM_RBS_POSITION_A_MASK & temp);
}
if (rdev->family == CHIP_RV410 ||
rdev->family == CHIP_R420 ||
rdev->family == CHIP_R423)
trbs_ff = memtrbs_r4xx[data];
else
trbs_ff = memtrbs[data];
tcas_ff.full += trbs_ff.full;
}
sclk_eff_ff.full = sclk_ff.full;
if (rdev->flags & RADEON_IS_AGP) {
fixed20_12 agpmode_ff;
agpmode_ff.full = dfixed_const(radeon_agpmode);
temp_ff.full = dfixed_const_666(16);
sclk_eff_ff.full -= dfixed_mul(agpmode_ff, temp_ff);
}
/* TODO PCIE lanes may affect this - agpmode == 16?? */
if (ASIC_IS_R300(rdev)) {
sclk_delay_ff.full = dfixed_const(250);
} else {
if ((rdev->family == CHIP_RV100) ||
rdev->flags & RADEON_IS_IGP) {
if (rdev->mc.vram_is_ddr)
sclk_delay_ff.full = dfixed_const(41);
else
sclk_delay_ff.full = dfixed_const(33);
} else {
if (rdev->mc.vram_width == 128)
sclk_delay_ff.full = dfixed_const(57);
else
sclk_delay_ff.full = dfixed_const(41);
}
}
mc_latency_sclk.full = dfixed_div(sclk_delay_ff, sclk_eff_ff);
if (rdev->mc.vram_is_ddr) {
if (rdev->mc.vram_width == 32) {
k1.full = dfixed_const(40);
c = 3;
} else {
k1.full = dfixed_const(20);
c = 1;
}
} else {
k1.full = dfixed_const(40);
c = 3;
}
temp_ff.full = dfixed_const(2);
mc_latency_mclk.full = dfixed_mul(trcd_ff, temp_ff);
temp_ff.full = dfixed_const(c);
mc_latency_mclk.full += dfixed_mul(tcas_ff, temp_ff);
temp_ff.full = dfixed_const(4);
mc_latency_mclk.full += dfixed_mul(tras_ff, temp_ff);
mc_latency_mclk.full += dfixed_mul(trp_ff, temp_ff);
mc_latency_mclk.full += k1.full;
mc_latency_mclk.full = dfixed_div(mc_latency_mclk, mclk_ff);
mc_latency_mclk.full += dfixed_div(temp_ff, sclk_eff_ff);
/*
HW cursor time assuming worst case of full size colour cursor.
*/
temp_ff.full = dfixed_const((2 * (cur_size - (rdev->mc.vram_is_ddr + 1))));
temp_ff.full += trcd_ff.full;
if (temp_ff.full < tras_ff.full)
temp_ff.full = tras_ff.full;
cur_latency_mclk.full = dfixed_div(temp_ff, mclk_ff);
temp_ff.full = dfixed_const(cur_size);
cur_latency_sclk.full = dfixed_div(temp_ff, sclk_eff_ff);
/*
Find the total latency for the display data.
*/
disp_latency_overhead.full = dfixed_const(8);
disp_latency_overhead.full = dfixed_div(disp_latency_overhead, sclk_ff);
mc_latency_mclk.full += disp_latency_overhead.full + cur_latency_mclk.full;
mc_latency_sclk.full += disp_latency_overhead.full + cur_latency_sclk.full;
if (mc_latency_mclk.full > mc_latency_sclk.full)
disp_latency.full = mc_latency_mclk.full;
else
disp_latency.full = mc_latency_sclk.full;
/* setup Max GRPH_STOP_REQ default value */
if (ASIC_IS_RV100(rdev))
max_stop_req = 0x5c;
else
max_stop_req = 0x7c;
if (mode1) {
/* CRTC1
Set GRPH_BUFFER_CNTL register using h/w defined optimal values.
GRPH_STOP_REQ <= MIN[ 0x7C, (CRTC_H_DISP + 1) * (bit depth) / 0x10 ]
*/
stop_req = mode1->hdisplay * pixel_bytes1 / 16;
if (stop_req > max_stop_req)
stop_req = max_stop_req;
/*
Find the drain rate of the display buffer.
*/
temp_ff.full = dfixed_const((16/pixel_bytes1));
disp_drain_rate.full = dfixed_div(pix_clk, temp_ff);
/*
Find the critical point of the display buffer.
*/
crit_point_ff.full = dfixed_mul(disp_drain_rate, disp_latency);
crit_point_ff.full += dfixed_const_half(0);
critical_point = dfixed_trunc(crit_point_ff);
if (rdev->disp_priority == 2) {
critical_point = 0;
}
/*
The critical point should never be above max_stop_req-4. Setting
GRPH_CRITICAL_CNTL = 0 will thus force high priority all the time.
*/
if (max_stop_req - critical_point < 4)
critical_point = 0;
if (critical_point == 0 && mode2 && rdev->family == CHIP_R300) {
/* some R300 cards have problem with this set to 0, when CRTC2 is enabled.*/
critical_point = 0x10;
}
temp = RREG32(RADEON_GRPH_BUFFER_CNTL);
temp &= ~(RADEON_GRPH_STOP_REQ_MASK);
temp |= (stop_req << RADEON_GRPH_STOP_REQ_SHIFT);
temp &= ~(RADEON_GRPH_START_REQ_MASK);
if ((rdev->family == CHIP_R350) &&
(stop_req > 0x15)) {
stop_req -= 0x10;
}
temp |= (stop_req << RADEON_GRPH_START_REQ_SHIFT);
temp |= RADEON_GRPH_BUFFER_SIZE;
temp &= ~(RADEON_GRPH_CRITICAL_CNTL |
RADEON_GRPH_CRITICAL_AT_SOF |
RADEON_GRPH_STOP_CNTL);
/*
Write the result into the register.
*/
WREG32(RADEON_GRPH_BUFFER_CNTL, ((temp & ~RADEON_GRPH_CRITICAL_POINT_MASK) |
(critical_point << RADEON_GRPH_CRITICAL_POINT_SHIFT)));
#if 0
if ((rdev->family == CHIP_RS400) ||
(rdev->family == CHIP_RS480)) {
/* attempt to program RS400 disp regs correctly ??? */
temp = RREG32(RS400_DISP1_REG_CNTL);
temp &= ~(RS400_DISP1_START_REQ_LEVEL_MASK |
RS400_DISP1_STOP_REQ_LEVEL_MASK);
WREG32(RS400_DISP1_REQ_CNTL1, (temp |
(critical_point << RS400_DISP1_START_REQ_LEVEL_SHIFT) |
(critical_point << RS400_DISP1_STOP_REQ_LEVEL_SHIFT)));
temp = RREG32(RS400_DMIF_MEM_CNTL1);
temp &= ~(RS400_DISP1_CRITICAL_POINT_START_MASK |
RS400_DISP1_CRITICAL_POINT_STOP_MASK);
WREG32(RS400_DMIF_MEM_CNTL1, (temp |
(critical_point << RS400_DISP1_CRITICAL_POINT_START_SHIFT) |
(critical_point << RS400_DISP1_CRITICAL_POINT_STOP_SHIFT)));
}
#endif
DRM_DEBUG_KMS("GRPH_BUFFER_CNTL from to %x\n",
/* (unsigned int)info->SavedReg->grph_buffer_cntl, */
(unsigned int)RREG32(RADEON_GRPH_BUFFER_CNTL));
}
if (mode2) {
u32 grph2_cntl;
stop_req = mode2->hdisplay * pixel_bytes2 / 16;
if (stop_req > max_stop_req)
stop_req = max_stop_req;
/*
Find the drain rate of the display buffer.
*/
temp_ff.full = dfixed_const((16/pixel_bytes2));
disp_drain_rate2.full = dfixed_div(pix_clk2, temp_ff);
grph2_cntl = RREG32(RADEON_GRPH2_BUFFER_CNTL);
grph2_cntl &= ~(RADEON_GRPH_STOP_REQ_MASK);
grph2_cntl |= (stop_req << RADEON_GRPH_STOP_REQ_SHIFT);
grph2_cntl &= ~(RADEON_GRPH_START_REQ_MASK);
if ((rdev->family == CHIP_R350) &&
(stop_req > 0x15)) {
stop_req -= 0x10;
}
grph2_cntl |= (stop_req << RADEON_GRPH_START_REQ_SHIFT);
grph2_cntl |= RADEON_GRPH_BUFFER_SIZE;
grph2_cntl &= ~(RADEON_GRPH_CRITICAL_CNTL |
RADEON_GRPH_CRITICAL_AT_SOF |
RADEON_GRPH_STOP_CNTL);
if ((rdev->family == CHIP_RS100) ||
(rdev->family == CHIP_RS200))
critical_point2 = 0;
else {
temp = (rdev->mc.vram_width * rdev->mc.vram_is_ddr + 1)/128;
temp_ff.full = dfixed_const(temp);
temp_ff.full = dfixed_mul(mclk_ff, temp_ff);
if (sclk_ff.full < temp_ff.full)
temp_ff.full = sclk_ff.full;
read_return_rate.full = temp_ff.full;
if (mode1) {
temp_ff.full = read_return_rate.full - disp_drain_rate.full;
time_disp1_drop_priority.full = dfixed_div(crit_point_ff, temp_ff);
} else {
time_disp1_drop_priority.full = 0;
}
crit_point_ff.full = disp_latency.full + time_disp1_drop_priority.full + disp_latency.full;
crit_point_ff.full = dfixed_mul(crit_point_ff, disp_drain_rate2);
crit_point_ff.full += dfixed_const_half(0);
critical_point2 = dfixed_trunc(crit_point_ff);
if (rdev->disp_priority == 2) {
critical_point2 = 0;
}
if (max_stop_req - critical_point2 < 4)
critical_point2 = 0;
}
if (critical_point2 == 0 && rdev->family == CHIP_R300) {
/* some R300 cards have problem with this set to 0 */
critical_point2 = 0x10;
}
WREG32(RADEON_GRPH2_BUFFER_CNTL, ((grph2_cntl & ~RADEON_GRPH_CRITICAL_POINT_MASK) |
(critical_point2 << RADEON_GRPH_CRITICAL_POINT_SHIFT)));
if ((rdev->family == CHIP_RS400) ||
(rdev->family == CHIP_RS480)) {
#if 0
/* attempt to program RS400 disp2 regs correctly ??? */
temp = RREG32(RS400_DISP2_REQ_CNTL1);
temp &= ~(RS400_DISP2_START_REQ_LEVEL_MASK |
RS400_DISP2_STOP_REQ_LEVEL_MASK);
WREG32(RS400_DISP2_REQ_CNTL1, (temp |
(critical_point2 << RS400_DISP1_START_REQ_LEVEL_SHIFT) |
(critical_point2 << RS400_DISP1_STOP_REQ_LEVEL_SHIFT)));
temp = RREG32(RS400_DISP2_REQ_CNTL2);
temp &= ~(RS400_DISP2_CRITICAL_POINT_START_MASK |
RS400_DISP2_CRITICAL_POINT_STOP_MASK);
WREG32(RS400_DISP2_REQ_CNTL2, (temp |
(critical_point2 << RS400_DISP2_CRITICAL_POINT_START_SHIFT) |
(critical_point2 << RS400_DISP2_CRITICAL_POINT_STOP_SHIFT)));
#endif
WREG32(RS400_DISP2_REQ_CNTL1, 0x105DC1CC);
WREG32(RS400_DISP2_REQ_CNTL2, 0x2749D000);
WREG32(RS400_DMIF_MEM_CNTL1, 0x29CA71DC);
WREG32(RS400_DISP1_REQ_CNTL1, 0x28FBC3AC);
}
DRM_DEBUG_KMS("GRPH2_BUFFER_CNTL from to %x\n",
(unsigned int)RREG32(RADEON_GRPH2_BUFFER_CNTL));
}
}
int r100_ring_test(struct radeon_device *rdev, struct radeon_ring *ring)
{
uint32_t scratch;
uint32_t tmp = 0;
unsigned i;
int r;
r = radeon_scratch_get(rdev, &scratch);
if (r) {
DRM_ERROR("radeon: cp failed to get scratch reg (%d).\n", r);
return r;
}
WREG32(scratch, 0xCAFEDEAD);
r = radeon_ring_lock(rdev, ring, 2);
if (r) {
DRM_ERROR("radeon: cp failed to lock ring (%d).\n", r);
radeon_scratch_free(rdev, scratch);
return r;
}
radeon_ring_write(ring, PACKET0(scratch, 0));
radeon_ring_write(ring, 0xDEADBEEF);
radeon_ring_unlock_commit(rdev, ring);
for (i = 0; i < rdev->usec_timeout; i++) {
tmp = RREG32(scratch);
if (tmp == 0xDEADBEEF) {
break;
}
DRM_UDELAY(1);
}
if (i < rdev->usec_timeout) {
DRM_INFO("ring test succeeded in %d usecs\n", i);
} else {
DRM_ERROR("radeon: ring test failed (scratch(0x%04X)=0x%08X)\n",
scratch, tmp);
r = -EINVAL;
}
radeon_scratch_free(rdev, scratch);
return r;
}
void r100_ring_ib_execute(struct radeon_device *rdev, struct radeon_ib *ib)
{
struct radeon_ring *ring = &rdev->ring[RADEON_RING_TYPE_GFX_INDEX];
if (ring->rptr_save_reg) {
u32 next_rptr = ring->wptr + 2 + 3;
radeon_ring_write(ring, PACKET0(ring->rptr_save_reg, 0));
radeon_ring_write(ring, next_rptr);
}
radeon_ring_write(ring, PACKET0(RADEON_CP_IB_BASE, 1));
radeon_ring_write(ring, ib->gpu_addr);
radeon_ring_write(ring, ib->length_dw);
}
int r100_ib_test(struct radeon_device *rdev, struct radeon_ring *ring)
{
struct radeon_ib ib;
uint32_t scratch;
uint32_t tmp = 0;
unsigned i;
int r;
r = radeon_scratch_get(rdev, &scratch);
if (r) {
DRM_ERROR("radeon: failed to get scratch reg (%d).\n", r);
return r;
}
WREG32(scratch, 0xCAFEDEAD);
r = radeon_ib_get(rdev, RADEON_RING_TYPE_GFX_INDEX, &ib, NULL, 256);
if (r) {
DRM_ERROR("radeon: failed to get ib (%d).\n", r);
goto free_scratch;
}
ib.ptr[0] = PACKET0(scratch, 0);
ib.ptr[1] = 0xDEADBEEF;
ib.ptr[2] = PACKET2(0);
ib.ptr[3] = PACKET2(0);
ib.ptr[4] = PACKET2(0);
ib.ptr[5] = PACKET2(0);
ib.ptr[6] = PACKET2(0);
ib.ptr[7] = PACKET2(0);
ib.length_dw = 8;
r = radeon_ib_schedule(rdev, &ib, NULL);
if (r) {
DRM_ERROR("radeon: failed to schedule ib (%d).\n", r);
goto free_ib;
}
r = radeon_fence_wait(ib.fence, false);
if (r) {
DRM_ERROR("radeon: fence wait failed (%d).\n", r);
goto free_ib;
}
for (i = 0; i < rdev->usec_timeout; i++) {
tmp = RREG32(scratch);
if (tmp == 0xDEADBEEF) {
break;
}
DRM_UDELAY(1);
}
if (i < rdev->usec_timeout) {
DRM_INFO("ib test succeeded in %u usecs\n", i);
} else {
DRM_ERROR("radeon: ib test failed (scratch(0x%04X)=0x%08X)\n",
scratch, tmp);
r = -EINVAL;
}
free_ib:
radeon_ib_free(rdev, &ib);
free_scratch:
radeon_scratch_free(rdev, scratch);
return r;
}
void r100_mc_stop(struct radeon_device *rdev, struct r100_mc_save *save)
{
/* Shutdown CP we shouldn't need to do that but better be safe than
* sorry
*/
rdev->ring[RADEON_RING_TYPE_GFX_INDEX].ready = false;
WREG32(R_000740_CP_CSQ_CNTL, 0);
/* Save few CRTC registers */
save->GENMO_WT = RREG8(R_0003C2_GENMO_WT);
save->CRTC_EXT_CNTL = RREG32(R_000054_CRTC_EXT_CNTL);
save->CRTC_GEN_CNTL = RREG32(R_000050_CRTC_GEN_CNTL);
save->CUR_OFFSET = RREG32(R_000260_CUR_OFFSET);
if (!(rdev->flags & RADEON_SINGLE_CRTC)) {
save->CRTC2_GEN_CNTL = RREG32(R_0003F8_CRTC2_GEN_CNTL);
save->CUR2_OFFSET = RREG32(R_000360_CUR2_OFFSET);
}
/* Disable VGA aperture access */
WREG8(R_0003C2_GENMO_WT, C_0003C2_VGA_RAM_EN & save->GENMO_WT);
/* Disable cursor, overlay, crtc */
WREG32(R_000260_CUR_OFFSET, save->CUR_OFFSET | S_000260_CUR_LOCK(1));
WREG32(R_000054_CRTC_EXT_CNTL, save->CRTC_EXT_CNTL |
S_000054_CRTC_DISPLAY_DIS(1));
WREG32(R_000050_CRTC_GEN_CNTL,
(C_000050_CRTC_CUR_EN & save->CRTC_GEN_CNTL) |
S_000050_CRTC_DISP_REQ_EN_B(1));
WREG32(R_000420_OV0_SCALE_CNTL,
C_000420_OV0_OVERLAY_EN & RREG32(R_000420_OV0_SCALE_CNTL));
WREG32(R_000260_CUR_OFFSET, C_000260_CUR_LOCK & save->CUR_OFFSET);
if (!(rdev->flags & RADEON_SINGLE_CRTC)) {
WREG32(R_000360_CUR2_OFFSET, save->CUR2_OFFSET |
S_000360_CUR2_LOCK(1));
WREG32(R_0003F8_CRTC2_GEN_CNTL,
(C_0003F8_CRTC2_CUR_EN & save->CRTC2_GEN_CNTL) |
S_0003F8_CRTC2_DISPLAY_DIS(1) |
S_0003F8_CRTC2_DISP_REQ_EN_B(1));
WREG32(R_000360_CUR2_OFFSET,
C_000360_CUR2_LOCK & save->CUR2_OFFSET);
}
}
void r100_mc_resume(struct radeon_device *rdev, struct r100_mc_save *save)
{
/* Update base address for crtc */
WREG32(R_00023C_DISPLAY_BASE_ADDR, rdev->mc.vram_start);
if (!(rdev->flags & RADEON_SINGLE_CRTC)) {
WREG32(R_00033C_CRTC2_DISPLAY_BASE_ADDR, rdev->mc.vram_start);
}
/* Restore CRTC registers */
WREG8(R_0003C2_GENMO_WT, save->GENMO_WT);
WREG32(R_000054_CRTC_EXT_CNTL, save->CRTC_EXT_CNTL);
WREG32(R_000050_CRTC_GEN_CNTL, save->CRTC_GEN_CNTL);
if (!(rdev->flags & RADEON_SINGLE_CRTC)) {
WREG32(R_0003F8_CRTC2_GEN_CNTL, save->CRTC2_GEN_CNTL);
}
}
void r100_vga_render_disable(struct radeon_device *rdev)
{
u32 tmp;
tmp = RREG8(R_0003C2_GENMO_WT);
WREG8(R_0003C2_GENMO_WT, C_0003C2_VGA_RAM_EN & tmp);
}
static void r100_debugfs(struct radeon_device *rdev)
{
int r;
r = r100_debugfs_mc_info_init(rdev);
if (r)
dev_warn(rdev->dev, "Failed to create r100_mc debugfs file.\n");
}
static void r100_mc_program(struct radeon_device *rdev)
{
struct r100_mc_save save;
/* Stops all mc clients */
r100_mc_stop(rdev, &save);
if (rdev->flags & RADEON_IS_AGP) {
WREG32(R_00014C_MC_AGP_LOCATION,
S_00014C_MC_AGP_START(rdev->mc.gtt_start >> 16) |
S_00014C_MC_AGP_TOP(rdev->mc.gtt_end >> 16));
WREG32(R_000170_AGP_BASE, lower_32_bits(rdev->mc.agp_base));
if (rdev->family > CHIP_RV200)
WREG32(R_00015C_AGP_BASE_2,
upper_32_bits(rdev->mc.agp_base) & 0xff);
} else {
WREG32(R_00014C_MC_AGP_LOCATION, 0x0FFFFFFF);
WREG32(R_000170_AGP_BASE, 0);
if (rdev->family > CHIP_RV200)
WREG32(R_00015C_AGP_BASE_2, 0);
}
/* Wait for mc idle */
if (r100_mc_wait_for_idle(rdev))
dev_warn(rdev->dev, "Wait for MC idle timeout.\n");
/* Program MC, should be a 32bits limited address space */
WREG32(R_000148_MC_FB_LOCATION,
S_000148_MC_FB_START(rdev->mc.vram_start >> 16) |
S_000148_MC_FB_TOP(rdev->mc.vram_end >> 16));
r100_mc_resume(rdev, &save);
}
static void r100_clock_startup(struct radeon_device *rdev)
{
u32 tmp;
if (radeon_dynclks != -1 && radeon_dynclks)
radeon_legacy_set_clock_gating(rdev, 1);
/* We need to force on some of the block */
tmp = RREG32_PLL(R_00000D_SCLK_CNTL);
tmp |= S_00000D_FORCE_CP(1) | S_00000D_FORCE_VIP(1);
if ((rdev->family == CHIP_RV250) || (rdev->family == CHIP_RV280))
tmp |= S_00000D_FORCE_DISP1(1) | S_00000D_FORCE_DISP2(1);
WREG32_PLL(R_00000D_SCLK_CNTL, tmp);
}
static int r100_startup(struct radeon_device *rdev)
{
int r;
/* set common regs */
r100_set_common_regs(rdev);
/* program mc */
r100_mc_program(rdev);
/* Resume clock */
r100_clock_startup(rdev);
/* Initialize GART (initialize after TTM so we can allocate
* memory through TTM but finalize after TTM) */
r100_enable_bm(rdev);
if (rdev->flags & RADEON_IS_PCI) {
r = r100_pci_gart_enable(rdev);
if (r)
return r;
}
/* allocate wb buffer */
r = radeon_wb_init(rdev);
if (r)
return r;
r = radeon_fence_driver_start_ring(rdev, RADEON_RING_TYPE_GFX_INDEX);
if (r) {
dev_err(rdev->dev, "failed initializing CP fences (%d).\n", r);
return r;
}
/* Enable IRQ */
radeon: Fix system hang issue when using KMS with older cards The current radeon driver initialization routines, when using KMS, are written so that the IRQ installation routine is called before initializing the WB buffer and the CP rings. With some ASICs, though, the IRQ routine tries to access the GFX_INDEX ring causing a call to RREG32 with the value of -1 in radeon_fence_read. This, in turn causes the system to completely hang with some cards, requiring a hard reset. A call stack that can cause such a hang looks like this (using rv515 ASIC for the example here): * rv515_init (rv515.c) * radeon_irq_kms_init (radeon_irq_kms.c) * drm_irq_install (drm_irq.c) * radeon_driver_irq_preinstall_kms (radeon_irq_kms.c) * rs600_irq_process (rs600.c) * radeon_fence_process - due to SW interrupt (radeon_fence.c) * radeon_fence_read (radeon_fence.c) * hang due to RREG32(-1) The patch moves the IRQ installation to the card startup routine, after the ring has been initialized, but before the IRQ has been set. This fixes the issue, but requires a check to see if the IRQ is already installed, as is the case in the system resume codepath. I have tested the patch on three machines using the rv515, the rv770 and the evergreen ASIC. They worked without issues. This seems to be a known issue and has been reported on several bug tracking sites by various distributions (see links below). Most of reports recommend booting the system with KMS disabled and then enabling KMS by reloading the radeon module. For some reason, this was indeed a usable workaround, however, UMS is now deprecated and disabled by default. Bug reports: https://bugzilla.redhat.com/show_bug.cgi?id=845745 https://bugs.launchpad.net/ubuntu/+source/linux/+bug/561789 https://bbs.archlinux.org/viewtopic.php?id=156964 Signed-off-by: Adis Hamzić <adis@hamzadis.com> Signed-off-by: Alex Deucher <alexander.deucher@amd.com> Cc: stable@vger.kernel.org
2013-06-02 14:47:54 +00:00
if (!rdev->irq.installed) {
r = radeon_irq_kms_init(rdev);
if (r)
return r;
}
r100_irq_set(rdev);
rdev->config.r100.hdp_cntl = RREG32(RADEON_HOST_PATH_CNTL);
/* 1M ring buffer */
r = r100_cp_init(rdev, 1024 * 1024);
if (r) {
dev_err(rdev->dev, "failed initializing CP (%d).\n", r);
return r;
}
r = radeon_ib_pool_init(rdev);
if (r) {
dev_err(rdev->dev, "IB initialization failed (%d).\n", r);
return r;
}
return 0;
}
int r100_resume(struct radeon_device *rdev)
{
int r;
/* Make sur GART are not working */
if (rdev->flags & RADEON_IS_PCI)
r100_pci_gart_disable(rdev);
/* Resume clock before doing reset */
r100_clock_startup(rdev);
/* Reset gpu before posting otherwise ATOM will enter infinite loop */
if (radeon_asic_reset(rdev)) {
dev_warn(rdev->dev, "GPU reset failed ! (0xE40=0x%08X, 0x7C0=0x%08X)\n",
RREG32(R_000E40_RBBM_STATUS),
RREG32(R_0007C0_CP_STAT));
}
/* post */
radeon_combios_asic_init(rdev->ddev);
/* Resume clock after posting */
r100_clock_startup(rdev);
/* Initialize surface registers */
radeon_surface_init(rdev);
rdev->accel_working = true;
r = r100_startup(rdev);
if (r) {
rdev->accel_working = false;
}
return r;
}
int r100_suspend(struct radeon_device *rdev)
{
r100_cp_disable(rdev);
radeon_wb_disable(rdev);
r100_irq_disable(rdev);
if (rdev->flags & RADEON_IS_PCI)
r100_pci_gart_disable(rdev);
return 0;
}
void r100_fini(struct radeon_device *rdev)
{
r100_cp_fini(rdev);
radeon_wb_fini(rdev);
radeon_ib_pool_fini(rdev);
radeon_gem_fini(rdev);
if (rdev->flags & RADEON_IS_PCI)
r100_pci_gart_fini(rdev);
radeon_agp_fini(rdev);
radeon_irq_kms_fini(rdev);
radeon_fence_driver_fini(rdev);
radeon_bo_fini(rdev);
radeon_atombios_fini(rdev);
kfree(rdev->bios);
rdev->bios = NULL;
}
/*
* Due to how kexec works, it can leave the hw fully initialised when it
* boots the new kernel. However doing our init sequence with the CP and
* WB stuff setup causes GPU hangs on the RN50 at least. So at startup
* do some quick sanity checks and restore sane values to avoid this
* problem.
*/
void r100_restore_sanity(struct radeon_device *rdev)
{
u32 tmp;
tmp = RREG32(RADEON_CP_CSQ_CNTL);
if (tmp) {
WREG32(RADEON_CP_CSQ_CNTL, 0);
}
tmp = RREG32(RADEON_CP_RB_CNTL);
if (tmp) {
WREG32(RADEON_CP_RB_CNTL, 0);
}
tmp = RREG32(RADEON_SCRATCH_UMSK);
if (tmp) {
WREG32(RADEON_SCRATCH_UMSK, 0);
}
}
int r100_init(struct radeon_device *rdev)
{
int r;
/* Register debugfs file specific to this group of asics */
r100_debugfs(rdev);
/* Disable VGA */
r100_vga_render_disable(rdev);
/* Initialize scratch registers */
radeon_scratch_init(rdev);
/* Initialize surface registers */
radeon_surface_init(rdev);
/* sanity check some register to avoid hangs like after kexec */
r100_restore_sanity(rdev);
/* TODO: disable VGA need to use VGA request */
/* BIOS*/
if (!radeon_get_bios(rdev)) {
if (ASIC_IS_AVIVO(rdev))
return -EINVAL;
}
if (rdev->is_atom_bios) {
dev_err(rdev->dev, "Expecting combios for RS400/RS480 GPU\n");
return -EINVAL;
} else {
r = radeon_combios_init(rdev);
if (r)
return r;
}
/* Reset gpu before posting otherwise ATOM will enter infinite loop */
if (radeon_asic_reset(rdev)) {
dev_warn(rdev->dev,
"GPU reset failed ! (0xE40=0x%08X, 0x7C0=0x%08X)\n",
RREG32(R_000E40_RBBM_STATUS),
RREG32(R_0007C0_CP_STAT));
}
/* check if cards are posted or not */
if (radeon_boot_test_post_card(rdev) == false)
return -EINVAL;
/* Set asic errata */
r100_errata(rdev);
/* Initialize clocks */
radeon_get_clock_info(rdev->ddev);
/* initialize AGP */
if (rdev->flags & RADEON_IS_AGP) {
r = radeon_agp_init(rdev);
if (r) {
radeon_agp_disable(rdev);
}
}
/* initialize VRAM */
r100_mc_init(rdev);
/* Fence driver */
r = radeon_fence_driver_init(rdev);
if (r)
return r;
/* Memory manager */
r = radeon_bo_init(rdev);
if (r)
return r;
if (rdev->flags & RADEON_IS_PCI) {
r = r100_pci_gart_init(rdev);
if (r)
return r;
}
r100_set_safe_registers(rdev);
rdev->accel_working = true;
r = r100_startup(rdev);
if (r) {
/* Somethings want wront with the accel init stop accel */
dev_err(rdev->dev, "Disabling GPU acceleration\n");
r100_cp_fini(rdev);
radeon_wb_fini(rdev);
radeon_ib_pool_fini(rdev);
radeon_irq_kms_fini(rdev);
if (rdev->flags & RADEON_IS_PCI)
r100_pci_gart_fini(rdev);
rdev->accel_working = false;
}
return 0;
}
uint32_t r100_mm_rreg(struct radeon_device *rdev, uint32_t reg,
bool always_indirect)
{
if (reg < rdev->rmmio_size && !always_indirect)
return readl(((void __iomem *)rdev->rmmio) + reg);
else {
unsigned long flags;
uint32_t ret;
spin_lock_irqsave(&rdev->mmio_idx_lock, flags);
writel(reg, ((void __iomem *)rdev->rmmio) + RADEON_MM_INDEX);
ret = readl(((void __iomem *)rdev->rmmio) + RADEON_MM_DATA);
spin_unlock_irqrestore(&rdev->mmio_idx_lock, flags);
return ret;
}
}
void r100_mm_wreg(struct radeon_device *rdev, uint32_t reg, uint32_t v,
bool always_indirect)
{
if (reg < rdev->rmmio_size && !always_indirect)
writel(v, ((void __iomem *)rdev->rmmio) + reg);
else {
unsigned long flags;
spin_lock_irqsave(&rdev->mmio_idx_lock, flags);
writel(reg, ((void __iomem *)rdev->rmmio) + RADEON_MM_INDEX);
writel(v, ((void __iomem *)rdev->rmmio) + RADEON_MM_DATA);
spin_unlock_irqrestore(&rdev->mmio_idx_lock, flags);
}
}
u32 r100_io_rreg(struct radeon_device *rdev, u32 reg)
{
if (reg < rdev->rio_mem_size)
return ioread32(rdev->rio_mem + reg);
else {
iowrite32(reg, rdev->rio_mem + RADEON_MM_INDEX);
return ioread32(rdev->rio_mem + RADEON_MM_DATA);
}
}
void r100_io_wreg(struct radeon_device *rdev, u32 reg, u32 v)
{
if (reg < rdev->rio_mem_size)
iowrite32(v, rdev->rio_mem + reg);
else {
iowrite32(reg, rdev->rio_mem + RADEON_MM_INDEX);
iowrite32(v, rdev->rio_mem + RADEON_MM_DATA);
}
}